

EVIDENCE-BASED
SOFTWARE

ENGINEERING AND
SYSTEMATIC

REVIEWS

Chapman & Hall/CRC Innovations in Software Engineering
and Software Development

Series Editor
Richard LeBlanc

Chair, Department of Computer Science and Software Engineering, Seattle University

AIMS AND SCOPE

This series covers all aspects of software engineering and software development. Books
in the series will be innovative reference books, research monographs, and textbooks at
the undergraduate and graduate level. Coverage will include traditional subject matter,
cutting-edge research, and current industry practice, such as agile software development
methods and service-oriented architectures. We also welcome proposals for books that
capture the latest results on the domains and conditions in which practices are most ef-
fective.

PUBLISHED TITLES

Computer Games and Software Engineering
Kendra M. L. Cooper and Walt Scacchi

Software Essentials: Design and Construction
Adair Dingle

Software Metrics: A Rigorous and Practical Approach, Third Edition
Norman Fenton and James Bieman

Software Test Attacks to Break Mobile and Embedded Devices
Jon Duncan Hagar

Software Designers in Action: A Human-Centric Look at Design Work
André van der Hoek and Marian Petre

Evidence-Based Software Engineering and Systematic Reviews
Barbara Ann Kitchenham, David Budgen, and Pearl Brereton

Fundamentals of Dependable Computing for Software Engineers
John Knight

Introduction to Combinatorial Testing
D. Richard Kuhn, Raghu N. Kacker, and Yu Lei

Building Enterprise Systems with ODP: An Introduction to Open
Distributed Processing
Peter F. Linington, Zoran Milosevic, Akira Tanaka, and Antonio Vallecillo

Software Engineering: The Current Practice
Václav Rajlich

Software Development: An Open Source Approach
Allen Tucker, Ralph Morelli, and Chamindra de Silva

CHAPMAN & HALL/CRC INNOVATIONS IN
SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT

EVIDENCE-BASED
SOFTWARE

ENGINEERING AND
SYSTEMATIC

REVIEWS

Barbara Ann Kitchenham
Keele University, Staffordshire, UK

David Budgen
Durham University, UK

Pearl Brereton

Keele University, Staffordshire, UK

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20151022

International Standard Book Number-13: 978-1-4822-2866-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
www.copyright.com
www.copyright.com

Contents

List of Figures xv

List of Tables xvii

Preface xix

Glossary xxiii

I Evidence-Based Practices in Software Engineering 1

1 The Evidence-Based Paradigm 3

1.1 What do we mean by evidence? 4
1.2 Emergence of the evidence-based movement 7
1.3 The systematic review . 10
1.4 Some limitations of an evidence-based view of the world . . 14

2 Evidence-Based Software Engineering (EBSE) 17

2.1 Empirical knowledge before EBSE 17
2.2 From opinion to evidence 19
2.3 Organising evidence-based software engineering practices . 23
2.4 Software engineering characteristics 25
2.5 Limitations of evidence-based practices in software

engineering . 27
2.5.1 Constraints from software engineering 27
2.5.2 Threats to validity 28

3 Using Systematic Reviews in Software Engineering 31

3.1 Systematic reviews . 32
3.2 Mapping studies . 34
3.3 Meta-analysis . 37

v

vi Contents

4 Planning a Systematic Review 39

4.1 Establishing the need for a review 40
4.2 Managing the review project 43
4.3 Specifying the research questions 43
4.4 Developing the protocol . 48

4.4.1 Background . 49
4.4.2 Research questions(s) 49
4.4.3 Search strategy . 49
4.4.4 Study selection . 50
4.4.5 Assessing the quality of the primary studies 50
4.4.6 Data extraction . 51
4.4.7 Data synthesis and aggregation strategy 51
4.4.8 Limitations . 52
4.4.9 Reporting . 52
4.4.10 Review management 52

4.5 Validating the protocol . 52

5 Searching for Primary Studies 55

5.1 Completeness . 56
5.2 Validating the search strategy 59
5.3 Methods of searching . 62
5.4 Examples of search strategies 64

6 Study Selection 67

6.1 Selection criteria . 67
6.2 Selection process . 69
6.3 The relationship between papers and studies 71
6.4 Examples of selection criteria and process 72

7 Assessing Study Quality 79

7.1 Why assess quality? . 79
7.2 Quality assessment criteria 82

7.2.1 Study quality checklists 83
7.2.2 Dealing with multiple study types 86

7.3 Procedures for assessing quality 86
7.4 Examples of quality assessment criteria and procedures . . 88

8 Extracting Study Data 93

8.1 Overview of data extraction 93
8.2 Examples of extracted data and extraction procedures . . . 95

Contents vii

9 Mapping Study Analysis 101

9.1 Analysis of publication details 102
9.2 Classification analysis . 103
9.3 Automated content analysis 106
9.4 Clusters, gaps, and models 110

10 Qualitative Synthesis 111

10.1 Qualitative synthesis in software engineering research . . . 112
10.2 Qualitative analysis terminology and concepts 113
10.3 Using qualitative synthesis methods in software engineering

systematic reviews . 116
10.4 Description of qualitative synthesis methods 117

10.4.1 Meta-ethnography 118
10.4.2 Narrative synthesis 120
10.4.3 Qualitative cross-case analysis 121
10.4.4 Thematic analysis 123
10.4.5 Meta-summary . 124
10.4.6 Vote counting . 127

10.5 General problems with qualitative meta-synthesis 129
10.5.1 Primary study quality assessment 129
10.5.2 Validation of meta-syntheses 130

11 Meta-Analysis 133
with Lech Madeyski
11.1 Meta-analysis example . 134
11.2 Effect sizes . 135

11.2.1 Mean difference . 136
11.2.2 Standardised mean difference 138

11.2.2.1 Standardised mean difference effect size . 138
11.2.2.2 Standardised difference effect size

variance 140
11.2.2.3 Adjustment for small sample sizes 141

11.2.3 The correlation coefficient effect size 141
11.2.4 Proportions and counts 142

11.3 Conversion between different effect sizes 144
11.3.1 Conversions between d and r 144
11.3.2 Conversion between log odds and d 144

11.4 Meta-analysis methods . 145
11.4.1 Meta-analysis models 145
11.4.2 Meta-analysis calculations 146

11.5 Heterogeneity . 148
11.6 Moderator analysis . 151
11.7 Additional analyses . 152

viii Contents

11.7.1 Publication bias . 152
11.7.2 Sensitivity analysis 153

12 Reporting a Systematic Review 155

12.1 Planning reports . 157
12.2 Writing reports . 158
12.3 Validating reports . 162

13 Tool Support for Systematic Reviews 165
with Christopher Marshall
13.1 Review tools in other disciplines 166
13.2 Tools for software engineering reviews 169

14 Evidence to Practice: Knowledge Translation and Diffusion 173

14.1 What is knowledge translation? 175
14.2 Knowledge translation in the context of software

engineering . 177
14.3 Examples of knowledge translation in software engineering . 180

14.3.1 Assessing software cost uncertainty 180
14.3.2 Effectiveness of pair programming 181
14.3.3 Requirements elicitation techniques 181
14.3.4 Presenting recommendations 182

14.4 Diffusion of software engineering knowledge 183
14.5 Systematic reviews for software engineering education . . . 184

14.5.1 Selecting the studies 185
14.5.2 Topic coverage . 186

Further Reading for Part I 187

II The Systematic Reviewer’s Perspective of
Primary Studies 195

15 Primary Studies and Their Role in EBSE 197

15.1 Some characteristics of primary studies 199
15.2 Forms of primary study used in software engineering 201
15.3 Ethical issues . 203
15.4 Reporting primary studies 205

15.4.1 Meeting the needs of a secondary study 205
15.4.2 What needs to be reported? 208

15.5 Replicated studies . 208
Further reading . 209

Contents ix

16 Controlled Experiments and Quasi-Experiments 211

16.1 Characteristics of controlled experiments and
quasi-experiments . 212
16.1.1 Controlled experiments 212
16.1.2 Quasi-experiments 214
16.1.3 Problems with experiments in software engineering 215

16.2 Conducting experiments and quasi-experiments 217
16.2.1 Dependent variables, independent variables and

confounding factors 218
16.2.2 Hypothesis testing 219
16.2.3 The design of formal experiments 221
16.2.4 The design of quasi-experiments 222
16.2.5 Threats to validity 223

16.3 Research questions that can be answered by using experiments
and quasi-experiments . 225
16.3.1 Pair designing . 226
16.3.2 Comparison of diagrammatical forms 227
16.3.3 Effort estimation . 227

16.4 Examples from the software engineering literature 227
16.4.1 Randomised experiment: Between subjects 228
16.4.2 Quasi-experiment: Within-subjects before–after

study . 228
16.4.3 Quasi-experiment: Within-subjects cross-over

study . 228
16.4.4 Quasi-experiment: Interrupted time series 229

16.5 Reporting experiments and quasi-experiments 229
Further reading . 230

17 Surveys 233

17.1 Characteristics of surveys 234
17.2 Conducting surveys . 236
17.3 Research questions that can be answered by using surveys . 238
17.4 Examples of surveys from the software engineering literature 239

17.4.1 Software development risk 240
17.4.2 Software design patterns 240
17.4.3 Use of the UML . 242

17.5 Reporting surveys . 242
Further reading . 242

18 Case Studies 245

18.1 Characteristics of case studies 247
18.2 Conducting case study research 248

x Contents

18.2.1 Single-case versus multiple-case 249
18.2.2 Choice of the units of analysis 250
18.2.3 Organising a case study 251

18.3 Research questions that can be answered by using case
studies . 253

18.4 Example of a case study from the software engineering
literature . 255
18.4.1 Why use a case study? 255
18.4.2 Case study parameters 256

18.5 Reporting case studies . 256
Further reading . 258

19 Qualitative Studies 259

19.1 Characteristics of a qualitative study 259
19.2 Conducting qualitative research 260
19.3 Research questions that can be answered using qualitative

studies . 262
19.4 Examples of qualitative studies in software engineering . . . 262

19.4.1 Mixed qualitative and quantitative studies 263
19.4.2 Fully qualitative studies 265

19.5 Reporting qualitative studies 267
Further reading . 268

20 Data Mining Studies 271

20.1 Characteristics of data mining studies 272
20.2 Conducting data mining research in software engineering . . 272
20.3 Research questions that can be answered by data mining . 274
20.4 Examples of data mining studies 275
20.5 Problems with data mining studies in software

engineering . 276
20.6 Reporting data mining studies 277
Further reading . 278

21 Replicated and Distributed Studies 279

21.1 What is a replication study? 279
21.2 Replications in software engineering 282

21.2.1 Categorising replication forms 282
21.2.2 How widely are replications performed? 284
21.2.3 Reporting replicated studies 286

21.3 Including replications in systematic reviews 286
21.4 Distributed studies . 287
Further reading . 289

Contents xi

III Guidelines for Systematic Reviews 291

22 Systematic Review and Mapping Study Procedures 293

22.1 Introduction . 295
22.2 Preliminaries . 297
22.3 Review management . 298
22.4 Planning a systematic review 299

22.4.1 The need for a systematic review or mapping
study . 299

22.4.2 Specifying research questions 302
22.4.2.1 Research questions for systematic

reviews 302
22.4.2.2 Research questions for mapping studies . 302

22.4.3 Developing the protocol 304
22.4.4 Validating the protocol 304

22.5 The search process . 306
22.5.1 The search strategy 306

22.5.1.1 Is completeness critical? 306
22.5.1.2 Validating the search strategy 307
22.5.1.3 Deciding which search methods to use . . 309

22.5.2 Automated searches 310
22.5.2.1 Sources to search for an automated

search . 310
22.5.2.2 Constructing search strings 311

22.5.3 Selecting sources for a manual search 313
22.5.4 Problems with the search process 314

22.6 Primary study selection process 315
22.6.1 A team-based selection process 315
22.6.2 Selection processes for lone researchers 318
22.6.3 Selection process problems 318
22.6.4 Papers versus studies 319
22.6.5 The interaction between the search and selection

processes . 321
22.7 Validating the search and selection process 321
22.8 Quality assessment . 322

22.8.1 Is quality assessment necessary? 323
22.8.2 Quality assessment criteria 323

22.8.2.1 Primary study quality 323
22.8.2.2 Strength of evidence supporting review

findings 324
22.8.3 Using quality assessment results 328
22.8.4 Managing the quality assessment process 328

22.8.4.1 A team-based quality assessment process 329
22.8.4.2 Quality assessment for lone researchers . 330

xii Contents

22.9 Data extraction . 331
22.9.1 Data extraction for quantitative systematic

reviews . 331
22.9.1.1 Data extraction planning for quantitative

systematic reviews 331
22.9.1.2 Data extraction team process for quanti-

tative systematic reviews 334
22.9.1.3 Quantitative systematic reviews data

extraction process for lone researchers . . 335
22.9.2 Data extraction for qualitative systematic reviews . 336

22.9.2.1 Planning data extraction for qualitative
systematic reviews 337

22.9.2.2 Data extraction process for qualitative
systematic reviews 337

22.9.3 Data extraction for mapping studies 338
22.9.3.1 Planning data extraction for mapping

studies 338
22.9.3.2 Data extraction process for mapping

studies 340
22.9.4 Validating the data extraction process 342
22.9.5 General data extraction issues 342

22.10 Data aggregation and synthesis 343
22.10.1 Data synthesis for quantitative systematic reviews . 343

22.10.1.1 Data synthesis using meta-analysis . . . 344
22.10.1.2 Reporting meta-analysis results 346
22.10.1.3 Vote counting for quantitative systematic

reviews 347
22.10.2 Data synthesis for qualitative systematic reviews . . 348
22.10.3 Data aggregation for mapping studies 350

22.10.3.1 Tables versus graphics 351
22.10.4 Data synthesis validation 351

22.11 Reporting the systematic review 353
22.11.1 Systematic review readership 353
22.11.2 Report structure . 353
22.11.3 Validating the report 355

Appendix: Catalogue of Systematic Reviews Relevant to
Education and Practice 357
with Sarah Drummond and Nikki Williams
A.1 Professional Practice (PRF) 358
A.2 Modelling and Analysis (MAA) 359
A.3 Software Design (DES) . 361
A.4 Validation and Verification (VAV) 361
A.5 Software Evolution (EVO) 362
A.6 Software Process (PRO) . 363

Contents xiii

A.7 Software Quality (QUA) . 364
A.8 Software Management (MGT) 365

Bibliography 367

Index 391

This page intentionally left blankThis page intentionally left blank

List of Figures

1.1 A simple model of knowledge acquisition. 5
1.2 Does the bush keep the flies off? 6
1.3 The logo of the Cochrane Collaboration featuring a forest plot 9
1.4 The systematic review process. 11
1.5 The context for a systematic review. 13

2.1 Overview of the systematic review process. 24

3.1 The hierarchy of study forms. 32
3.2 The spectrum of synthesis. 35

4.1 Planning phase of the systematic review process. 40

5.1 Searching stage of the systematic review process. 56
5.2 A process for assessing search completeness using a quasi-gold

standard. 60

6.1 Study selection stage of the systematic review process. . . . 68

7.1 Quality assessment stage of the systematic review process. . 80

8.1 Data extraction stage of the systematic review process. . . . 94

9.1 Example of a horizontal bar chart including study IDs. . . . 105
9.2 Bar chart code snippet. 106
9.3 Example of a bubble plot showing the structure. 107
9.4 Bubble plot code snippet. 109

10.1 Methods for qualitative synthesis. 114

11.1 Forest plot example. 136
11.2 Code snippet for a fixed-effects meta-analysis. 137
11.3 Forest plot example (random-effects model). 149
11.4 Random-effects analysis. 150
11.5 Confidence intervals for measures of heterogeneity. 150

12.1 Reporting phase of the systematic review process. 155

xv

xvi List of Figures

12.2 Example of a graphical model for the selection process. . . . 161

14.1 The pathway from data to knowledge. 174
14.2 A knowledge translation model for SE. 178

15.1 How primary and secondary studies are related. 198
15.2 Primary study forms in the depth/generality spectrum. . . . 201
15.3 Example of a structured abstract. 207

16.1 The framework for a controlled experiment. 213
16.2 Hypothesis testing through use of an experiment. 220
16.3 Threats to validity and where they arise. 224

18.1 Characterising basic case study designs 250

21.1 Illustration of replications. 281

22.1 A simple flowchart. 296
22.2 A complex planning process diagram. 296
22.3 Initial considerations. 297
22.4 Justification for a systematic review. 300
22.5 Template for a systematic review protocol 305
22.6 How to devise a search strategy. 307
22.7 The team-based primary study selection process. 316
22.8 Quality criteria for studies of automated testing methods. . 325
22.9 Quality criteria for randomised experiments. 326
22.10 Process for managing team-based quality assessment. 329
22.11 Initial planning decisions for quantitative systematic reviews. 335
22.12 Quantitative systematic reviews data extraction process. . . 336
22.13 Planning mapping studies. 339
22.14 Mapping study data extraction process. 341
22.15 Meta-analysis process. 345
22.16 Forest plot example. 346
22.17 Funnel plot example. 347
22.18 Bubbleplot example. 352

List of Tables

4.1 Example Questions for Validating a Protocol 53
4.1 Example Questions for Validating a Protocol 54

6.1 Example Data for Study Selection by Two Reviewers 70
6.2 Interpretation of Kappa . 71

7.1 Quality Concepts . 81
7.2 A Case Study Quality Checklist 83
7.3 A Quality Checklist That Can Be Used across Multiple Study

Types . 85
7.4 A Quality Checklist for a Quantitative Systematic Review . 89

8.1 Form for Recording Extra Textual Data 99

9.1 Bubble Plot Data . 108

11.1 Example Data . 134
11.2 Binary Data . 142
11.3 Calculating T 2 . 147

12.1 Example of Tabulation: Papers Found at Different Stages . 160

13.1 Tools to Support Systematic Reviews in Software Engineering 171

14.1 Strength of Evidence in the GRADE System. 179
14.2 Number of Systematic Reviews for Each Knowledge Area . 186

17.1 Sample Size Needed for 95% Confidence 236

21.1 Replication Types Used in Families of Experiments 283

22.1 Common Effect Sizes Used in Meta-Analysis 333
22.2 Contextual Information Appropriate for Meta-Analysis . . . 334
22.3 Synthesis Methods for Qualitative Analysis 349

A.1 Distribution of Systematic Reviews across Knowledge Areas 359
A.2 Other Studies Addressing MAA 360
A.3 Other Studies Addressing DES 361

xvii

xviii List of Tables

A.4 Other Studies Addressing VAV 362
A.5 Other Studies Addressing PRO 364
A.6 Other Studies Addressing QUA 365
A.7 Other Studies Addressing MGT 366

Preface

As a relatively young (and as we will later argue, still somewhat immature)
discipline, software engineering is in an emergent1 state for many purposes.
Its foundations as a distinct sub-discipline of computing are widely considered
to have been laid down at the 1968 NATO conference, although the term was
probably in fairly regular use before that. Since then, ideas have ebbed and
flowed, along with the incredibly rapid expansion and evolution of computing
from an activity largely concerned with ‘crunching numbers’ in support of
scientific research, to something that forms a pervasive element of everyday
life. While this has helped to drive the development of software engineering
as a discipline, the headlong pace has also meant that there has often been
little opportunity to appraise and reflect upon our experiences of how software
systems can be developed, how well the different approaches work, and under
what conditions they are likely to be most effective.

The emergence of the concept of evidence-based software engineering
(EBSE) can certainly be assigned a clear starting point, with the seminal
paper being presented at the 2004 International Conference on Software En-
gineering (ICSE). In the decade that has followed, ideas about EBSE, and
about its key tool, the systematic review, have evolved and matured; it has
taken its place in the empirical software engineer’s toolbox; and has helped to
categorise and consolidate our knowledge about many aspects of software en-
gineering research and practice. While few commercial software development
activities can as yet even be described as ‘evidence-informed’, the philosophy
of EBSE is beginning to be widely recognised and appreciated. As such then,
this seems to be a suitable time to bring this knowledge together in a single
volume, not least to help focus thinking about what we as a community might
usefully do with that knowledge in the future.

Like Gaul, our book is divided into three parts2. In the first part we discuss
the nature of evidence and the evidence-based practices centred around the
systematic review, both in general and also as applying to software engineer-
ing. The second part examines the different elements that provide inputs to
a systematic review (usually considered as forming a secondary study), espe-
cially the main forms of primary empirical study currently used in software

1An emergent process is one that is ‘in a state of continual process change, never arriving,
always in transition’ (Truex, Baskerville & Klein 1999).

2Those with a classical education will remember that this was the first observation in
Julius Caesar’s The Conquest of Gaul, and quite possibly, that is the only thing that many
of us remember from that work!

xix

xx Preface

engineering. Lastly, the third part provides a practical guide to conducting sys-
tematic reviews (the guidelines), drawing together accumulated experiences to
guide researchers and students when they are planning and conducting their
own studies. In support of these we also include an extensive glossary, and an
appendix that provides a catalogue of reviews that may be useful for practice
and teaching.

This raises the question of who we perceive to be the audience for this
book. We would like to think that almost anyone with any involvement in
software engineering (in the broadest sense) can find something of use within
it, given that our focus is upon seeking to identify what works in software
engineering, when it works, and why. For the researcher, it provides guidance
on how to make his or her own contribution to the corpus of knowledge, and
how to determine where the research efforts might be directed to best effect.
For practitioners, the book both explains the foundations of evidence-based
knowledge related to software engineering practices, and also identifies useful
examples of this. Finally, for teachers and students, it provides an introduction
to the nature and role of empirical software engineering and explains what
empirical studies can tell us about our subject.

So, how should the aspiring empiricist, or even the merely curious, ap-
proach all of this material, assuming that he or she might be reluctant to
attempt to devour each chapter in turn, in the way that they would read a
novel? We would suggest that the first few chapters provide a background to
EBSE that should be relevant to anyone. These chapters explain the basic
thinking about evidence-based studies and concepts, and show how they can
be applied within a software engineering context.

The researcher, including of course, all PhD students, should additionally
read the rest of Part I, so as to understand how to plan a secondary study.
Armed with this understanding they can then turn to Part III, which provides
essential practical guidance on the conduct of such a study, and which can then
lead them through the steps of putting their plan into action. And, should any
researcher determine that the ground is not yet solid enough for a secondary
study, they can turn to Part II to learn something about how to conduct and
report on a primary study in such a way as to make it a useful input to a future
secondary study. Indeed, even when undertaking a secondary study, Part II
should also be useful to the systematic reviewer when he or she is facing the
tasks of data extraction and synthesis, by explaining something of the context
behind the different forms of empirical study that provide the inputs to their
analysis.

Practitioners and others who want to know more about EBSE and the use
of secondary studies may find that Part I provides much of what they need in
order to understand (and use) the outcomes from secondary studies. Likewise,
teachers will, we hope, find much useful material in both Part I and Part II, in
the latter case because an understanding of secondary studies is best founded
upon a solid appreciation of the roles and forms of primary studies. Both

Preface xxi

of these groups should also find material that is of direct usefulness in the
catalogue of reviews provided in the appendix.

We are teachers as well as researchers, and should observe here that teach-
ing the practices used in performing secondary studies to advanced undergrad-
uates can be beneficial too. Students usually need to undertake a literature
review as part of their individual ‘capstone’ projects, and adopting a system-
atic and objective approach to this can add valuable rigour to the outcomes.

In writing this book, we have drawn upon our own experiences with con-
ducting systematic reviews and primary studies, and so our material and its
organisation build upon the lessons that we have learned through these. These
experiences have included both designing our own studies and reviewing the
designs of others, and with conducting both methodological studies as well as
ones that examine some established software engineering practices. Wherever
possible we have tried to illustrate our points by drawing upon these experi-
ences, as well as learning from those of many others, whose contribution to
EBSE and its development we gratefully acknowledge.

This leads to an issue that always presents something of a challenge for
evidence-based researchers such as ourselves, namely that of how to handle
citation. As evidence-based software engineering researchers we usually feel
it necessary to justify everything we possibly can by pointing to relevant
evidence—but equally as authors, we are aware that this risks present the
reader with a solid wall of reference material, which itself can form a distrac-
tion from gaining an understanding of key concepts. We have therefore tried
to find a balance, providing citations whenever we think that the reader may
possibly wish to confirm or clarify ideas for themselves. At the same time we
have tried to avoid a compulsive need for justification at every opportunity,
and especially when this is not really essential to enjoying the text—and of
course, a sense of interest and enjoyment is exactly what we sincerely hope
others will be able to experience from learning about EBSE and how the use
of systematic reviews can help to inform software engineering as a discipline.

Finally, as a related point, since all the chapters of Part I relate to different
aspects of secondary studies, we have provided a single set of suggestions for
further reading at the end of this part, in order to avoid undue repetition. In
Part II, where we address different forms of primary study in each chapter,
we have reverted to the more conventional approach of providing recommen-
dations for further reading at the end of each chapter.

This page intentionally left blankThis page intentionally left blank

Glossary

The vocabulary used in this book has been derived from a variety of sources
and disciplines, which is not unreasonable, as that is how the ideas of empirical
software engineering have themselves been derived. Our glossary does not
purport to be definitive, the aim is to convey the relevant concepts quickly, so
that when consulting it, the reader does not have to stray far from the flow
of what they are reading.

absolute (measurement scale): This is the most restrictive of the mea-
surement scales and simply uses counts of the elements in a set of entities.
The only operation that can be performed is a test for equality. (See also
measurement scales.)

accuracy: The accuracy of a measurement is an assessment of the degree
of conformity of a measured or calculated value to its actual or specified
value.

accuracy range: The accuracy range tells us how close a sample is to the
true population of interest, and is usually expressed as a plus/minus mar-
gin. (See also confidence interval.)

aggregation: The process of gathering together knowledge of a particular
type and form (for example, in a table).

attribute: An attribute is a measurable (or at least, identifiable) characteris-
tic of an entity, and as such provides a mapping between the abstract idea
of a property of the entity and something that we can actually measure in
some way.

between-subject: (Also known as between-groups or parallel experiment.)
In this form of study, participants are assigned to different treatment
(intervention) groups and each participant only receives one treatment.

bias: A tendency to produce results that depart systematically from the true
results.

blinding: A process of concealing some aspect of an experiment from re-
searchers and participants. In single-blind experiments, participants do
not know which treatment they have been assigned to. In double-blind

xxiii

xxiv Glossary

experiments, neither participants nor experimenters know which treat-
ment the participants have been assigned to. In software engineering we
sometimes use blind-marking, where the marker does not know which
treatment the participants adopted to arrive at their answers or responses.

case study: A form of primary study, which is an investigation of some phe-
nomenon in a real-life setting. Case studies are typically used for explana-
tory, exploratory and descriptive purposes. The main two forms are single-
case studies which may be appropriate when studying a representative
case or a special case, but will be less trustworthy than multiple-case
forms, where replication is employed to see how far different cases predict
the same outcomes. (Note that the term case study is sometimes used in
other disciplines to mean a narrative describing an example of interest.)
Case study research is covered in detail in Yin (2014) and for software
engineering, in Runeson, Höst, Rainer & Regnell (2012).

causality: The link between a stimulus and a response, in that one causes
the other to occur (also termed cause and effect). The notion of some form
of causality usually underpins hypotheses.

central tendency: The ‘typical value’ for a probability distribution. The
three most common measures used for this are the mean, the median and
the mode. (See the separate definitions of these.)

closed question: (As used in a questionnaire.) Such a question constrains
respondents by requiring them to select from a pre-determined list of
answers. This list may optionally include ‘other’ or ‘don’t know’ options.
(See also open question.)

conclusion validity: (See validity.)

confidence interval: This is an assessment of how sure we are that the re-
gion within the stated interval around our measured mean does contain
the true mean. This is expressed as a percentage, for example, a confidence
interval of 95% (which corresponds to two standard deviations either side
of the mean) means that there is a 95% likelihood that the true population
mean lies within two standard deviations of our sample mean. So, for this
value of the confidence interval, if we did many independent experiments
and calculated confidence intervals for each of these, the true mean of the
population being studied would be within the confidence limits in 95% of
these.

confounding factor: An undesirable element in an experimental study that
produces an effect that is indistinguishable from that of one of the treat-
ments.

construct validity: (See validity.)

Glossary xxv

content validity: (As used in a survey.) Concerned with whether the ques-
tions are a well-balanced sample for the domain we are addressing.

control group: For laboratory experiments we can divide the participants
into two groups—with the treatment group receiving the experimental
treatment being investigated, and the experimental context of the control
group involving no manipulation of the independent variable(s). It is then
possible to attribute any differences between the outcomes for the two
groups as arising from the treatment.

controlled experiment: (See laboratory experiment, field experiment and
quasi-experiment.)

convenience (sample): A form of non-probabilistic sampling in which par-
ticipants are selected simply because it is easy to get access to them or
they are willing to help. (See sampling technique.)

cross-over: (See within-subject.)

dependent variable: (Also termed response variable or outcome variable.)
This changes as a result of changes to the independent variable(s) and
is associated with an effect. The outcomes of a study are based upon
measurement of the dependent variable.

descriptive (survey): (See survey.)

direct measurement: Assignment of values to an attribute of an entity by
some form of counting.

divergence: A divergence occurs when a study is not performed as specified
in the experimental protocol, and all divergences should be both recorded
during the study and reported at the end.

double blinding: (See blinding.)

dry run: For an experiment, this involves applying the experimental treat-
ment to (usually) a single recipient, in order to test the experimental
procedures (which may include training, study tasks, data collection and
analysis). May sometimes be termed a pilot experiment. A similar activity
may be performed for a survey instrument.

effect size: The effect size provides a measure of the strength of a phe-
nomenon. There are many measures of effect size to cater to different
types of treatment outcome measures, including the standardized mean
differences, the log odds ratio, and the Pearson correlation coefficient.

empirical: Relying on observation and experiment rather than theory
(Collins English Dictionary).

xxvi Glossary

ethics: The study of standards of conduct and moral judgement (Collins En-
glish Dictionary). Codes of ethics for software engineering are published by
the British Computer Society and the ACM/IEEE. Any empirical study
that involves human participants should be vetted by the researcher’s lo-
cal ethics committee to ensure that it does not disadvantage any of the
participants in any way.

ethnography: A form of observational study that is purely observational,
and hence without any form of intervention or participation by the ob-
server.

evidence-based: An approach to empirical studies by which the researcher
seeks to identify and integrate the best available research evidence with
domain expertise in order to inform practice and policy-making. The nor-
mal mechanism for identifying and aggregating research evidence is the
systematic review.

exclusion criteria: After performing a search for papers (primary studies)
when performing a systematic review, the exclusion criteria are used to
help determine which ones will not be used in the study. (See also inclusion
criteria.)

experiment: A study in which an intervention (i.e. a treatment) is deliber-
ately controlled to observe its effects (Shadish, Cook & Campbell 2002).

external attribute: An external attribute is one that can be measured only
with respect to how an element relates to other elements (such as relia-
bility, productivity, etc.).

field experiment: An experiment or quasi-experiment performed in a nat-
ural setting. A field experiment usually has a more realistic setting than
a laboratory experiment, and so has greater external validity.

field study: A generic term for an empirical study undertaken in real-life
conditions.

hypothesis: A testable prediction of a cause–effect link. Associated with a
hypothesis is a null hypothesis which states that there are no underlying
trends or dependencies and that any differences observed are coincidental.
A statistical test is normally used to determine the probability that the
null hypothesis can or cannot be rejected.

inclusion criteria: After performing a search for papers (primary studies)
when performing a systematic review, the inclusion criteria are used to
help determine which ones contain relevant data and hence will be used
in the study. (See also exclusion criteria.)

independent variable: An independent variable (also known as a stimulus
variable or an input variable) is associated with cause and is changed as a

Glossary xxvii

result of the activities of the investigator and not of changes in any other
variables.

indirect measurement: Assigning values to an attribute of an entity by
measuring other attributes and using these with some form of ‘measure-
ment model’ to obtain a value for the attribute of interest.

input variable: (See independent variable.)

instrument: The ‘vehicle’ or mechanism used in an empirical study as the
means of data collection (for the example of a survey, the instrument
might be a questionnaire).

internal attribute: A term used in software metrics to refer to a measurable
attribute that can be extracted directly from a software document or
program without reference to other software project or process attributes.

interpretivism: In information systems research and computing in general,
interpretive research is ‘concerned with understanding the social context
of an information system: the social processes by which it is developed and
construed by people and through which it influences, and is influenced by,
its social setting’ (Oates 2006). (See also positivism.)

interval scale: An interval scale is one whereby we have a well-defined ratio
of intervals, but have no absolute zero point on the scale, so that we cannot
speak of something being ‘twice as large’. Operations on interval values
include testing for equivalence, greater and less than, and for a known
ratio. (See also measurement scales.)

interview: A mechanism used for collecting data from participants for sur-
veys and other forms of empirical study. The forms usually encountered
are structured, semi-structured and unstructured. The data collected are
primarily subjective in form.

laboratory experiment: Sometimes referred to as a controlled laboratory
experiment, this involves the identification of precise relationships be-
tween experimental variables by means of a study that takes place in
a controlled environment (the ‘laboratory’) involving human participants
and supported by quantitative techniques for data collection and analysis.

longitudinal: Refers to a form of study that involves repeated observations
of the same items over long periods of time.

mapping study: A form of secondary study intended to identify and classify
the set of publications on a topic. May be used to identify ‘evidence gaps’
where more primary studies are needed as well as ‘evidence clusters’ where
it may be practical to perform a systematic review.

xxviii Glossary

mean: Often referred to as the average, and one of the three most common
measures of the central tendency. Computed by adding the data values and
dividing by the number of elements in the dataset. It is only meaningful
for data forms that have genuinely numerical values (as opposed to codes).

measurement: The process by which numbers or symbols are assigned to
attributes of real-world entities using a well-defined set of rules. Measure-
ment may be direct (for example, length) or indirect, whereby we measure
one or more other attributes in order to obtain the value (such as mea-
suring the length of a column of mercury on a thermometer in order to
measure temperature).

measurement scales: The set of scales usually used by statisticians are ab-
solute, nominal, ordinal, interval and ratio. (See the separate definitions
of these for details). A good discussion of the scales and their applicability
is provided in Fenton & Pfleeger 1997.

median: (Also known as the 50th percentile.) One of the three most common
measures of the central tendency. This is the value that separates the
upper half of a set of values from the lower half, and is computed by
ordering the values and taking the middle one (or the average of two
middle ones if there is an even number of elements). Then half of the
elements have values above the median and half have values below.

meta-analysis: The process of statistical pooling of similar quantitative
studies.

mode: One of the three most common measures of the central tendency. This
is the value that occurs most frequently in a dataset.

nominal measurement scale: A nominal scale consists of a number of cat-
egories, with no sense of ordering. So the only operation that is meaningful
is a test for equality (or inequality). An example of a nominal scale might
be programming languages. (See also measurement scales.)

null hypothesis: (See hypothesis.)

objective: Objective measures are those that are independent of the ob-
server’s own views or opinions, and so are repeatable by others. Hence
they tend to be quantitative in form.

observational scale: An observational scale seeks simply to record the ac-
tions and outcomes of a study, usually in terms of a pre-defined set of
factors, and there is no attempt to use this to confirm or refute any form
of hypothesis. Observational scales are commonly used for diagnosis or
making comparison between subjects or between subjects and a bench-
mark. For research, they may be used to explore an issue and to determine
whether more rigorous forms might then be employed.

