

Cálculo Diferencial e Integral en Varias Variables I Semestre 2025

Práctico 1 – Números complejos.

- 1. Determinar los valores de i^k para todo k entero.
- 2. Expresar los siguientes números complejos en forma binómica (a+bi con a, b reales) y en notación polar $(re^{i\theta}$ con r > 0 y θ real).

a)
$$(1+i)^2$$

$$d) (2+3i)(3-4i)$$

$$h) -3a$$

$$k) \frac{1+i}{\sqrt{2}}$$

b)
$$\frac{1}{i}$$

$$e) (1+i)(1-2i)$$

$$i) 1 + i + i^2 + i^3$$

$$c) \frac{1}{1+i}$$

$$g)$$
 -1

d)
$$(2+3i)(3-4i)$$
 h) $-3i$ k) $\frac{1+i}{\sqrt{2}}$
e) $(1+i)(1-2i)$ i) $1+i+i^2+i^3$
f) i^5+i^{16} j) $\frac{1}{2}(1+i)(1-i^{-8})$ l) $\frac{1}{(1+i)^2}$

$$l) \frac{1}{(1+i)^2}$$

3. Expresar en notación binómica:

$$a) e^{i\frac{\pi}{2}}$$

$$b) 3e^{\pi i}$$

c)
$$\frac{1 - e^{\frac{\pi}{2}i}}{1 + e^{\frac{\pi}{2}i}}$$

$$d) (i+1)^{100}$$

4. Probar que para todo par de números complejos z_1 y z_2 se cumple:

$$a) \mid z_1 \mid = \mid \bar{z_1} \mid$$

c)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

$$b) \mid z_1 z_2 \mid = \mid z_1 \mid \mid z_2 \mid$$

d) si
$$z_1 \neq 0$$
 $\left| \frac{1}{z_1} \right| = \frac{1}{|z_1|}$

- 5. Representar geométricamente los complejos:
 - a) $(1+i)^n (1-i)^n$ para algunos valores naturales n.
 - b) Las raíces quintas de 1 (es decir, los complejos z tales que $z^5 = 1$).
 - c) Las raíces décimas de 1.
 - d) Los complejos z tales que $z^6 = 8(\sqrt{3} i)$.
- 6. Encontrar, en cada caso, el conjunto de los $z \in \mathbb{C}$ que satisfacen las siguientes condiciones, y representar geométricamente.

a)
$$|z| > 1$$

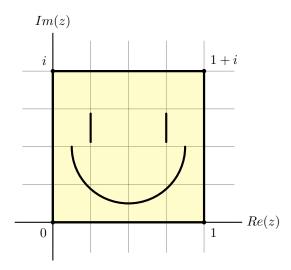
d)
$$Im(z) < 2$$

b)
$$z - \overline{z} = i$$

c)
$$|z - i| = |z + i|$$

e)
$$|z - \bar{z}| = 2 \operatorname{Re}(z - 1)$$

7. Bosquejar el resultado de aplicarle a la figura las siguientes funciones:



- a) f(z) = z + (1+i).
- b) f(z) = (1+i)z.
- c) $f(z) = z^2$.
- $d) f(z) = e^z$.
- 8. En \mathbb{C} , se consideran $\{z_1, \dots, z_8\}$ las raíces octavas de 2^8 , es decir aquellas que cumplen $z_k^8 = 2^8$ para cada $k = 1, \dots, 8$. Determinar cuáles de las siguientes afirmaciones son verdaderas y cuáles son falsas:
 - a) $z_i = 2$ para todo $i = 1, \dots, 8$.
 - b) Existen al menos dos raíces z_j , z_k tales que $z_j = -z_k$.
 - c) Existen al menos dos raíces z_l , z_m tales que $\bar{z}_l = z_m$.
 - d) Se cumple $z_1 z_2 z_3 z_4 z_5 z_6 z_7 z_8 = 2^8$.
- 9. Sea $A = \{(\cos(\frac{\pi}{7}) + i \text{sen } (\frac{\pi}{7}))^n / n \in \mathbb{N}\}$. ¿Cuántos elementos tiene este conjunto de números complejos?
- 10. Sea P(z) un polinomio con coeficientes reales.
 - a) Probar que $P(\overline{z}) = \overline{P(z)}$ para todo $z \in \mathbb{C}$.
 - b) Probar que si $z_0 = a + ib$ es raíz de P(z), entonces $\overline{z_0} = a ib$ también es raíz de P(z).
- 11. Considere el polinomio $P(z) = z^4 2z^3 + 6z^2 8z + 8$. Sabiendo que P(z) tiene una raíz imaginaria pura halle todas sus raíces.
- 12. Se considera el polinomio complejo $P(z)=z^3-2z^2+\frac{3}{2}z-\frac{1}{2}$, y las siguientes afirmaciones:
 - (I) Existen dos raíces tales que su suma es igual a la raíz restante.
 - (II) La distancia entre dos raíces distintas siempre es constante.
 - (III) El producto de todas las raíces es igual al inverso de la suma de todas sus raíces.

