

© ISO 2018

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org Published in Switzerland

Licenciado por el Instituto Uruguayo de Normas Tecnicas a Otorgado en la fecha de 2023-03-21. Licencia individual, prohibida su copia y distribucion © ISO 2018 - All rights reserved

INSTITUTO URUGUAYO DE NORMAS TECNIÇAS 17123-5:2018(E)

na copia no autorizada Contents Page Foreword... iv Introduction 1 Scope en color 2 Normative references Terms and definitions 3 2 Symbols and subscripts 2 4 Symbols 2 4.1 4.2 Subscripts men 5 General. 3 5.1 Requirements 3 5.2 Procedure 1: Simplified test procedure 4 5.3 Procedure 2: Full test procedure 4 6 Simplified test procedure 5 Configuration of the test field 6.1 5 Measurement 6.2 5 Calculation 6.3 6 6.3.1 x-, y-coordinates 6 z-coordinate 6.3.2 7 6.3.3 Evaluation 7 7 Full test procedure 7 7.1 Configuration of the test field 7 Measurement 7.2 8 7.3 Calculation 8 x-, y-coordinates 7.3.1 8 7.3.2 z-coordinate 7.4 Statistical tests 7.4.1 General 12 7.4.2 Response to Question a) 13 7.4.3 Response to question b) .14 Combined uncertainty evaluation (Type A and Type B) 7.514 Annex A (informative) Example of a simplified test procedure 16 na col Annex B (informative) Example of the full test procedure .18 Annex C (informative) Example of the calculation of a combined uncertainty budget (Type Si este documento no tiene el membrete y logo de 28

ISO 17123-5:2018(E)

Foreword

o autorizada ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <u>www.iso.org/directives</u>).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <u>www.iso.org/patents</u>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 172, Optics and photonics, Subcommittee SC 6, Geodetic and surveying instruments.

This third edition cancels and replaces the second edition (ISO 17123-5:2012), which has been technically revised.

Si este documento no tiene el membrete y logo de UNIT en color rojo, es una copia no autorizada A list of all parts in the ISO 17123 series can be found on the ISO website

Introduction

to autorizada This document specifies field procedures for adoption when determining and evaluating the uncertainty of measurement results obtained by geodetic instruments and their ancillary equipment, when used in building and surveying measuring tasks. Primarily, these tests are intended to be field verifications of suitability of a particular instrument for the immediate task. They are not proposed as tests for acceptance or performance evaluations that are more comprehensive in nature.

The definition and concept of uncertainty as a quantitative attribute to the final result of measurement was developed mainly in the last two decades, even though error analysis has already long been a part of all measurement sciences. After several stages, the CIPM (Comité Internationale des Poids et Mesures) referred the task of developing a detailed guide to ISO. Under the responsibility of the ISO Technical Advisory Group on Metrology (TAG 4), and in conjunction with six worldwide metrology organizations, a guidance document on the expression of measurement uncertainty was compiled with the objective of providing rules for use within standardization, calibration, laboratory, accreditation and metrology services. ISO/IEC Guide 98–3 was first published in 1995.

With the introduction of uncertainty in measurement in ISO 17123 (all parts), it is intended to finally provide a uniform, quantitative expression of measurement uncertainty in geodetic metrology with the aim of meeting the requirements of customers.

ISO 17123 (all parts) provides not only a means of evaluating the precision (experimental standard deviation) of an instrument, but also a tool for defining an uncertainty budget, which allows for the summation of all uncertainty components, whether they are random or systematic, to a representative measure of accuracy, i.e. the combined standard uncertainty.

ISO 17123 (all parts) therefore provides, for defining for each instrument investigated by the procedures, a proposal for additional, typical influence quantities, which can be expected during practical use. The customer can estimate, for a specific application, the relevant standard uncertainty components in order to derive and state the uncertainty of the measuring result.

Si este documento no tione el membrete y logo de UNIT en color rojo, es una copia no autorizada

STIL YSNI

INTERNATIONAL STANDARD

ISO 17123-5:2018(E)

autorizada **Optics and optical instruments** — Field procedures for testing geodetic and surveying instruments embrete y logo de UNIT en color roje

Part 5: **Total stations**

1 Scope

This document specifies field procedures to be adopted when determining and evaluating the precision (repeatability) of coordinate measurement of total stations and their ancillary equipment when used in building and surveying measurements. Primarily, these tests are intended to be field verifications of the suitability of a particular instrument for the immediate task at hand and to satisfy the requirements of other standards. They are not proposed as tests for acceptance or performance evaluations that are more comprehensive in nature.

These field procedures have been developed specifically for in situ applications without the need for special ancillary equipment and are purposely designed to minimize atmospheric influences.

Normative references 2

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3534-1, Statistics – Vocabulary and symbols – Part 1: General statistical terms and terms used in probability

ISO 4463-1, Measurement methods for building — Setting-out and measurement — Part 1: Planning and organization, measuring procedures, acceptance criteria

ISO 7077, Measuring methods for building — General principles and procedures for the verification of *dimensional compliance*

ISO 7078, Building construction — Procedures for setting out, measurement and surveying — Vocabulary and guidance notes

ISO 9849, Optics and optical instruments — Geodetic and surveying instruments — Vocabulary

ISO 17123-1, Optics and optical instruments — Field procedures for testing geodetic and surveying *instruments* — *Part 1: Theory*

ISO 17123-3, Optics and optical instruments — Field procedures for testing geodetic and surveying instruments — Part 3: Theodolites

ISO 17123-4, Optics and optical instruments — Field procedures for testing geodetic and surveying instruments — Part 4: Electro-optical distance meters (EDM measurements to reflectors)

ISO/IEC Guide 98-3:2008, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)

ISO/IEC Guide 99:2007, International vocabulary of metrology — Basic and general concepts and associated terms (VIM)

3 **Terms and definitions**

utorizada For the purposes of this document, the terms and definition given in ISO 3534-1, ISO 4463-1, ISO 7077, ISO 7078, ISO 9849, ISO 17123-1, ISO/IEC Guide 98-3 (GUM) and ISO/IEC Guide 99 (VIM) apply.

4 Symbols and subscripts

4.1 Symbols

Syn	nbols and	subscripts	rrojo, es una c		
.1 Sy	ymbols	TIMIT en co.			
S	ymbol	Quantity	Unit		
		mean value of height differences	m		
		deviation, differences	m		
		coverage factor	—		
		mean value of horizontal distance between two target points	m		
	cum	horizontal distance between two target points	m		
1	-ste dou	vertex of the triangle of the mathematical model	6		
Ģ	5165	parameter to calculate the rotation angle	Θ_{\star}		
		parameter to calculate the rotation angle			
		difference to the mean value	m		
		instrument station			
		experimental standard deviation	various		
		experimental standard deviation of the same population	various		
		target point			
I		expanded uncertainty	various		
		uncertainty	various		
		degree of freedom	- 0		
		mathematical model coordinate X	m		
		measured coordinate x	m		
		mathematical model coordinate Y	m		
		measured coordinate y	m opia nu		
		mathematical model coordinate Z	m ma cor		
		measured coordinate z	m		
		confidence level	1 202		
		standard deviation of a population	various		
ř		standard deviation of the same population	various		
		horizontal rotation angle	0		
r		Vertical (elevation) angle	0		
		Chi-Quadrat distribution	1		
.2 Sı	ubscripts	to no tiene el me	1		

4.2 Subscripts

S

	10					
0	Mol Subscript	Term				
ste dou	0,975	confidence level 0,975				
	1-α	confidence level				
	dist	distance				
	disp	minimum display digit of coordinates				
	Licenciado p	or el instituto Uruguayo de Normas Tecnicas a Itorgado en la fecha de 2023-03-21				

INSTITUTO URUGUAYO DE NORMAS TECNICAS 17123-5:2018(E)