Glossary xxix

open question: (As used in a questionnaire.) An open question is one that
leaves the respondent free to provide whatever answer they wish, without
any constraint on the number of possible answers. See also closed question.

ordinal scale: An ordinal scale is one that ranks the elements, but without
there being any sense of a well-defined interval between the different ele-
ments. An example of such a scale might be cohesion, where we have the
idea that particular forms are better than others, but no measure of how
much. Operations are equality (inequality) and greater than/less than.
(See also measurement scales.)

outcome variable: (See dependent variable.)

participant: Someone who takes part (participates) in a study, sometimes
termed a subject. Participant is the better term in a software engineering
context because involvement nearly always has an active element, whereas
subject implies a passive recipient.

population: A group of individuals or items that share one or more charac-
teristics from which data can be extracted and analysed. (See sampling
frame.)

positivism: The philosophical paradigm that underlies what is usually
termed the ‘scientific method’. It assumes that the ‘world’ we are inves-
tigating is ordered and regular, rather than random, and that we can
investigate it in an objective manner. It therefore forms the basis for
hypothesis-driven research. For a fuller discussion, see (Oates 2006).

power: (See statistical power.)

precision: (See also recall.) In the context of information retrieval, the pre-
cision of the outcomes of a search is a measure of the proportion of stud-
ies found that are relevant. (Note that this makes no assumptions about
whether or not all possible relevant documents were found.) If the number
of relevant documents Nrel is defined as

Nrel = Nretr −Nrel

where Nretr is the number retrieved and Nrel is the number that is clas-
sified as not relevant, then

precision = Nrel

Nretr

Hence if we retrieve 20 documents, of which 8 are not relevant, the value
for precision will be (20 − 8)/20 or 0.6. So a value of 1.0 for precision
indicates that all of the documents found were relevant, but says nothing
about whether every relevant document was found.

xxx Glossary

primary study: This is an empirical study in which we directly make mea-
surements about the objects of interest, whether by surveys, experiments,
case studies, etc. (See also secondary study.)

proposition: (In the context of a case study.) This is a more detailed element
derived from a research question and performs a role broadly similar to
that of a hypothesis (and like a hypothesis can be derived from a theory).
Propositions usually form the basis of a case study and help to guide the
organisation of data collection (Yin 2014). However, an exploratory case
study would not be expected to involve the use of any propositions.

protocol: In the context of empirical studies, this term is used in two similar
(but different) ways.

• For empirical studies in general, the experimental protocol is a doc-
ument that describes the way that a study is to be performed. It
should be written before the study begins and evaluated and tested
through a ‘dry run’. During the actual study, any divergences from
the protocol should be recorded. It is this interpretation that is used
throughout this book.
• The practice of protocol analysis can be used for qualitative stud-

ies, forming a data analysis technique that is based upon the use of
think-aloud. In this, the protocol provides a categorisation of possi-
ble utterances that can be used to analyse the particular sequence of
words produced by a participant while performing a task, as well as
to strip out irrelevant material (Ericsson & Simon 1993).

qualitative: A measurement form that (typically) involves some form of hu-
man judgement or assessment in assigning values to an attribute, and
hence which may use an ordinal scale or a nominal scale. Qualitative data
is also referred to as subjective data, but such data can be quantitative,
such as responses to questions in survey instruments.

quantitative: A measurement form that involves assigning values to an at-
tribute using an interval scale or (more typically) a ratio scale. Quanti-
tative data is also referred to as objective data, however this is incorrect,
since is it possible to have quantitative subjective data.

quasi-experiment: An experiment in which units are not assigned at ran-
dom to the interventions (Shadish et al. 2002).

questionnaire: A data collection mechanism commonly used for surveys
(but also in other forms of empirical study). It involves participants in
answering a series of questions (which may be ‘open’ or ‘closed’).

randomised controlled trial (RCT): A form of large-scale controlled ex-
periments performed in the field using a random sample from the popu-
lation of interest and (ideally) double blinding. In clinical medicine this is

Glossary xxxi

regarded as the ‘gold standard’ in terms of experimental forms, but there
is little scope to perform RCTs in disciplines (such as software engineering)
where individual participant skill levels are involved in the treatment.

randomised experiment: An experiment in which units are assigned to
receive the treatment or alternative condition by a random process such
as a coin toss or a table of random numbers.

ratio scale: This is a scale with well-defined intervals and also an abso-
lute zero point. Operations include equality, greater than, less than, and
ratio—such as ‘twice the size’. (See also measurement scales.)

reactivity: This refers to a change in the participant’s behaviour arising from
being tested as part of the study, or from trying to help the experimenter
(hypothesis guessing). It may also arise because of the influence of the
experimenter (forming a source of bias).

recall: (See also precision.) In the context of information retrieval, the recall
of the outcomes of a search (also termed sensitivity) is a measure of the
proportion of all relevant studies found in the search. If the number of
relevant documents Nrel is defined as

Nrel = Nretr −Nrel

where Nretr is the number retrieved and Nrel is the number that is clas-
sified as not relevant, then

recall = Nrel

N tot
rel

whereN tot
rel is the total number of documents that are relevant (if you know

it). Hence if we retrieve 20 documents of which 8 are not relevant, and we
know that there are no other relevant ones, then the value for recall will
be (20 − 8)/12 or 1.0. So while a value of 1.0 for recall indicates that all
relevant documents were found, it does not indicate how many irrelevant
ones were also found.

research question: The research question provides the rationale behind any
primary or secondary empirical study, and states in broad terms the issue
that the study is intended to investigate. For experiments this will be the
basis of the hypothesis used, but the idea is equally valid when applied to
a more observational form of study.

response rate: For a survey, the response rate is the proportion of surveys
completed and returned, compared to those issued.

response variable: An alternative term for the dependent variable.

xxxii Glossary

sample: This is the set (usually) of people who act as participants in a study
(for example, a survey or a controlled laboratory experiment). Equally,
it can be a sample set of documents or other entities as appropriate. An
important aspect of a sample is the extent to which this is representative
of the larger population of interest.

sample size: This is the size of the sample needed to achieve a particular
confidence interval (with a 95% confidence interval as a common goal).
As a rule of thumb, if any statistical analysis is to be employed, even at
the level of calculating means and averages, a sample size of at least 30 is
required.

sampling frame: This is the set of entities that could be included in a survey,
for example, people who have been on a particular training course, or who
live in a particular place.

sampling technique: This is the strategy used to select a sample from a
sampling frame and takes two main forms:

non-probabilistic sampling Employed where it is impractical or un-
necessary to have a representative sample. Includes purposive, snow-
ball, self-selection and convenience sampling.

probabilistic sampling An approach that aims to obtain a sample that
forms a representative cross-section of the sampling frame. Includes
random, systematic, stratified and cluster sampling.

secondary study: A secondary study does not generate any data from direct
measurements, instead it analyses a set of primary studies and usually
seeks to aggregate the results from these in order to provide stronger
forms of evidence about a particular phenomenon.

statistical power: The ability of a statistical test to reveal a true pattern in
the data (Wohlin, Runeson, Höst, Ohlsson, Regnell & Wesslen 2012). If
the power is low, then there is a high risk of drawing an erroneous conclu-
sion. For a detailed discussion of statistical power in software engineering
studies, see (Dybå, Kampenes & Sjøberg 2006).

stimulus variable: (See independent variable.)

subjective: Subjective measures are those that depend upon a value judge-
ment made by the observer, such as a ranking (‘A is more significant than
B). May be expressed as a qualitative value (‘better’) or in a quantitative
form by using an ordinal scale.

survey: A comprehensive research method for collecting information to de-
scribe, compare or explain knowledge, attitudes and behaviour. The pur-
pose of a survey is to collect information from a large group of people
in a standard and systematic manner and then to seek patterns in the

Glossary xxxiii

resulting data that can be generalised to the wider population. Surveys
can be broadly classified as being

• experimental when used to assess the impact of some intervention
• descriptive if used to enable assertions to be made about some phe-
nomenon of interest and the distribution of particular attributes—
where the concern is not why the distribution exists, but what form
it has

synthesis: The process of systematically combining different sources of data
(evidence) in order to create new knowledge.

systematic (literature) review: This is a particular form of secondary
study and aims to provide an objective and unbiased approach to finding
relevant primary studies, and for extracting, aggregating and synthesising
the data from these.

tertiary study: This is a secondary study that uses the outputs of secondary
studies as its inputs, perhaps by examining the secondary studies per-
formed in a complete discipline or a part of it.

test–retest: Conventionally, this forms a measure of the reliability and stabil-
ity of a survey instrument. Respondents are ‘tested’ at two well-separated
points in time, and the responses are compared for consistency by means
of a correlation test, with correlation values of 0.7–0.8 usually being con-
sidered satisfactory. Use of test–retest is only appropriate in situations
where ‘learning’ effects are unlikely to occur within the intervening time
period. In the context where a single researcher is performing a systematic
review, the use of test–retest can be interpreted as being for the researcher
to perform such tasks as selection and data extraction twice, with these
being separated by a suitable time interval, and to check for consistency
between the two sets of outcomes. Where possible, these tasks should be
performed using different orderings of the data items, in order to reduce
possible bias.

treatment: This is the ‘intervention’ element of an experiment (the term
is really more appropriate to randomised controlled trials where the par-
ticipants are recipients). In software engineering it may take the form of
a task (or tasks) that participants are asked to perform such as writing
code, testing code, reading documents.

triangulation: Refers to the use of multiple elements that reinforce one an-
other in terms of providing evidence, where no single source would be
adequately convincing. The ‘sources’ may be different forms of data, or
the outcomes from different research methods.

xxxiv Glossary

validity: This is concerned with the degree to which we can ‘trust’ the out-
comes of an empirical study, usually assessed in terms of four commonly
encountered forms of threat to validity. The following definitions are based
upon those provided in Shadish et al. (2002).

• internal: Relating to inferences that the observed relationship be-
tween treatment and outcome reflects a cause–effect relationship.
• external: Relating to whether a cause–effect relationship holds over
other conditions, including persons, settings, treatment variables and
measurement variables.
• construct: Relating to the way in which concepts are operationalised
as experimental measures.
• conclusion: Relating inferences about the relationship between treat-
ment and outcome variables.

within-subject: Refers to one of the possible design forms for a quasi-
experiment. In this form, participants receive a number of different treat-
ments, with the order in which these are received being randomised. A
commonly encountered design (two treatments) is the A/B–B/A crossover
whereby some participants receive treatment A and then treatment B,
while others receive them in reverse order. A weaker version is a before–
after design, whereby all participants perform a task, are then given some
training (the treatment), and are then asked to undertake another task.
(Also known as a sequential or repeated-measures experiment.)

Part I

Evidence-Based Practices
in Software Engineering

1

This page intentionally left blankThis page intentionally left blank

Chapter 1
The Evidence-Based Paradigm

1.1 What do we mean by evidence? . 4
1.2 Emergence of the evidence-based movement . 7
1.3 The systematic review . 10
1.4 Some limitations of an evidence-based view of the world 14

Since this is a book that is about the use of evidence-based research practices,
we feel that it is only appropriate to begin it by considering what is meant
by evidence in the general sense. However, because this is also a book that
describes how we acquire evidence about software engineering practices, we
then need to consider some of the ways in which ideas about evidence are
interpreted within the rather narrower confines of science and technology.

Evidence is often associated with knowledge. This is because we would
usually like to think that our knowledge about the world around us is based
upon some form of evidence, and not simply upon wishful thinking. If we go
to catch a train, it might be useful to have evidence in the form of a timetable
that shows the intention of the railway company to provide a train at the given
time that will take us to our destination. Or, rather differently, if we think
that some factor might have caused a ‘population drift’ away from the place
where we live, we might look at past census data to see if such a drift really has
occurred, and also whether some groups have been affected more than others.
Of course the link between evidence and knowledge is rarely well-defined, as
in our second example, where any changes in population we observe might
arise from many different factors. Indeed, it is not unusual, in the wider world
at least, for the same evidence to be interpreted differently (just think about
global warming).

In this chapter we examine what is meant by evidence and knowledge, and
the processes by which we interpret the first to add to or create the second. We
also consider some limitations of these processes, both those that are intrinsic,
such as those that arise from the nature of the things being studied, and of data
itself, and also those that arise from the inevitable imperfections of research
practice. In doing so, we prepare the ground for Chapter 2, where we look
at how the discipline of software engineering interprets these concepts, and
review the characteristics of software engineering that influence the nature of
our evidence—and hence the nature of our knowledge too.

3

4 Evidence-Based Software Engineering and Systematic Reviews

1.1 What do we mean by evidence?
As noted above, evidence can be considered as being something that un-

derpins knowledge, and we usually expect that knowledge will be derived from
evidence through some process of interpretation. The nature of that interpre-
tation can take many forms. For example, it might draw upon other forms
of knowledge, as when the fictional detective Sherlock Holmes draws upon
his knowledge about different varieties of tobacco ash, or about the types of
earth to be found in different parts of London, in order to turn a clue into
evidence. Interpretation might also be based upon mathematical or statistical
procedures, such as when a scientist gathers together different forms of ex-
perimental and observational data—for example, using past medical records
to demonstrate that smoking is a cause of lung cancer. Yet another, less sci-
entific, illustration of the concept is when the jury at a criminal trial has to
consider the evidence of a set of witnesses in order to derive reasonable knowl-
edge about what actually happened. Clearly these differ in terms of when they
arise, the form of knowledge derived, and the rigour of the process used for
its derivation (and hence the quality of the resulting knowledge). What they
do have in common though, is that our confidence about the knowledge will
be increased if there is more than one source (and possibly form) of evidence.
For the fictional detective, this may be multiple clues; for the clinical analy-
sis it might involve using records made in many places and on patients who
have different medical histories; for the jury, it may be that there are several
independent witnesses whose statements corroborate each other. This process
of triangulation between sources (a term derived from navigation techniques)
is also an important means of testing the validity of the knowledge acquired.

Science in its many forms makes extensive use of these concepts, although
not always expressed using this vocabulary. Over the years, particular scien-
tific disciplines have evolved their own accepted set of empirical practices that
are intended to give confidence in the validity and quality of the knowledge
created from the forms of evidence considered to be appropriate to that dis-
cipline, and also to assess how strong that confidence is. Since this book is
extensively concerned with different forms of empirical study, this is a good
point to note that such studies are ones that are based upon observation and
measurement. Indeed, this is a reminder that, strictly speaking, scientific pro-
cesses never ‘prove’ anything (mathematics apart), they only ‘demonstrate’
that some relationship exists between two or more factors of interest. Even
physicists, who are generally in the best position to isolate factors, and to
exclude the effect of the observation process, are confronted with this issue.
The charge on an electron, or the universal gravitational constant, may well
be known to a very high level of precision, and with high confidence, but even
so, some residual uncertainty always remains. For disciplines where it can be
harder to separate out the key experimental characteristics and where (hor-

The Evidence-Based Paradigm 5

rors), humans are involved in roles other than as observers, so the element of
variability will inevitably increase. This is of course the situation that occurs
for many software engineering research studies, and we will look at some of
the consequences in the next chapter.

When faced with evidence for which the values and quality may vary,
the approach generally adopted is to use repeated observations, as indicated
above, and even better, to gather observations made by different people in
different locations. By pooling these, it becomes easier to identify where we
can recognise repeated occurrences of patterns in the evidence that can be
used to provide knowledge. This repetition also helps to give us confidence
that we are not just seeing something that has happened by chance.

The assumption that it is meaningful to aggregate the observations from
different studies and to seek patterns in these is termed a positivist philosophy.
Positivism is the philosophy that underpins the ‘scientific method’ in general,
as well as almost all of the different forms of empirical study that are described
in this book.

FIGURE 1.1: A simple model of knowledge acquisition.

Figure 1.1 shows a simple model that describes how these concepts relate
to one another in a rather general sense. The top row represents how, having
noticed the possible presence of some effect, we might begin gathering ob-
servations to create a rather informal model to describe some phenomenon.
This model might well identify more than one possible cause. If this looks
promising, then we might formulate a hypothesis (along the lines that “fac-
tor X causes outcome Y to occur”) and perform some more systematically

6 Evidence-Based Software Engineering and Systematic Reviews

organised studies to explore and test this model, during which process, we
may discard or revise our ideas about some of the possible causes. Finally, to
confirm that our experimental findings are reliable, we encourage others to
repeat them, so that our knowledge is now accumulated from many sources
and gathered together by a process that we refer to as synthesis, so that the
risk of bias is reduced. Many well-known scientific discoveries have followed
this path in some way, such as the discovery of X-rays and that of penicillin.

FIGURE 1.2: Does the bush keep the flies off?

Since this is rather abstract, let’s consider a simple (slightly contrived but
not unrealistic) example. This is illustrated (very crudely) in Figure 1.2. If
we imagine that, while sitting out in a garden one day in order to enjoy the
summer sunshine, we notice that we are far less bothered by flies when sitting
near a particular bush, then this provides an example of informal observation.
If we get enough good weather (we did say this example was contrived), we
might try repeating the observation, perhaps by sitting near other bushes of
that variety. If we continue to notice the effect, then this now constitutes an
informal model. Encouraged by visions of the royalties that could arise from
discovering a natural insecticide, we might then go on to pursue this rather
more systematically, and of course, in so doing we will probably find all sorts
of other possible explanations, or indeed, that it is not really an effect at all.
But of course, we might also just end up with some systematically gathered
knowledge about the insect-repellent nature of this plant (or perhaps, of this
plant in conjunction with other factors).

This book is mainly concerned with the bottom two layers of the model
shown in Figure 1.1. In Part I and Part III we are concerned with how knowl-
edge from different sources can be ‘pooled’, while in Part II we provide a
subject-specific interpretation of what is meant by the activities in the middle

The Evidence-Based Paradigm 7

layer. In particular, we will be looking at ways of gathering evidence that go
beyond just the use of formal experiments.

In the next section we examine how the concepts of evidence-based knowl-
edge and of evidence-informed decision-making, have been interpreted in the
20th and 21st centuries. In particular, we will discuss the procedures that have
been adopted to produce evidence that is of the best possible quality.

1.2 Emergence of the evidence-based movement
It is difficult to discuss the idea of evidence-based thinking without first

providing a description of how it emerged in clinical medicine. And in turn, it
is difficult to categorise this as other than a movement that has influenced the
practice and teaching of medicine (and beyond). At the heart of this lies the
Cochrane Collaboration1, named after one of the major figures in its develop-
ment. This is a not-for-profit body that provides both independent guardian-
ship of evidence-based practices for clinical medicine, and also custodianship
of the resulting knowledge.

So, who was Cochrane? Well, Archie Cochrane was a leading clinician, who
became increasingly concerned throughout his career about how to know what
was the best treatment for his patients. His resulting challenge to the medical
profession was to find the most effective and fairest way to evaluate available
medical evidence, and he was particularly keen to put value upon evidence that
was obtained from randomised controlled trials (RCTs). Cochrane’s highly
influential 1971 monograph “Effectiveness and Efficiency: Random Reflections
on Health Services” (Cochrane 1971) particularly championed the extensive
use of randomisation in RCTs, in order to minimise the influence of different
sources of potential bias (such as trial design, experimenter conduct, allocation
of subjects to groups, etc.). Indeed, he is quoted as saying that “you should
randomise until it hurts”, in order to emphasise the critical importance of
conducting fair and unbiased trials.

Cochrane also realised that even when performed well, individual RCTs
could not be relied upon to provide unequivocal results, and indeed, that where
RCTs on a given topic were conducted by different groups and in different
places, they might well produce apparently conflicting outcomes. From this,
he concluded in 1979 that “it is surely a great criticism of our profession
that we have not organised a critical summary by speciality or subspeciality,
adapted periodically, of all relevant randomised controlled trials”.

Conceptually, this statement was at complete variance with accepted sci-
entific practice (not just that in clinical medicine). In particular, the role of
the review paper has long been well established across much of academia, with

1www.cochrane.org

www.cochrane.org

8 Evidence-Based Software Engineering and Systematic Reviews

specialist journals dedicated to publishing reviews, and with an invitation
to write a review on a given topic often being regarded as a prestigious ac-
knowledgement of the author’s academic standing. However, a problem with
this practice was (and still is) that two people who are both experts on a
given topic might well write reviews that draw contrasting conclusions—and
with each of them selecting a quite different set of sources in support of their
conclusion.

While this does not mean that an expert review is necessarily of little
value, it does raise the question of how far the reviewer’s own opinions may
have influenced the conclusions. In particular, where the subject-matter of
the review requires interpretation of empirical data, then how this is selected
is obviously a critical parameter. A widely-quoted example of this is the re-
view by Linus Pauling in his 1970 publication on the benefits of Vitamin C
for combatting the common cold. His ‘cherry-picking’ of those studies that
supported his theory, and dismissal of those that did not as being flawed,
produced what is now regarded as an invalid conclusion. (This is discussed
in rather more depth in Ben Goldacre’s book, Bad Science (2009), although
Goldacre does observe that in fairness, cherry-picking of studies was the norm
for such reviews at the time when Pauling was writing—and he also observes
that this remains the approach that is still apt to be favoured by the purveyors
of ‘alternative’ therapies.)

Finding the most relevant sources of data is, however, only one element in
producing reviews that are objective and unbiased. The process by which the
outcomes (findings) from those studies are synthesised is also a key parameter
to be considered. Ideas about synthesis have quite deep roots—in their book
on literature reviews, Booth, Papaioannou and Sutton (2012) trace many of
the ideas back to the work of the surgeon James Lind and his studies of how
to treat scurvy on ships—including his recognition of the need to discard
‘weaker evidence’, and to do so by using an objective procedure. However, the
widespread synthesis of data from RCTs only really became commonplace in
the 1970s, when the term meta-analysis also came into common use2.

Meta-analysis is a statistical procedure used to pool the results from a
number of studies, usually RCTs or controlled experiments (we discuss this
later in Chapters 9–11). By identifying where individual studies show consis-
tent outcomes, a meta-analysis can provide much greater statistical authority
for its outcomes than is possible for individual studies.

Meta-analysis provided one of the key elements in persuading the medical
profession to pay attention. In particular, what Goldacre describes as a “land-
mark meta-analysis” looking at the effectiveness of an intervention given to
mothers-to-be who risked premature birth, attracted serious attention. Seven

2One of us (DB) can claim to have had relatively early experience of the benefits of
synthesis, when analysing scattering data in the field of elementary particle physics (Budgen
1971). Some experiments had suggested the possible presence of a very short-lived Σ particle,
but this was conclusively rejected by the analysis based upon the composite dataset from
multiple experiments.

The Evidence-Based Paradigm 9

trials of this treatment were conducted between 1972 and 1981, two finding
positive effects, while the other five were inconclusive. However, in 1989 (a
decade later) a meta-analysis that pooled the data from these trials demon-
strated very strong evidence in favour of the treatment, and it is a “Forest
Plot” of these results that now forms a central part of the logo of the Cochrane
Collaboration, as shown in Figure 1.33. With analyses such as this, supported
by the strong advocacy of evidence-based decision making from David Sackett
and his colleagues (Sackett, Straus, Richardson, Rosenberg & Haynes 2000),
clinicians became more widely persuaded that such pooling of data could
provide significant benefits. And linking all this back with the ideas about
evidence, Sackett et al. (2000) defined Evidence-Based Medicine (EBM) as
“the conscientious, explicit and judicious use of the current best evidence in
making decisions about the care of individual patients”.

FIGURE 1.3: The logo of the Cochrane Collaboration featuring a forest plot
(reproduced by permission of the Cochrane Collaboration).

The concept has subsequently been taken up widely within healthcare,
although, as we note in Section 1.4, not always without some opposing argu-
ments being raised. It has also been adopted in other disciplines where empir-
ical data is valued and important, with education providing a good example
of a discipline where the outcomes have been used to help determine policy as
well as practice. A mirror organisation to that of the Cochrane Collaboration is
the Campbell Collaboration4, that “produces systematic reviews of the effects
of social interventions in Crime & Justice, Education, International Develop-
ment, and Social Welfare”. And of course, in the following chapters, we will
explore how evidence-based ideas have been adopted in software engineering.

So, having identified two key parameters for producing sound evidence
from an objective review process as being:

• objective selection of relevant studies

• systematic synthesis of the outcomes from those studies

3We provide a fuller explanation of the form of Forest Plots in Chapter 11. The horizontal
bars represent the results from individual trials, with any that are to the left of the centre
line favouring the experimental treatment, although only being statistically significant if
they do not touch the line. The results of the meta-analysis is shown by the diamond at the
bottom.

4www.campbellcollaboration.org

www.campbellcollaboration.org

10 Evidence-Based Software Engineering and Systematic Reviews

we can now move on to discuss the way that this is commonly organised
through the procedures of a systematic review.

1.3 The systematic review
At this point, we need to clarify a point about the terminology we use

in this book. What this section describes is something that is commonly de-
scribed as a process of systematic review (SR). However, in software engi-
neering, a commonly-adopted convention has been to use the term systematic
literature review (SLR). This was because when secondary studies were first
introduced into software engineering, there was concern that they would be
confused with code inspection practices (also termed reviews) and so the use
of ‘literature’ was inserted to emphasise that it was published studies that
were being reviewed, not code.

Now that secondary studies as a key element of evidence-based software
engineering (EBSE) are part of the empirical software engineer’s toolbox, the
likelihood of confusion seems much less. So we feel that it is more appropriate
to use the more conventional term ‘systematic review’ throughout this book.
However, we do mention it here just to emphasise that when reading software
engineering papers, including many of our own, a systematic literature review
is the same thing as a systematic review.

The goal of a systematic review is to search for and identify all relevant
material related to a given topic (with the nature of this material being de-
termined by the underlying question and the nature of the stakeholders who
have an interest in it). Knowledge about that topic is then used to assist with
drawing together the material in order to produce a collective result. The aim
is for the procedures followed in performing the review to be as objective,
analytical, and repeatable as possible—and that this process should, in the
ideal, be such that if the review were repeated by others, it would select the
same input studies and come to the same conclusions. We often refer to a sys-
tematic review as being a secondary study, because it generates its outcomes
by aggregating the material from a set of primary studies.

Not surprisingly, conducting such a review is quite a large task, not least
because the ‘contextual knowledge’ required means that much of it needs to
be done by people with some knowledge of the topic being reviewed. We will
encounter a number of factors that limit the extent to which we can meet
these goals for a review as we progress through the rest of this part of the
book. However, the procedures followed in a systematic review are intended to
minimise the effects of these factors and so even when we don’t quite meet the
aim as fully as we would like, the result should still be a good quality review.
(This is not to say that expert reviews are not necessarily of good quality, but

The Evidence-Based Paradigm 11

they are apt to lack the means of demonstrating that this is so, in contrast to
a systematic review.)

So, a key characteristic of a systematic review is that it is just that, sys-
tematic, and that it is conducted by following a set of well-defined procedures.
These are usually specified as part of the Review Protocol, which we will be
discussing in more detail later, in Chapter 4. For this section, we are concerned
simply with identifying what it is that these procedures need to address. Fig-
ure 1.4 illustrates how the main elements of a systematic review are related
once a sensible question has been chosen. Each of the ovals represents one of
the processes that needs to be performed by following a pre-defined procedure.
Each process also involves making a number of decisions, as outlined below.

FIGURE 1.4: The systematic review process.

What searching strategy will be used? An important element of the re-
view is to make clear where we will search, and how we will search for
appropriate review material. In addition, we need to ensure that we have
included all the different keywords and concepts that might be relevant.
We address this in detail in Chapter 5.

12 Evidence-Based Software Engineering and Systematic Reviews

What material is eligible for inclusion? This relates to both the differ-
ent forms in which material (usually in the form of the outcomes of
empirical studies) might occur, and also any characteristics that might
affect its quality. Indeed, we often have more detailed specifications for
what is to be excluded than for what is to be included, since we want
to ensure that we don’t miss anything that could be in a form that we
didn’t anticipate, or expect to encounter. Again, these issues will be
considered more fully in Chapters 6 and 7.

How is the material to be synthesised? This addresses the analytical
procedures that are to be followed. These may be fairly simple, as we
explain below, or quite complex. Chapters 9, 10 and 11 consider the
relevant issues for a software engineering context.

How to interpret the outcomes of the review? This is not necessarily
a single process, since the outcomes might need to be interpreted differ-
ently when used in specific contexts. The processes involved are termed
Knowledge Translation (KT), and are still the topic of extensive discus-
sion in domains where evidence-based practices are much more estab-
lished than they are in software engineering. However, in Chapter 14, we
do examine how KT can be applied in a software engineering context.

The point to emphasise though, is that all of these activities involve procedures
that need to be applied and interpreted by human beings, with many of them
also needing knowledge about the topic of the review. While tools can help
with managing the process, the individual decisions still need to be made by
a human analyst. In particular, because there will almost certainly be a wide
variation of potential inputs to a review, it is possible that some of these will
be interpreted differently by different people. To minimise the effects of this,
systematic reviews are often conducted by two (or even more) people, who
compare results at each stage, and then seek to resolve any differences (again
in a systematic manner).

As indicated, because systematic reviews have different forms, the process
of synthesis can also take many forms. (A very good categorisation of the wide
range of forms of synthesis used across those disciplines that employ systematic
reviews is provided in the book by Booth et al. (2012).) At its most simple,
synthesis can consist mainly of classification of the material found, identifying
where there are groups of studies addressing a particular issue, or equally,
where there is a lack of studies. We term this a mapping study, and software
engineering research has made quite extensive use of this form. A value of a
mapping study lies partly in identifying where there is scope to perform a fuller
review (the groups of related studies), and also where there is a need for more
primary studies (the gaps). At the other extreme, where the material consists
mostly of RCTs, or good quality experiments, synthesis may be organised in
the form of a statistical meta-analysis. Meta-analyses do exist in the software
engineering literature, but only in small numbers. Most software engineering

The Evidence-Based Paradigm 13

studies use less rigorous forms (and sometimes forms that are less rigorous
than could actually be used), and again, we will examine this in much more
detail in Chapters 9, 10 and 11.

FIGURE 1.5: The context for a systematic review.

Figure 1.5 illustrates the wider context for a systematic review. So far we
have mainly described the things that affect a review, but as we can see, the
review itself also has some quite important roles. One of these is in provid-
ing a context for primary studies. Until the adoption of the evidence-based
paradigm, these were mostly viewed as essentially being isolated studies that
formed ‘islands’ of knowledge. When primary studies are viewed in terms of
their role as inputs to a systematic review, there are two new factors that may
influence the way that they are organised. One is the choice of topic—perhaps
because a review has identified the need for further studies. The other is the
way that primary studies report their results—one of the frequent complaints
from analysts who conduct a systematic review is that important information
is apt to be omitted from papers and reports. So designing and reporting of
primary studies now needs to be more influenced by this role as an input to a
secondary study than was the case in the past. Reviews also influence policies,
standards and decisions about practice—and while this is still less likely to
be the case in software engineering than in disciplines such as education and
clinical medicine, consideration of these aspects should increasingly be a goal
when performing systematic reviews.

The systematic review is the main instrument used for evidence-based
studies and so will be discussed in depth through most of this book, and
certainly in the rest of Part I. So, to conclude this introductory chapter, we

14 Evidence-Based Software Engineering and Systematic Reviews

need to consider some of its limitations too. This is because an appreciation of
these is really needed when designing and conducting reviews as well as when
seeking to understand what the outcomes of a review might mean to us.

1.4 Some limitations of an evidence-based view of the
world

Not surprisingly, there has been a growing tendency for researchers, at
least, to consider that knowledge that has been derived from an evidence-
based process must inevitably be better than ‘expert’ knowledge that has
been derived, albeit less systematically, from experience. And as the preceding
sections indicate, we would to some degree support such a view, although
replacing “inevitably” with the caveat “depending upon circumstances”.

In clinical medicine and in wider healthcare, it has been argued that
evidence-based research practices have become the “new orthodoxy”, and that
there are dangers in blind acceptance of the outcomes from this. Some of the
arguments for this position are set out in a paper by Hammersley (2005). In
particular, he questions whether professional practice can be wholly based on
research evidence, as opposed to informed by it, noting that research findings
do themselves rely upon judgement and interpretation. While many of the ar-
guments focus upon how to interpret outcomes for practice, rather than upon
the research method itself, the appropriateness of this form of research for
specific topics does need to be considered. Even for systematic reviews, the
two well known adages of “to a person with a hammer everything looks like a
nail” and “garbage in–garbage out” may sometimes be apt.

So here we suggest some factors that need to be kept in mind when reading
the following chapters. They are in every sense ‘limitations’, in that they do
not necessarily invalidate specific evidence-based studies, but they might well
limit the extent to which we can place full confidence in the outcomes of a
systematic review.

A systematic review is conducted by people. There is inevitably an el-
ement of interpretation in the main activities of a systematic review: per-
forming searches; deciding about inclusion and exclusion; and making
various decisions during synthesis. All of these contain some potential
for introducing bias into the outcomes. The practice of using more than
one analyst can help with constraining the degree of variability that
might arise when performing these tasks, but even then, two analysts
who have the same sort of background might arrive at a set of joint de-
cisions about which primary studies to include that would be different
from those that would be made by two analysts who come from different

The Evidence-Based Paradigm 15

backgrounds. Both the selection of studies, and also the decisions made
in synthesis, can affect the outcomes of a review.

The outcomes depend upon the primary studies. The quality of the
primary studies that underpin a systematic review can vary quite con-
siderably. A review based upon a few relatively weak primary studies is
hardly likely to be definitive.

Not all topics lend themselves well to empirical studies. To be more
specific, the type of empirical study that is appropriate to some topics
may well offer poorer scope for using strong forms of synthesis than occur
(say) when using randomised controlled experiments. We will examine
this more fully in Part II.

All of these are factors that we also need to consider when planning to perform
a systematic review. And in the same way that a report of a primary study will
usually make an assessment of the limitations upon its conclusions imposed
by the relevant “threats to validity” (we discuss this concept further later),
so a report of the outcomes from a systematic review needs to do the same.
Such an assessment can then help the reader to determine how fully they can
depend upon the outcomes and also how limited or otherwise the scope of
these is likely to be.

In the next chapter we go on to look at the way that systematic reviews
are performed in software engineering, and so we also look at some of these
issues in rather more detail and within a computing context.

