

Transitorios Hidráulicos en Tuberías a Presión

Curso posgrado y educación permanente **2023**

Docentes: Dr. Ing. Rodolfo Pienika <u>rpienika@fing.edu.uy</u>
MSc. Ing. Laura Rovira <u>lrovira@ose.com.uy</u>

DIMENSIONADO DE VÁLVULAS DE AIRE

Transitorios Hidráulicos en Tuberías a Presión 2023

Aire en sistemas hidráulicos a presión

Puesta en servicio de la tubería.

□ Vaciado:

Se detienen las bombas, se rompe la tubería, mantenimiento o reparación.

Agua en condiciones estándar contiene 2% de aire disuelto.

Problemas del aire atrapado

- Reducir sección de pasaje
- Reducir el caudal
- Generar pérdida de carga adicional
- Incrementar el consumo de potencia
- Mala operación de válvulas de control, equipos e instrumentos de medición
- Corrosión
- Picos de presión durante un transitorio debido a su compresión dinámica
- □ Reduce eficiencia general del sistema hidráulico a presión

Válvulas de aire

Elementos hidromecánicos automáticos

Funciones:

 Evacuación y admisión de aire durante llenado y vaciado de la tubería, respectivamente.

- Evacuación de aire liberado durante régimen estacionario: continua.
- Disminuir caídas de presión durante un transitorio.

□ Tipos:

- Válvulas de llenado y vaciado.
- Válvulas de purga de aire.
- Válvulas de aire combinadas.
- Válvulas antislam

Válvulas de llenado y vaciado

- Doble función: expulsión y admisión de aire.
- Ubicadas en todos los puntos altos de la tubería y en tramos largos.

Las dimensiones deben permitir su adecuado comportamiento en

ambos casos.

Válvulas de purga continua

 Permiten descargar pequeñas cantidades de aire que se generan en la operación continua (orificio pequeño)

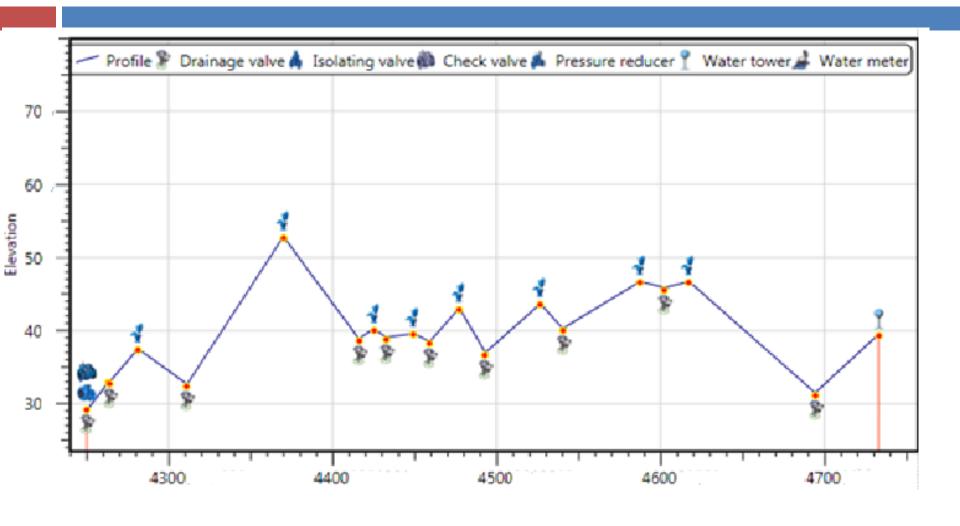
Válvulas de aire combinadas

Válvulas de aire combinadas

Llenado

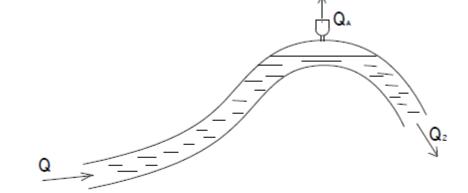
Purga continua

Vaciado



Válvula de aire con cierre gradual o antislam

- Separación de columna líquida
- Posibles llenados a caudal elevado



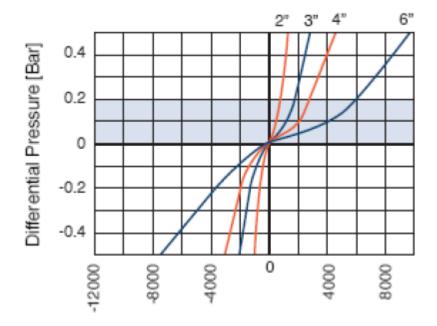
Válvulas de aire ubicación

Válvulas de aire durante el llenado

 Objetivo: eliminar el aire contenido en la tubería en forma segura.