	Subscript	Term	rizada
	dispx	minimum display digit of coordinate x	(Or
	dispy	minimum display digit of coordinate yith the	
	dispz	minimum display digit of coordinate z	
	Е	east axis	
	g	centre of gravity 10 ¹	1
	Н	height axis on the]
	hs	height stability of tripod	
	i	instrument station No.	
	ISO-TS	total station according to ISO 17123-5	
	ISO-TS-XY	coordinates XY measured once in both face positions of the telescope according to ISO 17123-5	
1 ocumento	180-TS-Z	coordinates Z measured once in both face positions of the telescope according to ISO 17123-5	
t: este au	j	target point No.]
Sr.	k	measured set number (single telescope face)	
	m S F	coordinate of the centre of gravity of the mathematical model after rotation	
	N	north axis	
	prs	pressure	
	rh	relative humidity	
	dist-TS	distance measurement in total station	
	θ-TS	horizontal angle on specification of total station	
	t	coordinate of the centre of gravity of the mathematical model after the shift	
	temp	temperature	
	trd	tripod torsion	1202
	θ	horizontal angle	tour
	Ψ	vertical angle or elevation angle	
	Ψ-TS	vertical angle on specification of total station	
	Х	coordinate x (up)	
	ху	coordinates xy (horizontal)	
	XY	coordinates XY (horizontal) of the mathematical model	
	у	coordinate y (right)	
	Z	coordinate Z (height) of the mathematical model	
	z nembru	coordinate z (height)	
5 General	no tiene el 11-		
E 1 Do militar	nto		

5 General

5.1 Requirements

Before commencing the measurements, it is important that the operator ensures that the precision in use of the measuring equipment is appropriate for the intended measuring task.

ISO 17123-5:2018(E)

The total station and its ancillary equipment shall be in known and acceptable states of permanent adjustment according to the methods specified in the manufacturer's reference manual, and used tripods with reflectors as recommended by the manufacturer.

The coordinates are considered as observables because on modern total stations they are selectable as output quantities.

All coordinates shall be measured on the same day. The instrument should always be levelled carefully. The correct zero-point correction of the reflector prism shall be used.

The results of these tests are influenced by meteorological conditions, especially by the gradient of temperature. An overcast sky and low wind speed guarantee the most favourable weather conditions. Actual meteorological data shall be measured in order to derive atmospheric corrections, which shall be added to the raw distances. The particular conditions to be taken into account can vary depending on where the tasks are to be undertaken. These conditions shall include variations in air temperature, wind speed, cloud cover and visibility. Note should also be taken of the actual weather conditions at the time of measurement and the type of surface above which the measurements are made. The conditions chosen for the tests should match those expected when the intended measuring task is actually carried out (see ISO 7077 and ISO 7078).

Tests performed in laboratories would provide results which are almost unaffected by atmospheric influences, but the costs for such tests are very high, and therefore they are not practicable for most users. In addition, laboratory tests yield precisions much higher than those that can be obtained under field conditions.

This document describes two different field procedures as given in Clauses 6 and 7. The operator shall choose the procedure which is most relevant to the project's particular requirements.

To evaluate angle measurement and distance measurement separately, ISO 17123-3 and ISO 17123-4 shall be applied accordingly.

5.2 **Procedure 1: Simplified test procedure**

The simplified test procedure provides an estimate as to whether the precision of a given total station is within the specified permitted deviation in accordance with ISO 4463-1.

The simplified test procedure is based on a limited number of measurements. This test procedure relies on measurements of x-, y- and z-coordinates in a test field without nominal values. The maximum difference from mean value is calculated as an indicator for the precision.

A significant standard deviation cannot be obtained. If a more precise assessment of the total station under field conditions is required, it is recommended to adopt the more rigorous full test procedure as An example of the simplified test procedure is given in Annex A. color rojo given in <u>Clause 7</u>.

eo de UNT

5.3 **Procedure 2: Full test procedure**

The full test procedure shall be adopted to determine the best achievable measure of precision of a total station and its ancillary equipment under field conditions.

This procedure is based on measurements of coordinates in a test field without nominal values. The experimental standard deviation of the coordinate measurement of a single point is determined from least squares adjustments.

The full test procedure given in <u>Clause 7</u> of this document is intended for determining the measure of precision in use of a particular total station. This measure of precision in use is expressed in terms of the experimental standard deviations $s_{ISO-TS-XY}$ and $s_{ISO-TS-Z}$ of a coordinate measured once in both face positions of the telescope.

Furthermore, this procedure can be used to determine:

- the measure of precision in use of total stations by a single survey team with a single instrument and its ancillary equipment at a given time;
- the measure of precision in use of a single instrument over time; $^{
 m V}$
- the measure of precision in use of each of several total stations in order to enable a comparison of their respective achievable precisions to be obtained under similar field conditions.

Statistical tests should be applied to determine whether the experimental standard deviations obtained belong to the population of the instrumentation's theoretical standard deviations and whether two tested samples belong to the same population.

An example of the full test procedure is given in <u>Annex B</u>.

6 Simplified test procedure

6.1 Configuration of the test field

Two target points (T_1, T_2) shall be set out as indicated in Figure 1. The targets should be firmly fixed on to the ground. The distance between two target points should be set longer than the average distance (e.g. 60 m) according to the intended measuring task. Their heights should be as different as the surface of the ground allows.

Two instrument stations (S_1 , S_2) shall be set out approximately in line with two target points. S_1 shall be set 5 m to 10 m away from T_1 and in the opposite direction to T_2 . S_2 shall be set between two target points and 5 m to 10 m away from T_2 .

Figure 1 — Configuration of the test field

6.2 Measurement

One set consists of two measurements to each target point in one telescope face at one of the instrument stations.

The coordinates of the two target points shall be measured by 4 sets (telescope face: I – II – I – II) at the instrument station S_1 . The instrument is shifted to station S_2 and the same sequence of measurements is carried out. Station coordinates and the reference orientation of the station are discretionary in each set.

On-board or stand-alone software shall be used for the observations. It is preferable to use the same software which will be used for the practical work.

The sequence of the measurements is shown in <u>Table 1</u>. Si este documento

Licenciado por el Instituto Uruguayo de Normas Tecnicas a Otorgado en la fecha de 2023-03-21. © ISO 2018 - All rights reserved Licencia individual, prohibida su copia y distribucion.

							-x015	
Seq. No.	Instrument station	Target point	Set	Telescope face	X	y no ?	Z	
	i	j	Λ			una cor		
1		1	1	I	x1,1,1,	Y1,1,1	Z1,1,1	
2		2	1	I	0 ¹ x1,2,1	Y1,2,1	Z1,2,1	
3	1	1	2	HT Ch	x _{1,1,2}	<i>Y</i> 1,1,2	Z1,1,2	
4		2		12 UNA	<i>x</i> _{1,2,2}	Y1,2,2	Z1,2,2	
5		1	3 10g0	00	<i>x</i> _{1,1,3}	<i>Y</i> 1,1,3	Z1,1,3	
6		2		1	<i>x</i> _{1,2,3}	<i>Y</i> 1,2,3	Z1,2,3	
7		1	mbre 4	nbre	П	<i>x</i> _{1,1,4}	<i>Y</i> 1,1,4	Z1,1,4
8		2 el mi			<i>x</i> _{1,2,4}	<i>Y</i> 1,2,4	Z1,2,4	
9	2	o tien1	1	Ι	<i>x</i> _{2,1,1}	<i>Y</i> 2,1,1	Z2,1,1	
:	nento	:		AP		:	:	
15	docum	1			<i>x</i> _{2,1,4}	<i>Y</i> 2,1,4	Z2,1,4	
16 _{رن} وځ ^۲		2	-4	11	X2,2,4	У2,2,4	Z2,2,4	

Table 1 — Sequence of the measurements for one series

6.3 Calculation

6.3.1 x-, y-coordinates

The evaluation of the test results is given by the deviation of the horizontal distance of each set from the mean value of all measured horizontal distances.

