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Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents shouldbe noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers
to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 172, Optics and photonics, Subcommittee SC 6,
Geodetic and surveying instruments.

This third edition cancels and replaces the second edition (ISO 17123-1:2010).

[SO 17123 consists of the following parts, under the general title Optics and optical instruments — Field
procedures for testing geodetic and surveying instruments:

— Part 1: Theory

— Part 2: Levels

— Part 3: Theodolites

— Part 4: Electro-optical distance meters (EDM measurements to reflectors)
— Part 5: Total stations

— Part 6: Rotating lasers

— Part 7: Optical plumbing instruments

— Part 8: GNSS field measurement systems in real-time kinematic (RTK)
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Introduction

This part of ISO 17123 specifies field procedures for adoption when determining and evaluating the
uncertainty of measurement results obtained by geodetic instruments and their ancillary equipment,
when used in building and surveying measuring tasks. Primarily, these tests are intended to be field
verifications of suitability of a particular instrument for the immediate task. They are not proposed as
tests for acceptance or performance evaluations that are more comprehensive in nature.

The definition and concept of uncertainty as a quantitative attribute to the final result of measurement
was developed mainly in the last two decades, even though error analysis has already long been a part
of all measurement sciences. After several stages, the CIPM (Comité Internationale des Poids et Mesures)
referred the task of developing a detailed guide to ISO. Under the responsibility of the ISO Technical
Advisory Group on Metrology (TAG 4), and in conjunction with six worldwide metrology organizations,
a guidance document on the expression of measurement uncertainty was compiled with the objective
of providing rules for use within standardization, calibration, laboratory, accreditation and metrology
services. ISO/IEC Guide 98-3 was first published as an International Standard (ISO document) in 1995.

With the introduction of uncertainty in measurement in ISO 17123 (all parts), it is intended to finally
provide a'uniform, quantitative expression of measurement uncertainty in geodetic metrology with the
aim of meeting the requirements of customers.

ISO 17123 (all parts) provides not only a means of evaluating the precision (experimental standard
deviation) of an instrument, but also a tool for defining an uncertainty budget, which allows for the
summation of all uncertainty components, whether they are random or systematic, to a representative
measure of accuracy, i.e. the combined standard uncertainty.

[SO 17123 (all parts) therefore provides, for defining for each instrumentinvestigated by the procedures,
a proposal for additional, typical influence quantities, which can be expected during practical use. The
customer can estimate, for a specific application, the relevant standard uncertainty components in
order to derive and state the uncertainty of the measuring result.

© ISO 2014 - All rights reserved v
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Optics and optical instruments — Field procedures for
testing geodetic and surveying instruments —

Part 1:
Theory

1 Scope

This part of ISO 17123 gives guidance to provide general rules for evaluating and expressing uncertainty
in measurement for use in the specifications of the test procedures of ISO 17123-2, ISO 17123-3,
ISO 17123-4,1S0 17123-5,1S0 17123-6, 1SO 17123-7 and ISO 17123-8.

ISO 17123-2,1S0 17123-3,1SO 17123-4, IS0 17123-5,1S0 17123-6, 1SO 17123-7 and 1SO 17123-8 specify
only field test procedures for geodetic instruments without ensuring traceability in accordance with
ISO/IEC Guide 99. For the purpose of ensuring traceability, itis intended that the instrument be calibrated
in the testing laboratory in advance.

This part of ISO 17123:is a simplified version based on ISO/IEC Guide 98-3 and deals with the problems
related to the specific field of geodetic test measurements.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC Guide 99, International vocabulary of metrology — Basic and general concepts and associated
terms (VIM)

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC Guide 99 and the following
apply.

3.1 General metrological terms

3.11

(measurable) quantity

property of a phenomenon, body or substance, where the property has amagnitude that can be expressed
as a number and a reference

EXAMPLE1 Quantities in a general sense: length, time, temperature.
EXAMPLE 2  Quantities in a particular sense: length of a rod.

3.1.2

value

value of a quantity

quantity value

number and reference together expressing the magnitude of a quantity

EXAMPLE Length of a rod: 3,24 m.

© ISO 2014 - All rights reserved 1
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3.1.3

true value

true value of a quantity

true quantity value

value consistent with the definition of a given quantity

Note 1 to entry: This is a value that would be obtained by perfect measurement. However, this value is in principle
and in practice unknowable.

3.1.4

reference value

reference quantity value

quantity value used as a basis for comparison with values of quantities of the same kind

Note 1 to entry: A reference quantity value can be a true quantity value of the measurand, in which case it is
normally unknown. A reference quantity value with associated measurement uncertainty is usually provided by
areference measurement procedure.

3.1.5

measurement

process of experimentally obtaining one or more quantity values that can reasonably be attributed to a
quantity

Note 1 to entry: Measurement implies comparison of quantities-and includes counting of entities.

3.1.6
measurement principle
phenomenon serving as thebasis of a measurement (scientific basis of measurement)

Note 1 to entry: The measurement principle can be a physical phenomenon like the Doppler effect applied for
length measurements.

3.1.7
measurement method
generic description of a logical organization of operations used in a measurement

Note 1 to entry: Methods of measurement can be-qualified in various ways, such as “differential method” and
“direct measurement method”.

3.1.8
measurand
quantity intended to be measured

EXAMPLE Coordinate x determined by an electronic tacheometer.

3.1.9
indication
quantity value provided by a measuring instrument or measuring system

Note 1 to entry: An indication and a corresponding value of the quantity being measured are not necessarily
values of quantities of the same kind.

3.1.10

measurement result

result of measurement

set of quantity values attributed to a measurand together with any other available relevant information

Note 1 to entry: A'measuring result can refer to
— theindication,

— the uncorrected result, or

2 © ISO 2014 - All rights reserved
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— the corrected result.

Ameasurementresultis generally expressed as a single measured quantity value and a measurement uncertainty.

3.1.11
measured quantity value
quantity value representing a measurement result

3.1.12

error

error of measurement

measurement error

measured quantity value minus a reference quantity value

3.1.13

random measurement error

random error

component of measurement error that in replicate measurements varies in an unpredictable manner

Note 1 to entry: Random measurement errors of a set of replicate measurements form a distribution that can be
summarized by its expectation, which is generally assumed to be zero, and its variance.

3.1.14

systematic error

systematic error of measurement

component of measurement error that in replicate measurements remains constant or varies in a
predictable manner

Note 1 to entry: Systematic error, and its causes, can be known or unknown: A correction can be applied to
compensate for a known systematic measurement error.

3.2 Terms specific to this part of ISO 17123

3.2.1
accuracy of measurement
closeness of agreement between a measured quantity value and the true value of the measurand

Note 1 to entry: “Accuracy” is a qualitative concept and cannot be expressed in a numerical value.

Note 2 to entry: “Accuracy” is inversely related to both systematic error and random error.

3.2.2
experimental standard deviation
estimate of the standard deviation of the relevant distribution of the measurements

Note 1 to entry: The experimental standard deviation is a measure of the uncertainty due to random effects.

