CoGAN: Coupled Generative
Adversarial Networks (GAN)

Main |ldea

* Coupled Generative Adversarial Networks (CoGANs) consist of
two GANs that share parameters in their layers (the lower-level
layers of the generators and discriminators) to learn a joint
distribution of data from two related domains without requiring
paired data samples from the domains.

* Example: human faces with blond hair and dark hair

\\’ \gY Z' g, §
Y ¥

Main |ldea

* A single input vector can generates correlated outputs in different
domains through multiple GANs with weight sharing.

Generators Discriminators

GAN, f1(912)

91(2) J

-9
¢
¥

z — | weight sharing

DECED

e

9,(2)]

L 2

GAN,

Main |ldea

* CoGAN is designed for learning a joint distribution of images in two
different domains.

* It consists of a pair of GANs — GAN1 and GAN2; each is responsible
for synthesizing images in one domain.

Generators Discriminators
GAN, f1(912)
» *~—> > > gl(Z) > » *«——> > —eo—»{)
z — weight sharing
I | X 9.(2) I L X O
GAN,

Application

* Possible applications: Producing color image and depth image where
these two images are highly correlated, i.e. describing the same
scene, or images of the same face with different attributes (smiling
and non-smiling).

Generators

GAN, - G
Generators 1) L
z — | weight sharing
i 9,(2)
* Both g1 and g2 are realized as multilayer neural network: 64N

g1(z) = g™ (™ V(... 6i7 (91 (), 9(z) =g (957> (... 95 (95" (2))))

Through layers, the generative models gradually decode information from more abstract
concepts to more material details.

The first layers decode high-level semantics and the last layers decode low-level details.

No constraints are enforced to the last layers.

Generators

* The idea is to force the first layers of g1 and g2 to have identical structure and
share the weights.

* With weight sharing, the pair of images can share the same high-level abstraction
but having different low-level realizations.

(enerators

GAN
i 91(2)

- - L

z — | weight sharing

9,(2)

7 W —

&
-

GAN,

Generators

Shared layer

(enerators

=

.
d

weight sh

Coupled Generators
class CoupledGenerators(nn.Module):
def __init_ (self, z_dim, output_dim):
super(CoupledGenerators, self).__init__ ()

Shared layer
self.shared_fc = nn.Sequential(

)

91(2) # Specific output layers for each generator

aring

GAN,

>

self.Gl = nn.Sequential(

)
self.G2 = nn.Sequential(

9,(2)

)

def forward(self, z):
shared_out = self.shared_fc(z)
genl_out = self.Gl(shared_out)
gen2_out = self.G2(shared_out)
return genl_out, gen2_out

D I S C rl m I n ato rS Discriminators

9,(2) , = . _.f.(("q'l%zj)
* The discriminative models map an input image to a -
probability score, estimating the likelihood that the T
input is drawn from a true data distribution. 9:(2) { B+ Hd H=O

Aa) = AP0 P (FO0), Rl = 47 (0 1218 6))

* The first layers of the discriminative models extract low-level features, while the last
layers extract high-level features.

* Sharing first layers allows the discriminators to learn a common representation for
the two domains, capturing shared features between them.

 Last layers allow the discriminators to specialize in the nuances of their respective
domains.

Discriminators

Shared layer

Discriminators

L

g.(z) | A " »
! ; z (o

'S et ain s das in e sasn
4

o | ||| 1] || EQ

Coupled Discriminators
class CoupledDiscriminators(nn.Module):
def __init__ (self, input_dim):

def

super(CoupledDiscriminators, self).__init_ ()

Shared layers for discriminators
self.shared_fc = nn.Sequential(

)

Specific output layers for each discriminator
self.D1 = nn.Sequential(

)
self.D2 = nn.Sequential(

)

forward(self, x1, x2):
shared_outl = self.shared_fc(x1)
shared_out2 = self.shared_fc(x2)
discl _out = self.D1l(shared_outl)
disc2_out = self.D2(shared_out2)
return discl_out, disc2_out

Learning

e Similar to minmax GAN, CoGAN can be trained by back propagation with the
alternating gradient update steps.

* In the game, there are two teams and each team has two players.

max min V(fl,fz,gl,gz), subject to 6) =86 (i) fori = 118 2, ...,k
91,92 f1,f2 91 9o

eff_711~-j) = OfénQJ), fOI‘j = 0,1, ,l -1

V(f1, f2,91,92) = Exlfvpxl [— log f1(x1)] + Ez~pz[— log(1 — f1(91(2)))]
< EX2~px2 [_ log f2(x2)] + Ez~pz[_ lOg(l e f2 (92 (Z)))]

» Basically, the alternating gradient update steps are to train 2 discriminators one
by one, then to train 2 generators one by one alternatively.

Learning

Determine validity of real and generated images
validityl real, validity2_real = coupled_discriminators(imgsl, imgs2)
validityl fake, validity2_fake = coupled_discriminators(gen_imgsl.detach(), gen_imgs2.detach())

d_loss = (
adversarial_loss(validityl_real, real_label)
+ adversarial_loss(validityl_fake, fake_label)
+ adversarial_loss(validity2_real, real_label)
+ adversarial_loss(validity2_fake, fake_label)
) / 4

d_loss.backward()
optimizer_D.step()

Generate a batch of images

gen_imgsl, gen_imgs2 = coupled_generators(z)

Determine validity of generated images

validityl, validity2 = coupled_discriminators(gen_imgsl, gen_imgs2)

g_loss = (adversarial_loss(validityl, real_label) + adversarial_loss(validity2, real_label)) / 2

g_loss.backward()
optimizer_G.step()

Key features of CoGANSs

e Unpaired Data: Unlike many methods that rely on paired datasets (e.g., an
image and its translation), CoOGANs can learn from unpaired datasets, which
are much easier to collect.

e Parameter Sharing: The lower layers of the generators and discriminators are
shared across the two GANs, allowing the networks to learn common features
(e.g., edges, shapes) while specializing in domain-specific features in higher
layers.

 Domain Adaptation: CoGANSs are particularly useful for tasks that involve
learning correspondences between two related but distinct domains.

Full code

e Generate two different 2D distributions

Blob 1: Real Data Distribution

10.0

7.5 1

5.0 A

2.5 A

=71:5 -5.0 =2,5 0.0 2.5 5.0 7.5
X1

10.0

Blob 2: Real Data Distribution

10.0

7.5 1

5.0

2.5 A

https://colab.research.google.com/drive/1k2UuQVFFv-LNXNzJE-czDJUbRpMCNmM54?usp=sharing

10.0

Full code

* Generate MNIST on MNIST-Modified images

https://drive.google.com/file/d/10TFXWsTmmkOa7XkuQgP-
a94moqgLLYN5a/view?usp=sharing

	Slide 1: CoGAN: Coupled Generative Adversarial Networks (GAN)
	Slide 2: Main Idea
	Slide 3: Main Idea
	Slide 4: Main Idea
	Slide 5: Application
	Slide 6: Generators
	Slide 7: Generators
	Slide 8: Generators
	Slide 9: Discriminators
	Slide 10: Discriminators
	Slide 11: Learning
	Slide 12: Learning
	Slide 13: Key features of CoGANs
	Slide 14: Full code
	Slide 15: Full code