Se supone
$$Q = Q_A$$
; $Q_2 = 0$

$$\Delta h = \frac{a}{gA} Q$$


Debe limitarse el caudal de llenado, de forma que en ningún punto de la tubería la presión supere la presión máxima admisible.

Válvulas de aire durante el llenado

- □ Diferencia de presiones < 1.5 m</p>
- \square Q_{LL} tal que v_{LL}= 0.2 0.5 m/s

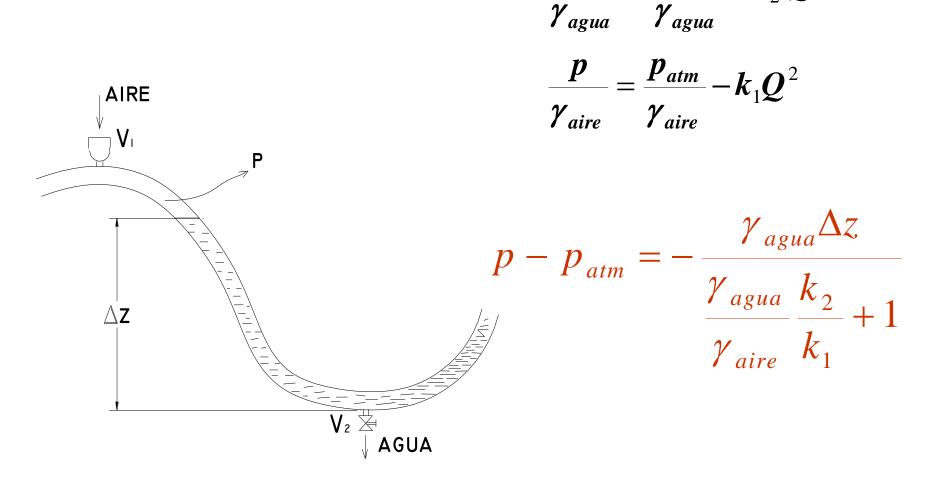
Asegurar velocidades pequeñas para evitar cierre prematuro por fuerza de arrastre.

AIR AND VACUUM FLOW BATE

Válvulas de aire durante el vaciado

Para:

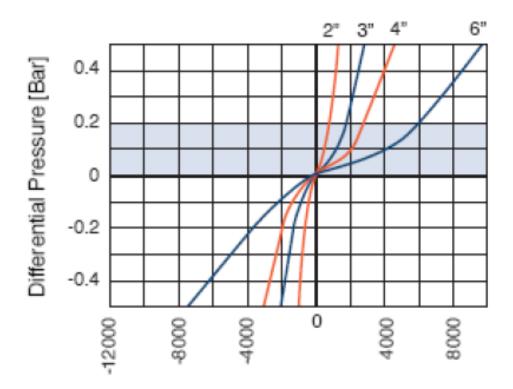
- 1. Mantener presión interna sobre valores inadmisibles.
- 2. El vaciado pueda realizarse en tiempo razonable.

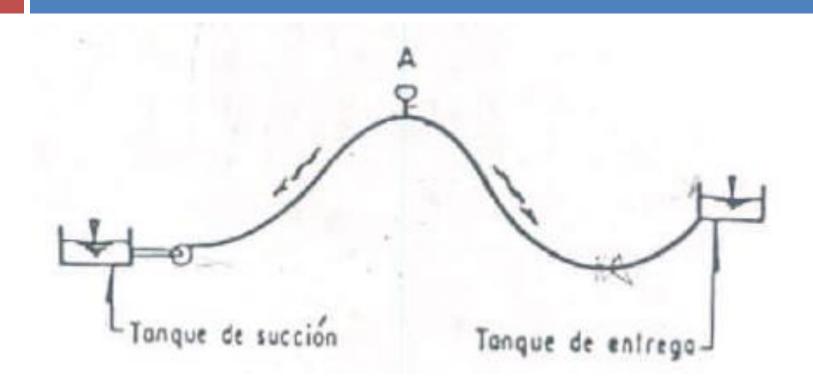

$$Q_{vaciado} = Q_{aire}$$

Se define de acuerdo <u>al tiempo de vaciado del acueducto que se estime conveniente</u>, teniendo en cuenta el <u>máximo caudal que puede fluir por gravedad</u> hacia la válvula de vaciado completamente abierta.