Note 2 to entry: The exact value arising in these effects cannot be known. The value of the experimental standard
deviation is normally estimated by statistical methods.

3.2.3

precision

measurement precision

closeness of agreement between measured quantity values obtained by replicate measurements on the
same or similar objects under specified conditions

Note 1 to entry: Measurement precision is usually expressed by measures of imprecision, such as experimental
standard deviation under specified conditions of measurement.

© ISO 2014 - All rights reserved 3
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3.24

repeatability condition

repeatability condition of measurement
condition of measurement, out of a set of conditions

Note 1 to entry: Conditions of measurement include

— the same measurement procedure,

— the same observer(s),

— the same measuring system,

— the same meteorological conditions,

— the same location, and

— replicate measurements on the same or similar objects over a short period of time.

3.2.5

repeatability

measurement repeatability

measurement precision under a set of repeatability conditions of measurement

3.2.6
reproducibility conditions of measurement
condition of measurement, out of a set of conditions

Note 1 to entry: Conditions of measurement include

— different locations,

— different observers,

— different measuring systems, and

— replicate measurements on the same or similar objects.

3.2.7

reproducibility

measurement reproducibility

measurement precision under reproducibility conditions of measurement

3.2.8

influence quantity

quantity, which in a direct measurement does not affect the quantity that is actually measured, but
affects the relation between the indication of a measuring system and the measurement result

EXAMPLE Temperature during the length measurement by an electronic tacheometer.

4 © ISO 2014 - All rights reserved
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3.3 The term “uncertainty”

3.31

uncertainty

uncertainty of measurement

measurement uncertainty

non-negative parameter characterizing the dispersion of quantity values attributed to a measurand,
based on the information used

Note 1 to entry: Measurement uncertainty comprises; in general, many components. Some of these components
can be evaluated by a Type A evaluation of measurement uncertainty from the statistical distribution of the
quantity values from series of measurements and can be characterized by an experimental standard deviation.
The other components, which can be evaluated by a Type B evaluation of measurement uncertainty, can also
be characterized by an approximation to the corresponding standard deviations, evaluated from assumed
probability distributions based on experience or other information.

3.3.2

Type A evaluation

Type A evaluation of measurement uncertainty

evaluation of a component of measurementuncertainty (standard uncertainty) by a statistical analysis
of quantity values obtained by measurements under defined measurement conditions

Note 1 to entry: For information about statistical analysis, see 4.1 and ISO/IEC Guide 98-3.

3.3.3

Type B evaluation of measurement uncertainty

evaluation of a component of measurement uncertainty (standard uncertainty) determined by means
other than a Type A evaluation of measurement uncertainty

EXAMPLE The component of measurement uncertainty can be based on

— previous measurement data,

— experience with; or general knowledge of, the behaviour and property of relevant instruments or
materials,

— manufacturer’s specifications,

— data provided in calibration and other reports,

— uncertainties assigned to reference data taken from handbooks, and
— limits deduced through personal experiences.

Note 1 to entry: For more information see 4.3 and ISO/IEC Guide 98-3.

3.34

standard uncertainty

standard uncertainty of measurement

standard measurement uncertainty

measurement uncertainty expressed as a standard deviation

Note 1 to entry: Standard uncertainty can be estimated either by a Type A evaluation or by a Type B evaluation.

3.3.5

combined standard uncertainty

combined standard measurement uncertainty

standard (measurement) uncertainty, obtained by using the individual standard uncertainties (and
covariances as appropriate), associated with the input quantities in a measurement model

Note 1 to entry: The procedure for combining standard uncertainties is often called the “law of propagation of
uncertainties” and in common parlance the “root-sum-of-squares” (RSS) method.

© IS0 2014 - All rights reserved 5
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3.3.6

coverage factor

numerical factor larger than one, used as a multiplier of the (combined) standard uncertainty in order
to obtain the expanded uncertainty

Note 1 to entry: The coverage factor, which is typically in the range of 2 to 3, is based on the coverage probability
or level of confidence required of the interval.

3.3.7

expanded uncertainty

expanded measurement uncertainty

half-width of a symmetric coverage interval, centred around the estimate of a quantity with a specific
coverage probability

Note 1 to entry: A fraction can be viewed as the coverage probability or level of confidence of the interval.

3.3.8

coverage interval

interval containing the set of true quantity values of a measurand with a stated probability, based on
the information available

Note 1 to entry: It is intended that a coverage interval not be termed “confidence interval” in order to avoid
confusion with the statistical concept:To associate an interval with a specific level of confidence requires explicit
or implicit assumptions regarding the probability distribution, characterized by the measurement result.

3.39

coverage probability

probability that the set of true quantity values of a measurand is contained within a specific coverage
interval

Note 1 to entry: The probability is sometimes termed “level of confidence” (see ISO/IEC Guide 98-3).

3.3.10

uncertainty budget

statement of a measurement uncertainty, of the components of that measurement uncertainty, and of
their calculation and combination

Note 1to entry: Itisintended that anuncertainty budgetinclude the measurement model, estimates, measurement
uncertainties associated with the quantities in the measurement model, type of applied probability density
functions and type of evaluation of measurement uncertainty.

3.3.11
measurement model
mathematical relation among all quantities known to be involved in a measurement

3.4 Symbols
Table 1 — Symbols and definitions
a Half-width of a rectangular distribution of possible values of input quantity Xj:a = (a+- a-)/2
a; Upper bound or upper limit of input quantity X;
a- Lower bound or lower limit of input quantity X;
A Design or Jacobian matrix (N x n)
of
Ci ¢ = o
Partial derivates or sensitive coefficient: Xi (i=1,2,..,N)
c Vector of sensitive coefficients ¢; (i=1, 2, ..., N)
e Unit vector

6 © ISO 2014 - All rights reserved
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Table 1 (continued)

Functional relationship between a measurand, Y, and the input quantity, Xj, and between output

S estimate, yk, and input estimates, Xj
f Vector with elements fx(xT) (k=1, 2, ..., n)
Fi- a2 (V) l("lisflzri’%’ (or Fisher-Snedecor) distribution with degrees of freedom (v, v) and confidence level of
gj Functional relationship between the estimate of input quantity, x;, and the observables, [;
K Cover.age fact(?r used to cal'culate expanded uncertainty U = k x uc(y) of the output estimate y
from its combined uncertainty uc(y)
Ii Observables, random variables (i=1, 2, ..., m)
m Number of observations, [;
M Number of input quantities, whose uncertainties can be estimated by a Type A evaluation
n Number of output quantities, measurands
N Number of input quantities
N-M Number of input quantities, whose uncertainties can be estimated by a Type B evaluation
N Normal equation matrix (n x n)
pj Weight of the input estimates x; (=1, 2, ..., N)
P Weight matrix of p; (N x N)
Qykyk Cofactor of the output estimate, yx
Qy Cofactor matrix of the output estimates, yx (n x n)
rj Residual of input estimates, x; (j =1, 2, .., N)
r Vector of residuals, rj
r(xi, x;) Correlation coefficient between the input estimates, x; and x;
s Experimental standard deviation (general notation)
s(yk) Experimental standard deviation of the output estimate yx
ta(v) Student’s't-distribution with the degree of freedom, v, and a confidence level of (1 - @) %
u Standard uncertainty (general notation)
u(yk) Standard uncertainty of the output estimate y
u(xy) Standard uncertainty of the input estimate x;
uc(yr) Combined standard uncertainty of the output estimate yi
i Expanded uncertainty (general notation)
X; Estimate of input quantity, input estimate (j =1, 2, ..., N)
X Vector of the estimates of input quantities x;
X; jth input quantity on which the measurand Yx depends
X Vector of input quantities X;
Yk Estimate of measurand Yy, output estimate; (k=1, 2, ..., n)
y Vector of output estimates of measurands yk
Yk kth measurand (k=1, 2, ..., n)
Y Vector of measurands Yy
Probability of error, as a percentage
1-a Confidence level
v Degrees of freedom
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Table 1 (continued)