Each horizontal distance between two target points $l_{i,k}$ is calculated as:

$$l_{i,k} = \sqrt{\left(x_{i,2,k} - x_{i,1,k}\right)^2 + \left(y_{i,2,k} - y_{i,1,k}\right)^2} \quad i = 1, 2; k = 1, 2, 3, 4$$
(1)

Their mean value *L* is calculated as:

$$L = \frac{1}{8} \sum_{i=1}^{2} \sum_{k=1}^{4} l_{i,k}$$
(2)

The values of the deviation of each distance from its mean $r_{i,k}$ is calculated as n^{k}

(3)
maximum value
$$d_{xy}$$
 of the $r_{i,k}$ is defined as:
 $d_{xy} = \max |r_{i,k}|$ $i = 1, 2; k = 1, 2, 3, 4$
Si este documento no tiene el membrete y logo de UNIT en color rolo, este de UNIT en color rolo de UNIT en color

The maximum value d_{xy} of the $r_{i,k}$ is defined as:

$$d_{xy} = \max |r_{i,k}|$$
 $i = 1, 2; k = 1, 2, 3, 4$

(4)

INSTITUTO URUGUAYO DE NORMAS TECNIGAS 17123-5:2018(E)

6.3.2 z-coordinate

norizada The height differences $d_{z,i,k}$ between target points are calculated using measured z-coordinate values NA COPIE in each set:

$$d_{z,i,k} = z_{i,2,k} - z_{i,1,k} \quad i = 1, 2; k = 1, 2, 3, 4$$
(5)
e mean value a_z of height difference in all sets:

$$a_z = \frac{1}{8} \sum_{i=1}^{2} \sum_{k=1}^{4} d_{z,i,k}$$
(6)

The mean value a_z of height difference in all sets:

$$a_{\rm z} = \frac{1}{8} \sum_{i=1}^{2} \sum_{k=1}^{4} d_{{\rm z},i,k}$$

The differences $r_{z,i,k}$ between height differences of two target points and the mean value a_z :

$$r_{z,i,k} = d_{z,i,k} - a_z \quad i = 1, 2; k = 1, 2, 3, 4$$
(7)

Vos

The maximum difference value d_z is calculated as

$$d_z = \max |r_{z,i,k}|$$

6.3.3 **Evaluation**

The differences d_{xy} and d_z shall be within the specified permitted deviation, p_{xy} and p_z respectively, (in accordance with ISO 4463-1 for the intended measuring task). If p_{xy} and p_z are not given, they shall be $d_{xy} \le 2,5 \times \sqrt{2} \times s_{ISO-TS-XY}$ and $d_z \le 2,5 \times \sqrt{2} \times s_{ISO-TS-Z}$ respectively, where $s_{ISO-TS-XY}$ and $s_{ISO-TS-Z}$ are the experimental standard deviations of the x-, y- and z-measurements respectively, determined according to the full test procedure with the same instrument.

Full test procedure 7

7.1 Configuration of the test field

Three target points (T₁, T₂, T₃) shall be set out at the corner of the triangle (see Figure 2). The targets should be firmly fixed on to the ground. The distances of target points should be different and at least one distance should be longer than the average distance (e.g. 60 m) according to the intended measuring task. Their heights should be as different as the surface of the ground allows.

Three instrument stations (S₁, S₂, S₃) shall be set out close to each triangular side approximately 5 m to 10 m away from each target point.

Figure 2 — Example of field configuration for full test

Licenciado por el Instituto Uruguayo de Normas Tecnicas a Otorgado en la fecha de 2023-03-21. © ISO 2018 - All rights reserved Licencia individual, prohibida su copia y distribucion.

(6)

(8)

Measurement 7.2

ttorizada One set consists of three measurements to each target point with a single telescope face at each instrument station.

From the instrument stations S₁, S₂, S₃, the coordinates of the three target points shall be measured by four sets of observation sequences (telescope face: I – II – I – II).

The station coordinates and the orientation are discretionary for each station set up. These configurations should not be changed while measuring four sets of observations from the same station point.

On-board or stand-alone software shall be used for the observations. It is preferable to use the same software which will be used for the practical work.

The sequence of the measurements is shown in Table 2.

Seq. No.	Instrument station	Target point	Set	Telescope face	x	у	Z
ri est	e ^{QU} i	j	ĸ		No.		
1		1			<i>x</i> _{1,1,1}	Y1,1,1	<i>z</i> _{1,1,1}
2		2	1	Ι	<i>x</i> _{1,2,1}	У1,2,1	Z1,2,1
3		3			<i>x</i> _{1,3,1}	У1,3,1	<i>z</i> _{1,3,1}
4		1			x _{1,1,2}	<i>Y</i> 1,1,2	Z1,1,2
5		2	2	II	x _{1,2,2}	<i>Y</i> 1,2,2	Z1,2,2
6	1	3			x _{1,3,2}	<i>y</i> _{1,3,2}	<i>z</i> _{1,3,2}
7		1			<i>x</i> 1,1,3	<i>Y</i> 1,1,3	Z _{1,1,3}
8		2	3	Ι	<i>x</i> _{1,2,3}	<i>Y</i> 1,2,3	Z1,2,3
9		3			<i>x</i> _{1,3,3}	y 1,3,3	Z1,3,3
10		1			<i>x</i> _{1,1,4}	У1,1,4	Z1,1,4
11		2	4	II	<i>x</i> _{1,2,4}	<i>У</i> 1,2,4	Z1,2,4
12		3			<i>x</i> _{1,3,4}	У1,3,4	Z1,3,4
13		1	1	Ι	x2,1,1	У2,1,1	uto122,1,1
:	2	:			N i	-012 110 "	:
24		3	4	II	<i>x</i> _{2,3,4}	y2,3,4	Z2,3,4
25		1	1	Ι	x3,1,1 05	У3,1,1	Z3,1,1
:		:	:	:	Jor role	:	:
34	3	1		TT en	X3,1,4	<i>Y</i> 3,1,4	Z3,1,4
35		2	4	UTI .	X3,2,4	У 3,2,4	Z3,2,4
36		3	00	00	X3.3.4	V3.3.4	Z3.3.4

Table 2 Sequence of the measurements for one series

7.3 Calculation

7.3.1 x-, y-coordinates

10 tiene el membrete y Construction of the mathematical model of the triangle is carried out as follows (See Figure 3). Si este docur

Calculate the horizontal distances $l_{i,3,k}$ between T₁ and T₂; $l_{i,1,k}$ between T₂ and T₃; $l_{i,2,k}$ between T₃ and n auto T₁ respectively by measured coordinates $(x_{i,j,k}, y_{i,j,k})$.

$$l_{i,j,k} = \sqrt{\left(x_{i,j-1,k} - x_{i,j+1,k}\right)^2 + \left(y_{i,j-1,k} - y_{i,j+1,k}\right)^2} \quad i = 1, 2, 3; j = 1, 2, 3 \text{ (if } j\text{-1 is 0 or } j\text{+1 is 4, then}$$

replace it by 3 or 1 respectively); $k = 1, 2, 3, 4$ (9)
e mean length of each side L_j :
1 $\frac{3}{2}, \frac{4}{2}$

The mean length of each side *L_i*:

$$L_{j} = \frac{1}{12} \sum_{i=1}^{3} \sum_{k=1}^{4} l_{i,j,k} \quad j = 1, 2, 3$$
(10)

The vertex coordinates of the mathematical model of the triangle M_j (j = 1, 2, 3) is defined based on $M_1 = (0,0)$ and the line from M_1 to M_2 as the x-axis.