This page intentionally left blankThis page intentionally left blank

Chapter 2
Evidence-Based Software
Engineering (EBSE)

2.1 Empirical knowledge before EBSE . 17
2.2 From opinion to evidence . 19
2.3 Organising evidence-based software engineering practices 23
2.4 Software engineering characteristics . 25
2.5 Limitations of evidence-based practices in software engineering 27

2.5.1 Constraints from software engineering 27
2.5.2 Threats to validity . 28

Although this chapter is mainly about how evidence-based ideas can be used
in software engineering, we actually begin by examining some prior activities
that helped pave the way for an acceptance of evidence-based thinking. To
do so, we first examine some of the ‘challenges’ that empirical software en-
gineer researchers were already posing, as well as some of the other factors
that helped to make it the right time to introduce evidence-based thinking to
software engineering in the years after 2004. We then describe a few exam-
ples of how evidence-based research has contradicted some widely-held beliefs
about software engineering practices, after which we discuss what the concept
of EBSE implies for software engineering and what the use of a systematic
review might expect to achieve within a software engineering context. Finally,
we examine some limitations that apply to evidence-based practices as used
in software engineering research.

2.1 Empirical knowledge before EBSE
From around the mid-1990s there was a perceptible growth in the use

of empirical studies to assess software engineering practices. In particular,
some of these studies looked more widely at what was happening in software
engineering research, and so we first look briefly at three such studies that
have been quite widely cited, and at what they found.

17

18 Evidence-Based Software Engineering and Systematic Reviews

• Zelkowitz & Wallace (1998) developed a classification of empirical val-
idation forms, and to test this, they used it to categorise 612 papers
published in the three years: 1985, 1990 and 1995. These were taken
from a major conference, ICSE (International Conference on Software
Engineering); an archival journal, (IEEE Transactions on Software En-
gineering); and a ‘current practices’ magazine (IEEE Software). After
removing 50 papers because they addressed topics for which a valida-
tion was not appropriate, they then classified the remaining 562. They
observed that about a third of the papers had no validation at all (al-
though the percentage of these dropped from 36% in 1985 to 19% in
1995), and that a third relied upon informal ‘assertions’ (in effect, “we
tried it out on a sample and it worked”). They also noted that “experi-
mentation terminology is sloppy”.

• At around the same time Walter Tichy raised the question “should com-
puter scientists experiment more?” (Tichy 1998), and addressed many of
the fallacies that were apt to be raised in opposition whenever the use
of empirical studies was advocated. He particularly argued that com-
puting in general was sufficiently well established to justify wider use
of empirical validation than was being observed, and also observed that
“experimentation can build a reliable base of knowledge, and thus reduce
uncertainty about which theories, methods and tools are adequate”.

• Somewhat later, Glass, Vessey and Ramesh conducted a series of clas-
sification studies of the ways that research was being conducted in the
three major branches of computing: computer science, information sys-
tems and software engineering. These were based on papers published
in a range of journals over the period 1995–1999. Their consolidated
overview was published as (Glass, Ramesh & Vessey 2004), and showed
that each branch had quite distinct characteristics. Once again though,
based upon a sample of 369 papers, software engineering research meth-
ods were predominantly non-empirical, with 44% of the papers being
classified as being “(non-mathematical) concept analysis” and 17% be-
ing “concept implementation” (loosely interpreted as “we built it and it
worked”).

So, when the idea of employing the evidence-based paradigm in software
engineering research was proposed in 2004 by Kitchenham, Dybå & Jørgensen,
this created considerable interest among researchers. We can suggest several
reasons why this was well-timed.
• Firstly, there was the influence of the concerns raised in the studies of
practice described above. These played an important role in widening
awareness of the poor evidential basis available for software engineering
techniques and practices.

• Secondly, empirical software engineering had also been making an in-
creasing impact upon the academic software engineering community over

Evidence-Based Software Engineering (EBSE) 19

the previous decade or so. How can we tell this was so? Two good indi-
cators are:

– The establishment of a specialist journal (Empirical Software Engi-
neering) in 1996, together with the publication of increasing num-
bers of empirical papers in many other journals.

– The establishment of two successful conference series. The first of
these was the IEEE-sponsored ISESE (International Symposium
on Empirical Software Engineering)—which began in 2002, and in
2006 merged with the Metrics conference to form the ESEM (Em-
pirical Software Engineering & Measurement) series. The second
was the smaller and more informal EASE (Evaluation & Assess-
ment in Software Engineering) series of conferences, which began
in 1996.

Taken together, these helped to promote an interest in, and better un-
derstanding of, empirical studies among researchers, as well as providing
a useful corpus of material for secondary studies.

• A further factor in favour of the acceptance of the concepts of EBSE has
been the growing recognition that the results from individual empirical
studies are often inconclusive, and that such studies are difficult to repli-
cate successfully (Sjøberg, Hannay, Hansen, Kampenes, Karahasanović,
Liborg & Rekdal 2005, Juristo & Vegas 2011). Since software engineering
researchers are partly motivated by the goal of providing input to both
software engineering practitioners and also policy-makers, an approach
that offers the potential for creating more convincing demonstrations to
these audiences is likely to be favourably received.

The rest of this chapter examines some of the ways in which evidence-
based thinking has begun to influence software engineering research. We be-
gin by looking at a number of examples of where evidence-based studies have
contradicted ‘expert’ opinion and established practice to explain some of the
challenges this approach has created. We then look at how EBSE is organ-
ised; consider some aspects of software and software engineering practices that
influence its effectiveness; and finally look at some examples of how evidence-
based studies can provide guidelines for using some specific software engineer-
ing practices.

2.2 From opinion to evidence
Expert opinion and experience are often linked in software engineering.

Techniques that have proved effective in one context are apt to be extrapolated

20 Evidence-Based Software Engineering and Systematic Reviews

to others, without this necessarily being appropriate. Expert opinion can also
easily become linked to what might loosely be termed ‘academic dogma’, such
as the belief that something that uses mathematically based formalisms or al-
gorithms will be ‘better’ in some way. For some situations, it is certainly true
that mathematical forms of reasoning are appropriate of course (the design of
compilers is a good example). However, given that software engineering can
be characterised as a ‘design discipline’, the associated non-deterministic na-
ture of many software engineering activities (and the corresponding absence of
‘right’ or ‘wrong’ solutions) means that we need to be careful of overly empha-
sising any assumptions about rigour that the use of mathematical formalisms
can confer. Indeed, and in contrast, one of the strengths of evidence-based
studies is the rigour with which they can be conducted, although this is not
conventionally ‘mathematical’ in its form. Their use of systematic and well-
defined procedures provides an appropriate means for both linking experience
to knowledge and also addressing the non-deterministic nature of software
engineering activities.

One consequence of the formulation of ideas about EBSE has been the
proliferation of published secondary studies over the following decade. A series
of three broad ‘tertiary’ studies (a tertiary study is a secondary study that
performs a mapping study of other secondary studies) identified over 100
published systematic reviews in the period up to 2009 (Kitchenham, Brereton,
Budgen, Turner, Bailey & Linkman 2009, Kitchenham, Pretorius, Budgen,
Brereton, Turner, Niazi & Linkman 2010, da Silva, Santos, Soares, França,
Monteiro & Maciel 2011). Keeping up with this proliferation of secondary
studies and indexing them has proved to be quite a challenge1, but we can
estimate that there have been over 200 secondary studies published in the first
decade of EBSE. Inevitably, some of these have contradicted expert opinion
(or “common wisdom” if you prefer) based on experience and expertise. Here
we briefly examine three examples that highlight particular aspects of the
clashes that can occur between evidence and opinion.

Estimating software development effort. Project planning for software
projects, like all planning, is a challenging exercise. Over the years,
algorithmic cost modelling approaches, such as that employed by the
well-known COCOMO model (Boehm 1981) has often been viewed as
the ‘right’ approach to predicting project costs. In part, this may well
be because it is much more tractable to teach about using models than
about using experience when teaching students about software engineer-
ing, and so greater emphasis has been placed upon the former. Anyway,
whatever the reason, this belief is clearly challenged by the findings
of Jørgensen (2004), who, from a set of 15 primary studies comparing
models with expert judgement, found that:

• For one third of them, a formal cost model worked best;
1We do maintain a database on our website at www.ebse.org.uk, but this is inevitably

always well behind the ‘current’ position.

www.ebse.org.uk

Evidence-Based Software Engineering (EBSE) 21

• In another third, expert cost estimation was most effective;
• The remaining third identified no difference between expert judge-
ment and model-based forms.

From this, and from examining similar studies in other disciplines, Jør-
gensen observed that “there is no substantial evidence supporting the su-
periority of model estimates over expert estimates”. He noted that there
were “situations where expert estimates are more likely to be more ac-
curate, e.g. situations where experts have important domain knowledge
not included in the models”. And conversely, that “there are situations
where the use of models may reduce large situational or human biases,
e.g. when the estimators have a strong personal interest in the outcome”.

So, here we see an example of how an evidence-based approach can be used
to resolve the different outcomes from a range of studies with outcomes that
may appear to be contradictory, and can synthesise the results in order to
provide useful guidelines on how to use such techniques.

Our next example again highlights the point that the benefits claimed
for well-known software engineering techniques are not always found to occur
upon closer inspection.

Pair-Programming. The emergence of agile methods for software develop-
ment, and of extreme programming in particular, has popularised the
use of pair programming, with this often being used as a technique out-
side of an agile context. In pair programming, two programmers work
together with a single keyboard, mouse and screen, taking it in turns to
be the ‘driver’ and the ‘observer’ or ‘navigator’. The perceived benefits
include roles such as training of novices, producing better quality code,
and speeding up the development process.
Pair programming does lend itself to experimentation. However, the
range of experiments that have been performed is quite wide, and mak-
ing any form of comparison with ‘solo programming’ is something of a
challenge (it is easier to specify what pair programming involves, but not
quite so easy to do so for solo programming). The meta-analysis of the
outcomes from 18 primary studies reported in Hannay, Dybå, Arisholm
& Sjøberg (2009) demonstrates this very clearly—although with some
caveats about the possible existence of reporting bias2. After looking at
the effects of pair programming upon measures of quality, duration and
effort, the authors advise that:

“If you do not know the seniority or skill levels of your pro-
grammers, but do have a feeling for task complexity, then

2Reporting bias occurs when we find the outcomes of studies with inconclusive or negative
results do not get published, either because the authors do not think them of interest, or
referees reject the submitted papers because they do not show significant results.

22 Evidence-Based Software Engineering and Systematic Reviews

employ pair programming either when task complexity is low
and time is of the essence, or when task complexity is high
and correctness is important.”

So, this example also shows that while there may be benefits to using a par-
ticular technique, they are unlikely to be universal, nor will they necessarily
be consistent with every claim made for it.

Finally, we look at an example that shows that the benefits claimed for a
technique on the basis of early studies may not be supported when a fuller set
of studies is taken into account.

Inspections. The practice of performing inspections has long been accepted
as being a useful technique for validating software and related docu-
ments. So not surprisingly, efforts have been made to optimise the bene-
fits, usually by structuring the reading technique, with one of these being
perspective-based reading or PBR (Basili, Green, Laitenberger, Lanubile,
Shull, Sorumgard & Zelkowitz 1996). Early studies of its use suggested
that, when compared to other forms, it was possible to achieve a 35%
improvement when using this approach to inspection.
However, the systematic review performed by Ciolkowski (2009) found
that, when used with requirements documents, there was no significant
difference between PBR and any of the ad-hoc code inspection tech-
niques in terms of their effectiveness. Further, PBR was less effective as
a way of structuring inspections than the use of checklists.
One concern was that many of the studies were effectively replications
of the original study that used the same dataset as the original study.
However, one of the independent studies did also find positive results
for PBR, and there are other factors that might explain some of the
variation in results.

In many ways this third example shows that initial claims for the benefits of
new software engineering techniques need to be treated carefully, and that the
developers of a technique may not be the most appropriate people to conduct
such studies, however carefully they try to avoid being biased.

We should add an important caveat here, that systematic reviews (in any
discipline) provide evidence that represents the best knowledge available at a
given point in time. If and when more (and hopefully better quality) primary
studies become available, a later extended systematic review may well be
able to refine and revise the original findings. So we should always view the
outcomes of any systematic review as representing the “best knowledge” that
is currently available, and indeed, one of the tasks in reporting a review is to
assess the quality of the primary studies used, and also the effect this may
have upon any conclusions (see Chapter 7).

Two key aims of evidence-based studies are to avoid bias and encourage
objectivity, and in the next section we examine how the procedures of a sys-
tematic review can be organised for use with software engineering topics.

Evidence-Based Software Engineering (EBSE) 23

2.3 Organising evidence-based software engineering
practices

The previous section looked at what an evidence-based approach can tell
us about software engineering practices. In this section we discuss how this is
done, and why this should be able to give us confidence in its objectivity.

In proposing the adaptation of evidence-based practices for use in software
engineering, Kitchenham, Dybå & Jørgensen (2004) suggested that this could
be structured as a five-step process.

1. Convert the need for information into an answerable question.

2. Find the best evidence with which to answer the question.

3. Critically appraise the evidence for its validity (how close it comes to the
truth), its impact (the ‘size’ of the effects observed), and its applicability
(how useful it is likely to be).

4. Integrate the critical appraisal with software engineering expertise and
stakeholders’ values.

5. Evaluate the effectiveness and efficiency in the previous steps 1–4, and
seek ways to improve them.

The first three steps are essentially the role of the systematic review, while the
fourth is that of Knowledge Translation (we explained what was meant by KT
in the previous chapter, and discuss KT later in Chapter 14). The fifth is one
of ensuring that the research procedures are themselves subject to constant
scrutiny. (An illustration of this is the use of a systematic process to produce
the revised Guidelines that form Part III of this book.)

Our concern here is with the first three steps. These tasks can be structured
as a set of nine activities, grouped as three phases (note that the phases do
not map directly on to the steps, although the number is the same). This is
illustrated in Figure 2.1—although we should note that this shows a somewhat
idealised model, and that in practice, there is likely to be some iteration
between the different activities. We will not discuss each activity in detail
here, since all of them are described more fully in the following chapters. So
the main task here is to identify what each one involves. Practical guidance
on performing these activities is also provided in Part III.

Phase 1: Plan the review. The first phase addresses the task of designing
how the study is to be performed, with this being documented through
the review protocol. Planning a review involves three important activi-
ties.

1. Specify the research question.

24 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 2.1: Overview of the systematic review process.

2. Develop the review protocol.
3. Validate the review protocol.

We discuss the activities of this phase in more detail in Chapter 4.

Phase 2: Conduct the review. In this phase we put the plan into action.
Phase 2 is very much driven by the research protocol, and any diver-
gences that occur, requiring that we change the plan to reflect unex-
pected or other circumstances, need to be carefully documented.

4. Identify relevant research. We discuss this activity in more depth
in Chapter 5.

5. Select primary studies. A fuller explanation of this activity is pro-
vided in Chapter 6.

While all of the different forms of systematic review that we discuss in

Evidence-Based Software Engineering (EBSE) 25

the next chapter should involve performing the first two activities of
this phase, not all will necessarily undertake the remaining three in full
detail.

6. Assess study quality. We discuss these issues further in Chapter 7.
7. Extract required data. This is discussed in more detail in Chapter

8.
8. Synthesize the data. This is a challenging task that we examine in

much greater detail in Chapters 9, 10 and 11.

Phase 3: Document the review. Reporting about the processes and out-
comes of a review is discussed in Chapter 12.

We should note here that applying evidence-based ideas in software engi-
neering is not necessarily confined to conducting systematic reviews, although
this is the form that has largely been taken so far, and that we focus upon in
this book. In the Further Reading section provided at the end of Part I, we
discuss the study reported by Kasoju, Peterson & Mäntylä (2013) which used
EBSE practices as the means of investigating a particular industry problem
(related to the software testing processes used in the automotive industry).
The important distinction here is that whereas a systematic review forms a
topic-specific application of evidence-based ideas, the approach used in that
study was problem-specific, and employed a multi-stage process involving a
mix of empirical forms (including a systematic review).

2.4 Software engineering characteristics
At this point, it is useful to consider how the review process outlined in

the previous section is influenced by some characteristics of the software en-
gineering discipline—and sometimes by the characteristics of its practitioners
too.

The challenges posed by the characteristics of software were outlined by
Fred Brooks Jr. in one of software engineering’s seminal papers (Brooks Jr.
1987). These are obviously important to any researcher conducting a primary
study, and so clearly do have influence upon a secondary study in terms of the
likely spread of results they create. Here we look at some factors that are in
part consequences of the main characteristics identified by Brooks (invisibility,
changeability, mix of static and dynamic properties) and in part consequences
of the way that the discipline has evolved.

• Primary studies involve active participation. In software engineering it
is common to refer to the people who take part in primary studies as

26 Evidence-Based Software Engineering and Systematic Reviews

participants rather than subjects. This is because they perform active
tasks (coding, reviewing, classifying, etc.) rather than simply receiving
some form of treatment (as occurs in much of clinical medicine). Not
only does this make it impractical to conduct Randomized Controlled
Trials (RCTs) in software engineering, since ‘blinding’ of participants
and experimenters is virtually impossible, it also means that the out-
comes of primary studies may well be quite strongly influenced by the
characteristics of the particular set of participants involved, by the skills
that they have, and by their previous experiences. Like some of the other
characteristics we consider here, this one complicates the task of synthe-
sis. We examine some aspects of this further in Part II when we look at
how primary studies are organized.

• Software engineering lacks strong taxonomies. The terms that we use
are often imprecise, and software engineers are rather prone to create
new terms to describe ideas that may well be closely related to existing
ones. This can complicate searching since we need to consider all pos-
sible forms of terminology that might have been used in the titles and
abstracts of papers. Snowballing may help with this, but essentially it
stems from the constraint of studying procedures and artifacts.

• Primary studies lack statistical power. Because software engineering
studies usually need specialist skills and knowledge, it is often diffi-
cult for experimenters to recruit enough participants to provide what
is generally regarded as an acceptable level of statistical power (Dybå
et al. 2006). This in turn reduces the strength of the synthesis that can
be achieved in a systematic review.

• There are too few replicated studies. There may be many reasons for this,
not least the problem of getting a paper describing a replicated study
published, particularly one that is considered to be a close replication
(Lindsay & Ehrenberg 1993). Although this view may be inaccurate, if
researchers think it is so, then they will be reluctant to conduct repli-
cated studies. There is also debate about what exactly constitutes a
‘satisfactory’ replication study (we will examine this issue in Chapter
21). Again, this presents a problem for synthesis in particular.

• Reporting standards are often poor. Many primary studies are reported
in a manner that effectively ignores the likelihood that, at some time in
the future, a systematic reviewer will attempt to extract data from the
paper. While this might have been more excusable in the past, that really
is not the case now. Another form of reporting problem is related to our
culture of refereed conferences, which can lead to researchers publishing
more than one paper that uses the same set of results—requiring the sys-
tematic reviewer to take care not to count such studies more than once.
Similarly, some papers also describe more than one experiment, compli-
cating separation of individual studies when the analyst conducting a

Evidence-Based Software Engineering (EBSE) 27

systematic review is performing data extraction. We address reporting
needs for primary studies in Part II.

2.5 Limitations of evidence-based practices in software
engineering

We touched on some factors that constrained the use of the evidence-based
paradigm in Chapter 1. In this section we discuss these in the context of EBSE,
and look at how they may be affected by the characteristics of software and
software engineering. We also introduce the concept of threats to validity in
rather more detail.

2.5.1 Constraints from software engineering
We begin by considering how these factors are influenced by the nature of

our discipline, as characterised in the preceding section.

A systematic review is conducted by people. As we identified earlier,
a major risk arising from this aspect is that of bias. This can arise in
various stages, for example when searching using electronic forms, our
choice of search engines and of search terms may favour our finding some
studies and perhaps missing others. (As we mentioned in the preced-
ing section, software engineering does lack strong taxonomies.) Equally,
when searching manually, our choice of journals and conferences may
influence the outcomes. Similarly, our inclusion/exclusion criteria might
lead to bias — for example, in software engineering, replicated studies
are probably less likely to be published than original ones, but may be
available as technical reports. Equally, the analyst needs to be aware
that the common practice of expanding conference papers into journal
papers can easily lead to a study being counted twice. The issue of bias
is discussed quite extensively by Booth et al. (2012) in their discussion
of analysis, where they also discuss some strategies that might be used
to cope with this.

The outcomes depend upon the primary studies. Even when it is sys-
tematic, the main contribution of any review will arise from its synthesis
of the outcomes from the primary studies. For software engineering these
primary studies typically:

• exhibit poor statistical power arising from having small numbers
of participants;
• address a wide variety of research questions;

28 Evidence-Based Software Engineering and Systematic Reviews

• employ a range of empirical forms;
• have a tendency to employ student participants for tasks that might
actually be performed rather differently by more experienced prac-
titioners.

These are all factors that impede the production of reliable outcomes
from a secondary study, or at least, constrain the scope of any outcomes.

Not all topics lend themselves well to empirical studies. In software
engineering research we are concerned with the study of artefacts, which
we create, rather than of ‘physical’ entities. Glass et al. (2004) identified
a wide range of forms for evaluation that were used in software engi-
neering, and while we might feel that our discipline could make more
use of empirical evaluation, we need to also recognise that forms such
as ‘concept implementation’ are valid approaches to research, and may
sometimes be more appropriate than empirical studies.

Not only do we create and study artefacts, these are also often being
subject to continuous change and evolution. This turn means that different
studies that make use of a given artefact in some way may actually all be
based upon different versions. This can also apply to our conceptual tools—for
example, the UML (Unified Modeling Language) has gone through a number
of versions, adding new diagrammatical forms as it evolves. So different studies
based on using the UML may not always be directly comparable.

2.5.2 Threats to validity
The concept of limitations upon the rigour of an empirical study, expressed

as threats to validity, is well established for primary studies, and we discuss
them in that context in Part II. However, the concept does apply to secondary
studies too, and indeed, they are often discussed when reporting a systematic
review. The factors that influence the validity of a study are largely those
discussed above, but cast into a slightly different perspective within the struc-
ture of a systematic review. Shadish et al. (2002) identify four major forms
of threat arising for primary studies, and here we briefly discuss how each of
these might be interpreted in the context of a secondary study.

Construct Validity is concerned with how well the design of the study is
able to address the research question. Essentially this relates to the
consistency and comparability of the operationalisation of the outcome
measures as used in the primary studies.

Internal Validity is concerned with the conduct of the study, particularly
related to data extraction and synthesis, and whether there are factors
that might have caused some degree of bias in the overall process.

Evidence-Based Software Engineering (EBSE) 29

Conclusion Validity is concerned with how reliably we can draw conclu-
sions about the link between a treatment and the outcomes of an em-
pirical study (particularly experiments). For a secondary study, we can
therefore relate this to the synthesis element of a systematic review,
and how well this supports the conclusions of the review. Hence for sec-
ondary studies there is little distinction between internal and conclusion
validity.

External Validity is concerned with how widely a cause-effect relationship
holds, given variations in conditions. For a secondary study this should
be based upon an assessment of the range covered by the primary studies
in terms of their settings, materials and participants.

Taken together, these provide a framework that can be employed to assess the
possible limitations that apply to the outcomes of a review. They need to be
reported by the systematic review team, mainly because they are the people
who are in the best position to assess whether these factors are likely to have
had any effect upon the outcomes, and if so, how significant this might be. In
turn, this knowledge may be important to anyone wanting to make use of the
outcomes in making decisions about practice or policy, as well as to anyone
who might in the future wish to extend and update the review.

But do note that...

None of these issues are likely to make it impossible to conduct a useful
systematic review, although they may well limit its scope and usefulness,
since we are often studying differences in practice that have fairly small
effects upon the outcomes. However, where possible, it is important to
anticipate the influence of the likely ‘threats’ when writing the research
protocol.

This page intentionally left blankThis page intentionally left blank

Chapter 3
Using Systematic Reviews in
Software Engineering

3.1 Systematic reviews . 32
3.2 Mapping studies . 34
3.3 Meta-analysis . 37

We conduct secondary studies in order to answer a variety of research ques-
tions, so it is not surprising that we need to adapt the way that such a study
is organised according to the question being addressed. Some reviews seek to
answer questions about software engineering practices (for example, “in what
situations is pair programming likely to be a good strategy to adopt?”); oth-
ers may examine research trends (such as “what have been the ‘hot topics’ in
cloud technology research and how have they changed with time?”); while a
‘broad’ form of review might be used to help determine whether a more fo-
cused review of a topic is feasible—or whether it is first necessary to perform
more primary studies on that topic.

The way that we conduct a secondary study, and in particular, the way
that searching is organised and the choice of procedures used to synthesize the
results, will therefore vary substantially. Indeed, the very concept of ‘synthesis’
is apt to have many interpretations, especially when conducting studies of
research trends, where the reviewers may well choose to include non-empirical
forms of input.

Booth et al. (2012) catalogue a range of forms that are used for organising
secondary studies across a range of disciplines. Since not all of these are very
relevant to software engineering, in this chapter we briefly examine those forms
that software engineers do use, and what they use them for. (Each of these
forms will also be discussed in much greater depth in the following chapters.)
The key forms are as follows.
• Systematic reviews (using both qualitative and quantitative inputs). In
some cases, it is also possible to perform a meta-analysis for a quantita-
tive review.

• Mapping studies (used both for secondary and }tertiary studies).
Note that our use of this terminology does differ a little from that used in

Booth et al., largely reflecting the way that the use of secondary studies has
evolved in software engineering.

31

32 Evidence-Based Software Engineering and Systematic Reviews

Figure 3.1 shows a simple summary of the roles of, and relationships be-
tween, the different forms. In the rest of this chapter we say a little more
about each of these, and in particular, about the way that each form is used
in software engineering.

FIGURE 3.1: The hierarchy of study forms.

3.1 Systematic reviews
While ‘systematic review’ is often used as a generic term for all types

of review conducted using evidence-based practices, a systematic review is
also a well-defined form of study used to answer a specific research question.
Systematic reviews can be further sub-classified according to whether they
involve synthesizing qualitative or quantitative forms of data. In turn, this
will determine how both data extraction and synthesis need to be organised.
In particular, for a quantitative systematic review it may well make it possible
to perform a statistical meta-analysis as the means of synthesis, providing

Using Systematic Reviews in Software Engineering 33

greater confidence in both the statistical significance and also the statistical
power of the outcomes. We discuss this a bit more in Section 3.3.

Since the organisation and use of systematic reviews is covered extensively
in the rest of the book, this section will be confined to discussing how system-
atic reviews are commonly used in software engineering.

A matter of classification

We should observe here that throughout Part I of this book, our clas-
sification of different publications as being mapping studies or systematic
reviews may not always agree with those used by the original authors. This
is because we use the way that synthesis is performed in a study as our
key criteria for differentiating between these forms, and so consider some
studies that have been described as “systematic reviews” when published,
to be more correctly classified as mapping studies for that reason.

One role of a systematic review in software engineering is to establish
whether particular techniques or practices work better than others, and if
so, under what conditions this will be true. Existing systematic reviews span
many activities and forms (agile methods, project estimation, design patterns,
requirements elicitation techniques, regression testing techniques, just to name
a few). They are also used for other purposes, such as to evaluate how far
particular techniques have been adopted by industry and commerce, or to
identify the benefits of using tools in a particular context.

The purpose of a review will determine the type of input that is expected,
and hence the way that the inputs from different studies can be synthesized.
For example, a systematic review addressing topics such as pair programming,
inspection techniques or the use of software design patterns might be expected
to involve synthesizing the results from experiments and quasi-experiments.
Studies looking at the adoption of tools in industry, or the take-up of agile
methods, are more likely to be synthesizing the outcomes from observational
studies and case studies. In this book we are mainly concerned with the fol-
lowing two classes of systematic review, as identified in Figure 3.1.

Quantitative reviews Inputs for these are likely to come from experiments
or quasi-experiments, or from data mining using existing repositories,
and the studies themselves may well be performing comparisons or pro-
ducing estimates based on past profiles. Associated research questions
are likely to address comparative aspects such as “does technique X
perform better than technique Y?”. Synthesis may take a range of forms
ranging from tabulation of the different outcomes through to a statisti-
cal meta-analysis, depending on how much the primary studies vary in
terms of topics and measures used. A good example of a quantitative
review is that of Dieste & Juristo (2011), comparing the effectiveness of
different requirements elicitation techniques.

34 Evidence-Based Software Engineering and Systematic Reviews

Qualitative reviews These usually address questions about the specific use
of a technology, and so are unlikely to involve making comparisons (and
hence less likely to address questions that involve any sense of something
being ‘better’). In a software engineering context they may well be used
for such tasks as studying adoption issues, or perhaps more likely, the
barriers to adoption, employing procedures for synthesis that can help
to identify patterns in the data. This class of review also includes studies
that look at research methodologies, not just practice, such as Kitchen-
ham & Brereton (2013).

Systematic reviews, along with mapping studies are the two forms that have
been most widely employed in software engineering to date. However, a few
examples of the use of meta-analyses for software engineering topics do exist,
and so we also discuss the role of meta-analysis in the final section.

3.2 Mapping studies
The goal of a mapping study is to survey the available knowledge about

a topic. It is then possible to synthesise this by categorisation in order to
identify where there are ‘clusters’ of studies that could perhaps form the basis
of a fuller review, and also where there are ‘gaps’ indicating the need for more
primary studies. Mapping studies may also be ‘tertiary’ studies, for which the
inputs are secondary studies, so providing a higher level of categorisation of
knowledge.

Mapping studies have found wide acceptance in software engineering, al-
though this form of study appears to be less widely used in other disciplines.
This may reflect the nature of software engineering and its vocabulary in par-
ticular. Software engineering is still not a truly ‘empirical’ discipline, even if
it is slowly moving that way, and so we may often have both very limited
knowledge about how widely a topic has been studied, and also relatively few
studies that are empirical in form. Related to this, empirical studies may well
be reported in many different venues, meaning that we need to search widely
to find all relevant material. In addition, whereas the vocabulary of clinical
medicine is based upon terms used for the parts of the human body and its
conditions, which have been standardised over a long period of time, software
engineering deals with artifacts, and so invents new terms to describe these.
Unfortunately, software engineers are also apt to “reinvent the wheel” when
doing this, sometimes using new terms to describe a concept that was devel-
oped earlier, but may not have been realised at the time because of (say) a
lack of computational power.

If we return to the model of the systematic review process described in the
previous chapter, we can describe a mapping study as a form that involves

Using Systematic Reviews in Software Engineering 35

relatively little synthesis. A mapping study may also include an element of
quality assessment, depending upon its purpose.

FIGURE 3.2: The spectrum of synthesis.

Figure 3.2 illustrates this issue. At one extreme, simple aggregation alone
just groups together any data occurring within a given category, and while
providing knowledge about the count for each category (such as number of
papers published each year), it creates no new derived knowledge. Extending
from that we have a spectrum of synthesis, extending through to a statistical
meta-analysis, whereby new knowledge is derived about such aspects as pat-
terns and associations in the data. The issues related to performing synthesis
across the spectrum of study forms are discussed more fully in Section 10.2.

Searching may well use quite a broad set of terms in order to ensure that
we do not overlook any particular group of studies. It also needs to be as
thorough as possible in order to obtain a clear and useful picture of the topic.

The activity of categorisation may employ a number of different schemes,
intended to reflect specific characteristics of the primary studies. It might use
an existing scheme—for example, we might want to classify the studies found
in terms of the research method employed for each primary study, using a
set of categories such as experiment, quasi-experiment, survey, observational,
and case study. Employing an existing categorisation scheme also provides a
useful basis for identifying where there are ‘gaps’. We might also derive the
categories for a given characteristic by looking at the set of studies found, and
grouping these to reflect the patterns observed.

36 Evidence-Based Software Engineering and Systematic Reviews

So, in what context do we find it useful to conduct a mapping study?
Below, we briefly examine two examples of situations where mapping studies
may be particularly relevant.

Studying research trends. A mapping study may be useful as a means of
analysing how research in a given topic has evolved over a period of time
(so one of the categories used for the studies will need to be publication
date). Such a study may focus upon identifying the “hot issues”, or
the techniques used, or even the countries where the research has been
performed.
One example of its use in this role, mentioned earlier, is that of the ter-
tiary study. To recap, a tertiary study is a form of systematic review for
which the inputs are secondary studies. A broad tertiary study is organ-
ised as a mapping study where the purpose is to categorise these and to
observe trends. The earliest tertiary study conducted in software engi-
neering was that reported in (Kitchenham, Brereton, Budgen, Turner,
Bailey & Linkman 2009). This study identified a set of secondary stud-
ies and categorised them by type (such as research trends) and topic.
Later broad tertiary studies such as (Kitchenham, Pretorius, Budgen,
Brereton, Turner, Niazi & Linkman 2010) and (da Silva et al. 2011) also
included a quality assessment of the secondary studies. Viewed as a se-
ries, the value of these studies was therefore to index the emerging field
of evidence-based studies, identifying those areas of software engineering
where most activity was taking place. This is also an example of where
aggregation is an appropriate form of analysis.

PhD literature review. Preparation for PhD study almost always requires
a candidate to undertake a ‘literature review’ of the state of the art
related to the intended topic. Traditionally this is conducted using in-
formal searching, with expert guidance provided by the supervisor. How-
ever, for PhD projects involving empirical studies in particular, the use
of a mapping study may well provide a very useful initial stage for a
study, as examined in (Kitchenham, Budgen & Brereton 2011). Using
this approach is not just appropriate for empirical topics of course, def-
initions and research trends may usefully be studied in this way too, as
demonstrated in the review of different definitions of ‘service oriented
architecture’ or SOA, provided in (Anjum & Budgen 2012). Here, it is
appropriate to employ a degree of synthesis in analysing the outcome
data.

While these are by no means the only roles that can be performed by a map-
ping study, they are fairly representative of the ways that this form has been
used in software engineering.

Using Systematic Reviews in Software Engineering 37

3.3 Meta-analysis
For clinical medicine, where a secondary study may well be drawing to-

gether the results from a number of Randomized Controlled Trials (RCTs),
the use of a statistical meta-analysis (which we discuss more fully in Chapter
11) is often appropriate. This is because primary studies of a new clinical
treatment are likely to use the same baseline(s) for their comparisons and ask
similar research questions about the effective use of a treatment. For software
engineering however, even when a review is drawing together the outcomes of
a set of experiments, these may well vary widely in form, as well as in their
research questions.

Where the use of meta-analysis is an option, this is usually because there is
a reasonable number of primary studies with similar forms, and that these also
use comparable response variables. This was the case for the meta-analysis of
pair programming studies performed by Hannay et al. (2009), although as
here, the analysts may still have to cope with wide variation in the character-
istics of the primary studies. In addition, many primary studies in software
engineering have poor statistical power, as we observed earlier. However, one
benefit of being able to use meta-analysis is that any outcomes can then be
assigned a quantitative measure of confidence based on the use of inferential
statistics.

One question we might well ask is whether this position is likely to change
in the future so that we will see more use of meta-analysis. One of the aims
of this book is to provide guidance for the use of evidence-based practices in
software engineering, and in doing so, to encourage the use of more rigorous
forms of synthesis. As we explain in Chapter 11, meta-analysis is possible in a
variety of circumstances and there seem to be no reasons why it should not be
employed more widely in software engineering. Certainly, if EBSE is to make
greater impact upon the software engineering profession, then an increased use
of meta-analysis is likely to be an important way of helping with providing
potential users with appropriate levels of confidence in the findings from our
studies.