o Standard deviation of the normal distribution

%%—a (v) |Chi-squared distribution with the degree of freedom, v, and a confidence level of (1 - @) %

4 Evaluating uncertainty of measurement

4.1 General

The general concept is documented in ISO/IEC Guide 98-3, which represents the international view of
how to express uncertainty in measurement. It is just a rigorous application of the variance-covariance
law, which is very common in geodetic and surveying data analysis. However, the philosophy behind it
has been extended in order to consider not only random effects in measurements, but also systematic
errors in the quantification of an overall measurement uncertainty.

In principle, the result of a measurement is only an approximation or estimate of the value of the specific
quantity subject to a measurement; that is the measurand. Thus, the result is complete only when
accompanied by a quantitative statement of its quality, the uncertainty:

The uncertainty of the measurement result generally consists of several components, which may be
grouped into two categories according to the method used to estimate their numerical values:

a) those which are evaluated by statistical methods;
b) those which are evaluated by other means.

Basic to this approach is that each uncertainty component, which contributes to the uncertainty
of a measuring result by an estimated standard deviation, is termed standard uncertainty with the
suggested symbol u.

The uncertainty component in category A is represented by a statistically estimated experimental
standard deviation, s;, and the associated number of degrees of freedom, v;, For such a component, the
standard uncertainty u; = s;.” The evaluation of uncertainty components by the statistical analysis of
observations is termed a Type A evaluation of measurement uncertainty (see 4.2).

In a similar manner, an uncertainty component in category B is represented by a quantity, uj, which may
be considered an approximation of the corresponding standard deviation and which may be attributed
an assumed probability distribution based on all available information. Since the quantity u;is treated as
a standard deviation, the standard uncertainty of category B is simply u;. The evaluation of uncertainty
by means other than statistical analysis of series of observations is termed a Type B evaluation of
measurement uncertainty (see 4.3).

Correlation between components of either category are characterized by estimated covariances or
estimated correlation coefficients.

8 © ISO 2014 - All rights reserved
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Input: Output:
vector x, Uy vector y and u,
input quantity x; and its output quantity yx and its
uncertainty u(x;) standard uncertainty u(y)
—
Type A: expanded uncertainty
observations, measurement Ulyk)
data analysed by statistical Model
methods x, U. Y of evaluation: |y, u, B
XA » Ux(A) “/
U y=r&) Ve £ Ue)
Type B:
previous, external .
measurement data analysed Can be gseq ?s ||r1]put
by other means quantltlY Int' b
%, Uz, applications

Figure 1 — Universal mathematical model and uncertainty evaluation

4.2 Type A evaluation of standard uncertainty

4.2.1 General mathematical model

In most cases, a measurand, Y, is not measured directly, but is determined by N other quantities
X1, X2, ..., Xy through the functional relationship given as Formula (1):

Yzf(le XZ: ey XN) (1)

An estimate of the measurand, Y, the output estimate, y,is obtained from Formula (1) by using the input
estimates, x1, X, ..., Xy, thus the output estimate, y, which is the result of measurements, is given by
Formula (2):

y =f(x1, X2, - XN)
(2)
In most cases, the measurement result (output estimate, y) is obtained by this functional relationship.

Butin some cases, especiallyin geodeticand surveying applications, the measurementresultis composed
of several output estimates, y1, y2, ..., yn which are obtained by multiple, e.g. N, measurements (input
estimates).

From this follows the general model function (see Figure 1) given as Formula (3):

y=f&T)
(3)

Assuming that

X is avector (N x 1) of input quantities x; (j = 1, 2, .., N);

© ISO 2014 - All rights reserved 9
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y is avector (n x 1) of output quantities yx (k=1, 2, ..., n);
f is a vector (n x 1) with the elements fx(xT) (k=1, 2, ..., n);

fcan be understood as a suitable algorithm to determine the output quantities y (see Annex C).

4.2.2 General law of Type A uncertainty propagation

Often in geodetic measuring processes, the input quantity, x; is a function of several observables, the
random variables:

IT = (111 12' 13: e Im)
(4)

The reason for this can be, for example, internal measuring processes of the instrument, correction
parameters obtained by calibration or even multiple measurements of the same observable.

The associated uncertainty matrix may be given by Formula (5):

UI:

o
<
o e

" (5)

Assuming the general function

xi=gi(D(U=12,..,N)

(6)
the linearized model
T
+g:l
ijgO g] (7)
with
og9; 09; og;
T j J i
gi=9i1,929im)=(=, =—,... =)
S mEtan el aly -

yields the standard uncertainty of the input quantity, x;, as given by Formula (9):
u(x ) = gTU g
J=NE Y18 9)

Under the assumption that the observables are random,
u(x)) = s(x)
(10)
which is called the experimental standard deviation of x;.

Of course, uji-can also be introduced in Formula (5) covariances such that U; becomes a fully occupied
matrix.

The numerical example in C.1 illustrates this approach of a Type A evaluation for calculating the standard
uncertainty.

10 © ISO 2014 - All rights reserved
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Ifthere are N functions of X, all dependent on the observables ], they are treated according to Formula (7):

X =80 + Gl (11)

With the Jacobian matrix:
911 = YGim
G=| : . :
Int " 9nNm (12)

Finally, Formula (9) can be written inthe general form of the known law of error propagation:

uz(x1) u(xq,x0) o u(xq,xp)
U, =GU,GT =| #x)  w¥(rp) e ulegury)
w(xyoxy) w(xyxp) o ul(xy) (13)

From the diagonal elements, the standard uncertainties can be derived as given by Formula (14):

e =[u(x1),u(x2), o ulx )] (14)

Respectively, the empirical standard deviations are

s, =[s(xq), s(xp)se, S(SN)]T (15)

Following the flowchart of Figure 1 in which the output quantities are obtained from the input estimates
x by a linear transformation, then

y=f(T) = ho +H(x)

(16)
Taking Formula (11) into account,
y=hy+H(gg+Gl)=hy+HGI (17)
and, according to Formula (13), the uncertainty matrix becomes:
Uy = HUHT = HGU;GTHT (18)

The diagonal elements of the matrix Uyincorporate the standard uncertainty vector given as Formula (19):

uy, = [u(y1), w(y2), - Yy )]T (19)

of the output estimates y1, y2, ..., Yn.