ISO 17123-5:2018(E)

The coordinates of the centre of gravity of the mathematical model, (X_g, Y_g) :

$$(X_{g}, Y_{g}) = \begin{bmatrix} \sum_{j=1}^{3} X_{j} & \sum_{j=1}^{3} Y_{j} \\ \hline 3 & , \frac{j=1}{3} \end{bmatrix}$$
(14)

The coordinates of the centre of gravity of the triangle obtained at each instrument station, $(x_{g,i}, y_{g,i})$:

$$\left(x_{g,i}, y_{g,i}\right) = \begin{bmatrix} \sum_{j=1}^{3} \sum_{k=1}^{4} x_{i,j,k} \\ \frac{j=1}{12} \\ 12 \\ \frac{12}{12} \\ \frac{12}{12}$$

rev

Shift the coordinates to coincide the centre of gravity of the mathematical model on the centre of gravity of the measured triangle.

The coordinates of the centre of gravity of the mathematical model $(X_{t,i,j,k}, Y_{t,i,j,k})$ after the shift are calculated as:

$$X_{t,i,j,k} = X_j + (x_{g,i} - X_g); Y_{t,i,j,k} = Y_j + (y_{g,i} - Y_g) \quad i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3, 4$$
(16)

Rotate the mathematical model around the centre of gravity to minimize residuals of the vertex coordinates between the mathematical model and respective measured triangles.

Rotation angle $\theta_{i,k}$:

$$\theta_{i,k} = \tan^{-1}\left(\frac{q_{i,k}}{p_{i,k}}\right) \quad i = 1, 2, 3; k = 1, 2, 3, 4 \tag{17}$$

$$q_{i,k} = \frac{\sum_{j=1}^{3} \left(\left(X_{t,i,j,k} - x_{g,i}\right) \cdot \left(y_{i,j,k} - y_{g,i}\right) - \left(Y_{t,i,j,k} - y_{g,i}\right) \cdot \left(x_{i,j,k} - x_{g,i}\right) \right)}{\sum_{j=1}^{3} \left(\left(X_{t,i,j,k} - x_{g,i}\right)^{2} + \left(Y_{t,i,j,k} - y_{g,i}\right)^{2} \right)} \tag{18}$$

$$p_{i,k} = \frac{\sum_{j=1}^{3} \left(\left(X_{t,i,j,k} - x_{g,i}\right) \cdot \left(x_{i,j,k} - x_{g,i}\right) + \left(Y_{t,i,j,k} - y_{g,i}\right) \cdot \left(y_{i,j,k} - y_{g,i}\right) \right)}{\sum_{j=1}^{3} \left(\left(X_{t,i,j,k} - x_{g,i}\right)^{2} + \left(Y_{t,i,j,k} - y_{g,i}\right)^{2} \right)} \tag{19}$$

Vertex coordinates of mathematical model $(X_m|_{i,j,k}, Y_{m,i,j,k})$ after the rotation:

$$X_{m,i,j,k} = x_{g,i} + \cos\theta_{i,k} \cdot (X_{t,i,j,k} - x_{g,i}) - \sin\theta_{i,k} \cdot (Y_{t,i,j,k} - y_{g,i}) \qquad i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3, 4$$
(20)

Si este documento no tiene

INSTITUTO URUGUAYO DE NORMAS TECNICAS_{17123-5:2018}(E)

$$Y_{\mathrm{m},i,j,k} = y_{\mathrm{g},i} + \sin\theta_{i,k} \cdot (X_{\mathrm{t},i,j,k} - x_{\mathrm{g},i}) + \cos\theta_{i,k} \cdot (Y_{\mathrm{t},i,j,k} - y_{\mathrm{g},i}) \qquad i = 1, 2, 3; I_j^{\mathrm{cla}} = 1, 2, 3; k = 1, 2, 3; I_j^{\mathrm{cla}} = 1, 3; I_j^{\mathrm{cl$$

Residuals $(r_{x,i,j,k}, r_{y,i,j,k})$ of the coordinates of the measured triangles from those of the rotated r rojo, mathematical model are:

$$r_{x,i,j,k} = x_{i,j,k} - X_{m,i,j,k} \quad i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3, 4$$
(22)

$$r_{y,i,j,k} = y_{i,j,k} - Y_{m,i,j,k} \quad i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3, 4$$
(23)

The sum of squares of residuals: membrete y

17

$$\sum r_{xy}^2 = \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^4 \left(r_{x,i,j,k}^2 + r_{y,i,j,k}^2 \right)$$
(24)

Since there are 3 sides of the mathematical model, 6 [= 2 (vectors) × 3 (instrument stations)] centre of gravity points of the measured triangle and 12 [= 4 (sets) × 3 (instrument stations)] rotation parameters, the number of unknown parameters v = 3 + 6 + 12 = 21. Thus the number of degrees of freedom:

ITUTO URUGUAYO DE NORMAS TECNICAS ISO 17123-5:2018(E)

7.3.2 z-coordinate

Itorizada The height difference between T_1 and T_2 (and T_3) is calculated using measured z-values for each set.

$$d_{z,i,j,k} = z_{i,j,k} - z_{i,1,k} \quad i = 1, 2, 3; j = 2, 3; k = 1, 2, 3, 4$$
mean values of $d_{z,i,2,k}$ and $d_{z,i,3,k}$:
$$(28)$$

The mean values of $d_{z,i,2,k}$ and $d_{z,i,3,k}$:

$$a_{z,j} = \frac{1}{12} \sum_{i=1}^{3} \sum_{k=1}^{4} d_{z,i,j,k} \quad j = 2,3$$
(29)

The residuals $r_{z,i,j,k}$ of the height differences $d_{z,i,2,k}$ and $d_{z,i,3,k}$ from obtained mean values for each set of measurements are calculated as:

$$r_{z,i,j,k} = d_{z,i,j,k} - a_{z,j} \quad i = 1, 2, 3; j = 2, 3; k = 1, 2, 3, 4$$
(30)

The sum of the squares of the residuals is obtained by:

$$\sum r_z^2 = \sum_{i=1}^3 \sum_{j=2}^3 \sum_{k=1}^4 r_{z,i,j,k}^2$$
(31)

(32)

The number of degrees of freedom is:

$$v_{\rm Z} = 24 - 2 = 22$$

Finally, the standard deviation of height difference or the standard deviation of the z-coordinate:

$$s_{dZ} = \sqrt{\frac{\sum r_Z^2}{22}}; s_Z = \sqrt{\frac{\sum r_Z^2}{22 \times 2}}$$
(33)
Its standard uncertainty:
 $u_{ISO-TS-Z} = s_Z$
(34)
7.4 Statistical tests
7.4.1 General
Statistical tests are applicable for the full test procedure only.
For the interpretation of the results, statistical tests chall be comminded out using the comparison of the results.

7.4.1 General

Statistical tests are applicable for the full test procedure only.

For the interpretation of the results, statistical tests shall be carried out using the experimental standard deviation of a coordinate measured on the test triangle in order to answer the following questions (see <u>Table 3</u>).

- Is the calculated experimental standard deviation, s, smaller than or equal to a corresponding a) value, σ , stated by the manufacturer or smaller than another predetermined value, σ ?
- Do two experimental standard deviations, s and \tilde{s} , as determined from two different samples of b) measurements, belong to the same population, assuming that both samples have the same number of degrees of freedom, v?

The experimental standard deviations, s and \tilde{s} can be obtained from

- two samples of measurements by the same instrument but different observers;
- two samples of measurements by the same instrument at different times; or

two samples of measurements by different instruments.

orizada For the following tests, a confidence level of $1-\alpha = 0.95$ and, according to the design of measurements, a number of degrees of freedom of v_{XY} = 51 for the x- and y-coordinates and v_Z = 22 for the z-coordinate are assumed.