This page intentionally left blankThis page intentionally left blank

Chapter 4
Planning a Systematic Review

4.1 Establishing the need for a review . 40
Examples of justifications for systematic reviews 42
Examples of justifications for mapping studies 42

4.2 Managing the review project . 43
4.3 Specifying the research questions . 43

Examples of research questions from quantitative systematic
reviews . 45
Examples of research questions from qualitative systematic

reviews . 46
Examples of research questions from mapping studies 47
Examples of research questions from tertiary studies 48

4.4 Developing the protocol . 48
4.4.1 Background . 49
4.4.2 Research questions(s) . 49
4.4.3 Search strategy . 49
4.4.4 Study selection . 50
4.4.5 Assessing the quality of the primary studies 50
4.4.6 Data extraction . 51
4.4.7 Data synthesis and aggregation strategy 51
4.4.8 Limitations . 52
4.4.9 Reporting . 52
4.4.10 Review management . 52

4.5 Validating the protocol . 52

We and other researchers have found that undertaking a systematic review or
mapping study is an extremely time-consuming activity requiring a great deal
of attention to detail (Babar & Zhang 2009). As with any complex project,
planning is a key factor in achieving a successful outcome.

In this chapter we look at the tasks that need to be performed before and
during Phase 1 of a systematic review or mapping study (see Figure 4.1 which
highlights the planning phase of a review). The focus here is particularly on the
development of a review protocol. The protocol plays a key role in planning
a review, providing a framework within which to make and document the
necessary study design decisions. The aim is to minimise bias by defining in
advance the steps that will be followed and the criteria against which decisions
will be made during the conduct of a review. We note though, that although it

39

40 Evidence-Based Software Engineering and Systematic Reviews

is important to agree and document a review design in advance, it is sometimes
necessary to modify that design, and hence the protocol, during the conduct
phase.

FIGURE 4.1: Planning phase of the systematic review process.

Even before developing and validating a protocol, reviewers should ensure
that a review is both needed and feasible. We briefly consider these issues as
well as aspects of managing the review process, before addressing the three
main planning tasks:

1. Specifying the research questions,

2. Developing the protocol,

3. Validating the protocol.

4.1 Establishing the need for a review
To date, systematic reviews and mapping studies in software engineer-

ing have been largely motivated by the requirements of researchers (that is,

Planning a Systematic Review 41

to achieve academic goals) rather than by real problems from practice. Re-
searchers undertake reviews to summarise evidence about some particular
phenomenon in a thorough and unbiased manner. A recent survey by San-
tos & da Silva (2013) found that the four main factors that have motivated
systematic reviewers in software engineering are:
• To gather knowledge about a particular field of study,

• To identify recommendations for further research,

• To establish the context of a research topic or problem,

• To identify the main methodologies and research techniques used in a
particular research topic or field.

The results of the survey largely support the outcomes of a study by Zhang
& Babar (2013) which found the most important motivators for performing
systematic reviews and mapping studies to be (1) obtaining new research
findings and (2) describing and organising the state-of-the-art in a particular
area.

Whatever the motivation, before investing the substantial time and effort
needed to carry out a thorough systematic review or mapping study, it is
important to consider:
• whether it is likely to contribute to our knowledge about the topic,

• whether it is feasible, given the resources available within a review team.
Whether a review is needed and is feasible depends on a range of fac-

tors. For example, it may not be needed if a good quality review address-
ing the same or a similar topic already exists. The problem of multiple sys-
tematic reviews addressing the same topic is handled in other disciplines
by researchers registering their intention to undertake a review with a cen-
tral authority. For example, the Cochrane Collaboration provides a facility
for such registration1. However, at present there is no such central author-
ity for software engineering reviews. In fact, there are at least two exam-
ples of (pairs of) reviews addressing the same software engineering topic
(Kitchenham, Mendes & Travassos 2007, MacDonell, Shepperd, Kitchenham
& Mendes 2010, Verner, Brereton, Kitchenham, Turner & Niazi 2012, Mar-
ques, Rodrigues & Conte 2012). It may not be feasible to undertake a review if,
for example, there are too many primary studies to analyse with the available
resources or if there are too few good quality studies to make the synthesis or
aggregation of their results meaningful.

In the examples below, we summarise the motivations for some published
reviews and note that in each case the authors had previously undertaken
research in the topic area and had first hand knowledge of the research issues.
Further discussion about establishing the need for a systematic review or a
mapping study can be found in Part III.

1http://www.cochrane.org/cochrane-reviews/proposing-new-reviews

http://www.cochrane.org/cochrane-reviews/proposing-new-reviews

42 Evidence-Based Software Engineering and Systematic Reviews

Examples of justifications for systematic reviews
Hall, Beecham, Bowes, Gray & Counsell (2012) state that fault prediction

modelling is an important area of research which has been the subject of many
studies. They note that published fault prediction models are both complex
and disparate and that before their review there was no up-to-date compre-
hensive picture of the state of fault prediction. They indicate that their results
will enable researchers to develop models based on best knowledge and will
enable practitioners to make effective decisions about which models are best
suited to their context.

Kitchenham et al. (2007) argue that accurate cost estimation is important
for the software industry, that accurate cost estimation models rely on past
project data and that many companies cannot collect enough data to construct
their own models. Thus, it is important to know whether models developed
from data repositories can be used to predict costs in a specific company. A
number of studies had addressed this issue but had come to different conclu-
sions. They indicate that it is necessary to determine whether, or under what
conditions, models derived from data repositories can support estimation in a
specific company.

Examples of justifications for mapping studies
Zhang & Budgen (2012) recognised that the concept of design patterns for

developing object oriented systems is valued by experienced developers. How-
ever, during preliminary investigations they found that much of the literature
on patterns was in the form of advocacy or experience reports rather than
empirical studies about effectiveness. They carried out the mapping study to
try to identify studies that evaluate aspects of design patterns.

The mapping study by Penzenstadler, Raturi, Richardson, Calero, Femmer
& Franch (2014), which focuses on software engineering for sustainability, up-
dates an earlier mapping study on the same topic. The authors indicate that
the updated study was motivated by:

• The wide range of journals, conferences and workshops which address
this topic,

• A high level of research activity in recent years,

• A desire to broaden the scope of the review.

In a tertiary study, Cruzes & Dybå (2011b) review the methods used in
systematic reviews to synthesise the outcomes of the primary studies that they
include. The authors point out that “comparing and contrasting evidence
is necessary to build knowledge and reach conclusions about the empirical
support for a phenomenon”. The motivation for the study therefore stems

Planning a Systematic Review 43

from the needs of systematic reviewers to address the challenges associated
with integrating evidence from multiple sources, especially where there is a
high degree of heterogeneity in the research methods used for the contributing
studies.

4.2 Managing the review project
At the start of a review, it is important to consider how the review project

as a whole will be managed. This is distinct from planning and specifying the
technical aspects of the review process. During the planning phase, manage-
ment activities include:

• Organising the development, validation and signing off of the review
protocol,

• Specifying the time scales for the review,

• Assigning the tasks specified in the protocol to team members,

• Deciding what tools to use for managing data and for supporting col-
laboration (see Chapter 13).

Generally, reviews are performed by two or more reviewers who constitute
the review team. One of the reviewers acts as the team leader, taking respon-
sibility for ensuring the management activities are planned, monitored and
refined when necessary. If a review forms part of PhD, ideally, the student
will take the lead role.

4.3 Specifying the research questions
Specifying research questions is a critical part of planning a systematic

review or mapping study and the factors that motivate the questions should
be fully explained. The questions drive the entire review process providing the
basis for:

• Deciding which primary studies to include in a review, and hence driving
the search strategy,

• Deciding what data must be extracted and how the data is synthesised
or aggregated in order to answer the questions.

44 Evidence-Based Software Engineering and Systematic Reviews

The nature of the research questions depends very much on the type of
review being carried out.

For systematic reviews, questions are about evaluating a particular soft-
ware engineering technology or research process. The term ‘technology’ is used
in a broad sense here to encompass software engineering methods or processes,
or particular management-related characteristics such as the attributes of soft-
ware engineers or of software engineering teams. The research questions are
formulated in one of two ways:

• As a quantitative comparison of two (or more) technologies to determine
which one is more effective or efficient (or is in some other way ‘better’)
than the others within some specific context.

• As a qualitative evaluation of a specific software engineering technology
(including management-related characteristics) or an approach or pro-
cedure used in software engineering research, with respect to benefits,
risks, value, impact or some other aspect of adoption.

In both cases, the questions will be driven by some underlying model of the
topic, involving, for example, a comparison of a new model (or technology)
with a traditional (control) model or the identification of consequences of
adopting a new model.

For mapping studies, research questions are broader and concerned with
classifying the literature in some way. The research questions for mapping
studies are the most likely to change as a review progresses and new categories
emerge (that is, the underlying model evolves).

We note also that mapping studies and qualitative systematic reviews are
usually less focused than quantitative systematic reviews and hence tend to
have a greater number of research questions.

It is important in any review to ask the right question(s). For systematic
reviews, ideally, this should be one that:

• Is meaningful and important to practitioners as well as researchers. For
example, researchers might be interested in whether a specific analysis
technique leads to a significantly more accurate estimate of remaining
defects after design inspections. However, a practitioner might want to
know whether adopting a specific analysis technique to predict remain-
ing defects is more effective than expert opinion at identifying design
documents that require re-inspection.

• Will lead either to changes in current software engineering practice or
to increased confidence in the value of current practice. For example,
researchers and practitioners would like to know under what conditions
a project can safely adopt agile technologies and under what conditions
it should not do so.

• Will identify discrepancies between commonly held beliefs and reality.

Planning a Systematic Review 45

Nonetheless, as indicated earlier, many systematic reviewers ask questions that
are primarily of interest to researchers. This is particularly the case for map-
ping studies which often ask questions that lead to the identification of oppor-
tunities for future research activities. For mapping studies, research questions
should be ones that:

• Enable the literature on a particular software engineering topic to be
classified in ways that are interesting and useful to researchers. For ex-
ample, a mapping study undertaken as part of a PhD can provide the
basis for the research student’s work by enabling the student to show
how the proposed research fits into the current body of knowledge.

• Are likely to identify clusters of research as well as gaps in the literature.
Clusters can provide researchers with some indication of where there is
a sufficient body of work to warrant a more focused systematic review.
Gaps in the literature can indicate that further primary studies may be
usefully performed in order to fill the gaps.

As described in Section 3.2, a tertiary study is a special form of mapping
study that classifies or maps reviews relating to some aspect of software engi-
neering. Research questions for tertiary studies are aimed at identifying trends
in systematic reviews focusing, for example, on:

• identifying the topics addressed by the reviews,

• the specific review procedures or approaches used by researchers.

Further details and advice about specifying research questions can be found
in Part III.

Examples of research questions from quantitative systematic
reviews

The review by Mitchell & Seaman (2009) covers studies that compare the
cost, duration and product quality for two approaches to software develop-
ment. These are (1) the ‘waterfall’ approach and (2) iterative and incremental
development (IID). The research questions posed in this review are:

“What is the development cost of software produced using waterfall or
its variations versus using IID?”

“What is the development duration for software produced using waterfall
or its variations versus using IID?”

“What is the quality of software produced using waterfall or its varia-
tions versus using IID?”

Jørgensen (2007) reports a review of evidence about the use of expert
judgement, formal models and a combination of these to estimate software
development effort. The research questions for the review are:

46 Evidence-Based Software Engineering and Systematic Reviews

“Should we expect more accurate effort estimates when applying expert
judgement or models?”

“When should software development effort estimates be based on expert
judgement, on models, or on a combination of expert judgement and
models?”

MacDonell & Shepperd (2007) review studies that compare the use of cross-
company and within-company data within effort estimation models. Their
research question is:

“What evidence is there that cross-company estimation models are at
least as good as within-company estimation models for predicting effort
for software projects?”

Examples of research questions from qualitative systematic re-
views

The technology focused study by Beecham, Baddoo, Hall, Robinson &
Sharp (2008) reviews studies on motivation in software engineering. Research
questions are:

“What are the characteristics of Software Engineers?”

“What (de)motivates Software Engineers to be more (less) productive?”

“What are the external signs or outcomes of (de)motivated Software
Engineers?”

“What aspect of Software Engineering (de)motivate Software Engi-
neers?”

“What models of motivation exist in Software Engineering?”
The research-oriented review by Kitchenham & Brereton (2013) focuses

on primary studies that address aspects of the systematic review process in
software engineering. the research questions addressed are:

“What papers report experiences of using the systematic review method-
ology and/or investigate the systematic review process in software engi-
neering between the years 2005 and 2012 (to June)”?

“To what extent has research confirmed the claims of the systematic
review methodology?"

“What problems have been observed by software engineering researchers
when undertaking systematic reviews?”

“What advice and/or techniques related to performing systematic re-
view tasks have been proposed and what is the strength of evidence
supporting them?”

Planning a Systematic Review 47

Examples of research questions from mapping studies
Walia & Carver (2009) report a technology focused mapping study about

the sources of requirements faults. The high level research question addressed
by this review is:

“What types of requirements errors can be identified from the
literature and how can they be classified?”

This is decomposed into four more specific questions (some with sub-
questions). The four specific questions are:

“Is there any evidence that using error information can improve software
quality?”

“What types of requirement errors have been identified in the software
engineering literature?”

“Is there any research from human cognition or psychology that can
propose requirement errors?”

“How can the information gathered in response to the above questions
be organized into an error taxonomy?”

Another technology focused mapping study by Marshall & Brereton (2013)
identifies and classifies tools developed to support the systematic review pro-
cess in software engineering. The research questions for this mapping study
are:

“What tools to support the systematic review process in software engi-
neering have been reported?”

“Which stages of the systematic review process do the tools address?”

“To what extent have the tools been evaluated?”

The study by Ampatzoglou & Stamelos (2010) maps research relating to
software engineering for games development. It addresses the following re-
search questions:

“What is the intensity of the research activity on software engineering
methods for game development?”

“What software engineering research topics are being addressed in the
domain of computer games?”

“What research approaches do software engineering researchers use in
the domain of computer games?”

“What empirical research methods do software engineering researchers
use in the domain of computer games?”

48 Evidence-Based Software Engineering and Systematic Reviews

Examples of research questions from tertiary studies
The tertiary study by Marques et al. (2012) maps reviews about dis-

tributed software development (DSD). The research questions are:

“How many systematic literature reviews have been published in the
DSD context?”

“What research topics are being addressed?”

“What research questions are being investigated?”

“Which individuals and organizations are involved in systematic litera-
ture review-based DSD research?”

“What are the limitations of systematic literature reviews in DSD?”

The study by Cruzes & Dybå (2011b) focuses on the synthesis stage of the
systematic review process and addresses three questions:

“In terms of primary study types and evidence that is included, what is
the basis of software engineering systematic reviews?”

“How, and according to which methods, are the findings of systematic
reviews in software engineering synthesized?”

“How are the syntheses of the findings presented?”

Kitchenham, Pretorius, Budgen, Brereton, Turner, Niazi & Linkman
(2010) report a broad research-focused tertiary study of systematic reviews
and mapping studies in software engineering. Research questions are:

“How many systematic reviews were published between 1st January 2004
and 30th June 2008?”

“What research topics are being addressed by systematic reviews in
software engineering?”

“Which individuals and organisations are most active in research on
systematic reviews?”

4.4 Developing the protocol
A systematic review or mapping study protocol is a documented plan

describing, as far as possible, all of the details about how a review will be
conducted. A protocol is particularly valuable because: (1) it can help to

Planning a Systematic Review 49

reduce the probability of researcher bias by limiting the influence of researcher
expectations on, for example, the selection of individual (primary) studies or
the synthesis of results; (2) it can be evaluated by other researchers who can
provide feedback about the design of a review in advance of its conduct; and
(3) it can form the basis of the introduction and method sections of a report
of a review.

It is important that a protocol is structured in such a way that it can be
easily used as a reference document by a review team and can be updated as
necessary during the conduct of a review. We stress that a review protocol is
a living document that is likely to be updated during the conduct of a review.
An example template for systematic review and mapping study protocols is
shown in Figure 22.5.

As well as covering all of the technical elements of a review, a protocol
can provide information about the management of a review project. This can
include the allocation of roles, mechanisms for resolving disagreements and
the project schedule.

The following subsections summarise the main components of a protocol.

4.4.1 Background
The background section of a protocol provides a summary of related re-

views and the justification for a review. Establishing the need for a review is
discussed in Section 4.1.

4.4.2 Research questions(s)
This is a critical component of a protocol because the research questions

drive the later stages of the review process. Specifying the research questions
is discussed in Section 4.3.

4.4.3 Search strategy
The strategy for finding appropriate studies will describe and justify the

way in which specific searching methods, such as automated searching, man-
ual searching, snowballing and contacting key researchers, are combined. If an
automated search is planned, this component will include a description of the
search strings and resources, such as digital libraries or indexing services, that
will be used. For a manual search, suitable journals and conference proceed-
ings should be specified and their selection justified. This part of a protocol
will also include a description of the mechanism for validating the search pro-
cess. Chapter 5 and Part III provide further details and advice about search
strategies and approaches to validation. Management decisions that are spe-
cific to the search process, such as the allocation of members of the review
team to the searching tasks and the approach to resolving disagreements can
also be recorded here.

50 Evidence-Based Software Engineering and Systematic Reviews

4.4.4 Study selection
In this component, reviewers specify (1) the study selection criteria for

determining whether a primary study is included in or excluded from a review
and (2) procedures that will be followed to apply the criteria. The inclusion
and exclusion criteria relate closely to the research questions and hence will
be formulated to ensure the inclusion of those studies that can contribute to
answering these questions.

The likelihood is that criteria are applied in a number of stages. For ex-
ample, initial decisions can be based on the title or the title, abstract and
keywords of a paper in order to exclude those that are clearly irrelevant. In
later stages, reviewers will read candidate papers in full. Marginal papers, or
those for which inclusion/exclusion is uncertain, can be kept in the inclusion
set with the final decision being made during data extraction. This situa-
tion is most likely to arise for qualitative systematic reviews. For quantitative
systematic reviews the criteria are usually easier to apply and for mapping
studies leaving out a few papers, or including a few extra papers is not usu-
ally critical. Plans might also address the allocation of team members to the
stages of study selection and the resolution of disagreements. There is further
discussion of study selection in Chapter 6 and in Part III.

4.4.5 Assessing the quality of the primary studies
This is a particularly challenging task relying on two key decisions. One is

to decide on the criteria against which quality will be assessed and the other is
to establish the procedures for applying the criteria. The criteria will usually
be expressed as one or more checklists depending, at least in part, on the
range of evaluation methods used in the primary studies. Evaluation methods
may include experiments, surveys, case studies and experience reports. One
approach is to use separate checklists for each study type. The alternative is
to use a generic checklist across all study types. Each of these approaches has
limitations. For mapping studies, where the goal is to map out a domain of
interest, assessing the quality of the individual studies may not be needed.

Procedures for applying the quality criteria are specified in a way that
aims, as far as is possible, to ensure the reliability of the assessment. Mecha-
nisms that can be used for this include having all, or a sample of, assessments
checked by another person or having two reviewers perform the assessment
independently. As well as describing who will undertake the quality assess-
ment and the mechanism for resolving disagreements, a protocol can record
decisions about the use of forms or tools to manage both individual scores
and the outcomes of the resolution process. Whatever the type of review, it
is important to consider the purpose of assessing the quality of the primary
studies and to justify the approaches taken. There is further discussion of
quality checklists, their limitations and assessment procedures in Chapter 7
and Part III.

Planning a Systematic Review 51

4.4.6 Data extraction
This part of a protocol defines the data that will be extracted and the

procedures for performing the extraction and for validating the data. The
data will include publication details for each paper plus the information that
is needed to answer the research questions. Extracting qualitative informa-
tion presents a particular challenge since specific pieces of text need to be
extracted and linked to specific research questions. Where qualitative synthe-
sis is planned, data extraction and synthesis can be combined within a single
process. For mapping studies in particular, data extraction may be iterative
since important trends and ways of categorising papers may only become evi-
dent as individual papers are read. These challenges have led to an interest in
the use of textual analysis tools to support data extraction and other aspects
of the systematic review process (see Chapter 13).

A protocol should also define how data will be recorded (for example, using
a review support tool or spreadsheet), who will perform the data extraction
and how disagreements will be resolved. One approach is for a review leader to
extract standard publication data and for two reviewers to extract data that is
specific to a review. Strategies for resolving disagreements include discussion
and using a third reviewer. The data extraction strategy (i.e. the selected data
items and the procedures) should be justified. There is further discussion and
advice about data extraction in Chapter 8 and in Part III.

4.4.7 Data synthesis and aggregation strategy
This section of a protocol defines the strategy for summarising, integrating,

combining and comparing the findings from the primary studies included in a
review. For quantitative data there is usually little opportunity to undertake a
formal meta-analysis for software engineering studies. However, where meta-
analysis is planned, details of the techniques to be used should be included.
More commonly, for systematic reviews in software engineering, primary stud-
ies are too heterogeneous for statistical analysis and a qualitative approach
(such as vote counting) has to be used.

The studies included in a review are often qualitative in nature and use
a wide range of empirical methods. For textual data, synthesis is generally
an iterative process because authors use different terminology to describe the
same concepts (and sometimes use the same terminology to describe different
concepts). Also, if the text is to be coded, the codes will be derived after
reading the papers and need to be agreed on by all of the members of the
review team who are performing the coding. Combining findings across mul-
tiple methods is especially challenging ((Cruzes & Dybå 2011b), (Kitchenham
& Brereton 2013)). Common approaches to synthesis include narrative and
thematic synthesis where data is tabulated in a way that is consistent with
the research questions. For mapping studies, the goal should be to classify
the findings in interesting ways and to present summaries using a variety of

52 Evidence-Based Software Engineering and Systematic Reviews

tabular and graphical forms. Further information and advice about a range
of approaches to data synthesis and aggregation is provided in Chapters 9, 10
and 11, and in Part III.

4.4.8 Limitations
This section can be used to document the limitations of a review that

are inherent to its context. Essentially these are limitations that have not or
cannot be addressed by the review design. One example of this type of validity
problem is where the data is extracted from papers that were written by the
reviewers. The data could be based on the reviewers’ understanding of their
own research rather than the information actually reported in the papers.

4.4.9 Reporting
It is useful to consider, in advance, the approach that will be taken to

disseminating the findings of a review. Usually a review is reported as a de-
tailed technical report, as a conference paper (or papers) and/or as a journal
paper. A technical report (or a chapter in a PhD thesis) and a journal paper
can include all, or at least most, of the information that is needed to provide
traceability from individual primary studies to the results and conclusions of a
review and to demonstrate rigour in applying the review process. Conference
papers, however, are usually limited in size and hence may need to provide
links to additional information. A protocol should record agreements about
the list of authors for each publication and about the target audience. Further
details about reporting can be found in Chapter 12 and Part III.

4.4.10 Review management
This section covers management decisions, for example relating to schedul-

ing and to tool support, that have not been recorded in other parts of the
protocol. Further details about tool support can be found in Chapter 13.

4.5 Validating the protocol
In this component, reviewers specify the steps that will be taken, both

internally and externally, to validate the protocol. Internal validation will in-
clude trialling specific aspects of the review plan such as the search strings and
the data extraction forms to be used as well as the processes to be followed
for data synthesis and/or aggregation. Also, we have emphasised the key role
played by a protocol so it is important that it is evaluated by researchers who
are external to a review team. PhD students should at least have their proto-
col evaluated by members of their supervisory team and might also call upon

Planning a Systematic Review 53

independent researchers, particularly if their supervisors have limited experi-
ence of the process. Evaluators can check a protocol against review guidelines,
looking to confirm that the main elements are covered, that the decisions made
are justified, that validation is adequately addressed and that a protocol is
internally consistent. Authors of a protocol should provide evaluators with a
checklist or set of questions addressing each of the elements of a protocol.
Table 4.1 lists some examples of questions about each of the elements.

TABLE 4.1: Example Questions for Validating a Protocol
Components Example questions
Background Is the motivation for the review clearly stated and reasonable?

Are related reviews summarised?
Research Do these address a topic of interest to practitioners and/or
questions researchers?

Are they clearly stated?
Search Is the strategy justified and is it likely to find the right primary
strategy studies without the reviewers having to check or read a large

number of irrelevant papers?
For automated searches, is there likely to be a substantial level of
duplication of papers found across the set of electronic resources
used?
Has the strategy been validated?
Is it clear which members of the review team will perform the
searching?

Study Are inclusion/exclusion criteria clearly defined and related to
selection research questions?

Is a staged process defined?
Is a validation process specified?
Are the roles of the team members defined for each stage of
the process and is the mechanism for resolving disagreements
specified?
Is there a process for handling marginal and uncertain papers
(especially for qualitative reviews), and for managing multiple
reports of individual studies?

Quality of If quality is to be assessed, is it clear that the outcomes will be
primary used in the later stages of the review?
studies Are criteria for assessing quality provided and justified (given

the range of primary study types anticipated in the review)?
Is a validation process specified?
Are the roles of team members and the process for resolving
disagreements specified?

54 Evidence-Based Software Engineering and Systematic Reviews

TABLE 4.1: Example Questions for Validating a Protocol
Data Does the data to be extracted properly address the research
extraction questions?

Are the methods of recording the data appropriate for the types
of data to be extracted (e.g. using forms, tables, spreadsheets or
more advanced tools)?
Have these been adequately piloted?
Are there mechanisms for iteration where data is qualitative and
categories are not (or cannot be) fully defined in advance of the
extraction?
Is a validation process specified?
Are roles and strategies for resolving disagreements specified?
If textual analysis tools are to be used, is their use justified?
Will the data extracted by each reviewer, and any agreed values
where reviewers differ, be appropriately stored for later analysis?

Data Will the process enable the research questions to be answered?
aggregation Are the methods proposed for qualitative and quantitative data
and appropriate?
synthesis Have they been piloted?

Has consideration been given to combining results across multi-
ple study types?
Is the approach to aggregation and synthesis justified with ref-
erence to appropriate literature?

Reporting Has this been considered?
If the aim is to publish the review (or even if it is not!), has
sufficient attention been paid to completeness, general interest,
validation, traceability and the limitations of the review?
Has the authorship of reports been considered?

Review Is the proposed schedule realistic?
management Have roles and responsibilities been defined for the stages in

review?
Are the tools that will be used for managing papers, studies and
data specified and appropriate (and available)?
Is the management of the many-to-many relationship between
papers and studies addressed?

Chapter 5
Searching for Primary Studies

5.1 Completeness . 56
How complete? . 57
Completeness assessment . 58
. 58

5.2 Validating the search strategy . 59
Step 1: Identify relevant journals, conferences and electronic

resources . 60
Step 2: Establish quasi-gold standard using a manual search . . . 60
Step 3: Determine/revise search strings . 61
Step 4: Conduct automated search . 61
Step 5: Evaluate search performance . 61

5.3 Methods of searching . 62
Automated search . 62
Manual search . 63
Snowballing . 64

5.4 Examples of search strategies . 64
Examples of search strategies for systematic reviews 65
Examples of search strategies for mapping studies 65

The focus of this chapter is on the identification of relevant primary studies.
This process forms the first step of the conduct phase of the systematic review
process, as highlighted in Figure 5.1.

An important element of any systematic review or mapping study is to
devise a search strategy that will find as many primary studies as possible
that are relevant to the research questions. The likelihood is that the strategy
will involve a combination of search methods. One widely used method is
automated searching of the literature using resources such as digital libraries
and indexing systems. Other methods include manual searching of selected
journals and conference proceedings, checking papers that are cited in the
papers included in a review (backwards snowballing) and checking papers
that cite the papers included in a review (forwards snowballing). The search
strategy will aim to achieve an acceptable level of completeness (see Section
5.1) within the review’s constraints of time and human resources. The level
of completeness that might be targeted will depend on the type of review
being undertaken. Generally, for a quantitative systematic review, that is, one
which compares software engineering technologies, a high level of completeness

55

56 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 5.1: Searching stage of the systematic review process.

is essential. For other types of review, such as qualitative systematic reviews
which assess risks, benefits, motivating factors, etc. or which review research
processes, and for mapping studies, a lower level of completeness may be
acceptable. This point is discussed in more detail in the following section.

Once a set of candidate papers have been found, and duplicate copies of the
same paper have been removed, references can be managed in, for example,
a spreadsheet or a database. Tools to support the systematic review process
are discussed in Chapter 13.

Within the following sections we look at assessing the completeness of the
set of papers found by the search process and discuss a range of searching
methods that can be used as part of a strategy. Also, examples of strategies
are presented for different types of systematic reviews and mapping studies.

5.1 Completeness
We consider two aspects of the completeness of the set of papers found

by following a search strategy. The first relates to completeness target: how
‘complete’ should the set of papers be? The second relates to completeness

Searching for Primary Studies 57

assessment: once we have a target, how will we know whether we have achieved
it?

How complete?
A big question facing many reviewers is when to stop searching; and of

course the answer is ‘it depends’.
For quantitative systematic reviews, completeness is crucial. If we look at

the examples described in Chapter 3, which relate to methods of estimating
software development effort (Jørgensen 2004), pair programming versus solo
programming (Hannay et al. 2009) and perspective-based reading (PBR) com-
pared to other approaches to reading (Basili et al. 1996) we see that 15 studies
are included in the cost estimation review, 18 in the pair programming review
and 21 in the PBR review (with many of the primary studies in the last of
these considered to be replications rather than independent studies). Given
the highly focused nature of these reviews and the small numbers of included
studies, missing only a few of these could substantially affect the outcomes of
the reviews.

For other types of review, a lower level of completeness may be accept-
able. For example, the qualitative systematic review by Beecham et al. (2008)
aimed to ‘plot the landscape of current reported knowledge in terms of what
motivates developers’. The review includes 92 papers which report motivators,
many of which are common across many of the papers (most of which report
some form of survey). Failing to include some of these 92 papers would not
have substantially affected the ‘landscape of knowledge’.

Another situation where completeness may not be critical is wheremapping
studies are performed during the early stages of a research project (such as
a PhD project). The value of the mapping study may come from acquiring a
broad understanding of the topic and from identifying clusters of studies rather
than from achieving completeness (Kitchenham, Brereton & Budgen 2012).
However, a point to note here is that if a mapping study provides the basis
for a more detailed and focused analysis (for example, where the presence of
a cluster indicates that quantitative analysis may be feasible and valuable) it
should not be assumed that the set of papers identified is complete. In this
case a more focused search should be performed unless it can be demonstrated
that the mapping study is of high quality in terms of completeness and rigour
(Kitchenham, Budgen & Brereton 2011).

It can be argued that in some cases the level of completeness of tertiary
studies should be high. Where a tertiary study aims to provide a catalogue
and detailed analysis of systematic reviews across the software engineering
domain (or across a broad sub-domain such as global software development),
it can provide a key reference document for the community and as such should
be as complete as possible. The argument for a high level of completeness
may not be quite so compelling where a tertiary review is performed as a
preliminary study, for example, to identify related reviews in advance of a

58 Evidence-Based Software Engineering and Systematic Reviews

more focused mapping study or systematic review. In the end, knowing when
to stop searching depends on what level of completeness is needed in order to
provide satisfactory answers to the research questions being addressed by a
review.

Completeness assessment
There are two fundamental ways of assessing the completeness of the set

of studies found by searching the literature. One is to use personal judgement.
This may be the judgement of members of the review team, especially if they
are experienced researchers on the topic being reviewed or it may involve
external researchers whose views are sought by a review team at some point
in the process. Whatever the source of personal knowledge, it is difficult to
quantify the level of completeness achieved using this subjective approach.
The alternative is to use some objective measure of the level of completeness.

Two key criteria for assessing the completeness of an automated search are
recall (also termed sensitivity) and precision (Dieste, Grimán & Juristo 2009,
Zhang, Babar & Tell 2011).

The recall of a search (using particular search strings and digital li-
braries/indexing systems) is the proportion (or percentage) of all the relevant
studies that are found by the search.

The precision of a search is the proportion (or percentage) of the studies
found that are relevant to the research questions being addressed by a review.
These can be calculated as follows:

Recall = Rfound

Rtotal
(5.1)

Precision = Rfound

Ntotal
(5.2)

where:
Rtotal is the total number of relevant studies
Ntotal is the total number of studies found
Rfound is the number of relevant studies found

Of course the practical problem in calculating recall is that the denom-
inator, that is, the total number of relevant studies (Rtotal), is not known.
Ideally, a search should have high recall, that is, it should find most (if not
all) of the relevant studies. Precision is also important and high precision is
desirable. High precision means that the burden on reviewers to check papers
that turn out not to be relevant is low. If precision is reduced, for example as
a consequence of efforts to improve recall, the reading load on reviewers will
increase.

Searching for Primary Studies 59

In the following section we look at how these measures can be used to
validate a search strategy by assessing the completeness of the set of studies
found.

5.2 Validating the search strategy
Developing a search strategy is an iterative process, involving refinement

based on some determination of the level of completeness achieved. An es-
sential basis for the subjective assessment of completeness is having a set of
papers which are known to report relevant studies. This known set can be
obtained in a number of ways:

• Through an informal automated search using a small set of digital li-
braries or indexing systems, or a manual search of a small set of relevant
conferences and journals,

• Using the personal knowledge of researchers who have experience in the
topic of the review,

• Using a previous systematic or traditional literature review which ad-
dresses a similar or overlapping topic,

• Through the construction of a quasi-gold standard. The use of a quasi-
gold standard to assess completeness is discussed later in this section.

If the number of studies in the known set is considered to be large (although
of course it is not easy to decide what constitutes a large known set) then a
search process that finds all of these may be judged adequate. The argument
here is that if these are found then it is likely that most of the other relevant
studies have also been found. Personal judgement, based on knowledge of the
topic of a review, has to be used to decide whether the number of known papers
can be considered large enough. To give an idea of the numbers of studies
that might be included in a review, we note that the numbers included in the
reviews catalogued by the third broad tertiary study (da Silva et al. 2011)
range from 4 to 299, although well over half fall in the range 15–80.

When reviewers are not confident that the number of known studies can
be considered large, a quasi-gold standard can be constructed and used to as-
sess completeness (Zhang et al. 2011). The quasi-gold standard is determined
by performing a manual search across a limited set of topic-specific journals
and conference proceedings over a restricted time period. The set of relevant
papers found is then used to assess the completeness of an automated search.
The approach has been evaluated through two participant-observer case stud-
ies with promising results (Zhang et al. 2011). The approach, shown in Figure
5.2, has the following steps:

60 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 5.2: A process for assessing search completeness using a quasi-gold
standard.

Step 1: Identify relevant journals, conferences and electronic
resources

In this step, reviewers decide which journals and conference proceedings
will be searched manually (in Step 2) and which digital libraries and indexing
services to use for the automated search (Step 4). Manual searching is quite
time consuming so the aim is to chose those outlets that are most likely to
publish relevant papers. Selecting electronic sources for the automated search
is discussed later in this chapter (see Section 5.3).