© ISO 2014 - All rights reserved 11
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Again, if the input quantities vary randomly, the standard uncertainties in Formula (19) match the
empirical standard deviations of the output estimate y.

uy=syoru(yr) =s(yk) (k=1,2,..,n) 20

The nesting in Formula (18) can be arbitrarily enhanced for further applications (see Figure 1), e.g.
z=M(y).

The numerical example in C.2 illustrates this approach of a Type A evaluation for calculating the standard
uncertainty.

4.2.3 Leastsquares approach

Often, more model equations according to Formula (3) are given than output quantities, yx, have to be
determined. In such a case (N> n), it is suitable to solve the equation system by the known method of
a least-squares adjustment. For this, it is necessary to restate the model function of Formula (3) in a
system of (nonlinear) observation equations:

x+r=F()
(21)
or in a linearized notation (neglecting higher-order terms):
oF
x+r=F(y0)+a—(y—y0)
4 (22)
where
X is the vector (N x 1) of the observations or measurable input quantities;
r is the vector (N x 1) of the residuals;
y is the vector (n x 1) of unknowns, output estimates;
Yo is the vector (n x 1) of the approximate values of y.

Substituting in Formula (22):

y=yo =Y

)
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5= Flyg)=! (23)
and
oF; OF;
| o
» |ory  oFy |
E a o

yields Formula (25):
r= Ay —l (25)

Often, it is necessary to introduce a stochastic model by the weight matrix of the measurable input
quantities:

pr o 0 §2

—| . : _>20

P‘[d » } Pi T
PN with J (26)

The weights, pj, can be determined under consideration of Formula (13), respectively Formula (15).

Following the Gauf3-Markov model, the solution vector is:

y=(ATPAYy L ATPI=N"1n 27)

With the results of Formula (27), the residuals can be calculated from Formula (25). Thus, the a posteriori
variance factor can be derived from Formula (28):

Ly

2
v (28)

where

v = N-n (degree of freedom).
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From this, the experimental standard deviation of the output estimates, y, can be calculated by the
known relationships

K =S
Vi) OmkzL 2,.,0 -

with

Qykyk = diagQy and Q, = N-1 0

Finally, the standard uncertainties, Type A evaluation, of all output estimates yx can be stated as
Formula (31):

uy=syoru(yr) =s(yr) k=1,2,..,n (31)
But, the adjusted input values can also be quoted by Formula (32):

x=Il+r (32)

and the estimated variance covariance matrix of X by Formula (33):
2 -1 4T

Finally, from its diagonal elements, the experimental standard deviation is given by Formula (34):

Sz :(S)?l’S)?z""’s)?N):‘,diagS)? (34)

Thus, the standard uncertainty of the adjusted input estimates, ,yields Formula (35):

7/[)"( :Si or u()?]):S()N(]) (j: 1’ 2, ,N)

(35)

The numerical example in C.3 illustrates this approach of a TypeA evaluation for calculating the standard
uncertainty.
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4.2.4 Special cases

4.2.4.1 Calculation of the standard uncertainty, u(x;),
the ith series of measurements

of the arithmetic mean or average Xi for

Often, the input quantity X; is estimated from j = 1, 2, .., n independent repeated observations x;.
Following Formula (27), the best available estimate is Formula (36):

X; —(eTPe)y™ TP X (36)

With its experimental standard deviation, given as Formula (37):

s(x;)=

T
\/e Pe \/zpu (37)
For uncorrelated equal accurate input estimates, x; j, the average yields Formula (38):

1
:;2’50

7= (38)

and the experimental standard deviation yields Formula (39):

S L
\/_ n(n=1) . r=ex;—X; (39)
Then, the standard uncertainty is given by Formula (40):
u()_(i)zs()?i) (40)
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4.2.4.2 Calculation of the standard uncertainty, u(yi), of the arithmetic mean or average Vi for
the ith series of double measurements

2

Often the output quantities, Y;, are estimated by the mean Yili=1.2,...n) of pairs of measurements

(two measurements with the same measurand):

= . . . T
(I, I) with =il in)™ g j=1,2.
(41)

The vector of the output estimates reads as Formula (42):

)7=%U1 +13)
(42)

The following evaluation implies that the measurement procedure eliminates systematic errors; this
means that, for the expectation of the difference vector, it follows that:

E(d)=E(l,-11)=0 (43)

Furthermore, it is assumed that the same standard uncertainty uyj, with j =1, 2, can be attributed to all
pairs of measurements. Therefore

P, =P, =P
1 2 (44)
and
o d'Pd
SO =
2n
where
d=(I2-1)
(45)

If the same weight can be allocated to all observations, the experimental standard deviation reads as
given in Formulae (46), (47) and (48):

for the measurements Jj;:

dTd
SIS
n (46)

for the differences d;:

dld
" (47)

Sq =

and
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for the output estimates 7/ :

T
)=y 2
g (48)

To check if the assumption in Formula (43) is fulfilled, the following rule should be applied.
If Formula (49)

(eTd)?<d"d (49)

is true, it can be expected that E(d)=0 y, this case, the standard uncertainty is given as Formula (50):

u()_/i)zs(yi) (50)

4.2.4.3 Calculation of the overall standard uncertainty, u, for m series of measurements

The experimental standard deviation obtained for each of the m series of measurements is considered
to be a separate estimate of the overall experimental standard deviation of the measurements. It is
assumed that each of these estimates is of the same order of reliability, v;=v1 = vy =... = vp,. Formulae (51)
and (52) indicate how the individual experimental standard deviations.are combined to give one overall
experimental standard deviation which takes equal account of the experimental standard deviations
calculated for eachseries of measurements:

m

Y=Y e Gt
i=I (51)
where
m is the number of series of measurements;
Si is the experimental standard deviation of a single measured value within the ith series of
measurements;
252 is the sum of squares of all standard deviations, s;, of the m series of measurements.
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The overall experimental standard deviation, s, of m series of measurements yields Formula (52):

2
o2
m (52)

The number of degrees of freedom of all m series of measurements is obtained by Formula (53):

m
VZZVI' mevi
i=1

(53)

Finally, the overall standard uncertainty can be written as Formula (54):
u=s (54)

Numerical examples'in C.4 and C.5 illustrate these approaches of a Type A evaluation for calculating
standard uncertainties.

4.3 Type B evaluation of standard uncertainty

4.3.1 General

Often, not all uncertainties of the N input quantities can be estimated by a Type A evaluation; this number
of uncertainties, obtained by the Type A evaluation, is therefore assumed, M, so that the uncertainties of
N - M input quantities have to be determined by other means, namely by a Type B-evaluation.