	2101	
Question	Null hypothesis	Alternate hypothesis
a)	$s \leq \sigma$	$s > \sigma$
b)	$s = \tilde{s}$	$S \neq \tilde{S}$

Table 3 — Statistical tests

Response to Question a) 7.4.2

The null hypothesis stating that the experimental standard deviation, *s*, is smaller than or equal to a theoretical or a predetermined value, σ , is not rejected if the following condition is fulfilled:

7.4.3 **Response to question b)**

torizada In the case of two different samples, a test indicates whether the experimental standard deviations, s and \tilde{s} belong to the same population. The corresponding null hypothesis, $s = \tilde{s}$ is not rejected if the olor rojo, es una following condition is fulfilled:

For x and y:

$$\frac{1}{F_{1-\alpha/2}(v_{XY},v_{XY})} \leq \frac{s^2}{\tilde{s}^2} \leq F_{1-\alpha/2}(v_{XY},v_{XY})$$

$$\frac{1}{F_{1-\alpha/2}(r_{XY},r_{XY})} \leq \frac{s^2}{\tilde{s}^2} \leq F_{0,975}(51,51) \quad \text{atey} \log 0 \text{ terms}$$
(45)
(46)

$$\frac{1}{F_{0,975}(51,51)} \le \frac{s^2}{\tilde{s}^2} \le F_{0,975}(51,51)$$

$$F_{0,975}(51,51) = 1,74 \tag{47}$$

$$0,57 \le \frac{s^2}{\tilde{s}_{12}^2} \le 1,74^{\text{nemb}}$$

$$(48)$$

For z:

$$\frac{1}{F_{1-\alpha/2}(v_{\rm Z},v_{\rm Z})} \le \frac{s^2}{\tilde{s}^2} \le F_{1-\alpha/2}(v_{\rm Z},v_{\rm Z}) \tag{49}$$

$$\frac{1}{F_{0,975}(22,22)} \le \frac{s^2}{\tilde{s}^2} \le F_{0,975}(22,22) \tag{50}$$

$$F_{0,975}(22,22) = 2,36 \tag{51}$$

$$0,42 \le \frac{s^2}{\tilde{s}^2} \le 2,36 \tag{52}$$

Otherwise, the null hypothesis is rejected.

The number of degrees of freedom and, thus, the corresponding test values $\chi^2_{1-\alpha/2}$ and $F_{1-\alpha/2}(v,v)$ (taken from reference books on statistics) change if a different number of measurements is analysed. esun

Combined uncertainty evaluation (Type A and Type B) 7.5

The sources of uncertainty (influence quantities) are described in Table 4 as an uncertainty budget.

Table 4 — Typical influence quantities of the total station

Sources of uncertainty	Symbol	Evaluation	Distribution
I. Result of measurement			
Standard deviation of x-, y- and z-coordinates	u _{ISO-TS}	Туре А	normal
II. Relevant sources of the total station			
Distance uncertainty on the specification	u _{dist} -TS	Туре В	normal, or specified by the manufacturer
Horizontal angle uncertainty on the specification	u _{θ-TS}	Туре В	normal, or specified by the manufacturer
Vertical angle uncertainty on the specification	UΨ-TS	Туре В	normal, or specified by the manufacturer

Licenciado por el Instituto Uruguayo de Normas Tecnicas a Otorgado en la fecha de 2023-03-21. Licencia individual, prohibida su copia y distribucion © ISO 2018 - All rights reserved

	Table 4 (continue)	inued)	torit220a	
Sources of uncertainty	Symbol	Evaluation	^O Distribution	
Minimum display digit	<i>u</i> disp	Туре В	rectangular	
III. Error patterns from the mechanical setup		io, es una c		
Torsion of a tripod (ISO 12858-2)	u _{trd}	Type B	rectangular	
Stability of a tripod height (ISO 12858-2)	u _{hs}	Type B	rectangular	
IV. Error sources of the atmospheres	UMI			
Temperature	o Utemp	Туре В	normal	
Pressure	uprs	Туре В	normal	
Relative humidity	<i>u</i> _{rh}	Туре В	normal	

Uncertainty on the polar coordinates system is described as:

$$u_{\text{dist}} = \sqrt{u_{\text{dist-TS}}^2 + u_{\text{temp}}^2 + u_{\text{prs}}^2 + u_{\text{rh}}^2}$$
(53)

$$u_{\psi} = \sqrt{u_{\psi}^2 \cdot \mathrm{TS} + u_{\mathrm{hs}}^2} \tag{55}$$

The transfer formula to the rectangular coordinate from the polar coordinate:

$$u_{\rm N}^{2} + u_{\rm E}^{2} = \left(\cos\theta \cdot u_{\rm dist}\right)^{2} + \left(r \cdot \sin\theta \cdot u_{\psi}\right)^{2} + \left(r \cdot \cos\theta \cdot u_{\theta}\right)^{2}$$
(56)
$$u_{\rm H}^{2} = \left(\sin\theta \cdot u_{\rm dist}\right)^{2} + \left(r \cdot \cos\theta \cdot u_{\psi}\right)^{2}$$
(57)

Combined uncertainty:

$$u_{xy} = \sqrt{u_{ISO-TS-XY}^{2} + (u_{N}^{2} + u_{E}^{2}) + u_{disp}^{2}}$$

$$u_{z} = \sqrt{u_{ISO-TS-Z}^{2} + u_{H}^{2} + u_{disp}^{2}}$$

$$(58)$$

$$u_{z} = \sqrt{u_{ISO-TS-Z}^{2} + u_{H}^{2} + u_{disp}^{2}}$$

$$(59)$$

$$u_{z} = 2 \times u$$

$$(60)$$

Expanded uncertainty is, with coverage factor k = 2.

$$U_{xy} = 2 \times u_{xy}$$

$$U_{z} = 2 \times u_{z}$$
(60)
(61)
(61)

An example of the calculation of a combined uncertainty budget is given in <u>Annex C</u>. Sources which are not included in the uncertainty evaluation are given in Annex D. . e n Si ^{este} documento n

ISO 17123-5:2018(E) TITUTO URUGUAYO DE NORMAS TECNICAS

Example of a simplified test procedure Logo de UNIT en color rojo

A.1 Measurements

In <u>Table A.1</u> all measurements are compiled according to the observation scheme given in <u>Table 1</u>.

	- 1	no tier				Dimens	ions in metres		
Seq. No.	Instrument	Target	Set	Telescope	X	У	Z		
k	station	point	k	face					
Ci esi	~ i	j							
1			1	I	6,979	4,886	9,934		
2		2			59,617	25,117	6,763		
3		1	2	П	6,979	4,886	9,933		
4	1	2			59,619	25,117	6,762		
5	-	1	3	T	6,978	4,885	9,934		
6		2	5	1	59,618	25,116	6,764		
7		1	4	П	6,979	4, 885	9,934		
8		2	4	11	59,620	25,116	6,762		
9		1	1	т	8,344	-47,323	12,767		
10		2	L L	1	1,214	8,619	9,596		
11]	1	2	Ш	8,346	-47,322	12,764		
12	2	2		11	1,213	8,619	9,596		
13		1	- 4	- ^I S	8,344	-47,323	12,767		
14	-	2			1,213	8,619 00	9,596		
15		1			8,345	-47,324	12,766		
16		2			1,213 🔊	8,619	9,596		
Observer: Y. Oł	ıshima				tor rojo,				
Weather: sunn	У				:010:				
Temperature: 2	29 °C			NITON					
Air pressure: 1	.006 hPa			de					
Instrument typ	pe and number:	NT xxx 309090	v 10g0						
Date: 2010-07-	-08		abrete						
		al me							
	tieneer								
+10 110 L									
aunent									
X	edout								
51 es	~								

Table A.1 — Measurements

Licenciado por el Instituto Uruguayo de Normas Tecnicas a Otorgado en la fecha de 2023-03-21. Licencia individual, prohibida su copia y distribucion © ISO 2018 - All rights reserved

INSTITUTO URUGUAYO DE NORMAS TECNIGOS 17123-5:2018(E)