Step 2: Establish quasi-gold standard using a manual search
This step involves performing a manual search of the selected journals and

conference proceedings over the chosen (and limited) time period. Essentially,
the review team screen all of the papers in the selected sources and apply the
inclusion and exclusion criteria, which should be defined in advance. Screening

Searching for Primary Studies 61

can be applied initially to the title and abstract of a paper (keywords could
be considered too) and then, if a decision cannot be made, other parts of a
paper, possibly the whole paper, can be read. The development and use of
inclusion and exclusion criteria are discussed in more detail in Chapter 6.

Step 3: Determine/revise search strings
Zhang et al. suggest two ways of defining the strings to used to search the

selected electronic resources. These are:

1. Subjective search string definition based on domain knowledge and past
experience,

2. Objective elicitation of terms from the quasi-gold standard using a text
analysis tool.

Search strings can also be derived from the research questions being ad-
dressed by a review (see Part III, Section 22.5.2.2 for practical advice about
constructing search strings).

Step 4: Conduct automated search
Here, the selected electronic resources (digital libraries or indexing sys-

tems) are searched using the strings determined in Step 3 and for the chosen
time period. Automated search is discussed in more detail in Section 5.3 and
in part III, Section 22.5.2.

Step 5: Evaluate search performance
In this step, the results of the automated search are compared to the

results of the manual search (the quasi-gold standard) and quasi-sensitivity is
calculated. For the calculation, using equation 5.1, Rfound, is the number of
relevant studies found by the automated search (step 4) that are published in
the venues used in Step 2 (the manual search) during the time period covered
by the manual search. Rtotal, the total number of relevant studies for the
selected venues and time period, is the number of papers found by the manual
search (Step 2). Similarly quasi-precision can be calculated using equation 5.2
where Ntotal is the total number of papers found by the automated search.

Zhang et al. suggest that a sensitivity (recall) threshold (i.e. a completeness
target) of between 70% and 80% might be used to decide whether to go back to
Step 3 (and to refine the search terms) or whether to proceed to the next stage
of the review. These percentages are based on the scales developed by Dieste
& Padua (2007) who in turn based their scales on research in the medical
domain. Clearly this is a judgement that must be made on a case by case
basis and will depend on a number of factors such as the completeness target
and the available human resources.

62 Evidence-Based Software Engineering and Systematic Reviews

A refinement of the quasi-gold standard approach has been proposed by
Kitchenham, Li & Burn (2011) who suggest that the set of known papers is
divided into two sets with one being used to construct the search strings and
the other to evaluate the effectiveness of the search process.

5.3 Methods of searching
As we have indicated in the introduction to this chapter, there are a num-

ber of ways of searching for relevant primary studies. In practice, methods
are often combined in some way to achieve good coverage. In this section we
describe the most commonly used methods and in the following section il-
lustrate their use across a range of systematic reviews and mapping studies.
In addition to the methods described here, reviewers can consider contacting
researchers directly where they are known to be actively engaged in research
in the specific topic area being addressed by the systematic review or mapping
study.

We also note that it can be hard to find papers when the topic of a review is
secondary to that of many of the relevant primary studies. This might arise, for
example, where a review is about tool usage or about research methodology.
In these circumstances the best method to choose for searching might be a
manual search (looking at particular sections of a paper) or alternatively an
automated search where the searching process accesses the complete text of a
candidate paper (as opposed to just the title and abstract).

Automated search
This approach has been widely adopted by software engineering reviewers

and involves the use of electronic resources such as digital libraries and index-
ing systems to search for relevant papers. In order to perform an automated
search reviewers have to address two elements of the process. They have to
decide which electronic resources to use and they have to specify the search
strings that will drive the search.

Two key publisher-specific resources are the IEEE Digital Library (IEEEX-
plore) and the ACM Digital Library which together cover the most important
software engineering (and more general computing) journals and conference
proceedings. A tertiary review focusing on the period mid-2007 to end of 2008
found that IEEEXplore was used in 92% of the 38 reviews that were included
and 81% used the ACM Digital Library (Zhang et al. 2011). ScienceDirect
(Elsevier) was also quite extensively used for the systematic reviews included
in the tertiary study.

General indexing services such as Scopus and Web of Science will find
papers published by IEEE, ACM and Elsevier (although not necessarily the

Searching for Primary Studies 63

most recent conference proceedings). They also index papers published by
Wiley and Springer and hence such services reduce the need for searching
some publishers’ sites.

Although some publishers provide open access to some papers, many re-
quire a payment, or a subscription, to obtain copies of full papers. Many
universities now subscribe to publishers’ packages of journals and conference
proceedings, and there is also a growth in open access journals. Also, at some
academic institutions, authors are required to put pre-publication versions of
their papers into the University’s open access catalogue. Additionally, pre-
publication versions can sometimes be found by looking at an author’s web-
site. The publishing landscape for academic journals and conference proceed-
ings is changing quite rapidly at the moment so we suggest that reviewers
check with their library services and with publishers’ websites to get an up-
to-date-picture of their best route to acquiring access to full papers.

Generally, digital libraries and indexing systems provide mechanisms for
exporting the bibliographic details of papers in a range of formats such as
BibTeX, EndNote and Refworks.

Defining and refining search strings is an iterative process as illustrated in
the quasi-gold standard approach described in the previous section. An initial
set of keywords can be determined in a number of ways, such as:

• Extracting software engineering concepts and terms from the research
questions,

• Reviewing terms used in the known papers,

• Identifying synonyms of the key terms.

As indicated earlier, it is a tricky balance between a search which finds most
of the relevant papers (that is, having a high recall/sensitivity) and one which
achieves a good level of precision (that is, not generating a large number of
irrelevant papers). Even if the quasi-gold standard approach is not used, some
iteration will be needed to ensure that all known papers that can be found by
an automated search (that is, those that are indexed by the electronic systems
being used) are included in the list of papers generated by the search.

Manual search
Manual searching of software engineering journals and conference proceed-

ings can be very time consuming and onerous especially if the topic of a review
is broad (so that the papers are not limited to a few specialist’s outlets) or
where the topic is quite mature (so that a large time span needs to be cov-
ered). The key decisions here are identifying the most appropriate journals and
conferences and determining the date from which to start the search. Manual
search can be particularly valuable for multidisciplinary reviews (see for ex-
ample the mapping study by Jorgensen & Shepperd, summarised in Section
5.4, which addresses the topic of cost estimation). In general it is useful to

64 Evidence-Based Software Engineering and Systematic Reviews

have team members from the different domains covered by a multi-disciplinary
review.

If the search validation mechanism is strong, for example where an in-
dependent search is performed by two or more reviewers and the agreement
between them is high, a manual search can provide what is effectively a gold
standard set of relevant papers. Achieving a gold standard set of papers in this
way may not be practical except perhaps where the topic is highly focused,
reviewers are experts in the subject area, and the time span for the search is
not large.

Advice about selecting appropriate sources to use for a manual search can
be found in Part III, Section 22.5.3.

Snowballing
Snowballing, also referred to as citation analysis, can take one of two forms.

Backwards snowballing is where a search is based on the reference lists of pa-
pers that are known to be relevant (the included set). It is usually used as a
secondary method to support automated search. Forwards snowballing is the
process of finding all papers that cite a known paper or set of known papers.
This approach is particularly useful where there are a small number of seminal
papers that are likely to be cited by most of the subsequent papers on the
topic. Skoglund & Runeson (2009) compare the recall (sensitivity) and preci-
sion of two snowballing approaches based on citation analysis with those of
three historic reviews, where two had used automated searching and the other
had used a manual search. The outcomes were quite varied across the three
example reviews and no general conclusions were reached. A study by Jalali
& Wohlin (2012) compared automated search and backwards snowballing for
a review on Agile practices in global software engineering. They found that:

• Precision was better when using the snowballing approach,

• Although different papers were found by the two approaches there was
a substantial degree of overlap,

• Conclusions drawn using each of the approaches were very similar.

5.4 Examples of search strategies
We summarise a range of strategies reported by researchers who have per-

formed systematic reviews and mapping studies.

Searching for Primary Studies 65

Examples of search strategies for systematic reviews
Kitchenham et al. (2007) report a quantitative systematic review of stud-

ies that compare cross-company and within-company cost estimation. The
authors carried out their search in two stages. Initially, an automated search
of six electronic databases and seven individual journals and conference pro-
ceedings, chosen because they had published known relevant papers, was per-
formed. The set of known papers was also used to validate the automated
search. For the second stage, the authors:

1. carried out backwards snowballing for the papers included after the ini-
tial search,

2. contacted researchers who have either authored relevant papers found
by the initial search or who they believed to be working on the topic.

The qualitative systematic review by Beecham et al. (2008) focused on
the motivation of software engineers. Following a piloting exercise, eight elec-
tronic resources were used in an automated search and a manual search was
undertaken “directly on key conference proceedings, journals and authors”.
Additionally, for included papers, backwards snowballing was performed and
the corresponding authors of the papers were asked whether they had any
relevant material ‘in press’.

Examples of search strategies for mapping studies
Jorgensen & Shepperd (2007) describe a mapping study which addresses

a set of eight research questions about research on software cost estimation.
The authors report a manual search of all volumes (up to their search date)
of more than 100 peer-reviewed journals. Journals were identified by reading
through the reference lists of known papers (important because it is a mul-
tidisciplinary topic), by searching for relevant journals and using their own
experience. The reviewers constructed independent lists of potential journals
and merged their lists.

da Silva et al. (2011) performed a research-focused broad tertiary study of
systematic reviews and mapping studies in software engineering published be-
tween 1st July 2008 and 31st December 2009. The authors used a search strat-
egy that combined automated search, manual search and backwards snow-
balling. The automated search was performed by two of the authors using
six search engines and indexing systems (ACM Digital Library, IEEEXplore
Digital Library, ScienceDirect, CiteSeerX, ISI Web of Science and Scopus).
All of the searches except for the ISI Web of Science were based on the full
texts of the published papers. The search process was validated using a set
of known papers found by two earlier broad tertiary studies (Kitchenham,
Brereton, Budgen, Turner, Bailey & Linkman 2009, Kitchenham, Pretorius,

66 Evidence-Based Software Engineering and Systematic Reviews

Budgen, Brereton, Turner, Niazi & Linkman 2010). In parallel with the auto-
mated search, three of the authors performed a manual search of 13 journals
and conference proceedings, selected because they had been used by the ear-
lier tertiary studies (except where two of the conferences had been merged).
The reviewers checked titles and abstracts. The two sets of candidate papers
were merged and duplicates removed. Backwards snowballing was applied to
the papers remaining after the study selection stage.

Zhang et al. (2011) replicated a published tertiary study (Kitchenham, Brere-
ton, Budgen, Turner, Bailey & Linkman 2009) to evaluate a search strategy
based on a quasi-gold standard (as described in Section 5.2). In Step 1 (iden-
tify relevant journals, conferences and electronic resources), the authors used
personal experience and published journal and conference rankings to inform
their selection of nine outlets for the manual search and four digital libraries
for the automate search. In Step 2 (establish quasi-gold standard using a
manual search), two of the authors performed independent manual searches
of the selected outlets to establish a quasi-gold standard (after resolving dis-
agreements). In Step 3 (determine/revise search strings) and Step 4 (conduct
automated search), the search string was based on the authors’ knowledge
and on the papers in the quasi-gold standard and was coded to fit the syntax
requirements of each of the search engines. In Step 5 (evaluate search perfor-
mance), the quasi-sensitivity was calculated to be 65% which was considered
to be below the required threshold (70–80%). The search string was reviewed
and revised to include additional terms. This increased the quasi-sensitivity
to 85% which was deemed acceptable.

Chapter 6
Study Selection

6.1 Selection criteria . 67
6.2 Selection process . 69
6.3 The relationship between papers and studies . 71
6.4 Examples of selection criteria and process . 72

Examples of study selection for quantitative systematic reviews 72
Examples of study selection for qualitative systematic reviews . 74
Examples of study selection for mapping studies 76

Once candidate papers have been identified through the search process, these
need to be checked for relevance to the research questions being addressed by
a review. The focus of this chapter is on this selection process which forms
the second step of the conduct phase of the systematic review process, as
highlighted in Figure 6.1.

Study selection is a multi-stage process which can overlap to some extent
with the searching process. It is multi-stage because, ideally, many candidates
that are clearly irrelevant can be quickly excluded, at an early stage, without
the overheads of reading more than their titles and abstracts. In later stages
candidate papers have to be read ‘in full’. Study selection can overlap with the
searching process when searching involves backwards snowballing or contact-
ing authors of relevant papers (or studies). In this situation, relevance needs
to be established before these searching methods are used.

In this chapter we discuss three aspects of study selection:

• The selection criteria,

• The selection process,

• The relationship between papers and studies.

The chapter concludes with some examples of the selection criteria used
and the procedures followed by software engineering reviewers.

6.1 Selection criteria
The criteria for selecting studies to include in a review are formulated in

order to identify those studies that are able to provide evidence that is of

67

68 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 6.1: Study selection stage of the systematic review process.

relevance to the research questions. The criteria are generally (although not
universally) expressed as two sets: one for the inclusion criteria and one for
the exclusion criteria.

Some selection criteria are quite generic and fairly easily interpreted. For
example, criteria relating to publication date are reasonably straightforward,
although even this can be complicated by:

• The practice followed by some publishers of providing online access to
draft papers before they are incorporated into a specific issue of a jour-
nal,

• Some studies being reported in more than one paper, particularly if not
all of the papers fall within the scope (especially the time period) of a
review.

It is also often the case that studies are included only if they are published
in English and in ‘full’ peer-reviewed papers (as opposed, for example, to being
reported in extended abstracts or in ‘grey literature’ such as technical reports
and PhD theses).

For the more technical elements of a review, scoping the literature can be
quite challenging and sometimes the criteria need to be revised as reviewers
become more familiar with the topic and its boundaries. A point to note here is

Study Selection 69

that it is important to be explicit about the scope of a review in any resulting
publications, by fully reporting:

• The criteria used in the selection process,

• Details of the papers that are included in the review,

• The rationale for excluding marginal or ‘near-miss’ papers.

When planning a review, the study selection criteria can be piloted to
ensure that they can be sensibly and consistently interpreted by members of a
review team and that for the known papers they lead to the desired outcome.
Even then, some refinement of the criteria (and hence of the protocol) may
be needed as a review progresses.

6.2 Selection process
Study selection is usually carried out in a number of stages. Initially, once

a set of candidate papers has been identified, those that are clearly irrelevant
can be excluded on the basis of their title or their title and abstract. After
this early screening, papers have to be looked at in more detail. For example,
reviewers might decide to exclude a paper after reading some of the sections
(such as the introduction, a methods section or the conclusions), however,
the likelihood is that many papers will have to be read ‘in full’ before the
decision to exclude (or not) can be made. Sometimes, the decision to include
a study is overturned later in the review process. This may arise, for example,
if the required data cannot be extracted or if a study fails to reach a quality
threshold. In the end, there may well be marginal studies and the best that
reviewers can do is report and explain their decisions in such cases.

Reviewers may find that they have a very large number of candidate papers
(and what constitutes ‘very large’ will depend to some extent on the size of
the review team). Possible strategies for dealing with this problem are:

• Refining the search strings to improve recall and precision,

• Reducing the scope of the review (through refinement of research ques-
tions),

• Use of a text mining tool to support the selection process,

• Increasing the size of the review team.

Also, if the selection process results in a large number of papers being included
in a review then reviewers may choose to complete the process using only a
sample of the papers.

70 Evidence-Based Software Engineering and Systematic Reviews

Where study selection is being performed by a team of reviewers, there is
the opportunity to validate the outcomes of the selection process by two (or
more) members of the team independently applying the inclusion/exclusion
criteria and checking their level of agreement (for example, by performing a
kappa analysis (Cohen 1960)). Although tools are available to calculate the
kappa coefficient, this is briefly explained below. As well as calculating the
level of agreement, a mechanism is needed for resolving any differences that
arise. Common approaches are to do this through discussion or by using a
third reviewer to act as mediator.

A kappa (κ) coefficient is calculated using the following equation1:

κ = actual agreement − agreement expected by chance
scope for doing better than by chance (6.1)

TABLE 6.1: Example Data for Study Selection by Two Reviewers
Reviewer B Reviewer B
Included Excluded Total

Reviewer A Included 10 3 13
Reviewer A Excluded 4 25 29

Total 14 28 42

Consider the data shown in Table 6.1. Reviewer B has classified 14 of 42
studies as ‘included’ while Reviewer A has included 13 of the 42 studies. The
number of studies for which there is actual agreement is 10 plus 25 giving a
total of 35 out of 42 which equals 0.8333 (83.33%) of the studies. By chance
alone, the probability of an ‘include’ from Reviewer A is 13/42 = 0.3095 and
for Reviewer B is 14/42 = 0.3333. The chances of agreement by chance are
these two probabilities multiplied together, that is, 0.3095 x 0.3333 = 0.1032.
Using a similar calculation, the chances of agreement to exclude by chance is
0.4604. Adding together these two probabilities of agreement by chance gives
a total of 0.5636. That is, 56.36% agreement would be expected by chance.
This gives a kappa score as shown below:

κ = (0.8333− 0.5636)/(1− 0.5635) = 0.618 (6.2)

Kappa scores are generally interpreted as shown in Table 6.2. We see,
therefore, in our example, that agreement between the two reviewers is
Good/Substantial.

One approach to sharing the workload associated with study selection is
for the lead reviewer to perform the early screening stage(s), excluding papers
on the basis of titles or on titles and abstracts, which is usually quite straight-
forward, with the later, more difficult, stages being performed independently
by two members of the review team. See, for example, the process followed

1Further details can be found at: http://www.ganfyd.org/index.php?title=Statistical
tests for agreement

http://www.ganfyd.org/index.php?title=Statistical

Study Selection 71

TABLE 6.2: Interpretation of Kappa
Value of kappa Strength of agreement
0 - 0.29 Poor
0.21 - 0.40 Fair
0.41 - 0.60 Moderate
0.61 - 0.80 Good/Substantial
0.81 - 1.00 Very good/Almost perfect

by Marshall & Brereton (2013), described in the next section, which adopted
this approach.

For PhD students, it is not always possible for selection to be performed
independently by two reviewers. Where this is the case there are a number
of ways that confidence in the decisions made can be enhanced. For example,
a member of the supervisory team can check a random sample of papers
(or those papers that are considered marginal or about which the student
is uncertain). Alternatively, PhD students or other lone researchers can use a
test-retest approach which entails repeating (after a suitable time delay) some
or all of the study selection actions and comparing the outcomes. For each of
these approaches to study selection validation, if agreement is good, then the
review can proceed with some confidence in its reliability, if it is not, then the
criteria and their interpretation need to be reconsidered.

Another means of checking the decisions made (whether by one or by mul-
tiple reviewers) is to carry out some form of text analysis (also referred to
as text mining) to help determine whether papers that are ‘similar’ in some
way have been either all included or all excluded during the study selection
process. The general approach is to use a text mining tool to identify and
count the frequency of important words or phrases in each paper. A visual
display tool can then be used to show clustering with respect to these, high-
lighting where papers in the same cluster (that is, papers that seem to be
‘similar’) have been treated differently in the selection process. A number of
small studies have demonstrated the feasibility of using text mining to support
study selection (Felizardo, Andery, Paulovich, Minghim & Maldonado 2012).
Some text mining and visualisation tools that have been used to support the
systematic review process are listed in Chapter 13.

6.3 The relationship between papers and studies
The relationship between research papers (or other dissemination forms)

and the studies that they report is important for systematic reviews. Re-
searchers undertaking systematic reviews or mapping studies are usually (al-

72 Evidence-Based Software Engineering and Systematic Reviews

though not exclusively) looking for empirical studies that provide some sort
of evidence about a topic of interest. They will find, however, that

• Papers can report more than one study,

• Studies can be reported in more than one paper.

Where a paper reports multiple studies, these can generally be con-
sidered as separate studies for the purposes of a systematic review. The study
selection process may result in some of the studies being included in a re-
view and some being excluded. Although this seems quite straightforward,
this is not always the case. Sometimes, one or more studies are prelimi-
nary or pilot studies undertaken in advance of the ‘main’ study. Also, some-
times, several case studies are reported which could be treated separately or
as a single multi-case study. These issues are discussed further in Part III,
Section 22.6.4.

A study may be reported in more than one paper. This is not
unusual in software engineering. A conference paper may be followed by a
more detailed or enhanced journal paper. Also, a large study may be reported
in many papers which focus on different aspects of the research. It is important
that such multiple publications of a (single) study are identified, so that the
results are not counted more than once, and, where the quality of the study is
being assessed, all of the published information about the study can be used
for making that assessment. It is not always straightforward to establish that
multiple publications report a single study. Of course there may be some cross-
citation and it may be that titles and author sets are similar across a set of
papers. In the absence of these fairly obvious indicators, reviewers should pay
particular attention to sets of papers where the same number of participants
are recorded for ‘similar’ studies reported by similar sets of authors. Again
this issue is discussed further in Part III, Section 22.6.4.

6.4 Examples of selection criteria and process
In this section we describe the criteria used and the processes followed for

some of the published reviews. We can see in these examples that quite a wide
range of approaches to applying the criteria is taken. Sometimes, however,
only limited information about the process and specifically about the roles
taken by members of a review team is available in published papers.

Examples of study selection for quantitative systematic reviews
We look at two reviews in this category. They compare:

Study Selection 73

• Two approaches to software effort estimation (MacDonell & Shepperd
2007),

• Two development life cycle models (Mitchell & Seaman 2009).

The review by MacDonell & Shepperd (2007) compares the effectiveness of
software effort estimation models that use within-company (that is, local) data
with models that use cross-company (that is, global) data. The reviewers only
included studies where the experimental design met the following (inclusion)
criteria:

• Data was from five or more projects per company and for at least two
companies,

• There was a comparison between within-company and cross-company
models,

• The projects covered were substantially software projects (that is, not
hardware or co-design),

• Projects were commercial (that is, not student projects),

• Publications were demonstrably peer-reviewed, written in English and
published between 1995 and 2005.

Abstracts of all papers retrieved by the search process were read by the re-
viewer who had performed the search to determine whether the paper should
be included. If the decision could not be made, the reviewer read the whole
paper and then applied the inclusion/exclusion criteria. The second reviewer
provided comments on a small number of borderline papers.

Mitchell & Seaman (2009) performed a review of studies that compare the
cost, development duration and quality of software produced using a tradi-
tional waterfall approach with those of software produced using iterative and
incremental development (IID). Their search process found 30 candidate pa-
pers, nine pairs of which were found to be duplicates, leaving 21 unique papers.
At this stage, the reviewers applied the following inclusion criteria, requiring
that papers should:

• Be written in English,

• Be peer-reviewed,

• Report a primary study,

• Report empirical results,

• Compare waterfall and IID processes,

• Present results concerning development cost and/or development dura-
tion and/or resulting product quality.

74 Evidence-Based Software Engineering and Systematic Reviews

This process reduced the number of candidates to 11. The subsequent
identification of duplicate reports of the same study, the realisation that the
waterfall process for one of the studies included iteration, plus the application
of a quality threshold reduced the final count of studies to five. It is inter-
esting to note here, that the first two of these additional ‘criteria’ (relating
to duplicate reports and details about the processes being compared) are es-
sentially exclusion criteria although in the paper they are not labelled in this
way. There is no indication in the paper about whether both or only one of
the authors performed the study selection.

Examples of study selection for qualitative systematic reviews
Here we summarise the criteria and the process for study selection in a

management focused review relating to motivation in software engineering
(Beecham et al. 2008) and in a research-oriented review of studies about the
systematic review process (Kitchenham & Brereton 2013).

The study by Beecham et al. (2008) reviewed knowledge about what mo-
tivates developers, what de-motivates them and how existing models address
motivation. Before the authors applied the inclusion and exclusion criteria,
they checked for duplicate publications of individual studies and only included
one of the reports (either the most comprehensive or the most recent). The
reviewers stated that they included ‘texts’ that:

• Directly answer one or more of the research questions,

• Were published from 1980 to June 2006,

• Relate to any practitioner directly producing software,

• Focus on de-motivation as well as motivation,

• Use students to study motivation to develop software,

• Focus on culture (in terms of different countries and different software
environments),

• Focus on ‘satisfaction’ in software engineering.

They excluded texts:

• In the form of books or presentations,

• Relating to cognitive behaviour,

• Not relating to software engineering,

• Focusing on company structures and hierarchies unless expressly linked
to motivations,

Study Selection 75

• In the form of opinion pieces, viewpoints or purely anecdotal,

• That focus on software managers (who do not develop software),on group
dynamics or on gender differences.

Beecham et al. retrieved over 2000 references through the search process and
eliminated approximately 1500 of these on the basis of titles and abstracts.
This left 519 papers. These (except for 9 papers which could not be obtained)
were looked at in full by ‘a group of primary researchers’ who accepted 95
papers. An independent researcher looked at 58 of the 519 papers, which were
randomly selected by taking (approximately) every 10th paper from an al-
phabetic list, and re-applied the inclusion/exclusion criteria. The inter-rater
reliability was 99.4% indicating a high level of agreement and giving confi-
dence in the decisions made. A further validation exercise was carried out on
the 95 included papers by an independent expert on motivation in software
engineering who checked how each paper addressed the research questions.
There was a high level of agreement (99.8%) and the three papers where the
decision differed were considered by a third independent researcher. Once the
disagreements were resolved, 92 papers remained in the set of included papers.

Kitchenham & Brereton (2013) performed a qualitative systematic review
to identify and analysis research about using and improving the systematic
review process. As well as reporting selection criteria, these researchers also ex-
plain the rationale for each criterion. For conciseness, the rationale is omitted
from the following descriptions of the criteria used and the process followed.
The inclusion criteria used were:

• the main objective of the paper is to discuss or investigate a method-
ological issue relating to systematic reviews.

• The paper addresses the construction and/or evaluation of quality in-
struments,

• There must be a software engineering context,

• The paper must be written in English,

• The paper may be a short paper.

Papers were excluded if:

• Their main objective was to report a systematic review or mapping
study,

• They discussed evidence-based software engineering principles,

• They were methodological studies with a general (that is, a non-software
engineering) focus,

• In form of PowerPoint presentations or extended abstracts,

76 Evidence-Based Software Engineering and Systematic Reviews

• They produced guidelines for performing or reporting primary studies.

The search strategy for this review involved an initial informal search fol-
lowed by a 3-stage process which included both a manual search and an au-
tomated search. Here we summarise the selection aspects of the search and
selection process.

Stage 1 A manual search was performed by both authors who indepen-
dently applied the inclusion and exclusion criteria, with an emphasis on in-
clusion unless a paper was clearly irrelevant. Disagreements were discussed
and where agreement was not reached, the paper was included. Following an
automated search, both reviewers applied the selection criteria, using the title
and abstract of the papers found. Again the main emphasis was on including
papers unless they were clearly irrelevant. Disagreements were discussed and
where agreement could not be reached, the papers were provisionally included.

Stage 2 Papers included from the manual search, from the automated
search and from the known set (determined through the informal search and
using personal knowledge) were collated into a set of candidate papers. Where
papers were treated differently across these inclusion sets, they were discussed
and if no decision could be reached the paper remained a candidate. The final
inclusion/exclusion decisions were made when the full papers were read during
data extraction and quality assessment; again disagreements were discussed
until agreement was reached.

Stage 3 At this stage, additional searching methods were used (snow-
balling and approaching individual researchers), and search and selection val-
idation was carried out. Validation was based on the kappa agreement achieved
between the authors for the decisions made during manual selection and for
the selection from the candidates identified by the automated search.

Examples of study selection for mapping studies
The following examples report details of the processes followed as well as

the criteria used. These mapping studies aimed to:

• Find out how extensively, and by what means, the Gang of Four (GoF)
design patterns have been evaluated (Zhang & Budgen 2012),

• Identify and classify tools to support the systematic review process
(Marshall & Brereton 2013).

Zhang & Budgen (2012) aimed to identify which Gang of Four (GoF)
design patterns had been evaluated, what lessons had been learned from the
evaluation studies and what further research might be needed to address ‘gaps’
in the evidence. The reviewers applied the following inclusion criteria:

• Papers describe software design patterns, although only empirical papers
were used for the analysis,

Study Selection 77

• If several papers report the same study only the most comprehensive
would be included,

• Where several studies were reported in a paper, each study would be
treated independently.

Studies were excluded if they were:

• Reported in the form of abstracts or PowerPoint presentations,

• Documented in technical reports or papers submitted for publication.

The authors followed a 3-step process for excluding irrelevant papers or stud-
ies.

1. exclude on the basis of title,

2. exclude after reading the abstract,

3. exclude after reading the full paper.

The authors performed each of these steps independently, and then produced
an agreed-upon list. They took a conservative approach for steps 1 and 2. A
kappa score was calculated for an inter-rater agreement for each step.

The study by Marshall & Brereton (2013), which looked at the use of tools to
support systematic reviews and mapping studies, included papers that:

• Report on a tool to support any stage of a systematic review or mapping
study in software engineering,

• Report on a tool that is at any stage of development (e.g. proposal,
prototype, functional, etc.)

Exclusion criteria were:

• Papers not written in English,

• Abstract or PowerPoint presentations.

The inclusion and exclusion criteria were applied in two stages. Initially, the
first author checked the titles and abstracts of candidate papers and those
that were clearly not relevant were excluded. After this stage, 21 papers were
included. In the second stage, both authors checked the full texts, resulting
in 16 papers remaining in the inclusion set. Subsequently two further papers
were excluded during data extraction.

This page intentionally left blankThis page intentionally left blank

Chapter 7
Assessing Study Quality

7.1 Why assess quality? . 79
7.2 Quality assessment criteria . 82

7.2.1 Study quality checklists . 83
7.2.2 Dealing with multiple study types . 86

7.3 Procedures for assessing quality . 86
Scoring studies . 87
Validating scores . 87
Using quality assessment results . 88

7.4 Examples of quality assessment criteria and procedures 88

As well as defining and applying inclusion and exclusion criteria to select
relevant studies from a set of candidates, it is also important for many types
of review to define and apply criteria for assessing the quality of the selected
primary studies. This stage of the process is highlighted in Figure 7.1.

In this chapter we discuss three aspects of quality assessment:

• Why (and when) it is important to assess quality

• Defining the criteria to use for quality assessment

• Establishing and applying procedures for performing quality assessment

We note also, that although quality assessment is quite distinct from data
extraction, which is covered in Chapter 8, these two stages can be performed
sequentially or together (performing data extraction and quality assessment
on a study-by-study basis).

Examples of quality assessment criteria and of procedures for applying
them are described to illustrate some of the approaches taken by systematic
reviewers in software engineering.

7.1 Why assess quality?
Quality assessment is about determining the extent to which the results

of an empirical study are valid and free from bias. For systematic reviews

79

80 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 7.1: Quality assessment stage of the systematic review process.

and for some types of mapping study, evaluating the quality of the primary
studies contributing to a review can enhance its value in a number of ways.
For example:

• Differences in the quality of primary studies may explain differences in
the results of those studies

• Quality scores can be used to weight the importance of individual stud-
ies when determining the overall outcomes of a systematic review or
mapping study

• Quality scores can guide the interpretation of the findings of a review

For quantitative systematic reviews in particular, it is essential to assess
the quality of the primary studies included in the review because if their re-
sults are invalid (or there is doubt about their validity) or if they are biased in
some way, then this should be taken into account during the synthesis process.
Reviewers might (simply) choose to exclude low quality primary studies from
the synthesis process or they may choose to check whether their exclusion has
a significant effect on the overall outcomes of a review. There have been a
number of reports in the medical domain that have shown that if low-quality
studies are omitted from the synthesis process of a systematic review (or from

Assessing Study Quality 81

a meta-analysis) then the results of the review (or analysis) change. One exam-
ple is a systematic review of homoeopathy which suggested that it performs
well if low-quality studies are included, whereas high-quality studies found
no significant effect (Shang, Huwiler-Müntener, Nartey, Jüni, Dörig, Sterne,
Pewsner & Egger 2005). If reviewers intend to exclude low quality studies then
effort can be saved by assessing quality in advance of data extraction.

Quality assessment can be of less importance when undertaking a mapping
study since the focus for these is usually on classifying information or knowl-
edge about a topic. However, it can be important for some mapping studies,
especially tertiary studies, if for example their research questions relate to
changes in quality over time.

Assessing the quality of a primary study is a particularly challenging task
as there is no agreed, standard definition of study ‘quality’. Many of the guide-
lines and criteria for assessing study quality, some of which are described later
in this chapter, indicate that quality relates to the extent to which the de-
sign and execution of a study minimises bias and maximises validity. These
concepts are summarised in Table 7.1 (see also Section 2.5.2). Further dis-
cussions and pointers to relevant literature about quality, bias and validity,
can be found in Dybå & Dingsøyr (2008b).

TABLE 7.1: Quality Concepts
Term Synonyms Definition
Bias Systematic error A tendency to produce results that depart sys-

tematically from the ‘true’ results. Unbiased
results are internally valid.

Internal
validity

Validity The extent to which the design and conduct of
a study are likely to prevent systematic error.
Internal validity is a prerequisite for external
validity.

External
validity

Generalisability,
Applicability

The extent to which the effects observed in a
study are applicable outside of the study.

As well as being an intrinsically difficult task to perform consistently, qual-
ity assessment is confounded by:

1. constraints imposed by the publication venue for papers reporting a
primary study,

2. the range of primary study types included in a review.

The first of these factors, the constraints, usually relating to length, im-
posed by publishers can mean that researchers are not able to include all of
the details of their study in a single paper. This is particularly problematic for
conference proceedings where papers are often limited to 10 or 12 pages. This
can result in the omission of important methodological (and other) informa-
tion that would provide evidence of study quality. It can also lead to a study

82 Evidence-Based Software Engineering and Systematic Reviews

being reported in more than one paper adding to the difficulties of mapping
papers to studies (as discussed in section 6.3). One approach to alleviating
publishing constraints is to provide supplementary material on an associated
web site. This facility is supported by a number of publishers. Another way
of publishing more detailed information about a study than can be included
in a single conference paper is to report different aspects of a study across
multiple conference papers (which of course adds difficulties for the reviewer
who has to extract and combine these) or in journal papers where length is
usually less restricted.

The second of these factors which relates to the types of primary study,
can cause problems where the studies included in a review are of diverse
types. For example reviews can include quantitative studies, such as exper-
iments and quasi-experiments, and qualitative studies, such as case studies
and ethnographic studies. Here a dilemma arises — whether to use a generic
set of quality criteria across all of the studies included in a review, regardless
of their type, or whether to use specific sets of criteria tailored to each of
the types of study that occurs in the set of primary studies. Not surprisingly
each of these options has some strengths and some limitations. We look more
closely at this issue in Section 7.2.2.