Foran estimate x;, M <j < N of an input quantity,which has notbeen obtained from repeated observations
or was derived from small samples, the evaluation of the standard uncertainty u(x;) is usually based on
scientific judgment using all available information, which may include

— previous measurement data,

— experience with, or general knowledge of, the behaviour and properties of relevant materials and
instruments,

— manufacturer’s specifications,
— data provided in calibration reports,
— uncertainties assigned to reference data taken from handbooks.

Examples of such a Type B evaluation, which can be very helpful for practical use, are given in the
following subclauses.

4.3.2 Quantity in question modelled by a normal distribution (see Annex A)
— Lower and upper limits are estimated by a- and a..
— Estimated value of the quantity: (a+ + a-)/2.
— 50 % probability that the value lies in the interval a- to a..
Then, the standard uncertainty yields Formula (55):
uj = 1,48 a (55)

where a = (a+ - a-)/2
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4.3.3 Quantity in question modelled by a normal distribution (see Annex A)
— Lower and upper limits are estimated by a- and a..

— Estimated value of the quantity: (a+ + a-)/2.

— 67 % probability that the value lies in the interval a- to a..

Then, the standard uncertainty yields Formula (56):

u.=a

! (56)
where a = (a+ —a-)/2

4.3.4 Quantity in question modelled by a uniform or rectangular probability distribution (see
Annex A)

— Lower and upper limits are estimated by a- and a..

— Estimated value of the quantity: (a+ + a-)/2.

— 100 % probability that the values lies in the interval a- to as.
Then, the standard uncertainty yields Formula (57):

u. =L ~0,58a

NG (57)

where a = (a+ - a-)/2

4.3.5 Quantity in question modelled by a triangular probability distribution (see Annex A)
— Lower and upper limits are estimated by a- and a..

— Estimated value of the quantity: (a+ + a-)/2.

— 100 % probability that the values lies in the interval a- to a..

Then, the standard uncertainty yields Formula (58):

U, =—L ~041a

7 e (58)

where a = (a+ - a-)/2

The numerical Examples in C.6 illustrate these approaches of a Type B evaluation for calculating
standard uncertainties.

4.4 Law of propagation of uncertainty and combined standard uncertainty

The combined standard uncertainty, u-(yx), ofameasurementresult yyis taken torepresentthe estimated
standard deviation of the final result. It is obtained by combining the individual standard uncertainties,
u(x;), and, ifavailable, the covariances u(x;, x;) of the input estimates x1, X2, ..., XM, XM+1, XM+2, ..., XN, Whether
arising from a Type A evaluation or a Type B evaluation. This method is called the law of propagation
of uncertainty or in the parlance of geodetic metrology the root-sum-squares method of combining
standard deviations.
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[t is assumed that for the input estimates

T
(Xl,Xz,...,XM)zxA (59)

the standard uncertainties are from a Type A evaluation and given by Formula (60):

u(xq )2 0 0
2 .
U= © 10
2
and for the input estimates
T
(XM11) XMi2s 0 XN) = Xp (61)
the standard uncertainties are from a Type B evaluation and given by Formula (62):
u(xp41)° 0 w0
2
Uyie) = 0 u(X pv2)
. 2
0 eee ”(XN) (62)
Hence
5
X
0 Uy 63)
and, according to Formulae (7) to (9),
X
Yie=co+ek (XA)
B (64)
with
dfy, df df,
T
Ck :[d k, d k.. y g ]z(cklzckz'""ckN)
X1 04X XN (65)

The values cy;, with i =1, ..., N, are often called sensitivity coefficients and are determined either by the
derivatives of the function f or, sometimes measured experimentally by an empirical first-order Taylor
series expansion.
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Finally, the combined standard uncertainty for the output estimate, yx [see Formula (3)] yields
Formula (66):

uo (i) =i Usey (66)

If the estimated covariance between x; and x; the u(x;, x;) = u(x;, x;) are known, they can be regarded
easily in Formulae (60), (62) and (63).

In this case, the degree of correlation is characterized by the estimated correlation coefficient

_ u(x;,x ;)
X ) e )

(67)

where -1 < r(x;, x;) < +1.If u(x;) and u(x;) are independent, r(x;, x;) = 0.

The numerical examples in C.6 illustrate these approaches of calculating the combined standard
uncertainties.

4.5 Expanded uncertainty

Although the combined standard uncertainty, u-(y), can be universally used, in some commercial,
industrial applications, it is often necessary to give a measure of uncertainty that defines an interval
about the measurement result, y, within which the value of the measurand, Y, is confidently believed
to lie. The measure of uncertainty that meets the requirements of providing an interval is termed
expanded uncertainty with the suggested symbol U and is obtained by multiplying the combined
standard uncertainty by the coverage factor k as given by Formula (68):

U=kxuc(y)
(68)
It is confidently believed that
y-UsYsy+U (69)
which is conveniently expressed as Formula (70):
Y=y+U (70)

In general, the value of the coverage factor, k, is chosen on the basis of the desired level of confidence
intended to be associated with the interval defined by + U and is typically in the range of 2 to 3.

If
U = 2 X uC(y)
(71)
the interval corresponds to a particular level of confidence of approximately P = 95 %, which is used

typically in this series of standards and assumes for the output estimate a normal distribution.

Under the same precondition,

U= 3 xuc(y) 72)

defines an interval having a level greater than P = 99 %.
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However, for specific applications, k may be outside the stated range. Extensive experiences with full
knowledge of the use to which the measurement result is intended to be put can facilitate the proper
selection of the value k. For more information, see ISO/IEC Guide 98-3:2008, 6.3, and Annex G.

5 Reporting uncertainty
When reporting a measurement result and its uncertainty, the following information should be given:

— a clear description of the mathematical models and methods used to calculate the measurement
result and its uncertainty (Type A and Type B evaluations) from the experimental observations and
input data;

— alist of all uncertainty components together with their degrees of freedom and the resulting u;
— adetailed description of how each component of standard uncertainty was evaluated;
— adescription of how k was chosen, if k is not taken equal to 2.

When the measure of uncertainty is uq(y), the numerical result of measurement should be stated in the
following way:

D =12 345,678 m Ucs=9,1 mm

If the expanded uncertainty, U, is reported, the following notation is recommended:

D=12345,678 m U=+18 mm (k = 2)

or

D = (12 345,678 + 0,018) m (k = 2)

6 Summarized concept of uncertainty evaluation

The following summary can be understood as a stepwise instruction for calculating the uncertainty in
practice.

a) Cleardescriptionofmeasurandsand measuringmethod:therelationshipbetweentheinputquantities
and output quantities, and the evaluation model shall be correctly described mathematically.

b) All corrections should be ascertained and, as far as possible, applied.
c) Detection of all causes (influence quantities) for evaluating uncertainty.
d) Calculation of the standard uncertainties applying the statistical procedures of a Type A evaluation.
e) Determination of the standard uncertainties of a Type B evaluation. For this,
1) the knowledge of the probability distribution of the input quantity,
2) information to estimate the distribution of the input quantity,

3) upper and lower bounds of the variability of the limits of the input quantity, and
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4) any other information, knowledge to quote the required standard uncertainty should be
considered.

f) For each input quantity, the quantitative contribution of the standard uncertainty shall be
calculated. Thus all sensitivity coefficients shall be determined according to the measuring model
(mathematical model to calculate the output estimate).

g) Hereinafter, the law of propagation of the uncertainty can be applied; the result is the combined
standard uncertainty of the output estimate.

h) Multiplication of the combined standard uncertainty by the coverage factor yields after all the
expanded uncertainty.

i) Reportofthe final result by quoting the output estimate, the expanded uncertainty and the coverage
factor.