ENORMAS TEC

$_{3,3}$ $_{3,2}$ $_{3,2}$ $_{3,2}$ $_{3,2}$ $_{3,3}$ $_$ A.2 Calculation A.2.1 x-, y-coordinates According to Formula (1): and according to Formula (3): $r_{1,2} = -0,002.2 \text{ m}: \text{ r}$

 $r_{1,3} = -0,000 \ 3 \text{ m}; \ r_{2,3} = 0,000 \ 5 \text{ m}$ $r_{1,4} = 0,000 \text{ 6 m}; r_{2,4} = 0,001 \text{ 6 m}$ and according to Formula (4):

 $d_{\rm xv} = 0,002.2 \,{\rm m}$

A.2.2 z-coordinates

According to Formula (5):

 $d_{z,1,1} = -3,171 \text{ m}; d_{z,2,1} = -3,171 \text{ m}$

and according to Formula (6):

and according to Formula (7):

s = according to Formula (7): $r_{z,1,1} = -0,000 \text{ 5 m}; r_{z,2,1} = -0,000 \text{ 5 mgo de UMT en color rolo, es una copia no autorizada
<math display="block">r_{z,1,2} = -0,000 \text{ 5 m}; r_{z,2,2} = 0,002 \text{ 5 m}$ $r_{z,1,3} = 0,000 \text{ 5 m}; r_{z,2,2} = 0,002 \text{ 5 m}$ $r_{z,1,3} = -0.000 \text{ 5 m}; r_{z,2,3} = -0.002 \text{ 5 m}$ $r_{z,1,4} = -0,001$ 5 m; $r_{z,2,4} = 0,000$ 5 m and according to Formula (8): $d_z = 0,002 5 \,\mathrm{m}$

ISO 17123-5:2018(E) TITUTO URUGUAYO DE NORMAS TECNICAS

Example of the full test procedure^{ma copia no autorizada}

B.1 Measurements of x- and y-coordinates^{color roio} <u>Table B.1</u> contains an example of obser Table B.1 contains an example of observed data taken in accordance with the full test procedure.

	X	no tier				Dimens	ions in metres
Seq. No.	Instrument	Target	Set	Telescope	X	у	Z
	station	point	k	face	/ /		
ci est	i i	j			1VO		
1					57,053	50,000	10,902
2		2	1	Ι	1,469	39,157	13,120
3		3			39,429	-2,997	10,641
4		1			57,053	50,001	10,902
5		2	2	II	1,470	39,159	13,121
6	1	3			39,426	-2,998	10,640
7	1	1			57,054	50,001	10,902
8		2	3	Ι	1,468	39,156	13,120
9		3			39,427	-2,997	10,640
10		1			57,054	50,000	10,902
11		2	4	II	1,470	39,158	13,121
12		3			39,428	-2,998	10,640
13		1	0		23,040	96,697	uto 8,837
14		2		IC	45,141	44,555	11,056
15		3		7	78,535	90,411	8,576
16		1			23,043	96,698	8,834
17		2	2	II	45,139	44,555	11,056
18	2	3		20	78,535	90,412	8,576
19	2	1		NITO	23,042	96,697	8,835
20		2	3	Je VI	45,142	44,555	11,056
21		3	v 1090		78,534	90,412	8,574
22		1	obrete,		23,040	96,696	8,834
23		2 1 100	4	II	45,140	44,555	11,056
24		tiens of			78,534	90,412	8,574

Table B.1 — Measurements

Temperature: 29 connento no

Instrument type and number: NT xxx 309090

Date: 2010-07-08

Licenciado por el Instituto Uruguayo de Normas Tecnicas a Otorgado en la fecha de 2023-03-21.

Licencia individual, prohibida su copia y distribucion © ISO 2018 - All rights reserved

INSTITUTO URUGUAYO DE NORMAS TECNICAS 17123-5:2018(E)

			Table B.1 (continued)		Tal	01-
Seq. No.	Instrument station	Target point	Set k	Telescope face	X	a no 3 ther	Z
	i	j	ĸ		una cor		
25		1		ż	74,685	92,755	11,703
26	1	2	1	I lor ro	18,066	93,974	13,922
27]	3		r en cui	46,198	44,716	11,442
28]	1	UN		74,686	92,752	11,703
29]	2	1000210	II	18,068	93,975	13,922
30	3	3 3	J LOG		46,198	44,715	11,442
31	5	erAbro			74,687	92,752	11,703
32		el me 2	3	Ι	18,068	93,976	13,922
33	no tiene	3			46,199	44,715	11,442
34	ento la	1			74,689	92,751	11,701
35,000	II.e	2	$\cup 4 \cup$	II	18,068	93,975	13,923
		3			46,199	44,715	11,442
Observer: Y. Ol	hshima						
Weather: sunn	y						
Temperature:	29 °C						
Air pressure: 1	1006 hPa						
Instrument ty	pe and number:	NT xxx 309090					
Date: 2010-07	-08						
B.2 Calcu B.2.1 x-, y According to	lation -coordinate Formula (10)	S			TECN	interior	Ja
$L_1 = 56,7$ $L_2 = 55,8$	26 7 m 49 9 m	× SN	- /	543	tuna copi	18 110 autorit	
<i>L</i> ₃ = 56,6	32 1 m			color roi	10 ^{, es}		
According to	Formula (15)):	UN	IT en ce			
$(x_{g,1}, y_g)$	(32,650) = (32,650)	1 m, 28,720	2 m_{0}				
$(x_{g,2}, y_{g})$,2)=(48,905	4 m, 77,221	3 m)				
$(x_{g,3}, y_g)$	(46,317) = (46,317)	6m, 77,147	6 m)				
Si este du							

hla D 1 (aar 13

Table B.2 according to Formula (16):

Table B.2 — Coordinates of the centre of gravity of the mathematical model

					·ojo,	Dimens	ions in metres
Instrument	Set	$X_{t,i,1,k}$	$Y_{t,i,1,k}$	<i>X</i> _{t,<i>i</i>,2,<i>k</i>}	$O^{V}Y_{t,i,2,k}$	<i>X</i> t, <i>i</i> ,3, <i>k</i>	<i>Y</i> t, <i>i</i> ,3, <i>k</i>
station	k			NIT ON			
i				10 UL			
1	1	4,624 5	12,506 300	61,256 6	12,506 3	32,069 1	61,147 9
1	2	4,624 5	12,506 3	61,256 6	12,506 3	32,069 1	61,147 9
1	3	4,624 5	12,506 3	61,256 6	12,506 3	32,069 1	61,147 9
1	4	4,624 5	12,506 3	61,256 6	12,506 3	32,069 1	61,147 9
2	1	20,879 9	61,007 4	77,512 0	61,007 4	48,324 4	109,649 0
2	2 ento	20,879 9	61,007 4	77,512 0	61,007 4	48,324 4	109,649 0
2	90cm3	20,879 9	61,007 4	77,512 0	61,007 4	48,324 4	109,649 0
2 este	4	20,879 9	61,007 4	77,512 0	61,007 4	48,324 4	109,649 0
3	1	18,292 0	60,933 7	74,924 1	60,933 7	45,736 6	109,575 3
3	2	18,292 0	60,933 7	74,924 1	60,933 7	45,736 6	109,575 3
3	3	18,292 0	60,933 7	74,924 1	60,933 7	45,736 6	109,575 3
3	4	18,292 0	60,933 7	74,924 1	60,933 7	45,736 6	109,575 3

Table B.3 according to Formulae (20) and (21):