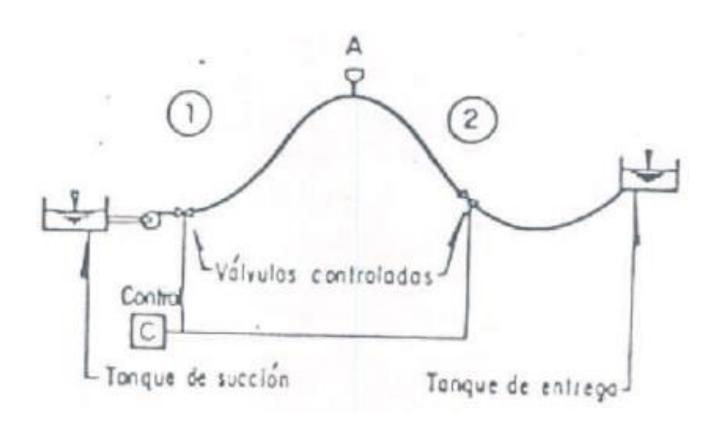
Se recomienda una diferencia de presiones entre la entrada y salida de la válvula de aire no mayor a 3m.c.a.

Válvulas de aire durante el vaciado


 $\underline{\boldsymbol{p}} = \underline{\boldsymbol{p}_{atm}} + \boldsymbol{k}_2 \cdot \boldsymbol{Q}^2 - \Delta \boldsymbol{Z}$


Válvulas de aire durante el vaciado

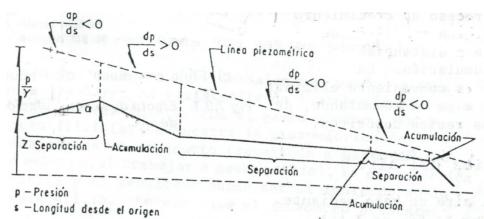
□ En general se recomienda una diferencia de presiones entre la entrada y salida de la válvula no mayor a 3m.c.a.


AIR AND VACUUM FLOW RATE

Puntos altos absolutos del sistema

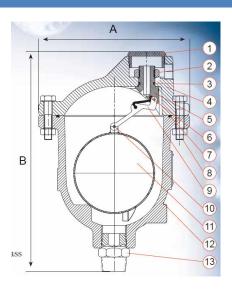
Puntos altos absolutos del sistema

Puntos de separación y acumulación de aire en operación estacionaria


 Contenido de aire disuelto depende de la presión:

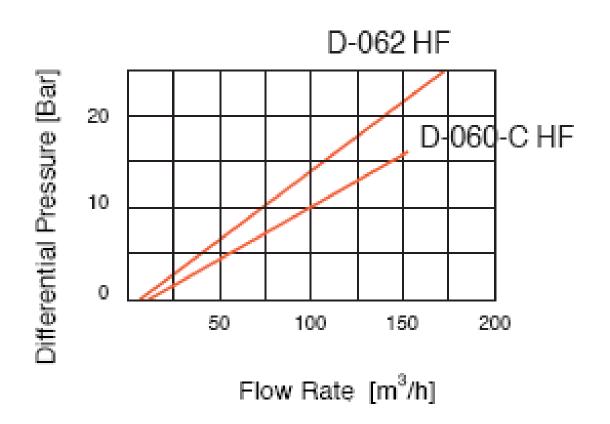
Presión absolu <u>t</u> a (en atm)	Kg de aire en l Kg de agua a
0.025	0.029 x 10 ⁻⁵
1	1.17 x 10 ⁻⁵
5	5.86 x 10 ⁻⁵
10	11.71 x 10 ⁻⁵
15	17.57 x 10 ⁻⁵
20	23.43 x 10 ⁻⁵
25	29.28 x 10 ⁻⁵
30	35.14 x 10 ⁻⁵

Puntos de separación y acumulación de aire:


$$\frac{\partial p}{\partial s} = -\frac{\partial z}{\partial s} - \frac{f}{D} \cdot \frac{v^2}{2g}$$

$$\frac{\partial p}{\partial s} < 0 \quad si \quad \frac{\partial z}{\partial s} > -\frac{f}{D} \cdot \frac{v^2}{2g}$$

Válvulas de purga continua


- \square Durante operación estacionaria: $p_{int} \times A_{orif} >> m_{bocha} \times g$
- ⇒ Válvula de llenado y vaciado cerrada.
- □ Segundo orificio tal que $A_{orif_2} < A_{orif}$
- ⇒ Segundo orificio puede abrir.

Dimensionado válvulas de purga continua

- □ El caudal de aire a liberar se obtiene estimando el caudal de aire liberado en el tramo previo a la válvula con $\frac{dp}{ds}$ < 0
- \Box Con dp se estima $\Delta (kg_{aire}/kg_{aqua})$
- \Box $Q_{aire}x\rho_{aire} = \Delta(kg_{aire}/kg_{agua})xQ_{agua}x\rho_{agua}$
- □ En condiciones estandar: $Q_{aire_sc} = Q_{aire} x \rho_{aire_sc} / \rho_{aire_sc}$

Dimensionado válvulas de purga continua

AUTOMATIC AIR DISCHARGE