7 Statistical tests

7.1 General

For the interpretation of the results, obtained from the full test procedure only, statistical tests shall
be carried out using the experimental standard deviation, s, or the standard uncertainty, u, of a Type A
evaluation. For tests, this Type A evaluation of standard uncertainty can be treated as an experimental
standard deviation. For testing, the following questions shall be answered (see Table 2).

a) Isthe calculated experimental standard deviation (standard uncertainty of a Type A evaluation), s,
smaller than or equal to the manufacturer’s or some other predetermined value of 67

b) Do two experimental standard deviations (standard uncertainties of a Type A evaluation), s and

5 as determined from two different samples of measurements belong to the same population,
assuming that both samples have the same number of degrees of freedom, v (v being the number of
degrees of freedom of all series of measurements)?

c) Respectively, d) is'a parameter yi obtained by adjustment equal to zero?

Table 2 — Statistical tests

: : Alternative
Question Null hypothesis hypothesis
a) sso s>0
b) c=06 c#G
c) respectively d) yk=0 Yk To
NOTE o is used instead of s because the null hypothesis
checks if the two experimental standard deviations belong to
the same population.

7.2 Question a): is the experimental standard deviation, s, smaller than or equal to a
given value 0?

Formulae (1) to (54) allow only the determination of the (experimental) standard deviation, s, or the
standard uncertainty of a Type A evaluation, u, of the measurements. Because of the small size of
the sample, this value can differ more or less from the theoretical standard deviation, o, of the whole
population as stated by the manufacturer of the instrument or predetermined in any other way.

The methods of mathematical statistics permitthe decision whether an experimental standard deviation,
s, is smaller than or equal to a given theoretical standard deviation, o, on the confidence level 1 - a.
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The null hypothesis s < 0 is not rejected if the following condition is fulfilled:

2
s<ox iz
v (73)

25 e

Otherwise, the null hypothesis is rejected. may be taken from Table B.1.

The theoretical standard deviation, g, is a predetermined value.

7.3 Question b): Do two samples belong to the same population?

The methods of mathematical statistics permit the decision as to whether two experimental standard

deviations, s and 5, or the standard uncertainties of a Type A evaluation, u and U, obtained from two
different samples of measurements, belong to the same population on the confidence level 1 - a. The

corresponding null hypothesis © =9 is not rejected if the following condition is fulfilled:
1 s?
v <5 <Fi_apV)
1-a2VV) 5 74)

Otherwise, the null hypothesis is rejected.

Two samples of measurements with the same number 7=1 are taken to determine the experimental
standard deviations, s and-$. These experimental standard deviations, s and S may be obtained from:

— two samples of measurements by the same equipment, but different observers;
— two samples of measurements by the same equipment, but at different times;
— two samples of measurements by different equipment.

F1 - q/2 (v, v) may be taken from Table B.1.

7.4 Question c) [respectively question d)]:Testing the significance of a parameter yy

Formulae (21) to (35), the equations of adjustment by least squares, allow the ‘determination of
parameters yx and their experimental standard deviations, s(yk), or standard uncertainties of a Type A
evaluation, u(yk). Moreover, the methods of mathematical statistics permit the decision as to whether
a parameter yy is not equal to zero on the confidence level 1 — a. The null hypothesis of yx = 0 is not
rejected, if the following condition is fulfilled:

V| <s(Vi)xt1 g 2(V) (75)

Otherwise, the null hypothesis is rejected.
yk is the parameter to be tested valid for all series of measurements.

If m > 1, yx is calculated by the corresponding values yy ; for the m series of measurements:

m
Z)’k,i
_i=1

Y= 76)

Yk,ihas to be estimated according to.the equations for the full test procedure.
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In this case

s(ve)=—
C (77)

is the experimental standard deviation of the parameter yi valid for all series of measurements, where
v is a constant according to the equations for the full test procedure. If m > 1, s(yx) is calculated by the
corresponding values s(yy, ;) for the m series of measurements:

vxm (78)

t1 - q/2 (v) may be taken from Table B.1.
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Annex A
(informative)

Probability distributions

Probability density distribution

Density function

Examples of application

Rectangular(uniform) distribution

H-a-ocpn+op+a

Probability density function

1
f(x)=z
(n-asx<pu+a)

Standard deviation

o=—F

V3

Tolerances, e.g. digital display reso-
lutions, intervals, deviations.

Triangular distribution

u-a-ou+ou+a

Probability density function

F(x)= [1—1(|x—u|>}
a

Ta
(u-asxsyu+a

Standard deviation

Tolerances, the values of which
show a high frequency in the middle
and decrease linearly to both sides.

Convolution of two rectangular dis-
tributions with the same half-width

Normal (Gaussian) distribution

-ou+o

Probability density function

J(HJZ
1 e 2\ o

f(x)=
ov2n
(—oo<x<oo,g>0)
Standard deviation, o,

from statistical analysis

Standard deviation derived from a
sample of uncorrelated measure-
ments

26
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x2 distribution, Fisher’s distribution and Student’s t-distribution