Table B.3 — Ve	ertex cooi	rdinates	of the ma	athem	atical model
	_			_	

Dimensions in metres

						Dimens	sions in metres
Instrument	Set	$X_{m,i,1,k}$	<i>Y_{m,i,1,k}</i>	<i>X_{m,i,2,k}</i>	<i>Y_{m,i,2,k}</i>	X m,i,3,k	<i>Y_{m,i,3,k}</i>
Station	k						
i							1.0
1	1	57,052 9	49,999 8	1,468 5	39,157 1	39,428 9	-2,996 4
1	2	57,053 9	49,998 7	1,469 0	39,158 6	39,427 4	u ¹⁰ -2,996 8
1	3	57,053 0	49,999 7	1,468 5	39,157 3	39,428 7	-2,996 5
1	4	57,053 6	49,999 0	1,468 8	39,158 1	39,427 9	-2,996 7
2	1	23,040 1	96,697 0	45,141 0	44,555,5	78,535 1	90,411 2
2	2	23,040 8	96,698 0	45,139 8	44,555 6	78,535 6	90,410 1
2	3	23,039 9	96,696 8	45,141 4	44,555 4	78,535 0	90,411 6
2	4	23,039 9	96,696 8	45,141 4	44,555 4	78,535 0	90,411 6
3	1	74,685 9	92,753 9	18,067 0	93,974 0	46,199 8	44,714 9
3	2	74,6867	92,752 5	18,067 8	93,975 4	46,198 2	44,714 9
3	3	74,6868	92,752 4	18,067 9	93,975 5	46,198 1	44,714 9
3	4	74,686.9	92,752 1	18,068 1	93,975 8	46,197 8	44,714 9

According to Formula (24) o tient

 $\sum r_{\rm xy}^2 = 0,000\ 061\ 6\ {\rm m}^2$

According to Formulae (26) and (27):

 $s_{\rm XY} = 0,001 \ 10 \,\rm{m}$

INSTITUTO URUGUAYO DE NORMAS TECNICAS 17123-5:2018(E)

 $u_{\rm ISO-TS-XY} = 0,001 \ 10 \,{\rm m}$

B.2.2 z-coordinate

<u>Table B.4</u> according to <u>Formulae (28)</u>, (29), (30), (31):

				<u> </u>			
Instrument	Set	$d_{z,i,2,k}$	<i>d</i> _{z,i,3,k}	r z,i,2,k	r _{z,i,3,k}	$r_{z^{2},i,2,k}$	$r_{z^{2},i,3,k}$
station	k	m	moode	m	m	m ²	m ²
i			105 Y 105				
1	1	2,218	-0,261	-0,001 75	-0,000 25	0,000 003 1	0,000 000 1
	2	2,219	-0,262	-0,000 75	-0,001 25	0,000 000 6	0,000 001 6
	3	ene2,218	-0,262	-0,001 75	-0,001 25	0,000 003 1	0,000 001 6
	40 no	2,219	-0,262	-0,000 75	-0,001 25	0,000 000 6	0,000 001 6
2 cume	1	2,219	-0,261	-0,000 75	-0,000 25	0,000 000 6	0,000 000 1
Si este dout	2	2,222	-0,258	0,002 25	0,002 75	0,000 005 1	0,000 007 6
	3	2,221	-0,261	0,001 25	-0,000 25	0,000 001 6	0,000 000 1
	4	2,222	-0,260	0,002 25	0,000 75	0,000 005 1	0,000 000 6
3	1	2,219	-0,261	-0,000 75	-0,000 25	0,000 000 6	0,000 000 1
	2	2,219	-0,261	-0,000 75	-0,000 25	0,000 000 6	0,000 000 1
	3	2,219	-0,261	-0,000 75	-0,000 25	0,000 000 6	0,000 000 1
	4	2,222	-0,259	0,002 25	0,001 75	0,000 005 1	0,000 003 1
$\Sigma d_{\rm z,i,j,k}$		26,637	-3,129				
	C	a _{z,2}	<i>a</i> _{z,3}			-	
Mean value		2,219 8	-0,260 7				

rojo, es una copia no autorizada Table B.4 — Residuals of the height differences

According to Formula (34)

B.3 Statistical tests

SYOIN **B.3.1** Statistical test according to Question a)

```
Test for x and y;
```

Si este document

ISO 17123-5:2018(E) TITUTO URUGUAYO DE NORMAS TECNICAS

1,10 mm ≤ 5,8 mm

2 autorizada Since the above condition is fulfilled, the null hypothesis stating that the experimental standard UNIT en color rojo, es una ce deviation

 $u_{\rm ISO-TS-XY} = 1,10 \,\rm mm$

 σ = 5,0 mm

is smaller than or equal to the manufacturer's value is not rejected at the confidence level of 95 %.

JA

Test for z:

 $u_{\text{ISO-TS-Z}} = 0.98 \text{ mm}_{\text{O}}$ no tiene et membrete $v_{\text{Z}} = 22$

 $v_{\rm Z} = 22$

0,98 mm ≤ 5,0 mm × 1,24

0,98 mm ≤ 6,2 mm

Since the above condition is fulfilled, the null hypothesis stating that the experimental standard deviation

OP1

 $u_{\rm ISO-TS-Z} = 0,98 \,\rm mm$

is smaller than or equal to the manufacuter's value σ = 5,0 mm is not rejected at the confidence level no tiene et membrete y logo de UNIT en color rojo, es una copia no autorizada no tiene et membrete y logo de UNIT en color rojo, es una copia no autorizada on i of 95 %.

B.3.2 Statistical test according to Question b)

Test for x and y:

s = 1,10 mm

 $\tilde{s} = 1.15 \text{ mm}$

 $v_{\rm XY} = 51$

 $0,57 \le \frac{1,21 \text{ mm}^2}{1,32 \text{ mm}^2} \le 1,74$

 $0.57 \le 0.92 \le 1.74$

Since the above condition is fulfilled, the null hypothesis stating that the experimental standard deviations s = 1,10 mm and $\tilde{s} = 1,15$ mm belong to the same population is not rejected at the confidence level of 95 %.

INSTITUTO URUGUAYO DE NORMAS TECNICAS 17123-5:2018(E)

Test for z: s = 0.98 mm $\tilde{s} = 1.15 \text{ mm}$ $v_Z = 22$ $0.42 \le \frac{0.96 \text{ mm}^2}{1.32 \text{ mm}^2} \le 2.36$ $0.42 \le 0.73 \le 2.36$ $0.42 \le 0.73 \le 2.36$ Since the above condition is fulfilled, the null hypothesis stating that the experimental standard deviations s = 0.98 mm and $\tilde{s} = 1.15 \text{ mm}$ belong to the same population is not rejected at the confidence deviations s = 0.98 mm and $\tilde{s} = 1.15$ mm belong to the same population is not rejected at the confidence ORME level of 95 %. Si este dor GU

SIE

Si este documento no tiene el membrete y logo de UNIT en color rojo, es una copia no autorizada

S OF L SNI

copia no autorizada Example of the calculation of a combined uncertainty budget (Type A and Type B) .re nbrete y logo de UNIT en co

C.1 Uncertainty budget example

C.1.1 Sources of uncertainty $_{\Lambda}$ mer

The analysis of measurements: documento

*u*ISO-TS

are obtained from Annex B

 $u_{\rm ISO-TS-XY} = 0,001 \ 10 \ m$

 $u_{\rm ISO-TS-Z} = 0,000 \ 98 \ m$

Total station:

According to the specification by the manufacturer, the uncertainty of distance $u_{dist-TS}$ is obtained by applying the manufacturer's \pm (3 + 2 ppm × D) and maximum measured distance = 57 m.

NF.

