CoGAN: Coupled Generative
Adversarial Networks (GAN)
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* Coupled Generative Adversarial Networks (CoGANs) consist of
two GANs that share parameters in their layers (the lower-level
layers of the generators and discriminators) to learn a joint
distribution of data from two related domains without requiring
paired data samples from the domains.

* Example: human faces with blond hair and dark hair

\\’ \gY Z' g, §
Y ¥




Main |ldea

* A single input vector can generates correlated outputs in different
domains through multiple GANs with weight sharing.
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* CoGAN is designed for learning a joint distribution of images in two
different domains.

* It consists of a pair of GANs — GAN1 and GAN2; each is responsible
for synthesizing images in one domain.
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Application

* Possible applications: Producing color image and depth image where
these two images are highly correlated, i.e. describing the same
scene, or images of the same face with different attributes (smiling
and non-smiling).
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* Both g1 and g2 are realized as multilayer neural network: 64N
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Through layers, the generative models gradually decode information from more abstract
concepts to more material details.

The first layers decode high-level semantics and the last layers decode low-level details.

No constraints are enforced to the last layers.



Generators

* The idea is to force the first layers of g1 and g2 to have identical structure and
share the weights.

* With weight sharing, the pair of images can share the same high-level abstraction
but having different low-level realizations.
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Generators

Shared layer
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# Coupled Generators
class CoupledGenerators(nn.Module):
def __init_ (self, z_dim, output_dim):
super(CoupledGenerators, self).__init__ ()

# Shared layer
self.shared_fc = nn.Sequential(

)

91(2) # Specific output layers for each generator
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self.Gl = nn.Sequential(

)
self.G2 = nn.Sequential(

9,(2)

)

def forward(self, z):
shared_out = self.shared_fc(z)
genl_out = self.Gl(shared_out)
gen2_out = self.G2(shared_out)
return genl_out, gen2_out
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* The discriminative models map an input image to a -
probability score, estimating the likelihood that the T
input is drawn from a true data distribution. 9:(2) { B+ Hd H=O

Aa) = AP0 P (FO0), Rl = 47 (0 1218 6))

* The first layers of the discriminative models extract low-level features, while the last
layers extract high-level features.

* Sharing first layers allows the discriminators to learn a common representation for
the two domains, capturing shared features between them.

 Last layers allow the discriminators to specialize in the nuances of their respective
domains.



Discriminators

Shared layer
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# Coupled Discriminators
class CoupledDiscriminators(nn.Module):
def __init__ (self, input_dim):

def

super(CoupledDiscriminators, self).__init_ ()

# Shared layers for discriminators
self.shared_fc = nn.Sequential(

)

# Specific output layers for each discriminator
self.D1 = nn.Sequential(

)
self.D2 = nn.Sequential(

)

forward(self, x1, x2):
shared_outl = self.shared_fc(x1)
shared_out2 = self.shared_fc(x2)
discl _out = self.D1l(shared_outl)
disc2_out = self.D2(shared_out2)
return discl_out, disc2_out



Learning

e Similar to minmax GAN, CoGAN can be trained by back propagation with the
alternating gradient update steps.

* In the game, there are two teams and each team has two players.
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» Basically, the alternating gradient update steps are to train 2 discriminators one
by one, then to train 2 generators one by one alternatively.



Learning

# Determine validity of real and generated images
validityl real, validity2_real = coupled_discriminators(imgsl, imgs2)
validityl fake, validity2_fake = coupled_discriminators(gen_imgsl.detach(), gen_imgs2.detach())

d_loss = (
adversarial_loss(validityl_real, real_label)
+ adversarial_loss(validityl_fake, fake_label)
+ adversarial_loss(validity2_real, real_label)
+ adversarial_loss(validity2_fake, fake_label)
) / 4

d_loss.backward()
optimizer_D.step()

# Generate a batch of images

gen_imgsl, gen_imgs2 = coupled_generators(z)

# Determine validity of generated images

validityl, validity2 = coupled_discriminators(gen_imgsl, gen_imgs2)

g_loss = (adversarial_loss(validityl, real_label) + adversarial_loss(validity2, real_label)) / 2

g_loss.backward()
optimizer_G.step()



Key features of CoGANSs

e Unpaired Data: Unlike many methods that rely on paired datasets (e.g., an
image and its translation), CoOGANs can learn from unpaired datasets, which
are much easier to collect.

e Parameter Sharing: The lower layers of the generators and discriminators are
shared across the two GANs, allowing the networks to learn common features
(e.g., edges, shapes) while specializing in domain-specific features in higher
layers.

 Domain Adaptation: CoGANSs are particularly useful for tasks that involve
learning correspondences between two related but distinct domains.



Full code

e Generate two different 2D distributions

Blob 1: Real Data Distribution
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Blob 2: Real Data Distribution
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https://colab.research.google.com/drive/1k2UuQVFFv-LNXNzJE-czDJUbRpMCNmM54?usp=sharing
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Full code

* Generate MNIST on MNIST-Modified images

https://drive.google.com/file/d/10TFXWsTmmkOa7XkuQgP-
a94moqgLLYN5a/view?usp=sharing
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