Once the decision has been made to assess the quality of the primary
studies included in a systematic review or mapping study (and to use that
assessment during the synthesis stage of the review) then a reviewer has two
key questions to address. These are:

1. Against what criteria will the primary studies be assessed?

2. How will the assessment be performed and who should do it?

We also note that some reviews include non-empirical papers such as those
reporting lessons learned or discussing some aspect of the topic of the review.
The quality criteria discussed in this chapter are not appropriate for these
types of papers.

7.2 Quality assessment criteria
A large number of quality assessment criteria and checklists for different

types of empirical studies are published in the medical and social sciences
literature. In addition to those indicated in the following section, the Sup-
port Unit for Research Evidence (SURE)1, in the UK, provides a range of
relevant links and resources including a set of critical appraisal checklists for
quantitative studies, qualitative studies and systematic reviews. Work in the

1http://www.cardiff.ac.uk/insrv/libraries/sure/

http://www.cardiff.ac.uk/insrv/libraries/sure/

Assessing Study Quality 83

medical and social science fields has provided the basis for many of the quality
checklists proposed, used and/or evaluated for empirical studies in the soft-
ware engineering field. We summarise here the checklists most widely used in
software engineering reviews and also briefly discuss the problems associated
with quality assessment across multiple study types.

7.2.1 Study quality checklists
A number of checklists that are tailored to specific study types have been

proposed. For case studies, Runeson et al. (2012) present a checklist for both
readers of case studies and for researchers who are performing case studies.
These checklists are synthesised from a range of sources including literature
in the social sciences and information systems fields and adapted to software
engineering. The checklists for readers (and hence for reviewers) of case studies
can be used to assess the quality of case studies included in a review. Primary
studies of this type are commonly found in qualitative systematic reviews and
mapping studies. The readers’ checklist is shown in Table 7.2. Further details
of the case study methodology and its use in systematic reviews can be found
in Chapter 18.

TABLE 7.2: A Case Study Quality Checklist (Taken from Runeson, P., Höst,
M., Rainer, A. & Regnell, B. (2012)). Reproduced with permission.

Criteria
1. Are the objectives, research questions, and hypotheses (if applicable)

clear and relevant?
2. Are the case and its units of analysis well defined?
3. Is the suitability of the case to address the research questions clearly

motivated?
4. Is the case study based on theory or linked to existing literature?
5. Are the data collection procedures sufficient for the purpose of the case

study (data sources, collection, validation)?
6. Is sufficient raw data presented to provide understanding of the case

and the analysis?
7. Are the analysis procedures sufficient for the purpose of the case study

(repeatable, transparent)?
8. Is a clear chain of evidence established from observations to conclu-

sions?
9. Are threats to validity analyses conducted in a systematic way and are

countermeasures taken to reduce threats?
10. Is triangulation applied (multiple collection and analysis methods, mul-

tiple authors, multiple theories)?
11. Are ethical issues properly addressed (personal intentions, integrity,

confidentiality, consent, review board approval)?
12. Are conclusions, implications for practice and future research, suitably

reported for its audience?

84 Evidence-Based Software Engineering and Systematic Reviews

A quality checklist constructed for technology-intensive testing experi-
ments is described by Kitchenham, Burn & Li (2009). The checklist focuses
specifically on studies relating to testing; however, reviewers addressing other
technology-intensive topics, such as cost estimation and performance, might
find the approach to checklist construction and validation of interest. An adap-
tation of this checklist with suggestions for scoring each of the questions is
shown in Figure 22.8.

A further quality checklist was developed and used for a qualitative,
technology-focused systematic review on Agile methods (Dybå & Dingsøyr
2008b, Dybå & Dingsøyr 2008a). The 11 criteria making up the checklist were
based on those proposed for the Critical Appraisal Skills Programme2 and
by the principles of good practice for empirical research in software engineer-
ing described by Kitchenham, Pfleeger, Pickard, Jones, Hoaglin, El Emam &
Rosenberg (2002). The criteria, shown in Figure 7.3, cover four main areas of
empirical research:

• Reporting - criteria 1-3 relate to the quality of reporting an empirical
study,

• Rigour - criteria 4-8 address the details of the research design,

• Credibility - criteria 9 and 10 focus on whether the findings of the study
are valid and meaningful,

• Relevance - criteria 11 concerns the relevance of the study to practice.

In the systematic review on Agile methods, the reviewers applied the check-
list to 33 empirical studies, 24 of which were case studies, four were surveys,
three were experiments and two used a mix of research methods. This check-
list has been quite widely used by reviewers in software engineering as a basis
for quality assessment. See for example, the reviews by Alves, Niu, Alves &
Valença (2010), Chen & Babar (2011) and Steinmacher, Chaves & Gerosa
(2013).

As discussed in Section 3.2, a tertiary study is a mapping study where
systematic reviews and mapping studies constitute the ‘primary’ studies under
review. Many researchers who undertake tertiary studies carry out quality
assessment in order to identify trends in the quality of systematic reviews
and/or mapping studies. To date, criteria to assess the quality of systematic
reviews and mapping studies have not been developed specifically for software
engineering reviews. However, one of the sets of criteria used in the medical
domain, the DARE3 criteria4, has been applied in a number of tertiary studies.
The criteria were initially based on four questions, with a fifth being added
later. The five questions are:

2www.casp-uk.net
3Database of Abstracts of Reviews of Effects
4http://www.crd.york.ac.uk/CRDWeb/AboutPage.asp

http://www.crd.york.ac.uk/CRDWeb/AboutPage.asp
http://www.casp-uk.net
Database of Abstracts of Reviews of Effects

Assessing Study Quality 85

TABLE 7.3: A Quality Checklist That Can Be Used across Multiple Study
Types (Taken from Dybå, T. & Dingsøyr, T. (2008a)). Reproduced with per-
mission.

Criteria
1. Is the paper based on research (or is it merely a ‘lessons learned’ report

based on expert opinion)?
2. Is there a clear statement of the aims of the research?
3. Is there an adequate description of the context in which the research

was carried out?
4. Was the research design appropriate to address the aims of the research?
5. Was the recruitment strategy appropriate to the aims of the research?
6. Was there a control group with which to compare treatments?
7. Was the data collected in a way that addressed the research issue?
8. Was the data analysis sufficiently rigorous?
9. Has the relationship between researcher and participants been ade-

quately considered?
10. Is there a clear statement of findings?
11. Is the study of value for research or practice?

1. Are the review’s inclusion and exclusion criteria described and appro-
priate?

2. Is the literature search likely to have covered all relevant studies?

3. Did the reviewers assess the quality/validity of the included studies?

4. Were basic data/studies adequately described?

5. Were the included studies synthesised?

Examples of the use of the DARE criteria include the broad tertiary studies
reported in Kitchenham, Brereton, Budgen, Turner, Bailey & Linkman (2009),
Kitchenham, Pretorius, Budgen, Brereton, Turner, Niazi & Linkman (2010)
and da Silva et al. (2011) as well as a tertiary study by Cruzes & Dybå (2011b)
which focused on research synthesis.

A number of other approaches to assessing the quality of systematic re-
views are used within the medical domain, some of which are discussed in
Dybå & Dingsøyr (2008b). In addition, we highlight two initiatives related to
systematic reviews and meta-analyses within the clinical medicine field. One
of these is the PRISMA5 Statement which aims to help authors improve the
reporting of systematic reviews and meta-analyses (Liberati, Altman, Tetzlaff,
Mulrow, Gøtzsche, Ioannidis, Clarke, Devereaux, Kleijnen & Moher 2009). It
is suggested that ‘PRISMA may also be useful for critical appraisal of pub-
lished systematic reviews’. However Moher, Liberati, Tetzlaff & Group (2009)
do note that the PRISMA checklist is not a quality assessment instrument.

5Preferred Reporting Items for Systematic reviews and Meta-Analyses,
http://www.prisma-statement.org/

http://www.prisma-statement.org/

86 Evidence-Based Software Engineering and Systematic Reviews

A project undertaken by the Cochrane Editorial Unit (CEU) aims to spec-
ify methodological expectations for Cochrane protocols, reviews and review
updates. As a result of this work, the CEU have produced a report describing
methodological standards for the conduct of new Cochrane Intervention Re-
views6. The report describes a checklist of 80 attributes relating to the conduct
of reviews, indicating in each case whether they are considered mandatory or
highly desirable.

7.2.2 Dealing with multiple study types
Many systematic reviews and mapping studies in software engineering in-

clude primary studies that utilise a range of different empirical methods. These
typically include those methods described in Part II of this book. Where the
primary studies are of a single type (for example, they are all case studies or
all experiments) then a quality checklist can be selected or tailored for that
specific study type. However, where a review includes multiple study types,
researchers have to decide whether to use a single checklist or a set of type-
specific checklists.

When a single quality checklist is used for a systematic review or mapping
study, researchers have to consider which of the criteria (that is, which check-
list items) are applicable for each study type. Of course this means that it
is necessary to extract (and validate) the study type for each primary study
before carrying out a quality assessment. When scores for a particular study
are aggregated across the checklist items against which the study is assessed,
the number of applicable items needs to be taken into account through a nor-
malising process (see the third example in Section 7.4 which illustrates this
approach).

Where multiple quality checklists are used, the same requirement to de-
termine the study type arises. In this case, the study type is used to select the
most appropriate checklist.

One problem that arises when there are multiple study types is that ag-
gregated scores cannot be compared in a meaningful way across the different
types. So, it becomes quite challenging to interpret these when considering the
findings of a review. See Part III for further discussion about using quality
assessment results from different types of study.

7.3 Procedures for assessing quality
Here we consider three aspects of the process of assessing the quality of

empirical studies. These are:

6http://www.editorial-unit.cochrane.org/mecir

http://www.editorial-unit.cochrane.org/mecir

Assessing Study Quality 87

• Scoring studies against the checklist(s) used

• Validating the scores

• Using quality assessment results

Scoring studies
If a single checklist is being used, then each study will be scored against

each criterion that is appropriate for the study type. If multiple checklists are
used, then reviewers have to select the appropriate checklist and score the
study against the items in that checklist. A number of approaches to scoring
have been taken by reviewers. Some use a simple yes(1)/no(0) score (see, for
example, Dybå & Dingsøyr (2008a) and Cruzes & Dybå (2011b)) whilst others
recognise partial conformance to a criterion. For example da Silva et al. (2011)
use a 3-point scale (yes(1)/partly(0.5)/no(0)). Whatever scale is used, it is
important to ensure consistency by documenting the specific characteristics
of a study that map to specific points on the scale.

Validating scores
As we have seen in Section 6.2, validation is an important element in

maintaining confidence in the procedures and hence the outcomes of a re-
view. The same options as are discussed for study selection are possible for
validating quality scores. If quality assessment is being carried out by a team
of researchers, then two or more members of the team can score each of the
studies followed by a process of resolution. The process by which researchers
obtain a consensus about the quality of a paper given a quality checklist has
been investigated through a series of studies (Kitchenham, Sjøberg, Dybå, Br-
ereton, Budgen, Höst & Runeson 2013). These studies found that using two
researchers with a period of discussion did not necessarily deliver high reliabil-
ity (that is, consistency in using a checklist) and simple aggregation of scores
appeared to be more efficient (that is, involved less effort) than incorporating
periods of discussion without seriously degrading reliability. The authors of
the studies suggest using three or more researchers, where this is feasible, and
taking an average of the total score using the numerical values of the scores.
In contrast, a study by Dieste, Griman, Juristo & Saxena (2011) recommends
against using aggregate scores and recommends only using validated checklist
items.

Where quality assessment is being performed by a single researcher, such as
a PhD student, then a test-retest approach to quality score validation can be
used. This involves the researcher redoing the assessment of selected studies
after a time delay. Alternatively, PhD students can ask members of their
supervisory team to assess a random sample of the primary studies. Whether
the assessment has been carried out by independent researchers, or where

88 Evidence-Based Software Engineering and Systematic Reviews

a lone researcher has taken a test-retest approach, the level of agreement
between the scores can be checked (for example, using a Kappa analysis).

Using quality assessment results
As indicated in Section 7.1, results from the quality assessment process

can be used within a systematic review in a number of ways. These include:

• specific quality criteria or the overall score can be used to exclude studies
that are considered to be of low quality,

• analyses can be performed with and without low quality studies to de-
termine the impact of such studies on the overall results,

• one of the research questions addressed by a review may focus on trends
in the quality of primary studies relating to the topic of a review.

Whatever the role played by quality assessment, reviewers will need to consider
the study type as well as the quality score for each of the primary studies that
contribute to the findings of a review.

7.4 Examples of quality assessment criteria and proce-
dures

Here we summarise three examples of quality assessment undertaken as
part of software engineering systematic reviews. These cover each of the three
types of systematic review: quantitative technology-focused reviews; qualita-
tive technology-focused reviews and qualitative research-focused reviews (see
Section 3.1 and Figure 3.1).

Quality assessment performed by researchers undertaking tertiary studies
is also briefly highlighted.

The first example is a quantitative systematic review by Kitchenham et al.
(2007) of studies which compare the use of cross-company and within-company
cost estimation models. This review uses the checklist shown in Table 7.4
which is split into two parts (Part I and Part II). The criteria in Part I relate
to the quality of the primary study and those in Part II are about the quality
of reporting. The parts are weighted differently, with Part I having a weighting
of 1.5 and Part II having a weighting of 1. The table indicates the possible
scores for each of the criteria.

Quality assessment was carried out in parallel with data extraction in the
following way:

1. For each paper, a reviewer was nominated randomly as data extrac-
tor/quality assessor, data checker or adjudicator,

Assessing Study Quality 89

TABLE 7.4: A Quality Checklist for a Quantitative Systematic Review
(Taken from Kitchenham, B. A., Mendes E.& Travassos G. H. (2007)).
Reproduced with permission.

Criteria
Part I
1. Is the data analysis process appropriate?
1.1 Was the data investigated to identify outliers and to assess distribu-

tional properties before analysis? Yes(0.5)/No(0)
1.2 Was the result of the investigation used appropriately to transform the

data and select appropriate data points? Yes(0.5)//No(0)
2. Did studies carry out a sensitivity or residual analysis?
2.1 Were the resulting estimation models subject to sensitivity or residual

analysis? Yes(0.5)/No(0)
2.2 Was the result of the sensitivity or residual analysis used to remove

abnormal data points if necessary? Yes(0.5)/No(0)
3. Were accurate statistics based on the raw data scale? Yes(1)/No(0)
4. How good was the study comparison method?
4.1 Was the single company selected at random (not selected for conve-

nience) from several different companies? Yes(0.5)/No(0)
4.2 Was the comparison based on an independent hold out sample (0.5),

random subsets (0.33), leave-one-out (0.17) or no hold out (0)?
5. Size of within-company dataset? fewer than 10 projects (score 0), 10-20

(0.33), 21-40 (0.67), more than 40 (1)
Part II
1. Is it clear what projects used to construct each model? Yes(1)/No(0)
2. Is it clear how accuracy was measured? Yes(1)/No(0)
3. Is a clear what cross-validation method was used? Yes(1)/No(0)
4. Were all model construction methods fully-defined (tools and methods

used)? Yes(1)/No(0)

2. The data extractor/quality assessor read the paper and completed a
form,

3. The checker read the paper and checked the form,

4. If the extractor and checker could not resolve any differences that arose,
the adjudicator read the paper and made the final decision after con-
sulting the extractor and checker.

The assignment of roles was constrained so that no-one performed data ex-
traction or quality assessment for a paper that they had authored and as far
as possible the work load was shared equally.

In the second example, Dybå & Dingsøyr (2008a) report a qualitative system-
atic review of studies relating to Agile software development. The reviewers
used the criteria shown in Figure 7.3 and formulated quite detailed descrip-
tions of the issues to consider when scoring studies against each of the criteria.
Studies were scored using a simple yes/no scale. The detailed descriptions of

90 Evidence-Based Software Engineering and Systematic Reviews

issues used to guide the scoring process can be found in Appendix B of Dybå
& Dingsøyr (2008a).

Dybå & Dingsøyr and another researcher used the first criterion (‘Is the
paper based on research (or is it merely a ‘lessons learned’ report based on ex-
pert opinion)?’) as the basis for inclusion/exclusion and they calculated their
level of agreement for this criterion (94.4%). Disagreements were resolved by
discussion among the three researchers.

The third example is a systematic review that addresses a research process,
specifically the systematic review process (Kitchenham & Brereton 2013). This
review included primary studies of many different types such as case studies,
surveys and secondary studies. It also included discussion and ‘lessons learned’
papers. The reviewers chose to base quality assessment on the generic checklist
developed by Dybå & Dingsøyr (2008a) (see Figure 7.3) with the additional
question:

“What research method was used: Experiment, Quasi-Experiment,
Lessons learnt, Case Study, Opinion Survey, Tertiary Study, Other
(Specify)?”

The determination of study type was based on the reviewers’ own assess-
ments rather than on the type claimed by the authors of a paper. Checklist
items 5–8 were also adapted to address the different study types. The revised
checklist items were:

Item 5. “Was the recruitment strategy (for human-based experiments
and quasi-experiments) or experimental material or context (for lessons
learnt) appropriate to the aims of the research?”

Item 6. “For empirical studies (apart for lessons learnt) was there a
control group or baseline with which to evaluate systematic review pro-
cedures?”

Item 7. “For empirical studies (apart for lessons learnt) was the data
collected in a way that addressed the research issue?”

Item 8. “For empirical studies (apart for lessons learnt) was the data
analysis sufficiently rigorous?”

In addition, an allowable ‘score’ of ‘not applicable’ was included for ques-
tions 4-8. For most of the criteria, the allowable scores for applicable items
were Yes (1), Partly (0.5), No (0) with interpolation permitted. The excep-
tion was the first criteria (Is the paper based on research?), for which only
the scores of Yes(1) and No(0) were allowable.

The two reviewers undertook quality assessment (and data extraction)
independently. Disagreements were discussed until agreement was reached.
The reviewers noted some problems with their approach:

Assessing Study Quality 91

• Although they identified broadly which questions were relevant for par-
ticular types of study, they found that for some studies the context meant
that further decisions about appropriateness had to be made during the
quality assessment. This point is discussed in some detail in the paper
and resulted in the reviewers assessing independently whether a ques-
tion was relevant for a particular study as well as determining scores for
each relevant criteria.

• Their assessments of study type frequently differed from those of the
authors of a study. For example, if a case study was based on an opinion
survey they classified it as an ‘Opinion Survey’ rather than a ‘Case
Study’, and if a study was a post-hoc analysis of a systematic review
they classified it as an ‘Example’ rather than a ‘Case Study’.

• They found that using the checklist sometimes resulted in small studies
obtaining good scores even though by their nature they could provide
only very limited evidence of the value of the technique or method be-
ing studied. For example, if a study was a preliminary feasibility study
it could score well on all checklist items even though it could provide
very limited evidence of real value of the method being studied. Addi-
tionally, some lessons learned and experience papers scored well because
relatively few checklist questions were relevant.

The level of agreement achieved for quality assessment, using values for
the number of questions considered to be appropriate and the average quality
score for each paper, was measured using the Pearson correlation coefficient.

As indicated in Section 7.2.1, a number of tertiary reviews have used the
DARE criteria for assessing study quality. See for example, Kitchenham, Br-
ereton, Budgen, Turner, Bailey & Linkman (2009), Kitchenham, Pretorius,
Budgen, Brereton, Turner, Niazi & Linkman (2010), da Silva et al. (2011),
Cruzes & Dybå (2011b) and Verner, Brereton, Kitchenham, Turner & Niazi
(2014). With the exception of Cruzes & Dybå, reviewers scored each primary
study (that is, each systematic review or mapping study) against each of the
criteria with possible scores being Yes(1.0), Party (0.5) and No(0). Cruzes &
Dybå scored studies as either meeting a criterion (Yes) or not (No). A range
of different approaches was taken to allocating independent quality assessors
and to resolving disagreements.

This page intentionally left blankThis page intentionally left blank

Chapter 8
Extracting Study Data

8.1 Overview of data extraction . 93
8.2 Examples of extracted data and extraction procedures 95

Examples from quantitative systematic reviews 96
Examples from qualitative systematic reviews 97
Example from a mapping study . 98

The objective at this stage of the review process, which is highlighted in Figure
8.1, is to extract, from the reports of the primary studies, the data needed
to address the research questions. The strategy for data extraction, including
the data extraction form (or forms) needs to be defined and justified. The use
of data extraction forms can help to maintain consistency (across studies and
between extractors), and, where these are held electronically, the extraction
and data recording can be performed in one step. Although the forms will have
been piloted during the planning phase, it is possible that they will have to be
revised during the data extraction stage when a broader range of studies are
processed. Some tools that provide support for data extraction and subsequent
data management are indicated in Chapter 13.

The structure and balance for this chapter is somewhat different from the
three previous chapters with a greater emphasis being placed on providing a
set of examples to illustrate the strategies that have been followed across a
range of quantitative systematic reviews, quantitative systematic reviews and
mapping studies. The data to be extracted for a review of any kind is very
closely related to the specific research questions for that review and also to the
requirements of the synthesis/aggregation phase. In the examples, we show
this connection as well as illustrating a range of procedures for extracting,
recording and validating the data.

As noted in Chapter 7, although data extraction is quite distinct from
quality assessment, these two stages can be performed sequentially or together.

8.1 Overview of data extraction
Different types of data are usually extracted for the different types of

review although all usually include some ‘standard data’ that records, for ex-
ample, publication details for each paper included in a review and information

93

94 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 8.1: Data extraction stage of the systematic review process.

about the extractor and date of extraction. What other data is extracted de-
pends very much on the research questions for a review. It should be noted
also that sometimes the data needed will be spread across a number of papers.

For quantitative systematic reviews, data is most commonly in numerical
form although it may include some qualitative data relating, for example, to
the context of a primary study (such as the characteristics of participants in
an experiment), or to opinions expressed by participants in a primary study,
or to recommendations based on the findings of a primary study. This will
particularly be the case where vote counting, as opposed to meta-analysis, is
to be used as the method of synthesising the outcomes of the primary studies.
Here qualitative data can be used to investigate possible explanations for
differences in the outcomes of the primary studies (see Section 10.4.6). If the
research questions relate, for example, to specific metrics such as defects found,
time taken to perform a task or estimates of development costs, then this
information is extracted for each study and recorded in a table, a spreadsheet
or a special-purpose systematic review support tool.

For qualitative systematic reviews and mapping studies, data is often ex-
tracted in textual form or through the use of a set of classification schemes.

For qualitative systematic reviews, information about, for example, fac-

Extracting Study Data 95

tors, barriers, motivators, recommendations or experiences is extracted and
recorded. However, the extraction of this type of data can be more susceptible
to bias and the data is less amenable to statistical analysis, making spread-
sheets a less useful recording medium. For this type of study, data extraction
and synthesis are very closely linked and are likely to be combined within a
single process. See, for example, the meta-ethnography process described in
Section 10.4.1 and thematic analysis, described in Section 10.4.4.

For mapping studies, data extraction and aggregation may be performed
iteratively with the classification schemes (for example, relating to the tech-
nique used for a particular software engineering task, or the method used in
an empirical study) being revised as more knowledge about the topic is gained
through the extraction and aggregation process.

The commonly used procedures for data extraction and validation are
mostly the same as those described for quality assessment (see Section 7.3),
namely:

• Independent extraction by two (or more) reviewers followed by reconcil-
iation through discussion or moderation

• For a lone researcher, taking a test-retest approach and comparing out-
comes

• For a lone researcher such as a PhD student, engaging a member of the
supervisor team to extract data for a sample of studies

Additionally, especially for qualitative data, extraction may be undertaken
as a team, with two or more reviewers working together to reach agreement
about the data to be extracted. Whatever approach is taken, if agreement
between extractors (or extractions for the test-retest case) is poor then some
review of data descriptions, and possibly of the research questions, may be
needed.

8.2 Examples of extracted data and extraction proce-
dures

We summarise the data extraction strategies for the following examples:

1. two quantitative systematic reviews which take rather different ap-
proaches to data validation,

2. two qualitative systematic reviews: a technology-oriented review and a
research-oriented review,

3. a technology-oriented mapping study about the use of Open Source
projects in teaching about software engineering.

96 Evidence-Based Software Engineering and Systematic Reviews

Examples from quantitative systematic reviews
The first example in this category is a meta-analysis undertaken by Hannay

et al. (2009) which aimed to determine the effectiveness of pair programming
compared to solo/individual programming. The systematic review addressed
the research question:

How effective, in terms of quality, duration or effort is pair
programming compared to solo programming?

Data was extracted about the type of treatment, the type of system, the type
of tasks, duration of the study, number of groups, group assignment, type
of subjects and their experience with pair programming, number of pairs,
number of individuals, outcome variable, means, standard deviations, counts,
percentages and p-values.

Data was extracted from all studies by three of the four reviewers and dis-
crepancies were resolved through discussion amongst all four reviewers (that
is, the four authors of the review paper). Reviewers performed separate meta-
analyses for quality, duration and effort.

The second example of data extraction for a quantitative systematic review is
taken from a study carried out by Hall et al. (2012) which reviewed the per-
formance of fault prediction models. This systematic review addressed three
research questions relating to context, independent variables included in the
fault prediction models and the performance of specific modelling techniques.
Three sets of data were extracted with a different procedure being followed
for each set:

1. Context data - source of the data, maturity, size, application area and
programming language of the systems studied. This data was collected
by one of the reviewers.

2. Qualitative data - data relating to the research questions of the review
that was reported in the findings and conclusions of the primary studies.
Two reviewers extracted the data independently and discussed disagree-
ments until these were resolved.

3. Quantitative data - predictive performance data for all models reported
in a study. The form of the data depended on whether the study reported
results via categorical or continuous dependent variables. For categorical
studies, where possible, data about precision, recall and/or f-measure
was recorded. For continuous studies, results in the primary studies were
reported in terms of the number of faults predicted in a unit of code
using measures based on errors (for example, Mean Standard Error) or
differences between expected and observed results (such as Chi Square).
Data was extracted and recorded using whatever measure was used in
each study. For this data, two reviewers worked together to identify and
extract the data from each study.

Extracting Study Data 97

The reviewers intended to carry out meta-analyses of quantitative data; how-
ever, this subsequently proved problematic and so they chose to take a quali-
tative thematic approach.

Examples from qualitative systematic reviews
The first example in this category is taken from a review which aimed

to ‘plot the landscape’ of reported knowledge about what motivates and de-
motivates software engineers (Beecham et al. 2008). The research questions
for this review are shown in Section 4.3. Data was extracted about how each
study answered each of the research questions, with the extractor recording
information about:

• Software engineer characteristics,

• Software engineer motivators,

• Software engineering de-motivators,

• External signs or outcomes of motivated software engineers,

• External signs or outcomes of de-motivated software engineers,

• Software engineering as a motivator (e.g. what is motivating about the
type of development used; task of coding, testing etc),

• Frameworks/models that reflect how software engineers are motivated.

Endnote1 was used to record publication details for each paper and a
results form was used to record how each study answered each of the re-
search questions. An example of a populated form, which also shows the cap-
tured publication details and a potentially relevant study identified through
backwards snowballing is described in Appendix B of the review protocol
(Beecham, Baddoo, Hall, Robinson & Sharp 2006).

Data was validated by an independent expert on motivation in software
engineering who recorded how each paper addressed each research question.
Disagreements were discussed and for the small number of cases where they
could not be resolved, a third independent researcher arbitrated. The approach
taken to synthesising the data was to establish the frequency with which a
characteristic or motivator was identified by the primary studies (most of
which were surveys).

The second example in this category is a research-oriented qualitative sys-
tematic review focusing on the systematic review process (Kitchenham &
Brereton 2013). The overall aim of the review was to identify, evaluate and

1http://endnote.com/

http://endnote.com/

98 Evidence-Based Software Engineering and Systematic Reviews

synthesise research about performing systematic reviews and mapping stud-
ies.The specific research questions address are listed in Section 4.3. Extracted
data included:

1. Publication details

2. Review-specific data relating to:

• Type of paper (problem identification and/or problem solution (PI)
or lessons learned/opinion survey/discussion paper (E)),
• Scope of study (mapping study, systematic review/both/update
study/other)
• Summary of aims
• Main topics covered (multiple selections allowed from a list)
• Method proposed - name or description
• Validation performed? - yes or no
• Actual validation method (as judged by the data extractors) - se-
lected from a list or other (specified),
• Claimed validation method
• Summary of main results
• Any process recommendations (determined by the data extractors)

Publication details were collected and recorded in a spreadsheet by the first
author. For review-specific data, some discussion papers, lessons learned pa-
pers and opinions surveys (that is, E-type papers) were treated differently
from other studies. If a paper covered a very specific topic and had a limited
number of results then the data was collected, as for other studies, by both
reviewers, and recorded in a spreadsheet. Disagreements were discussed until
agreement was reached. If, however, the scope of an E-type paper was very
broad (that is, if it covered many aspects of a review and/or included com-
ments from a large variety of subjects), the spreadsheet was only partially
completed and an additional data extraction form was used (see Table 8.1).
For this third type of (textual) data, the first author extracted the data and
the second author checked it.

Example from a mapping study
The example summarised here is a mapping study focusing on the use of

Open Source projects in software engineering education (Nascimento, Cox,
Almeida, Sampaio, Almeida Bittencourt, Souza & Chavez 2013). The study
addressed three research questions:

1. “How are Open Source projects used in software engineering education?”

Extracting Study Data 99

TABLE 8.1: Form for Recording Extra Textual Data (adapted from Kitchen-
ham and Brereton (2013))
Issue Id
Issue text For each issue/problem raised/solution proposed specify this us-

ing the same text as the paper authors
Type Advice, problem/challenge or value (benefit)
Suggestion for
guidelines?

Yes or no

Novice issues? Yes or no
Education is-
sues?

Yes or no

Location in
paper

Page number or table number/id

Stage in re-
view process
addressed

Research question/protocol/search/selection/data extraction/
quality assessment/data aggregation/synthesis/reporting

Importance A ratio indicating number of votes out of the maximum possible
number or a textual indication of relative importance

Related issue Reference to any related issue
Comments

2. “Are there any initiatives that combine open source projects with active
learning in software engineering courses?”

3. “How is student learning assessed in such initiatives?”

In addition to publication details, data was extracted according to the follow-
ing classification facets:

• Software engineering topic - based on the SWEBOK knowledge areas2,

• Research type - using a set of approaches to research based on those of
Petersen, K. Petersen, Feldt, Mujtaba & Mattsson (2008),

• Learning approach - using categories: active learning (general),
case-based learning, game-based learning, peer/group/team learning,
problem-/project-/inquiry-based learning, studio-based learning and
other,

• Assessment perspective - where there is assessment, this can, for example,
be from the perspective of the student (through peer or self assessment)
or from the perspective of teaching staff,

• Assessment type - covering methods of assessing students (such as by

2www.swebok.org

www.swebok.org

100 Evidence-Based Software Engineering and Systematic Reviews

examination, through developed software artifacts, interviews, exercises
or surveys).

Nascimento et al. indicate that due to lack of time, data was extracted (that is
the primary studies were classified) by only one reviewer. The authors recog-
nise this as a limitation of their mapping study.

Chapter 9
Mapping Study Analysis

9.1 Analysis of publication details . 102
9.2 Classification analysis . 103
9.3 Automated content analysis . 106
9.4 Clusters, gaps, and models . 110

This chapter is the first of three consecutive chapters dedicated to data syn-
thesis. We have split this topic into three chapters because the three different
types of systematic review (quantitative, qualitative and mapping study) re-
quire very different procedures. Data synthesis is also one of the tasks that
many software engineering researchers have identified as least well addressed
by current guidelines, see Cruzes & Dybå (2011b) and Guzmán, Lampasona,
Seaman & Rombach (2014).

Chapter 10 discusses qualitative synthesis which is suitable for systematic
reviews of qualitative primary studies as well as systematic reviews of quan-
titative primary studies that are unsuitable for meta-analysis. Chapter 11
describes statistical methods used to synthesise primary studies that report
quantitative comparisons of different software engineering techniques.

This chapter discusses the analysis methods used for mapping study re-
views. We address mapping studies first because the analysis methods used to
summarise results from mapping studies are generally quite straightforward
but provide some insight into the problems experienced synthesising results
from systematic reviews. The analysis of mapping study results is relatively
simple because the data extracted from each primary study in a mapping
study are much less detailed than the data extracted from primary studies in
systematic reviews. However, more complex analyses based on text mining can
help identify clusters of similar studies either to validate the study inclusion
and exclusion process or identify subsets of studies for more detailed analysis.

The examples of data analysis presented in this chapter were analysed
using the R statistical language. We strongly recommend using R since:
• It is free and open source.

• There are numerous ancillary packages developed by statistical experts.

• There are many textbooks describing R. We personally recommend R
in Action (Kabacoff 2011).

• It provides flexible programming facilities.

101

102 Evidence-Based Software Engineering and Systematic Reviews

9.1 Analysis of publication details
Many research questions can be answered by analysing publication details,

such as:

• Author name and affiliation

• Publication date

• Publication type

• Publication source

Such data are usually analysed as simple tables of counts such as the
number of publications per author, or per country of affiliation, or simple
trend-based graphics such as the number of publications per year. For exam-
ple, Mair, Shepperd & Jørgensen (2005) analysed empirical cost estimation
studies to identify and investigate the data sets. They presented:

• A table showing the number of studies in each journal that was used in
the search process.

• A line plot of the number of studies grouped in three-year periods.

When a mapping study is performed as part of a PhD thesis, a research
student needs to know which papers are the most influential in their field, and
to have read and understood them. Using a general indexing system such as
Scopus, Web of Science, or Google Scholar, it is easy to discover how many
papers have cited each primary study, which is a good way of identifying such
papers.

Another type of analysis that can be useful when dealing with a large
number of primary studies is to look for author networks, that is, groups of
authors that have collaborated to produce a number of primary studies. This
information can be used with classification data to identify whether groups
of authors concentrate on specific topics, problems or methods. For example,
in the context of a meta-analysis of machine learning defect prediction meth-
ods, Shepperd, Bowes & Hall (2014) used the author group as a moderator
factor in their analysis. Surprisingly, it proved to be the most important mod-
erator factor, accounting for 31% of the variation among studies. Although the
primary studies all compared different prediction methods, prediction method
as a factor accounted for only 1.3% of the variation.

It may also be useful to analyse the cross-references within a set of pri-
mary studies to look for clusters of studies and isolated studies. It is also
worth checking whether the isolated studies should really have been excluded.
Furthermore, analysis of the combined set of included and exclude studies can
be used to check that inclusion and exclusion criteria have been used consis-
tently. For example, if publication detail analysis shows that some excluded

Mapping Study Analysis 103

papers are among a cluster of included papers, they should be re-assessed for
possible inclusion.

9.2 Classification analysis
The more interesting research questions are usually based on classifying

the primary studies and may concern issues such as:

• Identifying the existing research approaches and/or concrete techniques
used in a topic area and cross-referencing between the approach taken
and the relevant primary studies.

• Identifying the experimental methods used in empirically-based studies.