VOPI

 $u_{\text{dist-TS}} = 3 + 2 \times 57 \ 000 \times 10^{-6} = 3.1 \text{ mm}$

The uncertainty of horizontal angle measurement $u_{\theta-TS}$ is obtained by applying the manufacturer's copia no autorizat specification 5" (according to ISO 17123-3) as

 $u_{\theta-TS}=5"$

The uncertainty of vertical angle measurement $u_{\Psi,TS}$ is obtained by applying the manufacturer's Jy y logo de UNIT en color rojo. Y logo de UNIT en color rojo. specification 5" (according to ISO 17123-3) as

 $u\psi$ -TS=5"

The uncertainty of minimum display digit u_{disp}

$$u_{\rm dispx} = u_{\rm dispy} = u_{\rm dispz} = \frac{0.5}{\sqrt{3}} = 0.29 \text{ mm}^{-1}$$

when minimum digit is 1 mm. el me Si este documento no

INSTITUTO URUGUAYO DE NORMAS TECNIGAS 17123-5:2018(E)

Tripod:

The influenced quantity of the tripod u_{trd}

$$u_{\rm trd} = \frac{3}{\sqrt{3}} = 1,73"$$

color rojo, es una copia no autorizada with the estimated torsion according to ISO 12858-2 and rectangular distribution.

The stability of the tripod height u_{hs} is estimated within 0,05 mm according to ISO 12858-2, which can be omitted from the budget.

Atmospheric condition

The uncertainty of temperature u_{temp} :

$$u_{\text{temp}} = 1 \times 57\ 000 \times 10^{-6} = 0,057\ \text{mm}$$
, with $\pm 1\ ^{\circ}\text{C}$ from experience

The uncertainty of pressure $u_{\rm r}$

$$u_{\text{prs}} = 0.3 \times 5 \times 57 \ 000 \times 10^{-6} = 0.086 \text{ mm}$$
, with 5 hPa from experience

The uncertainty of humidity can be omitted from the budget, as its influence is negligibly small for the maximum distance of 100 m in the test.

C.1.2 Uncertainty calculation

The uncertainty on polar coordinate is calculated according Formulae (53), (54), (55):

$$u_{\text{dist}} = \sqrt{u_{\text{dist-TS}}^{2} + u_{\text{temp}}^{2} + u_{\text{prs}}^{2}} = \sqrt{3,114^{2} + 0,057^{2} + 0,086^{2}} = 3,116 \text{ mm}$$

$$u_{\theta} = \sqrt{u_{\theta-TS}^{2} + u_{\text{trd}}^{2}} = \sqrt{5^{2} + 1,73^{2}} = 5,29^{"}$$

$$u_{\psi} = \sqrt{u_{\psi-TS}^{2} + u_{\text{hs}}^{2}} = 2,89^{"}$$
The uncertainty on rectangular coordinate is calculated according to Formulae (56), (57):

$$u_{\text{N}}^{2} + u_{\text{E}}^{2} = 11,84 \text{ mm}^{2}$$

$$u_{\text{H}}^{2} = 1,91 \text{ mm}^{2}$$

$$u_{\rm N}^2 + u_{\rm F}^2 = 11,84 \text{ mm}^2$$

S

y logo de UNIT en color Combined uncertainty is calculated according to Table C.1 and Formulae (58), (59):

$$u_{xy} = \sqrt{1,10^2 + 11,84 + 0,29^2} = 3,62 \text{ mm}$$

 $u_z = \sqrt{0,98^2 + 1,91 + 0,29^2} = 1,72 \text{ mm}$

Table C.1 — Uncertainty budget on rectangular coordinate

						0	, ~ ~
Input quantity	Input estimate	Standard uncertainty	Distribution	Sensitivity coefficient	$u_i(c_{\rm xy}) \equiv$	Evaluation	Remark
u(x _i)		u(x _i)			$ c_i \cdot u(x_i)^{>}$		
<i>u</i> ISO-TS-XY		1,10	normal	1	01011,10	Туре А	Formula (27)
u _{ISO-TS-Z}		0,98	normal	TT en	0,98	Туре А	Formula (34)
$(u_x^2 + u_y^2)^{0,5}$	$D_{max} = 57 m,$ $Va = 1^{\circ}$	3,44	normal	de UT	3,44	Туре В	
U _Z	$D_{max} = 57 m,$ $Va = 1^{\circ}$	1,38	normal	1	1,38	Туре В	
<i>u</i> disp	0	0,291 110	rectangle	1	0,29	Туре В	
		Final results		<i>u</i> _{xy}	3,62		
	1	00	1	11	1 72	1	

Si este documento no tione el membrete y logo de UNIT en color roio, es una copia no autorizada

C.2 Expanded uncertainty

un.

SNI

- $U_{\rm xy} = 2 \times 3,62 \approx 7 \, \rm mm$
- $U_z = 2 \times 1,72 \approx 3 \text{ mm}$

Licenciado por el Instituto Uruguayo de Normas Tecnicas a Otorgado en la fecha de 2023-03-21. Licencia individual, prohibida su copia y distribucion © ISO 2018 - All rights reserved

OPMI

S

Annex D (informative)

copia no autorizada Sources which are not included in uncertainty evaluation en color rojo

The sources of uncertainty shown in Table D.1 are not to be evaluated individually, since those are already considered in the corresponding influence quantities listed in Table 4 or not relevant.

	Source of uncertainty	Distance	Vertical angle	Horizontal angle
	Resolving power of telescope	•	•	•
	Cross hair error		•	•
3000	Centring of total station		•	•
a: este ue	Sighting axis and vertical axis			•
21-	Vertical-axis tilt of total station	•		•
	Line-of-sight error		- 7	•
	Tilting-axis error		• -	•
	Graduation error of H circle			•
	Eccentric error of H circle			•
	Vertical compensate error		• 0	2
	Horizontal compensate error			•
	Additional constant	•		
	Prism constant error	•		1
	Parameter of atmospheric factor	•		
	Centring of prism	•		
	Direction of prism face	•		•
	×SNI -	S	10,	copia no autoriza
			io, es una	
		60	lot tole	
	1	INIT on C		
	togo de			
	prete y 10 e			
	al memor			
	tiene or			
	ento no			
JOCU	me			
Siesteus				
¥				

Table D.1 — Sources of uncertainty not to be evaluated individually

copia no autorizada **Bibliography** [1] ISO 1101:2012, Geometrical product specifications (GPS) — Geometrical tolerancing — Tolerances of form, orientation, location and run-out [2] ISO 12858-2:1999, Optics and optical instruments — Ancillary devices for geodetic instruments — Part 2: Tripods [3] ISO 2854:1976, Statistical interpretation of data — Techniques of estimation and tests relating to means and variances [4] ISO 3494:1976, Statistical interpretation of data — Power of tests relating to means and variances [5] JCGM 200:2008¹), International vocabulary of metrology — Basic and general concepts and associated terms (VIM) [6] JCGM 100:2008²⁾, Evaluation of measurement data - Guide to the expression of uncertainty in measurement [7] JCGM 104:2009³), Evaluation of measurement data — An introduction to the "Guide to the expression of uncertainty in measurement" and related documents NIST Technical Note 1297: 1994, Guidelines for Evaluating and Expressing the Uncertainty of [8] NIST Measurement Results https://www.nist.gov/sites/default/files/documents/2017/05/09/ tn1297s.pdf NIST SOP No29: 2014, Standard Operating Procedure for the Assignment of Uncertainty https:// [9] www.nist.gov/sites/default/files/documents/2017/04/28/SOP 29 20140911.pdf EA-4/02 M: 2013, Evaluation of the Uncertainty of Measurements in Calibration http://www [10] .european-accreditation.org/publication/ea-4-02-m-rev01--september-2013 D Y Y S NI sento no tiene el membrete y logo de UNIT en color rojo, es una copia no autoritada http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf. See also Corrigendum (May 1) 2010) http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008_Corrigendum.pdf or https://www .oiml.org/en/files/pdf v/v002-200-e10.pdf/view.

ISO 17123-5:2018(E) TITUTO URUGUAYO DE NORMAS TECNICAS

http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. 2)

http://www.bipm.org/utils/common/documents/jcgm/JCGM_104,2009_Epdfcas a 3)

Otorgado en la fecha de 2023-03-21.

Licencia individual, prohibida su copia y distribucion © ISO 2018 - All rights reserved

28

© ISO 2018 – All rights reserved

Licencia individual, prohibida su copia y distribucion.