Table B.1 — x2 distribution, Fisher’s distribution and Student’s t-distribution

v | X 3,90 (v) toos(V) | x (2),95 (v) [Foors(viv) | Ego75(V) | 8,99 (v) [Fo995(v:v) | 10905(v)
2 4,61 19,00 2,92 5,99 39,00 4,30 9,21 199,01 9,92
3 6,25 9,28 2,35 7,81 15,44 3,18 11,34 47,47 5,84
4 7,78 6,39 2,13 9,49 9,60 2,78 13,28 23,15 4,60
5 9,24 5,05 2,02 11,07 7,15 2,57 15,09 14,94 4,03
6 10,64 4,28 1,94 12,59 5,82 2,45 16,81 11,07 3,71
7 12,02 3,79 1,89 14,07 4,99 2,36 16,48 8,89 3,50
8 13,36 3,44 1,86 15,51 4,43 2,31 20,09 7,50 3,36
9 14,68 3,18 1,83 16,92 4,03 2,26 21,67 6,54 3,25
10 15,99 2,98 1,81 18,31 3,72 2,23 23,21 5,85 3,17
14 21,06 2,48 1,76 23,68 2,98 2,14 29,14 4,30 2,98
15 21,31 2,40 1,75 25,00 2,86 2,13 30,58 4,07 2,95
16 23,54 2,33 1,75 26,30 2,76 2,12 32,00 3,87 292
18 25,99 2,22 1,73 28,87 2,60 2,10 34,81 3,56 2,88
19 27,20 2,17 1,73 30,14 2,53 2,09 36,19 3,43 2,86
24 33,20 1,98 1,71 36,42 2,27 2,06 42,98 2,97 2,80
27 36,74 1,90 1,70 40,11 2,16 2,05 46,96 2,78 2,77
28 3792 1,88 1,70 41,34 2,13 2,05 48,28 2,72 2,76
30 40,26 1,86 1,70 43,77 2,07 2,04 50,89 2,63 2,75
32 42,58 1,80 1,69 46,19 2,02 2,04 53,49 2,54 2,74
36 47,21 1,74 1,69 51,00 1,94 2,03 58,62 2,41 2,72
38 49,51 1,72 1,69 53,38 1,91 2,02 61,16 2,35 2,71
42 54,09 1,67 1,68 58,12 1,85 2,02 66,21 2,25 2,70
54 67,67 1,57 1,67 72,15 1,71 2,00 81,07 2,04 2,67
72 87,74 1,48 1,67 92,81 1,59 1,99 102,82 1,85 2,65
108 127,21 1,37 1,66 133,26 1,46 1,98 145,10 1,65 2,62

The test values X%—a (v),Fl_a/Z(v,v) and t1 - a/2 (v) apply to the full test procedures of 1SO 17123-2, SO 17123-3,

ISO 17123-4,1S0 17123-5,1S0 17123-6, 1SO 17123-7 and ISO 17123-8, even if the number of series of measurements is less
than provided there. If a different number of measurements is analysed, the number of degrees of freedom changes and the
above-mentioned test values should be taken from a reference book on statistics.
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Annex C
(informative)

Examples

NOTE Calculations are done with full precision from beginning to end, but intermediate and final results are

shown as rounded values.

C.1 Example1

Measurands:

Slope distance:l; = 142,432 m with uq=12,0 mm

Zenith angle: [p=78,412° uz =0,055 mrad
IT=(l117) = (142,432 78,412)

[m, °]
U_uf 0) (144 0 mm2
“lo «2) 0 00030 mrad?
Wanted: Horizontal distance and its standard uncertainty

x=g(l) =1 x sinlp = 142,432 x sin78,412°
x=142,432 % 0,97 962 =139,529 m

97=(91,92)

91=9 _sinl,=0,97962
ol

92 =§Tg=11 cosly =142,432x0,20087 =28,611[m]
2

L 144 0 (0,98
u(x)=g'U,g=(0,98 28,6 — 140,646

0,003 )\ 28,61

u(x) =s(x) =11,9 mm

C.2 Example 2

By tacheometer measurements (measurands) the following input estimates were measured or manually

entered:

s = 345,746 m slope distance;

z=70,580 8° vertical angle;

28
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¢ = 32,6 mm additive constant;

ka = 12 ppm1) athmospheric correction.
As aresult, it can be read from the display:

D =326,111 6 m horizontal distance;
h =114,964 9 m height.

According to Figure 1, the model of evaluation is given by

x = g(IT), respectively
D= (s+c+sxkg)sinz
h=(s+c+sxkg)cosz

For further evaluations, the standard uncertainties of the quantities D and h are needed.

1) The equivalent of 0,001.2%.is 12 ppm;ppmis adeprecated unit,
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For this, proceed according to 4.2.2. Following the notation in Formula (4), it is obtained:

IT=(sckyz) = (345,746 32,6 12 70,580 8) [m mm ppm]

From calibration certificate uncertainties (Type A evaluation) of I were taken out, given by the vector,

usz[u(s) u(c) u(k,) u(z)]=(3 0,5 2 0,003)[mm mm - ppm mrad]

with

0 9x107°

xzilzj ,90 =0and

oD oD oD oD
G O ok, oz :((1+ka)sinz sinz sxsinz §xcoszj
ch ©oh oh oh (1+k,)cosz cosz sxcosz. —Sxsinz
os oc ok, oz

where

S=s+c+sxk,

It can be written (in order to obtain the result in square millimetres):

U, =GU,GT
9 0 0,943 0,332
_(0,943 0,943 326 114,96 0,25 | 0,943 0,332
~10,332 0,332 114,95 326 4x107° 326 114,95
0 9x10°° 114,96 -326
and finally yields:
Ok :(8j772) mm?®
X u(h)? 2,033 )| ;mm?
and

u(D) = 3,0 mm and u(h) = 1,4 mm.

C.3 Example 3

By EDM measurements (measurands) the following horizontal distances between four points located on
a straight line were measured:

1 Y1 2 Y2 3 V3 4
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Observables: distances x

1-2=x1=117,342m 1-3=x4=185,811m
2-3=x2=68,454m 2-4=x5=109,707 m
3-4=x3=41,265m 1-4=x=227,058m

XT = (x1X2X3X4X5X6)

Unknowns:

y'=(ywws3)

According to Formula (21), the system of observation equations yields

ry +117,342=y,

ry + 68,454 = )

r3+ 41,265= V3
ry +185811=y, + y,

rs +109,707 = Yo+ Y3
re +227,058 =y +y,+y3

As there already is-a linear equation system, this can immediately be written using the matrix [see
Formulae (24) and«(23)]:

1 00 117,342
010 68,454
0 01 41,265

A=11 1 o M=/= g5 811
011 109,707
111 227,058

With P = E the normal matrixis obtained [see Formula (27)]:

3 2 1 530,211

N=|2 4 2| andthevector n=|591,030
Lzs 378,030

The solution vector yields

0,5 0,25 0 530,211 117,348 0
y=N"'n=[-0,25 0,5 -0,25[x|591,030 |=| 68,4547
0 -0,25 0,5 378,030 41,2575

Finally, the residuals can be calculated according to Formula (25) by

Axy-x=r
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109,707 +0,005 2

I 1 227,058 +0,002 2
From this, the following can be derived [see Formula (28)]:

T -6
SO:\/r r:\/192,01x10 0,008
1% 6-3

1 00 117,342 +0,006 0

010 68,454 +0,000 7
117,348 0

0 01 41,265 -0,007 5

x| 68,4547 |- =

1 10 185,811 -0,008 3
41,2575

0 1 1

1

According to Formula (29), the following can be quoted:

Sy, =50 kayk =0,008x+/0,5
Sy, =0,0057

Finally, the standard uncertainty (Type A evaluation) of the output estimates y1, y, y3 yields

Uyk = Syk=5,7mm,k=1,2,3

With
0,50 -0,25 0,00 0,25 —0,25 0,25
-0,25 0,50 -0,25 0,25 0,25 0,00
S s, 0,00 -0,25 0,50 -0,25 0,25 0,25
* 0,25 0,25 -0,25 0,50 0,00 0,25
-0,25 0,25 ~ 0,25 0,00 0,50 0,25
0,25 0,00 0,25 0,25 0,25 0,50

and

sT=(57 57 57 57 57 57) [mm]

the standard uncertainty of the adjusted input estimates x

u, =sz ,respectively
u(%;)=5(%;)=57mm,j=1,2,..,6

C.4 Example 4

As a measurand (input quantity), an angle was observed several times with two different instruments:

Instrument I: x1 = 124° 39’ 16" Instrument II: x4 = 124° 39’ 13"
xy = 124° 39" 04" x5 =124° 39’ 09"
x3=124°39' 06" X6 = 124°39' 08"
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The standard uncertainty of a single angle measurement was specified for instrument [ with u;=5" and
for instrument II with uy = 2", With xo = 124° 39’ 00"

and

AT =x—exxy,=(16 4 6 13 9 8) ["]

Ax=(e"Pe) e PAX,

with
s 5§
P1=P2=P3="5,  P4=P5=Pe="5
uy Uy

where s% is chosen as 100.