• Mapping approaches and techniques to the overall software engineering
process or to specific steps in a specific software engineering task.

For example, Mair et al. (2005), provide a large number of diagrams1

relevant to describing and categorizing software engineering datasets. The
diagrams show:

• The number and percentage of datasets that were available or unavail-
able to researchers.

• The number of datasets collected in three-year time periods.

• The size of the datasets in terms of number of projects.

• The dataset size, in terms of numbers of features (attributes).

• The frequency of dataset usage (that is, the number of studies that used
each dataset).

Mair et al. did not specify a priori research questions for their mapping
study, but, as experts in the topic area, they provided analyses of great interest
to cost estimation researchers.

In another example, Elberzhager, Rosbach, Münch & Eschbach (2012) in
a mapping study on methods to reduce test effort, asked the question:

“What are existing approaches for reducing effort when applying
testing techniques, and how can they be classified?”

1The diagrams are labelled histograms but are actually frequency diagrams.

104 Evidence-Based Software Engineering and Systematic Reviews

To address the question they extracted keywords from the abstracts of 144
primary studies and then looked for additional keywords by reading the intro-
ductions and conclusions of the primary studies. This allowed them to identify
five groups of testing methods (specifically Test automation, Prediction, Test
input reduction, Quality Assurance before testing, Test strategy). They then
tabulated the number and percentage or papers in each category, but they
also provided a narrative description of each approach.

To be helpful to readers, data displays should allow the reader to track
papers to the categories that describe them. This is usually done by present-
ing all the extracted information in data matrices (which need to be either
published in the review reported or included in ancillary information avail-
able to readers), but can also be incorporated into data analysis displays. For
example, Elberzhager et al. looked at papers in each of the categories in more
detail and identified more detailed subcategories. For test automation they
identified different phases of code automation and displayed the information
using a horizontal bar chart with the identifiers of each paper printed beside
the relevant horizontal row. An artificial example of a horizontal bar chart is
shown in Figure 9.1. This was obtained from the data and the code snippet
shown in Figure 9.2.

Petersen et al. (2008) suggest the use of bubble plots to visualize rela-
tionships among categorical variables. An example showing the structure of a
bubble plot can be seen in Figure 9.3.

A bubble plot assumes we have three categorical variables and want to
plot two of the variables (X-Variable 1 and X-Variable 2) against the third
(Y-Variable). The relationships are shown by the number of studies that share
a specific X-variable category and a specific Y category variable. For example,
in Figure 9.3, 15 studies exhibit both Y-Variable category 4 and X-Variable 1
Category 2. In this case, the value 15 means that 21.3% of the papers that have
been categorized according to X-Variable 1. A bubble plot does not assume
that every study is categorized against each variable (e.g., some studies may
not exhibit any of the categories associated with a X-variable and other studies
may exhibit several different categories of the same X-variable), nor does it
display any direct relationship between the X-variables.

Bubble plots can be produced manually using a drawing package. Alterna-
tively, R supports bubble plots of two-variables but to produce the bubble plot
shown in Figure 9.3, the data must be organized as shown in Table 9.1, the
X-Variable 1 has 5 categories which are mapped to the values xpos=-5, -4,...,-
1 while X-Variable 2 has 6 categories mapped to the values xpos=1,2,...,6.
The Y-variable has 5 categories mapped to the values yvar=1,2,..5. val iden-
tifies the number of primary studies that have the specific X-category and
Y-category. The values of xtpos and ytpos identify the (x,y) co-ordinates on
the bubble plot where the percentages associated with val should be printed
so they are displaced from the bubble. The R code used should be based on
the snippet shown in Figure 9.4.

Mapping Study Analysis 105

C
at

1
C

at
2

C
at

3

Horizontal bar plot
X

-V
ar

ia
bl

e

0 1 2 3 4

[S1,S3,S11]

[S2,S5,S6,S12]

[S4,S7,S10]

FIGURE 9.1: Example of a horizontal bar chart including study IDs.

A limitation of classification methods used in mapping studies is that al-
though the set of categories relating to a specific feature or characteristic may
appear to be mutually exclusive, primary studies are often more complex.
For example, mapping study analysis often uses the classification of study
types Wieringa, Maiden, Mead & Rolland (2006) proposed to classify require-
ments engineering papers. The categories include: Problem investigation, Solu-
tion design, Solution Validation, Solution selection, Solution implementation,
Implementation evaluation. However, in practice, a paper discussing a “Solu-
tion design” will often include a section demonstrating the feasibility of the
proposed solution which would be an example of “Solution Validation”. This
means that such a paper should be classified in both categories. It is often
clear from bubble plots or tabular displays that the total number of classi-
fied papers is greater than the number of primary studies but it is not clear
from bubble plots which papers exhibit multiple categories. Furthermore, if
researchers categorise a paper in terms of their personal opinion of the ‘main’

106 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 9.2: Bar chart code snippet.

goal of the paper, then some categories may be artificially underrepresented.
Multiple classifications of primary studies or underrepresentation of certain
categories make it more difficult to understand the implications of the re-
ported frequency counts.

9.3 Automated content analysis
Recently, several researchers have suggested the use of text mining and as-

sociated visualization methods to analyse mapping study data, see Felizardo,
Nakagawa, Feitosa, Minghim & Maldonado (2010) and Felizardo et al. (2012).
These techniques can be used for analysing citations among papers as de-
scribed in Section 9.1, however, in this section, we describe their use for con-
tent analysis. Content analysis and text mining can be used to:

• Check inclusion and exclusion decisions during primary study selection.

• Identify clusters of studies that might be suitable for more detailed anal-
ysis as a set of related studies.

Text mining and visualization require specialist tools (see Chapter 13).
Felizardo et al. (2012) used the following process for content mapping using
the Revis tool:

1. Text preprocessing is used to structure and clean the data. They used
text from the title, abstract and keywords only. In addition, the text is
analysed to create a vector of terms (words) present in the text which
are weighted based on term frequency-inverse document frequency mea-
surement which involves weighting words:

• in direct proportion to its frequency in a specific primary study,
but

Mapping Study Analysis 107

X-Variable1 NumX1 (100%) X-Variable2 NumX2 (100%)

3

1

1

1

2

4

14

8

1

2

1

15

12

3

3

1

3

1

21

93

1

2

4

7

1

1

2

1

5

5
X

1C
at

5

X
1C

at
4

X
1

C
at

3

X
1

C
at

2

X
1C

at
5

X
2C

at
1

X
2C

at
2

X
2C

at
3

X
2C

at
4

X
2C

at
5

X
2C

at
6

Ycat5

YCat4

YCat3

YCat2

YCat1

Y Variable Name

4.23%

1.41%

1.41%

1.41%

2.82%

5.63%

19.72%

11.27%

1.41%

2.82%

1.41%

21.13%

16.90%

4.23%

4.23%

1.49%

4.48%

1.49%

31.34%

13.43%
4.48%

1.49%

2.99%

5.97%

10.45%

1.49%

1.49%

2.99%

1.49%

7.46%

7.46%

FIGURE 9.3: Example of a bubble plot showing the structure.

• in inverse proportion to its frequency in the other studies.

2. Similar Calculation which uses the vector of weighted words to calculate
(dis)similarity among primary studies. Felizardo et al. used a method
based on cosines: distance(i, j) = 1 − cos(x̄i, x̄j) where x̄i and x̄j are
vectors of weights for the ith and jth primary studies.

3. Projection which maps the m-dimensional vectors onto 2 or three di-
mensions that can be represented visually.

108 Evidence-Based Software Engineering and Systematic Reviews

TABLE 9.1: Bubble Plot Data

xvar yvar val xtpos ytpos percent
−5 5 3 −4.7 4.8 4.23%
−5 3 1 −4.7 2.8 1.41%
−5 2 1 −4.7 1.8 1.41%
−5 1 1 −4.7 0.8 1.41%
−3 4 2 −2.7 3.8 2.82%
−4 2 4 −3.7 1.8 5.63%
−4 4 14 −3.7 3.7 19.72%
−4 5 8 −3.7 4.7 11.27%
−2 1 1 −1.7 0.8 1.41%
−2 2 2 −1.7 1.8 2.82%
−2 3 1 −1.7 2.8 1.41%
−2 4 15 −1.7 3.6 21.13%
−2 5 12 −1.7 4.7 16.9%
−1 4 3 −0.7 3.8 4.23%
−1 5 3 −0.7 4.8 4.23%
2 1 1 2.3 0.8 1.49%
2 2 3 2.3 1.8 4.48%
2 3 1 2.3 2.8 1.49%
2 4 21 2.3 3.6 31.34%
2 5 9 2.3 4.7 13.43%
1 5 3 1.3 4.8 4.48%
3 4 1 3.3 3.8 1.49%
4 2 2 4.3 1.8 2.99%
4 4 4 4.3 3.8 5.97%
4 5 7 4.3 4.7 10.45%
5 4 1 5.3 3.8 1.49%
6 1 1 6.3 0.8 1.49%
6 2 2 6.3 1.8 2.99%
6 3 1 6.3 2.8 1.49%
6 4 5 6.3 3.8 7.46%
6 5 5 6.3 4.8 7.46%

The projection maps can be colour coded to show whether studies that
appear similar based on content analysis have received the same inclusion and
exclusions decision. They point out that clusters can be of two types:

1. Pure clusters where all primary studies received the same in(ex)clusion
decision. Such clusters do not need to be reassessed.

2. Mixed clusters where some primary studies were included and some
excluded. Felizardo et al. (2012) suggest reassessing any primary studies

Mapping Study Analysis 109

bplot=read.table("filename.txt",head=T)
summary(bplot)
attach(bplot)

r=val/100
ny=c(1,2,3,4,5,6)

#Draws the circles - the spaces in the subtitle are intentional
symbols(xvar,yvar,circle=sqrt(r/pi), inches=.25,
xlab="",ylab="",xaxt="n",yaxt="n", sub="X-Variable1 NumX1 (100%)
X-Variable2 NumX2 (100%)",cex.sub=.8)

#Adds the numbers to the circles
text(xvar,yvar,val)
#Adds the grid lines
abline(h=c(1,2,3,4,5),lty=3)
abline(v=c(-5,-4,-3,-2,-1),lty=3)
abline(v=c(1,2,3,4,5,6),lty=3)

#Adds a central y-line
abline(v=c(0),lty=1,col="Yellow")

Defines labels for the x-axis
labx=c("X1Cat5","X1Cat4","X1 Cat3","X1
Cat2","X1Cat5","","X2Cat1","X2Cat2","X2Cat3","X2Cat4","X2Cat5", "X2Cat6")
!

tckx=c(-5,-4,-3,-2,-1,0,1,2,3,4,5,6)

#Adds labels tick marks on the x-axis
axis(1,at=tckx,labels=labx,cex.axis=.6,las=2)

#Defines labels for the y-axis

laby=c("Ycat5", "YCat4","YCat3","YCat2", "YCat1")

#Specifies position of Y labels
nlab=c(5.1,4.1,3.1,2.1,1.1)

#Adds Y labels to plot
text(0,nlab,laby,cex=.65)
#Adds name to y-axis
text(0,5.4,"Y Variable Name",cex=.8)

#Adds the offset percentage information
text(xtpos,ytpos,percent,cex=0.6)

FIGURE 9.4: Bubble plot code snippet.

found in such clusters. If only one or two studies were in(ex)cluded, they
needed to be reassessed in order to determine whether they should be
reclassified to conform with majority decision.

In addition, isolated points need to be reassessed if they have been included.

110 Evidence-Based Software Engineering and Systematic Reviews

9.4 Clusters, gaps, and models
We defined the main goals of mapping studies as finding clusters of studies

suitable for more detailed studies and identifying gaps where more research
is needed (see Chapter 3). In order to identify useful clusters and meaningful
gaps, it is necessary to have some theoretical model of the mapping study
topic against which the primary studies can be assessed. This may be a generic
classification scheme such as that proposed by Wieringa et al. (2006), but it
could be a classification scheme derived from an existing model of the software
engineering processes addressed by the topic (for example the three layer
model of cloud engineering), or of the way in which the existing software
processes would be changed by the topic (for example the way test-before
changes the overall testing process). We note however, that, although the
identification of a large number of papers in a particular category is a strong
indicator of a cluster, the absence of primary studies particularly in two-way
tables or bubble plots does not necessarily imply a gap in the literature. It
might mean that the specific combination of categories is either not meaningful
or not important. To be identified as a topic suitable for further research, a
gap needs a convincing explanation of why further primary research is likely
to be important.

It is also possible that a mapping study might lead to the development of a
model of the topic area, as an outcome of reading and classifying the literature.
At the moment, this is an underutilised approach in mapping studies, but,
as we point out in Section 10.4, Popay, Roberts, Sowden, Petticrew, Arai,
Rodgers, Britten, Roen & Duffy (2006) suggest that the starting point of a
narrative synthesis of a systematic review should be a model of the topic
of interest. So if a mapping study is intended to be the starting point of
a systematic review, it may be useful to consider whether its results can be
represented as a model of the topic area, used to organise the primary studies.

Chapter 10
Qualitative Synthesis

10.1 Qualitative synthesis in software engineering research 112
10.2 Qualitative analysis terminology and concepts 113
10.3 Using qualitative synthesis methods in software engineering

systematic reviews . 116
10.4 Description of qualitative synthesis methods . 117

10.4.1 Meta-ethnography . 118
10.4.2 Narrative synthesis . 120
10.4.3 Qualitative cross-case analysis . 121
10.4.4 Thematic analysis . 123
10.4.5 Meta-summary . 124
10.4.6 Vote counting . 127

10.5 General problems with qualitative meta-synthesis 129
10.5.1 Primary study quality assessment . 129
10.5.2 Validation of meta-syntheses . 130

This chapter discusses qualitative methods for synthesizing research studies.
In most cases, qualitative synthesis methods are used when the individual
primary studies used qualitative research methods, or used a variety of differ-
ent experimental methods. In the context of software engineering, industrial
case studies are a particularly important form of primary study because they
provide more realistic information about the extent to which new methods
and tools scale-up to the complexity of industrial scale software development
than laboratory experiments. As discussed in Chapter 18 and Chapter 19,
case studies often adopt qualitative methods. They, therefore, require qualita-
tive approaches, such as the ones described in this chapter, to synthesise their
results.

Qualitative synthesis methods are also useful for synthesising data from
experiments, quasi-experiments, and data mining studies when the differences
among outcome metrics, analysis methods, and experimental designs are too
great to make statistical meta-analysis feasible. For this situation, we recom-
mend vote counting. Vote counting is the practice of counting the number of
primary studies that found a significant positive effect and the number that
found an insignificant effect (or a significant negative effect) and assuming
the effect is real if the majority of the studies are significant. Although vote
counting is sometimes assumed to be a form of meta-analysis, many meta-
analysts are strongly opposed to its use. The main argument is that although

111

112 Evidence-Based Software Engineering and Systematic Reviews

a significant finding provides evidence that an effect exists, a non-significant
finding does not indicate that there is no effect, because lack of significance
can be due to low statistical power. In addition, vote counting may give an
idea of the direction of an effect but it does not give any indication of the
magnitude of the effect, so it is not possible to decide whether an effect is
practically important as well as statistically significant. However, in practice,
many software engineering researchers, ourselves included, adopt vote count-
ing when it is not possible to undertake a proper meta-analysis. We agree with
Popay et al. (2006) that vote counting can be used constructively as part of
a narrative synthesis, particularly if it can be associated with some form of
qualitative moderator analysis.

10.1 Qualitative synthesis in software engineering re-
search

Before discussing qualitative methods for synthesis, we discuss the ex-
tent to which qualitative synthesis is important for software engineering re-
search. Cruzes & Dybå (2011b) reviewed the state of research synthesis in
software engineering systematic reviews. They undertook a tertiary study that
identified 49 systematic reviews published between the 1st of January 2005
and the 31st of July 2010. They found that the methods authors claimed to
have used for synthesis were not always correct. They also reported that:

• 24 studies were mapping studies not systematic reviews

• 22 of the systematic reviews were not explicit about the synthesis
method they used.

• Meta-analysis was used in only two systematic reviews (see Kampenes,
Dybå, Hannay & Sjøberg (2007) and Dybå et al. (2006)), and, excluding
mapping studies, all other systematic reviews used qualitative methods.

• Narrative synthesis was the most common form of synthesis (9 system-
atic reviews), followed by thematic analysis (8 systematic reviews) and
comparative analysis(4 systematic reviews).

• Meta-ethnography and case survey were each used by one systematic
review.

Cruzes & Dybå’s study confirms the importance of qualitative synthesis
for systematic reviews, but also, suggests that software engineering researchers
are not good at describing the methods they use to aggregate and synthesise
non-numerical findings.

Qualitative Synthesis 113

Later studies indicate that the use of qualitative synthesis in software
engineering systematic reviews continues to increase. Another tertiary study
(da Silva et al. 2011) identified a second systematic review that used meta-
ethnography (Gu & Lago 2009), while more recently Da Silva, F. Q. B.;
Cruz, S. S. J. O.; Gouveia, T. B.; & Capretz, L. F (2013) reported a meta-
ethnography of four primary studies presented as a worked example of the
method. In addition, Cruzes, Dybå, Runeson & Höst (2014) present a study
based on synthesising two case studies related to trust in outsourcing which
used three different methods: thematic synthesis, cross-case analysis and nar-
rative synthesis.

Also, the use of meta-analysis was underestimated with meta-analyses
by Hannay et al. (2009), Ciolkowski (2009), and Salleh, Mendes & Grundy
(2009) being missed by Cruzes & Dybå’s tertiary study. In addition, at least,
two more meta-analyses were published after 2010 (see Rafique &Misic (2013),
and Kakarla, Momotaz & Namim (2011)).

Before discussing specific qualitative synthesis methods, we discuss some
of the terminology used in the context of qualitative analysis. We then discuss
the specific methods we believe are of most relevance to software engineering
qualitative aggregation and synthesis. In this chapter, some of our method-
ological references come from the healthcare domain, in particular, nursing and
healthcare policy. This is because this domain has a long history of qualitative
research and has been grappling with the problems of synthesising qualitative
research for many years. Furthermore, methodological studies using health
care examples discuss topics that are familiar to most of us, for example, pro-
moting healthy eating practices, or caring for sick children, which makes them
easier to understand than examples from other domains.

10.2 Qualitative analysis terminology and concepts
Throughout this chapter, we will use the term meta-synthesis to apply

to any method of qualitative aggregation or synthesis, that is, every form of
aggregation or synthesis except quantitative meta-analysis. It is important to
understand that most qualitative analysts view aggregation and synthesis as
very different activities.

Aggregation is assumed to be similar to quantitative meta-analysis where
information from different primary studies is combined together using counts
and averages. For example, quantitative content analysis involves counting the
number of times some specific words or phrases are mentioned in text. This
is a rather quantitative approach to analysis and if it was used to obtain
information from a set of primary studies would equate to an aggregation-
based synthesis. Novice analysts usually find that aggregation is much easier
than synthesis, but is only suitable for use with qualitative primary studies

114 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 10.1: Methods for qualitative synthesis.

that have used fairly simple approaches to reporting their findings, such as
content analysis or simply reporting the topics mentioned by participants.

In contrast, the goal of more purely qualitative studies is synthesis. Syn-
thesis is referred to as an interpretive process which means using the concepts
defined in specific primary studies to construct higher order models, that is,
models that include concepts not found in any primary study. For example, in
studies of globally-distributed software development, primary study authors
may report problems observed by individuals working on distributed projects,
whereas authors of secondary studies might use the information about re-
ported problems to infer or hypothesise underlying causes of the problems
which were not mentioned specifically in any of the primary studies. As a
concrete example, Casey & Richardson (2008) re-analysed three case studies
undertaken over a period of eight years. Although the only similarity between
the cases was the shared aim of finding out what was actually going on and
identifying what positive and negative factors influenced the software devel-
opment strategy, the authors were able to identify the fear of job loss among
staff employed by the client company as a factor that explained many of the
problems observed between clients and vendors in each of the cases.

Qualitative Synthesis 115

In general, the qualitative method used in the primary studies will influence
the type of meta-synthesis that can be performed. Two types of qualitative
method that are common in disciplines such as health care, psychology and
social policy, are ethnography and phenomenology.

Ethnography is used to undertake longitudinal studies aimed at under-
standing the social and societal behaviour of human groups. Noblit & Hare
(1988) developed meta-ethnography as a method for synthesizing different
ethnography studies. In the context of software engineering, observational
studies of agile teams might be based on an ethnography-based approach,
see for example, Sharp & Robinson (2008) and Robinson, Segal & Sharp
(2007).

Phenomenology is concerned with the way in which individuals perceive
and interpret events. Phenomenology can underpin the use of Grounded The-
ory, which has the main aim of developing theory from the observed data. In
the context of software engineering, Oza, Hall, Rainer & Grey (2006) present a
Grounded Theory analysis of trust in outsourcing projects. Grounded Theory
has had a major influence on qualitative research. Remenyi (2014) says that:

“Grounded Theory not only offers a method by which social science
research may be rigorously conducted but it also provides a more
general explanation and understanding of how qualitative research
works.”

Terminology originating from grounded theory is used by many different
qualitative synthesis and meta-synthesis methods and includes:

• Coding which involves applying descriptive labels to pieces of textual
fragments, such as words, phrases or sentences. Miles, Huberman &
Saldan̄a (2014) point out that words are the basic medium for all qual-
itative analysis, irrespective of the way in which the raw data was ob-
tained. Initially, analysts look for codes that can be used to identify
related textual fragments in different sources.

• Axial coding is an additional level of coding used to organise the basic
codes derived directly from the text into more comprehensive concepts.
This is also referred to as second order or second-level coding.

• Theoretical sampling or purposeful sampling aims to find data from a
wide range of sources to increase understanding of the topic of interest.
It assumes that information obtained from one source might raise novel
issues leading the researcher to look for new types of data.

• Theoretical Saturation is the mechanism used to determine the comple-
tion of the theoretical sampling process. It occurs when obtaining addi-
tional data does not appear to be adding any new insight to the topic of
interest. In secondary studies, the concepts of theoretical sampling and
theoretical saturation are contrary to the concept of a search and selec-
tion process pre-defined in a study protocol. However, both approaches

116 Evidence-Based Software Engineering and Systematic Reviews

can be integrated if theoretical sampling and theoretical saturation are
used as the final selection process applied to a set of related studies
found by a pre-defined search process.

• Continuous comparison involves always comparing data from one situ-
ation with data found in another. In primary studies, this comparison
is at the data level. In secondary studies, comparisons are based on the
interpreted theories produced by primary studies (see the comments on
substantive theory and formal theory below).

• Memoing refers to notes that a researcher makes to him/herself. They
may be simple comments that one data item seems to resemble an item
found in a previous text, or analytic memos that record initial ideas
about higher level codes or themes.

• Substantive theory refers to the outcome of grounded theory. It is a
theory that is derived from the data and is bounded by the context
in which the data was obtained. It may not be generalisable to other
situations.

• Formal theory is more generalised than substantive theory. Formal the-
ories are sometimes referred to as mid-level theories. The originators
of grounded theory suggested substantive theories produced in different
studies could be synthesised into more general formal theories (Glaser
& Strauss 1967). Kearney (1998) discusses the use of grounded theory
to produce formal theories in the context of qualitative meta-synthesis.

A more detailed discussion of the philosophical basis of various qualitative
meta-synthesis methods can be found in Barnett-Page & Thomas (2009).

10.3 Using qualitative synthesis methods in software en-
gineering systematic reviews

If we attempt a qualitative meta-synthesis of interpretive qualitative stud-
ies, our qualitative meta-synthesis will involve interpreting the interpretations
of the primary study authors. This, and the issue that synthesis may remove
the contextual details necessary to fully understand qualitative findings, has
led some qualitative researchers to suggest that the goal of qualitative meta-
synthesis is inherently flawed.

However, many well-respected qualitative researchers believe that quali-
tative synthesis is essential to inform practice, see for example the discus-
sion in Sandelowski, Docherty & Emden (1997). Nonetheless, we accept the
warning of experienced qualitative researchers that undertaking qualitative

Qualitative Synthesis 117

meta-synthesis is difficult even for experienced researchers, let alone novices
(Thorne, Jensen, Kearney, Noblit & Sandelowski 2004). However, we note
pragmatically:
• Organisations such as the Cochrane Collaboration and the University of
York Centre for Reviews and Dissemination both recommend incorpo-
rating qualitative synthesis with quantitative reviews in their systematic
review handbooks, see Noyes & Lewin (2011) and CRD (2009). These
reports make it clear that, in the context of health care, qualitative
meta-synthesis can and should contribute to quantitative reviews of in-
tervention effectiveness by helping to specify important research ques-
tions (that is, ones that matter to patients), providing evidence that
explain variations in outcomes (for example, detailed investigations of
variations in interventions, participants, and settings), and supplying
complementary evidence related to aspects other than effectiveness (such
as acceptability to patients). We believe it should be particularly useful
in a domain such as software engineering, where relatively few primary
studies are suitable for quantitative meta-analysis.

• In our experience, qualitative studies in software engineering report par-
ticipants’ viewpoints with relatively little interpretation being performed
by the researchers. Such studies can be aggregated using the metasum-
mary method (Sandelowski & Barroso 2003) and thematic synthesis
(Cruzes & Dybå 2011a) which make less stringent demands on the
expertise of the analysts. These techniques are discussed in more detail
in Section 10.4.

10.4 Description of qualitative synthesis methods
This section briefly describes the qualitative synthesis methods we judge

to be most relevant to software engineering researchers. These are methods
that:
• Are currently being used by software engineering researchers.

• Or, are suitable for synthesising findings from software engineering pri-
mary studies.

• Or, are suitable for use by most researchers including relative novices.
Note that we do not recommend any complete novice attempting qual-
itative meta-synthesis without having an expert mentor or supervisor.

Figure 10.1 shows the different qualitative methods discussed in this chap-
ter identifying which are interpretive and which are aggregative. The double-
lined boxes show the methods that are discussed in detail in this section. We

118 Evidence-Based Software Engineering and Systematic Reviews

have identified thematic analysis as both an aggregative and an interpretive
method. This depends whether the synthesis stops at second-level coding or
produces a higher-level synthesis.

10.4.1 Meta-ethnography
Importance to Software Engineers: This form of synthesis is well-

suited to primary studies based on ethnological research, which are likely to
occur when researchers study team behaviour over an extended time period.
We have found three examples of software engineering systematic reviews have
used meta-ethnography: Dybå & Dingsøyr (2008a), Gu & Lago (2009), and
Da Silva et al. (2013).

Definition: Meta-ethnography is a method for synthesising ethnographic
studies, which Noblit & Hare (1988) define to be “long-term, intensive studies
involving observation, interviewing, and document review”.

Process: Noblit & Hare (1988) define a seven stage process involving:

1. Getting started, that is, defining what is of interest.

2. Deciding what studies are relevant to the topic of interest.

3. Reading the studies. This means detailed reading and re-reading of the
relevant primary studies

4. Determining how the studies are related. This involves listing the key
metaphors, which may be phrases, ideas and/or concepts, in each study.
Then looking at how they relate to one another.

5. Translating the studies into one another. Noblit and Hare describe
this as comparing metaphors and concepts in one primary study with
those in another. They emphasize that translation maintains the central
metaphors and/or concepts in each primary study “in their relation to
other key metaphors or concepts” in the same study.

6. Synthesizing the translations. Translations may result in agreement
among studies, contradictions among studies, or may form parts of a
coherent argument.

7. Expressing the synthesis which means reporting the results of the syn-
thesis to interested parties.

Example: Da Silva et al. (2013) present a detailed report of their use
of meta-ethnography to analyse four primary studies that investigated per-
sonality and team working. In Step 1, they defined their research question
as:

How does individual personality of team members relate with team
processes in software development teams?

Qualitative Synthesis 119

In Step 2, they used a previous systematic review and its unpublished exten-
sion as the basis to identify five relevant primary studies. They applied an
initial screening to check that the primary studies formed a “coherent set”.
They then applied the quality criteria used by Dybå & Dingsøyr (2008a) and
excluded one low quality study. In Step 3, all team members read the pa-
pers. They note that the papers were also read and reread during subsequent
phases. During this phase they also extracted:

• Contextual data about each primary study. They suggest such infor-
mation should be defined a priori and extraction should be performed
by at least two researchers, and disagreements should be identified and
addressed. They reported their contextual information in a cross-case
matrix with rows identifying the concepts (specifically: Objective, Sam-
ple, Research methods, Design, Data collection, Setting, Country) and
columns identifying each of the four primary studies. In most cases the
cells included appropriate quotes from the primary studies.

• Relevant concepts associated with the research question identified in
each study. The information was presented in a cross-case matrix
with columns identifying the studies and rows identifying the con-
cepts (specifically: Task Characteristics, Personality, Conflict, Cohe-
sions, Team Composition, Performance, Satisfaction, Software Quality).

In Step 3, they considered relationships between the different studies. They
first considered which of the six concepts were addressed by at least two
primary studies (to make synthesis possible). They then investigated the def-
inition of the six relevant concepts and extracted the operational definitions
used in each primary study to check whether the terms were used consistently.
Finally, they investigated the relationships between the concepts. They con-
sidered pairs of concepts and sought findings from the primary studies that
discussed the interaction between a pair of concepts. They reported, for each
primary study, the interaction between each pair of concepts reported in the
primary study with a specific textual quote if available. This was the main
input to Step 5.

In Step 5, they translated the concepts and relations from one study to
another. Specifically, they compared each pair of concepts across all studies to
produce their first-order synthesis as input to Step 6. In Step 6 they produced
a second order synthesis which aimed to produce a synthesis that was more
than the sum of its part. This involved creating a diagram that summarized
the synthesis and narrative that described the “central story” (like grounded
theory). Step 7 was realised by their journal paper.

They comment that in their view:

• Meta-ethnography is not straightforward to use. It requires experience
with the methodology and “the philosophical stances that form the cor-
nerstones of interpretative research”.

120 Evidence-Based Software Engineering and Systematic Reviews

• It is not practical to synthesize too many studies since “it would be easy
to forget the meanings of previously synthesized studies as the synthesis
proceeds”.

They also note that, although two of their four primary studies were ethno-
graphical ones, two were quasi-experiments, so they were able to use meta-
ethnography in a mixed methods setting.

10.4.2 Narrative synthesis
Importance for Software Engineers: Cruzes & Dybå (2011b) identified

narrative synthesis as the most frequently used qualitative synthesis method
by software engineering researchers.

Definition: Narrative synthesis reports the results of a systematic review
in terms of text and words. Popay et al. (2006) refer to it as “a form of
story telling”. They point out that any qualitative meta-synthesis involves
some narrative synthesis even when more specialised synthesis methods are
also used.

Process: Popay et al. propose a narrative synthesis methodology that is
targeted at systematic reviews that are concerned either with the effective-
ness of some intervention or with factors that influence the implementation of
interventions.1 Their approach involves four main elements:

1. Developing a theory of how, why and for whom the intervention works.
This activity is usually done at an early stage in the review and is
intended to help formulate review questions and identify the appropriate
primary studies. The model is also intended to help both interpreting
the review findings and also assessing the generality of the findings.

2. Developing a preliminary synthesis of the findings of the primary studies.
In the case of effectiveness studies, this involves assessing the direction
and size of effects. It may also involve identifying the results of any
quality appraisal of the primary studies. For implementation reviews,
this is aimed at identifying facilitators and barriers to adoption.

3. Exploring relationships in the data. This aspect of synthesis goes beyond
the preliminary synthesis to explore the relationships among studies,
both between the characteristics of individual studies and their findings,
and between the findings of different studies.

4. Assessing the robustness of the synthesis. Robustness refers to the qual-
ity and quantity of the primary studies, the information reported in the
primary studies, and the methods used in the synthesis.

The basic process model described above seems appropriate for software

1Their report is available on request from j.popay@lancaster.ac.uk.

mailto:j.popay@lancaster.ac.uk

Qualitative Synthesis 121

engineering reviews. In particular, the idea of starting by constructing a model
of the innovation is particularly interesting. In our view, mapping studies
would be of much more value if they aimed to produce a model of the inter-
vention they discuss, organising the literature to illuminate various aspects of
the model.

Popay et al. propose a mix-and-match approach to undertaking the vari-
ous process steps, some based on general approaches such as “grouping and
clustering studies” and “tabulation”, others based on ideas from a number
of different methodologies. For example, they propose “transforming the data
into a common rubric” as a technique for developing a primary synthesis,
which in their example involved constructing effect sizes that could equally
have been used for quantitative meta-analysis. They also recommend recipro-
cal and refutational translation based on Noblit & Hare (1988) as a technique
for exploring relationships among the data.

10.4.3 Qualitative cross-case analysis
Importance for Software Engineers: Cruzes & Dybå (2011b) classify

qualitative cross-case analysis as the qualitative analysis methods proposed
by Miles et al. (2014). Although many of their analysis methods are aimed
at individual primary studies, rather than synthesizing across multiple quali-
tative studies, the analysis methods documented by Miles et al. can be used
for cross-case reporting, analysis, and synthesis. The methods are based on
graphical and tabular displays of textual information. The displays are de-
scribed in great detail and provide an operational description for the tables
many researchers use in practice. For example, the table, that Cruzes & Dybå
(2011b) used to compare the synthesis methods claimed by secondary study
authors with the synthesis methods they actually used, could be described as
a two-variable cross-case matrix.

Definition: Miles et al. (2014) define a variety of tables and graphics to
summarise data and report findings from qualitative studies, many of which
apply to cross-case analysis, and so can be used for qualitative meta-synthesis.

Process: Miles et al. (2014) propose an analysis method based on four
elements:

1. Data collection which in this case means finding and reading relevant
primary studies.

2. Data condensation which is the process of “selecting, focussing, simplify-
ing, abstracting and transforming data”. They consider data condensa-
tion part of the analysis process since it involves coding and summarising
the data.

3. Data display which is an “organized, compressed assembly of informa-
tion that allows conclusion drawing and action”. Like data condensation,
data display is part of analysis since it involves organising the rows and

122 Evidence-Based Software Engineering and Systematic Reviews

columns of matrices in order to reveal patterns in the data, or drawing
diagrams that show the relationships among named entities.

4. Drawing and verifying conclusions. Drawing conclusions involves iden-
tifying patterns, explanations, cause-event relationships and proposi-
tions. It starts as soon as data collection begins. Verification means
testing conclusions with respect to ‘their plausibility, their sturdiness,
their confirmability— that is, their validity’.

The individual elements in the model are flows of activity and are not meant
to be sequential.

The various displays they describe form the basis for organising the data,
analysing the data and presenting the final results. Many of the displays are
based on matrices which they define to be the intersection of two lists set up
as rows and columns and as a ‘tabular format that collects and arranges data
for easy viewing in one place.’ They define Meta-Matrices to be master charts
for assembling descriptive data from different cases (which would correspond
to different primary studies in the context of qualitative meta-synthesis).

They describe a great many different types of matrices and meta-matrices,
including:

• Partially-ordered meta-matrices that stack up data from different cases
in one table that can be reformatted and re-sorted to look for cross-case
trends.