Entonces:

- A) Solo las afirmaciones (I) y (III) son correctas.
- B) Todas las afirmaciones son correctas.
- C) Solo las afirmaciones (II) y (III) son correctas.
- D) Ninguna afirmación es correcta.
- E) Solo la afirmación (I) es correcta.

Ejercicios propuestos en evaluaciones anteriores

1. (*Primer parcial segundo semestre 2023*) Considere las soluciones de la siguiente ecuación en los números complejos:

$$z^3 = 4\bar{z}$$

Entonces:

- (A) La ecuación tiene 5 soluciones, una sola de ellas con parte imaginaria nula.
- (B) La ecuación tiene 4 soluciones, y el producto de ellas es i.
- (C) La ecuación tiene 5 soluciones, tres de ellas con parte imaginaria nula.
- (D) La ecuación tiene 3 soluciones, una real pura y dos complejas conjugadas.
- (E) La ecuación tiene 3 soluciones, la suma de ellas da cero.
- 2. (*Examen diciembre 2022*) Sea $A \subset \mathbb{C}$ el conjunto de los números $z \in \mathbb{C}$ que verifican:

$$\left\{ \begin{array}{l} z^4 = 1 - i\sqrt{3} \\ z + \bar{z} > 0 \end{array} \right.$$

Solo una de las siguientes afirmaciones sobre el conjunto A es correcta. Indique cuál:

- (A) A es simétrico respecto al eje real.
- (B) A es simétrico respecto al eje imaginario.
- (C) A tiene exactamente dos elementos distintos.
- (D) A tiene exactamente cuatro elementos distintos.
- (E) Todos los elementos de A están en la circunferencia de centro 0 y radio 1.
- 3. (*Primer parcial segundo semestre 2021*) Consideremos los números complejos que satisfacen las tres condiciones siguientes:

$$\begin{cases} z\overline{z} = 4 \\ \operatorname{Re}(z)^4 = 1 \\ |e^z| > 1 \end{cases}$$

Entonces el producto de dichos números da:

- a) 0
- b) 16
- c) 2 + 2i
- d) 4i
- e) 4
- 4. (*Examen julio 2021*) Sea

$$z = \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^{2021}$$

Hallar Re(z) y Im(z).

5. (*Primer parcial segundo semestre 2019*) Se considera la ecuación $e^z = e^{2z}$. Hallar el conjunto solución en \mathbb{C} .

Ejercicios Complementarios

- 1. Probar que la fórmula de Bhaskara es válida para polinomios complejos.
- 2. Probar que no existe una relación de orden total < en $\mathbb C$ que cumpla los siguientes axiomas de orden
 - Para todo $z \in \mathbb{C} \setminus 0$ se tiene que z > 0 o -z > 0, pero no ambos.
 - Si $z_1 > 0$ y $z_2 > 0$ entonces $z_1 + z_2 > 0$ y $z_1 z_2 > 0$.

Sugerencia: utilizar que $i^2 = -1$.

- 3. Sabemos que para todo $z \in \mathbb{C} \ \exists \omega \in \mathbb{C} \ \text{tal que } \omega^2 = z$. Discuta sobre posibles definiciones de una función raíz cuadrada, esto es f que cumpla que $f(z)^2 = z$. ¿Cuáles problemas identifica en f?
- 4. Se define el seno y coseno complejos mediante

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}, \quad \operatorname{sen}(z) = \frac{e^{iz} - e^{-iz}}{2i}, \quad \forall \, z \in \mathbb{C}.$$

- a) Probar que las funciones seno y coseno complejas extienden a las funciones seno y coseno reales, en el sentido de que coinciden para $z \in \mathbb{R}$.
- b) Probar que sen $z + \cos^2 z = 1, \forall z \in \mathbb{C}$.
- c) Probar que sen $(-z) = -\operatorname{sen} z$ y $\cos(-z) = \cos z$, $\forall z \in \mathbb{C}$.
- d) Hallar los ceros en el plano complejo de las funciones seno y coseno.