4 0

25
25
0 25

Finally,

(eTPe)™t=1/87 and P Ax =854

From this result

AX = 88_574 =9,8 ["] respectively

¥ =124°39'00" +9,8" =124°39" 10"
The experimental standard deviation yields

T
— N . P
s(x)= 0 with s% L7

\/eTPe v

with

rT=(-6,2 58 38 -32 08 1,8)[']andv=5

So = 19991 118" and sr)=28 1,3
5 J87

For the standard uncertainty of the input quantity, the arithmetic mean Xx, the following is finally
obtained:

u(x)=s(x) =1,3"
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C.5 Example 5

From different levelling lines, the measurands are known for the forward and backward readings of
levelling staffs. To calculate the uncertainty, Formulae (41) to (50) can be applied.

The given heights are
I =(10,473 -15,213 28,775 12,742 13,155 -6,989) [m]

and

11 =(10,466 -15,211 28,780 12,732 13,155 —6,986) [m]

Thus, the arithmetic mean y;, respectively the vector, is obtained:

yT =(10,4695 -15,2120 28,7775 12,7370 13,1550 -6,9875) [m]

and the differences

dT =(-7 +2 +5 -10 0 +3) [mm]

As all observations [;, with j =1, 2, are from the same uncertainty level, the experimental standard
deviation for the heights

] :‘/% =3,9 [mm]

and
for the averages y;,i=1,2,..,6

_ 187
s(y;)= e =2,8 [mm]

To check the condition E(d) = 0 the following is obtained from Formula (49):
(7)* <187

This means that the condition is true and that the standard uncertainties can be written:

u(l) =s;=39mmand u(y;)=s(y;) = 2,8 mm

C.6 Example 6

From a given Point Py(x, y, H), the coordinates (measurands) of a new point P were determined by the
polar method using only face I observations (see Figure C.1).

Given:
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Coordinates of P,:

x0=12 345,678 m y0=87654,321m

s(x0) =1,8 cm s(yo)=1,6 cm

Bearing: t4 = 309,090 9

s(ta) =1,3"

Measured:

Angle: a=899999°s(a)=1,7"

Horizontal distance: D =326,1116 m
(taken from Example 2)

u(D) = 3,0 mm

Figure C.1 — Polar survey
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For the uncertainty evaluation, the following mathematical model is used:

y=flx7)
or
X Xy +Ax
Y |=| Yo+A4y
H Hg+Ah

Here only the calculation for the x-coordinate is exemplarily pursued:
x(P) =xo + Ax=x0 + D x cos(a + t4)
In consideration of the collimation error, ¢, and the tilting axis error, 7, the model has to be extended by

the equivalent correction k..and k; (here directly attributed to the horizontal angle a due to sightings
under different zenith angles):

x(P)=x0 + D xcos(a+ ke + ki +ty)
x(P) =12 345,678 + 326,111 6 %x¢c0s(89,999 9° + 0,003 2° + 0,004 3°+ 309,090 9°)
x(P) =12 345,678 + 253,084= 12 598,762 m

To calculate the uncertainty, it is convenient to use tabular form in analogy to 4.2.2 and 4.4.
Additional uncertainty influences can still be estimated using Type B 'evaluation according to 4.3.
Centring excentricity, e, of the instrument:

With e = + 3 mm and assuming a probability for this interval of 100 %, a standard uncertainty [see
Formula (57)], is yielded:

ule) =0,58 x e = 1,7 mm
Sensitivity coefficient: c7 = 1

Horizontal refraction:

With an estimated influence of r= + 7" and assuming for this estimation a probability of 50 %, a standard
uncertainty [see Formula (55)] is yielded:

u(r)=1,48 xr=10,4"
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Sensitivity coefficient: cg = D x sin(a + kc+ ki+ t4) = 206

Applying the law of propagation of uncertainty according to 4.4, yields

2 u()* 0
u(x,) 0 u(k,)?
Uin = u(D)* Uypy = u(k;)?
0 u(t,)’ u(e)®
0 u(r)?
and
U 0
U, :[ X(;A) U j
x(B)
With

cT=(1 0,78 206 206 206 206 1 206)

according to Formula (66), the combined standard uncertainty of the output estimate, the x-coordinate,
can finally be stated:

ulx(P)] = 21,1 mm

The final result including the expanded uncertainty + U (k = 2) is given by
x(P) = (12 598,762 + 0,042) m

uc[x(P)] = 21,1 mm
Ulx(P)] = 2 x uc[x(P)] = £42 mm

NOTE Calculation is done always with full accuracy but intermediate results are shown as rounded numbers.
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Table C.1 — Uncertainty budget

Input quan- Input Standard Distribution Sensitivity Type of evaluation,
tity estimates uncertainty coefficientsa ¢, xu ( X, ) source of uncertainty
Xj u(x;) C; =0f / 6xl.
Xi
[dim] [dim] [dim] [mm]
X0 12345678m | 18mm normal 1 18 Ai:;stﬁ;ﬁf;gr;é?ugmﬁgs
D 326,111 6m 3,0 mm normal 0,78 2,3 A, Comb‘“e‘z ;iftr;dard uneers
89,999 9° 1,7" . .
« normal 206 m 17 B, random influences, experi
1,570 795 rad | 0,008 2 mrad ences
0,003 2° 1"
ke rectangular 206 m 1,0 B, g?nﬁrag khnowledge
0,061 mrad- | 0,004 8 mrad ofthe behaviour
0,004 3° 1"
ki rectangular 206 m 1,0 B g?nﬁral khnowledge
0,075mrad | 0,004 8 mrad of the behaviour
ta 309,090 9° 1,3" normal 206 m 13 A, estimation from previous
5,394 654 rad | 0,006:3 mrad ’ least-squares adjustment
e 0 1,7 mm rectangular 1 1,7 B, centring eccentricity
10,4"
r 0 normal 206 m 10,3 B, horizontal refraction
0,050 2 mrad
Output esti-
mate, final | 12 598,762 m 21,1 mm
result

a  The partial derivates used in Formulae (12) or (17) are often called the sensitivity coefficients.
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