• Predictor-outcome matrices that identify the main variables believed to
affect the observed outcome. Such matrices are qualitative versions of
the effect size versus moderator tables that might be produced during a
quantitative meta-analysis.

Miles et al. also identify numerous methods for graphically displaying
qualitative data and findings. These involve named entities often within boxes
(or circles) linked by lines indicating the direction of a relationship among
entities, such as the order of events in time, or the influence of one entity on
others. These are particularly useful, since software engineering researchers are
often quite familiar with such graphics from process modelling and software
design methods. One less common style of graphic that might be of relevance
to software engineering researchers interested in categorizing objects such as
faults, code changes, process types is a folk taxonomy. Miles et al. describe
nine types of semantic relationships that can be used (for example, inclusion—
where X is a kind of Y, spatial—where X is a place in Y, cause-effect—where X
is a cause of Y) and provide an example of how a taxonomy can be constructed.

Example: As part of a comparison of thematic synthesis, narrative syn-
thesis and cross-case analysis(Cruzes et al. 2014) report an example of syn-
thesizing two primary studies related to trust in outsourcing. The overall goal
of the synthesis was to:

“Understand factors of trust in outsourcing relationships.”

Qualitative Synthesis 123

Runeson and Höst performed the cross-case analysis. They point out that
the major part of data reduction was already conducted by the primary stud-
ies. Furthermore, they were only synthesizing two relatively homogeneous and
condensed papers, so they “tagged data directly in printouts of the papers”.
They extracted data of two types:

1. Characteristics of the cases studies (specifically, goal, target population
and culture, number of companies and interviews, maturity of compa-
nies, methodological framework, data collection, data analysis, and the
definition of trust).

2. Factors and subfactors reported as being associated with trust together
with the frequency with which they were mentioned.

Moving to the data display step, this information was initially displayed
in two separate unordered cross-case data tables.

For the trust related information, further data reduction was performed
to analyse the semantics of the identified factors. Runeson and Höst identi-
fied synonyms and homonyms based on the definitions used in each primary
study. Based on those definitions, they rearranged the factors table into an or-
dered meta-matrix showing the unique and common factors identified in each
study for establishing and maintaining trust, ordered by the frequency with
which factors were mentioned (with a caveat that this is a doubtful practice,
if wrongly interpreted).

Data synthesis involved identifying the relations between factors reported
in each of the primary studies and expressing them in a graph showing the
primary study that identified the relation, and whether it was related to es-
tablishing or maintaining trust.

Conclusions and verification involved preparing condensed summaries of
the views found in paper to highlight the main results. They comment that
they found no contradictions between the studies, although they put different
emphasis on the factors.

10.4.4 Thematic analysis
Importance for Software Engineers: After narrative synthesis, the-

matic analysis is the next most frequently used method of qualitative syn-
thesis adopted by software engineering researchers. It fits well with analysing
software engineering studies that are aimed at assessing the benefits, risks,
motivators and barriers to adopting new software engineering methods.

Definition: Thematic analysis involves identification and coding of the
major or recurrent themes in the primary studies and summarising the results
under these thematic headings.

Process: Cruzes & Dybå (2011a) define a five-stage process for thematic
analysis involving:

1. Reading all the text related to all the primary studies.

124 Evidence-Based Software Engineering and Systematic Reviews

2. Identifying specific segments of text relevant to the research questions
or topics that seem common to several studies.

3. Labelling and coding the segments of text.

4. Analysing the codes to reduce overlaps and define themes. Some themes
are likely to be defined in advance as a result of the research questions,
while others may arise as a result of reading the primary studies.

5. Analysing themes to create higher-order themes or models of the phe-
nomenon being studied. The graphical displays discussed by Miles et al.
(2014) can be used to represent such models.

Cruzes & Dybå provide a detailed explanation of the process including
examples taken from thematic syntheses produced by software engineering
researchers and a checklist identifying good practice for each step.

Examples: Staples & Niazi (2008) provide a reasonably detailed descrip-
tion of their thematic analysis methodology. Their systematic review investi-
gated reasons individuals gave for adopting CMM.

With respect to reading the papers (Step 1) only one of the researchers
read all the papers. The same researcher identified quotes (that is, text from
each study) related to adopting CMM in each study (Step 2). Both researchers
then reviewed every quote independently and identified a list of higher level
categories that described a unique reason for adoption. The reason comprised
a short name and description (Step 3). They note that agreement was ini-
tially poor, but they were able to come to agreement via joint discussion and
“in some cases a third researcher”. Next (Step 4), they reviewed the reasons
and grouped them into five higher-level categories Customers, People, Perfor-
mance, Process, and Product.

Subsequent analysis was based on analysing the frequency with which rea-
sons were mentioned in the identified studies. Thus, they did not undertake
Step 5.

Cruzes et al. (2014) present an example of thematic synthesis to synthesis
two papers investigating trust in outsourcing. After initially reading the papers
and copying textual extracts into the NVivo system (Step 1), they used the
NVivo tool to help both to identify segments of text containing references to
factors related to trust (Step 2) and to label (that is, code) the text segments
(Step 3). They reduced overlap between codes and identified seven themes
that grouped codes together (Step 4). They, finally created a higher-level
model (Step 5) with three higher order themes. The higher-level model was
presented as concept maps showing the relationships between higher order
themes, second-level themes and the original codes.

10.4.5 Meta-summary
Importance for Software Engineers: Although Cruzes & Dybå

(2011a) did not find any software engineering systematic review that used

Qualitative Synthesis 125

this method, it has properties that make it of relevance to software engineer-
ing problems. In particular:

• It is an aggregative method that may be easier for inexperienced re-
searchers to understand than an interpretive method.

• It can be used to aggregate data from some types of qualitative and
quantitative studies in the same meta-synthesis.

• It is appropriate for integrating findings from studies investigating bar-
riers, motivators, risks and other factors associated with implementing
a process innovation. In the context of software engineering research,
there have been a large number of primary studies reporting the vari-
ous problems found in globally distributed projects, and many secondary
studies that have attempted to integrate the results of the primary stud-
ies (Verner et al. 2014). In our opinion, using this approach would have
made the aggregation of primary studies much easier for the analysts to
perform and for the readers to understand.

Definition: Metasummary is a quantitatively oriented aggregation
method capable of integrating findings from topical surveys and thematic
surveys (Sandelowski, Barroso & Voils 2007). Topical surveys are based on
opinion-based questionnaires circulated to a relatively large number of par-
ticipants. Analysis of topical survey data involves identifying the set of topics
mentioned by the participants and counting how many participants mentioned
each specific topic. This is usually done using content analysis and is essentially
quantitative. Thematic surveys are typically based on researchers personally
interviewing a relatively small number of participants. Analysis of thematic
survey data involves looking for latent patterns in the interview data via first-
order and second-order coding. Thematic analysis is more interpretative than
content analysis but if it stops at identifying first-order codes, its findings still
remain fairly closely related to the original data.

Furthermore, there is usually a disconnect between the methods that re-
searchers claim to use and those they actually use. Sandelowski et al. (2007)
suggest that the differences among methods are “typically honored more in
the breach than in the observance”. They point out that although qualita-
tive surveys are meant to be “purposeful” and quantitative surveys are meant
to be randomised, in the cases they investigated, most studies were actually
convenience samples. Our experience with software engineering studies is con-
sistent with their observations. Similarity between the findings and the actual
methodology allows the metasummary method to aggregate results from both
types of study.

Process: Metasummary is based on a five-step process:

1. Extract the findings from each study. Sandelowski et al. point out that
findings in qualitative reports may be presented in other parts of the
report rather than just in a separate results section. It is therefore nec-
essary to separate relevant findings from other issues such as:

126 Evidence-Based Software Engineering and Systematic Reviews

• Presentations of data, such as quotations or incidents.
• Reference to findings of other studies.
• Descriptions of analytic procedures, such as coding schemes.
• Discussion of the importance of findings.

2. Group topically similar findings together looking for equivalent findings.

3. Summarise and organise findings. Findings should be summarised using
concise but comprehensive descriptions. They should be organised to
show topical similarity (specifically, topics addressed by several studies)
and thematic diversity (for example, favouring adherence or favouring
non-adherence to a regime or process) and referenced to each primary
study that mentioned the finding.

4. Calculate “effect sizes”. Effect sizes are based on the number of primary
studies that report a specific finding and not the number of participants
mentioning the finding. This is consistent with the view that prevalence
does not equate to importance. The frequency effect size for a specific
finding is calculated as the proportion of independent studies that report
specific finding compared with the total number of independent studies,
that is:

FindingEffectSize = NumStudiesMentioningSpecificF inding

TotalNumStudies

The intensity effect size identifies which studies contributed most to
findings. One intensity effect size metric is the proportion of findings
with an effect size > 25% found in each study compared with the total
number of findings with effect sizes > 25%, that is:

StudyIntensityA = NumStudyLargeEffectSizeF indings

TotalNumLargeEffectSizeF inding

where NumStudyLargeEffectSizeFindings is the number of findings in a
particular study that had an effect size> 25%. A second intensity effect
size metric is the proportion of findings found in a study compared with
the total number of findings, that is:

StudyIntensityB = NumStudyF indings

TotalNumFindings

5. Report results. Findings can be displayed in summary matrices. An ef-
fects matrix would display each of the findings of each major type that
is, favourable and unfavourable, indicating the effect size and the specific
studies reporting the finding. A study influence matrix would identify
the intensity effect sizes for each study, perhaps incorporating informa-
tion about the nature of the study, for example, whether the study was

Qualitative Synthesis 127

quantitative or qualitative, and summary information about participants
such as nationality. An explanatory narrative is needed to describe the
results and should discuss the impact of individual studies. In particu-
lar, studies that contribute little to the results, studies that contribute
a great deal to the results, and studies that contribute many unique
findings should be discussed to explain their relative contribution.

10.4.6 Vote counting
Importance for Software Engineers: Vote counting can be used in the

context of quantitative systematic reviews when the variation among primary
studies is too great for formal meta-analysis to be possible. A number of
software engineering systemic reviews have reported results using variants of
vote counting, see for example, Turner, Kitchenham, Brereton, Charters &
Budgen (2010) and Kitchenham et al. (2007).

Definition: At its simplest, vote counting involves simply counting how
many primary studies found a significant effect and how many did not. As dis-
cussed previously, simple vote counting has major methodological problems.
However, it is more valuable when it is associated with a form of “qualitative”
moderator analysis that investigates whether there are contextual or method-
ological factors that can help to explain differences in the outcomes of the
primary studies using meta-matrix displays. We note that there is some diffi-
culty in giving this form of analysis a name. Cruzes & Dybå classified several
papers, that we would classify as “Vote counting”, as examples of “Compara-
tive Analysis” because they involved an investigation of possible moderating
factors. If results are displayed in a tabular format, vote counting combined
with moderator analysis is also a form of qualitative cross-case analysis (Miles
et al. 2014).

Process: Like meta-analysis, vote counting assumes that a systematic
review has identified a set of primary studies that each compare two software
engineering interventions and it also requires that values of the outcome of
the comparison, such as t-values, effect sizes or p-values, can be obtained
from each primary study. Tabular displays are used to present the outcome
values for each study which can be sorted or colour-coded according to which
intervention was preferred. Popay et al. (2006) suggest a five-point scale to
describe the outcome of the primary study:

1. Significantly favours intervention

2. Trends towards intervention

3. No difference

4. Trends towards control

5. Significantly favours control.

128 Evidence-Based Software Engineering and Systematic Reviews

Additional moderating factors can be added to the displays to investigate
whether there are any that appear to be associated with specific outcomes.
Often, it is only possible to provide a narrative discussion of possible mod-
erating factors. However, sometimes it may be possible to perform a more
sophisticated synthesis. Cruzes & Dybå (2011b) suggest two such possibili-
ties:

1. The comparative method (Ragin 1989) which uses Boolean truth tables
to assess the combinations of moderators (modelled as boolean variables)
that are associated with a successful or unsuccessful outcome of a case
(for example, a primary study). The method assumes that there may
be different combinations of factors that cause a particular outcome.
It is able to cope with situations where some logical combinations of
moderators do not exist among the set of cases. However, it appears to
require that all important moderator variables are known. The technique
is extremely complex but may resonate with researchers from computer
science who are used to Boolean algebra and truth tables. The aim is to
be able to say that a successful intervention occurs only when certain fac-
tors are present and other factors are not, using statements of the form
“success occurs if and only if A OR (B AND NOT(C))=TRUE”. Such
statements imply that an underlying causal relationship is expected,
rather than a statistical association exists among factors.

2. The case survey method (Yin & Heald 1975) uses standard statistical
methods (for example, chi-squared tests, or logistic regression) to asso-
ciate moderator values with binary or ordinal case outcome variables.
The case survey method requires the availability of a large number of
cases with the same moderator variables, which limits its applicability.
The aim is to assess the frequency with which certain context factors
are associated (or not) with a successful intervention and to provide a
statistical assessment of whether the frequency is significantly different
by chance.

Example: Kitchenham et al. (2007) reported a systematic review that com-
pared the accuracy of cost estimation models built from data collection from
a variety of different companies (cross-company models) with the accuracy
of cost estimation models built from a specific company (within-company
models). They grouped the primary studies into three groups: one for which
the within-company models were significantly more accurate than the cross-
company models, one for which there was no significant difference between
the within-company and cross-company models, and one group of studies that
were inconclusive (specifically, did not report any statistical analysis). They
also produced a matrix display that identified the values of various study-
related factors for each primary study, such as: the number of projects in the
within-company dataset and the cross-company dataset, the size metric used,
the type of model (linear or non-linear) derived from within and between

Qualitative Synthesis 129

company data, and the size of projects in each dataset. They also constructed
a summary matrix display of the factors that seemed to be associated with
within-company models outperforming cross-company models and those that
seemed associated with cross-company models performing as well as within-
company models identifying which studies contributed to each conclusion.

10.5 General problems with qualitative meta-synthesis
This section discusses two problems that need to be considered in most

qualitative meta-syntheses:

1. What to do about primary study quality.

2. How to validate the final meta-synthesis.

10.5.1 Primary study quality assessment
There appears to be no consensus among qualitative meta-synthesists

about how to assess the quality of primary studies or, even whether qual-
ity should be assessed at all. For example, see Thomas & Harden (2008)
and Spencer, Ritchie, Lewis & Dillon (2003). Even researchers who use quality
evaluation, on the basis that they wish to avoid drawing conclusions on unreli-
able data, are unwilling to use quality criteria to exclude studies. For example,
see Thomas & Harden (2008) and Atkins, Lewin, Smith, Engel, Fretheim &
Volmink (2008).

Empirical evidence casts some doubts on the value of quality assessment
checklists for qualitative primary studies. Both Hannes, Lockwood & Pearson
(2010) and Dixon-Woods, Sutton, Shaw, Miller, Smith, Young, Bonas, Booth
& Jones (2007) compared different quality checklists. Hannes et al. (2010)
compared three different structured methods:

1. The Critical Appraisal Skills Programme (CASP) qualitative checklist2

which is a very widely-used checklist that was the basis of a checklist
used by Dybå & Dingsøyr (2008a) for their systematic review of agile
methods.

2. A checklist compiled by the Australian Joanna Briggs Institute (2014)3.

3. The Evaluation Tool for Qualitative Studies (ETQR) which was devel-
oped by the Health Care Practice Research and Development Unit from

2(www.casp-uk.net)
3www.joannabriggs.org

http://www.casp-uk.net
www.joannabriggs.org

130 Evidence-Based Software Engineering and Systematic Reviews

the University of Salford, in collaboration with the Nuffield Institute
and the University of Leeds.

Based on an analytical evaluation, they concluded that CASP was least able
to evaluate certain aspects of validity.

Dixon–Woods et al. (2007) undertook a comparison of two structured
checklists and a subjective evaluation. They found only slight agreement
among the three methods and that the structured methods used which were
CASP and a UK Cabinet Office quality framework (Spencer et al. 2003), did
not show better agreement than expert judgement. Qualitative analysis indi-
cated that reviewers found it difficult to decide between the potential impact
of findings and the quality of the research or reporting practice. They also re-
ported that structured instruments appeared to make reviewers more explicit
about the reasons for their judgements.

In a qualitative study of researchers making decisions about the quality of
studies for inclusion in a meta-ethnography, Toye, Seers, Allcock, Briggs, Carr,
Andrews & Barker (2013) identified two issues of importance to reviewers:
firstly, conceptual clarity, which relates to how clearly the author articulated
an insightful issue, and secondly interpretive rigour, which relates to the extent
to which the interpretation could be trusted. These two issues are clearly
related to the impact of findings and the quality of research practice mentioned
by Dixon–Woods et al. (2007).

It is, however, encouraging that both Thomas & Harden (2008) and Atkins
et al. (2008) have commented that poor quality studies contributed less to
their synthesis than better quality studies. Overall it seems that evaluating
quality is mainly useful for sensitivity analysis, where the contribution of the
individual studies can be compared with their quality. This is also consistent
with the suggestion, in the context of metasummary, that the analysts should
discuss the impact of individual studies on the overall results.

10.5.2 Validation of meta-syntheses
There are two aspects to validation of a meta-synthesis. Firstly the sys-

tematic reviewers, themselves, should ensure that they have “done a good
job” and secondly, readers of the final systematic review report should find it
trustworthy and useful.

Systematic reviewers need to reflect on the process they have used and
identify any limitations of the process itself, or the way they used the process.
Some of these reflections will be reported in the “Limitations” section of the
final report, others may lead to additional synthesis activities such re-reading
some excluded papers, or obtaining a second opinion on the plausibility of
some of the reported findings

Readers of the final report of a qualitative meta-synthesis also need to
be able to understand and to trust the findings. Qualitative systematic re-
views should have similar properties to reports of qualitative primary studies
mentioned by Toye et al. (2013) and Dixon–Woods et al. (2007), such as:

Qualitative Synthesis 131

• Clearly reporting of insightful and valuable findings.

• Using a rigorous synthesis method.

For thematic analysis, Cruzes & Dybå (2011a) discuss trustworthiness of
qualitative meta-synthesis in general, from the viewpoint of credibility, con-
firmability, dependability and transferability. They also provide a useful check-
list, that researchers can use to assess the validity of their process at each
stage in the thematic synthesis including the final stage of assessing the trust-
worthiness of the synthesis. Their checklist includes four questions about the
trustworthiness of a synthesis:

1. ‘Have the assumptions about, and the specific approach to, the thematic
analysis been clearly explicated?’

2. ‘Is there a good fit between what is claimed and what the evidence
shows?’

3. ‘Are the language and concepts used in the synthesis consistent?’

4. ‘Are the research questions answered by the evidence of the thematic
synthesis?’

We note that these questions seem applicable to any qualitative meta-synthesis
not just thematic synthesis.

This page intentionally left blankThis page intentionally left blank

Chapter 11
Meta-Analysis

with Lech Madeyski
Wroclaw University of Technology, Poland

11.1 Meta-analysis example . 134
11.2 Effect sizes . 135

11.2.1 Mean difference . 136
11.2.2 Standardised mean difference . 138

11.2.2.1 Standardised mean difference effect size . . . 138
11.2.2.2 Standardised difference effect size variance 140
11.2.2.3 Adjustment for small sample sizes 141

11.2.3 The correlation coefficient effect size . 141
11.2.4 Proportions and counts . 142
Log risk ratio effect size . 143
Log odds ratio effect size . 143

11.3 Conversion between different effect sizes . 144
11.3.1 Conversions between d and r . 144
11.3.2 Conversion between log odds and d . 144

11.4 Meta-analysis methods . 145
11.4.1 Meta-analysis models . 145
11.4.2 Meta-analysis calculations . 146
Fixed-effects mode . 146
Random-effects model . 147

11.5 Heterogeneity . 148
11.6 Moderator analysis . 151
11.7 Additional analyses . 152

11.7.1 Publication bias . 152
11.7.2 Sensitivity analysis . 153

This chapter explains the use of statistical methods to analyse data from
primary studies that have measured the outcome of two different treatments
(also referred to as interventions). These could be the results of randomised
experiments, or more general correlation or data mining studies. In the context
of software engineering, a treatment would be a method, algorithm, process
or technique for performing a software engineering process, activity or task.
One of the treatments would be referred to as a control, if it corresponded

133

134 Evidence-Based Software Engineering and Systematic Reviews

to the current standard software engineering technique. Outcomes are related
to effectiveness, often in terms of time (duration), effort, or faults. The aim
is to calculate an overall summary measure of the comparative impact of the
treatments based on the data from all relevant primary studies together with
an assessment of its precision.

Meta-analysis is used frequently in other disciplines but, as yet, it is rarely
used in software engineering research. If evidence-based software engineering is
to become more useful to software engineers in industry, it is important to un-
dertake more primary studies of software engineering methods and techniques
that are suitable for statistical aggregation. Thus, we hope meta-analysis will
become more important in the future. We, also, hope that this chapter will
make it clear that meta-analysis can be performed by any empirical researcher
who has some experience of statistical methods. Although some readers might
expect to find the topic here, we do not discuss vote counting in this chapter.
Vote counting is discussed in Chapter 10.

11.1 Meta-analysis example

TABLE 11.1: Example Data

StudyID MeanT MeanC Stdev EffectSize V ariance NT NC

Able 0.31 0.33 0.03 −0.66667 0.0009 30 45
Baker 0.30 0.35 0.21 −0.23810 0.0441 5 5
Carter 0.40 0.41 0.06 −0.16667 0.0036 25 30
Delta 0.45 0.43 0.10 0.0200 0.01 15 15

To introduce the concept of meta-analysis, we will begin with an artifi-
cial example. Table 11.1 shows the basic data for four studies. Each study
is assumed to be a between-groups study with a treatment group compris-
ing NT experimental units which had a mean of MeanT for the study out-
come measure and a control group with NC experimental units which had a
mean of MeanC . The pooled within-group variance and its standard devia-
tion (labelled StDev) are shown, together with the effect size which has been
calculated for each study as:

EffectSize = MeanT −MeanC

Stdev
(11.1)

The effect size is a measure of the magnitude of the treatment effect. In
this example, the effect size is called the standardised mean difference, but
there are many other effect sizes that can be used.

Meta-Analysis 135

The meta-analysis results for this dataset are shown in Figure 11.1 which
uses a form of visualisation known as a forest plot. Forest plots were men-
tioned in Chapter 1 in the context of the Cochrane Collaboration logo and
are the standard means of reporting the outcome of a meta-analysis. This
figure reports the calculated effect size for each study and shows it graphi-
cally as a square contained within its 95% confidence interval. The square is
inversely proportional to the variance, so the square of study “Able” is largest
because it has the smallest variance. The small variance also means that the
confidence interval about the effect size is the smallest of the studies (that is,
the precision of the effect size is the largest among the studies). In contrast,
study “Baker” has the largest variance, so it has the smallest precision, the
largest confidence interval, and is given the least weight in the meta-analysis.

The overall effect size, shown by the diamond shape at the bottom of the
figure, is the weighted mean of the individual study effect sizes. The weights
are based on the inverse of the standard deviation, so this gives most weight
to study “Able” which has the smallest variance. The centre of the diamond
shows the estimate of the overall effect size, while its width shows the 95%
confidence interval of the overall effect size.

All meta-analysis calculations are based on identifying an effect size
together with its variance for each primary study included in the analysis.
The most important point to remember is that although all primary studies
in a specific meta-analysis must use the same effect size, the meta-analysis
calculations are identical which ever effect size is used.

In this chapter, we will discuss the most common forms of effect size, how
to calculate them and their variance, and the methods used to analyse them. A
detailed understanding of statistical methods is not necessary to understand-
ing the basic principles, but basic knowledge of statistical analysis and famil-
iarity with the concepts of means, variances, standard deviations, and t-tests
would be helpful for readers wanting to perform meta-analysis themselves.

Our example data were analysed using the metafor package for meta-
analysis which can be used with the R statistical language (Viechtbauer 2010).
If the data shown in Table 11.1 are copied into an R data table called metadata
using the read.table command which copies data from a text file into R and
the metafor package has been loaded, then the instructions in Figure 11.2
will recreate the forest plot shown in Figure 11.1. Note R treats anything on
a line following the symbol “#” as a comment.

11.2 Effect sizes
In this section, we describe the most commonly used effect sizes. For effect

sizes to be useful for meta-analysis, they need to:

136 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 11.1: Forest plot example.

• Have well defined distributions, so the variance of the effect size can be
calculated.

• Be capable of being calculated from statistics commonly reported in
primary studies, such as t-values and sample sizes, without relying on
the raw data being available.

11.2.1 Mean difference
The most straightforward effect size for between-studies (parallel) designs

is the mean difference, which is simply the difference between the mean out-
come variable for entities that used (or had applied) treatment T1 (that is,
MeanT 1) and the mean outcome of the entities associated with treatment T2
(that is, MeanT 2):

EffectSize = MeanT 1 −MeanT 2 (11.2)

In this case, the entities observed in T1 are assumed to be independent
of the entities observed in T2. In the case of a randomised experiment, a
total of N entities will be allocated at random to either T1 or T2, with the

Meta-Analysis 137

FIGURE 11.2: Code snippet for a fixed-effects meta-analysis.

experimenters usually (but not always) ensuring that the number of entities
is equal in each treatment group. In the case of software engineering studies,
the entities being observed and measured can be software engineers, teams,
processes, tasks, algorithms, or software components.

In order to perform a meta-analysis, we need to obtain the variance of the
effect size. In this case, the variance of the effect size is the variance of the
mean difference, which is the pooled within group variance:

VES = S2
1

N1
+ S2

2
N2

(11.3)

Where S1 is the standard deviation calculated from the response variables
from the N1 participants using T1 and S2 is the standard deviation calculated
from the response variables from the N2 participants using T2. If we can
assume that the true variance of observations from each treatment group is
the same, then S2

1 and S2
2 can be pooled to give a more reliable estimate of

the true variance:
VP = (N1 − 1)S2

1 + (N − 2)S2
2

N1 +N2 − 2 (11.4)

138 Evidence-Based Software Engineering and Systematic Reviews

and
VES = V arP

N1 +N2

N1N2
(11.5)

Equations 11.2 and 11.5 can be adapted to other form of experimental
design. For example, suppose primary studies are based on a within subject
before-after design i.e. all participants use method 1 to perform a task and then
all participants use methods 2 to perform a similar task, there will be a total of
N participants and analyses will be based on the average difference between
each participant in time period 1 and time period 2. Assuming d1 is the
difference between the output values obtained from participant di = x1i−x2i

using method 1 and method 2, the mean difference is:

EffectSize =
∑
di

N
= d̂ = MeanT 1 −MeanT 2 (11.6)

In this case the variance of the effect size is based on the variance of the
di values as follows:

Vdi =

∑(
di − d̂

)2

N − 1 (11.7)

and
VES = Vdi

N
(11.8)

The limitation of the mean difference is that it can only be used for meta-
analysis if all primary studies used the same well-defined outcome measure.
Since this is not always the case, we also need to consider effect sizes based
on standardised mean differences.

11.2.2 Standardised mean difference
Most software engineering researchers have used the standardised mean

difference as the basis for their meta-analysis when their output variable is
numerical.

11.2.2.1 Standardised mean difference effect size

The standardised mean difference effect size for independent groups is the
difference between the mean outcome variable for entities that used (or had
applied) treatment T1 (that is,MeanT 1) and the mean outcome of the entities
associated with treatment T2 (that is, MeanT 2) divided by the standard
deviation of the outcome measure (S) which is referred to as the standardizer,
that is:

EffectSizeStandardised = d = (MeanT 1 −MeanT 2

S
(11.9)

where if the variances of T1 and T2 estimate the same true variance, and
S =

√
VP = SP which is the square root of the pooled within-group variance

Meta-Analysis 139

(see Equation 11.4). This effect size is often referred to as Cohen’s d, although
some researches refer to this as Hedge’s g.1 If there is a control treatment, and
it is believed that the treatment may change the variance not just the mean
effect, it is preferable to use the variance of the control group, rather than
the pooled within group variance. If the standardiser is based on the control
group variance the resulting effect size is often referred to as Glass’s δ.

Readers will notice that Equation 11.9 is quite similar to the equation used
to calculate the value of t when preparing to do a t-test. There is, however,
one extremely important difference, t is calculated using the standard error of
the mean not the standard deviation:

t = (MeanT 1 −MeanT 2)
S(1

N1
+ 1

N2
)

(11.10)

which means that although the value of t can be increased by increasing the
number of observations in each treatment group which decreases the standard
error, effect size is not so affected. This makes sense because we would not
expect the magnitude of the effect to be influenced by sample size (that is, if
using a new method improves defect detection by 50%, the effect should not
be changed by changing the sample size). The only difference would be that
we would expect our estimates of the means and standard deviations to be
more accurate with larger sample sizes, so our estimate of effect size would
be more trustworthy (that is, would have greater precision). Many researchers
point out that effect size is of more practical importance than the value of
the t statistic, and recommend that it should be reported in preference to the
t value or the p-value associated with the t-test. See the Publication manual
of the American Psychological Association (2001), Cumming (2012) and the
study by Kampenes et al. (2007).

However, we also note that:

d = t

(
1
N1

+ 1
N2

)
(11.11)

This means that meta-analysts can still calculate the standardised mean dif-
ference, even if primary studies report only the t-values and the number of
observations in each treatment group.

Another important point is that effect sizes based on the standardised
mean difference are based on comparing two treatments. Thus, meta-analysis
of primary studies that compare many different treatments require effect sizes
to be calculated for each pair of treatments (or rather, for each pair of treat-
ments the meta-analysts are interested in). This, again, makes sense since
we would not (in general) be interested in effect sizes that depended on the
outcomes of a third and irrelevant treatment. For example, if we have three

1There is no universally accepted terminology for effect sizes, so it is important always
to specify the formula you have used when presenting a meta-analysis (Cumming 2012).

140 Evidence-Based Software Engineering and Systematic Reviews

treatments, we might analyse the data using an analysis of variance tech-
nique and use an F -test to determine whether there are significant differences
between the mean values. However, unless we inspect the means of the indi-
vidual treatment groups, we would not know what the actual differences were.
F − test values calculated when there are more than two treatment groups
cannot be directly converted into effect sizes because they are based on the
effect of more than two treatments.

Other problems with designs that involve many different treatments is that
investigating many different pairs of treatment effects:

• Risks finding spurious significant effect sizes by chance.

• Risks introducing dependencies between effect sizes if there is one control
and multiple treatments.

Generally from a meta-analysis viewpoint, the simpler the statistical design
the better.

11.2.2.2 Standardised difference effect size variance

The main complication with the standardised mean difference is that its
variance is more difficult to calculate. According to (Borenstein, Hedges,
Higgins & Rothstein 2009), a reasonable approximation to the variance is
given by:

Vd ≈
N1 +N2

N1N2
+ d2

2(N1 +N2) (11.12)

This approximation relies heavily on the sample size. If the combined sample
size in the two groups is less than 20, the approximation is likely to be poor
(see Hedges & Olkin (1985), Morris (2000)).

Bearing in mind software engineering sample sizes are often small, it is
preferable to use a different formula. The variance of d is based on the rela-
tionship between d and t (Morris (2000), Cumming (2012)). t is distributed
according to the non-central t distribution and Equation 11.11 confirms that
d is a multiple A of t, where

A =
√
ñ =

√
N1 +N − 2
N1N − 2 (11.13)

Thus, the variance of d is
Vd = ñVt (11.14)

and
Vt = df

df − 2
(
1 + t2

)
− t2

[c(df)]2
(11.15)

where
c (m) ≈ 1− 3

4m− 1 (11.16)

Meta-Analysis 141

Equation 11.14is more accurate for small sample sizes, although it must be
noted that the estimate of t is not likely to be very precise for small sample
sizes.

Equations 11.11 and 11.15 imply that the variance of the effect size is a
function of the effect size itself. The implication of this is that unless d ≈ 0
the confidence limits on the standardised mean difference are not symmetric
about the effect size (Cumming 2012).

The effect size and variance of standardised mean differences differ for dif-
ferent statistical designs Morris & DeShon (2002). Morris & DeShon discusses
how to convert effect sizes from different designs into comparable effects sizes,
and how effect sizes from different designs might be included in the same
meta-analysis. However, such processes are rather complex and beyond the
scope of this chapter.

11.2.2.3 Adjustment for small sample sizes

The standardised effect size d is known to be biased for small samples.
It slightly overestimates the effect size. This can be corrected by applying
the correction factor c(m) (see 11.16)where m is the number of degrees of
freedom used to estimate the standard deviation. The adjustment factor tends
to 1 as the number of degrees of freedom increases, but for consistency most
meta-analysis researchers recommend always applying the adjustment factor.
Some meta-analysts refer to adjusted effect size as Hedge’s g.

To use the small sample size bias adjustment, calculate:

dunb = J × d (11.17)

Use dunb as the best estimate of effect size. The variance of dunb is calculated
as:

Vunb = c(df)2 × Vd (11.18)

11.2.3 The correlation coefficient effect size
Rosenthal & DiMatteo (2001) advocate the use of effect sizes based on the

correlation coefficient r. The correlation based effect size for an experiment
comparing two different treatments is called the point-biserial correlation and
is calculated by associating with each outcome value a dummy variable taking
the value 0 if the outcome was associated with one treatment (or the control)
and 1 if the outcome value came from the alternative treatment. r has a
number of advantages as an effect size:

• r is a statistic that is relatively well-understood.

• r is easy to interpret. There are heuristics to indicate the importance of
an r value: |r| is assessed as small if |r| < 0.19, medium if 0.19 < |r| <
0.46, and large if 0.46 <= |r| (Kampenes et al. 2007).

142 Evidence-Based Software Engineering and Systematic Reviews

• r can be used not only in the same situations as d or g, that is, in
describing an association between a dichotomous variable and a contin-
uous variable, but also in situations where it makes less sense to use d
or g, for example, in describing an association between two continuous
variables, or in situations where we want to generalize to more than two
treatment groups.

• It is possible to calculate an estimate of r referred to as requivalent from
just the p− value and the number of observations (Rosenthal & Rubin
2003).

r is not distributed normally. Therefore, it is customary to apply a variance
stabilizing and normalising transformation:

Zr = 1
2 ln

(
1 + r

1− r

)
(11.19)

The variance of Zr is approximately 1
N−3 where N is the number of observa-

tions from which r was calculated.
Using the transformed data, the meta-analysis calculations can be per-

formed and the inverse transformation used to transform the results back to
the correlation scale:

r = log

(
e2Zr − 1
e2Zr + 1

)
(11.20)

11.2.4 Proportions and counts
If the outcome measures are proportions, for example, the proportion of

software modules with one or more faults, or the proportion of failing projects
in an organisation, there are several appropriate effect sizes, including the log
risk ratio and the log odds ratio.

If modules were constructed using a treatment technique and a control
technique and later tested for defects, data from such an experiment might be
shown in a 2× 2 table like Table 11.2, where failure represents a count of the
number of modules exhibiting a fault in each treatment condition.

TABLE 11.2: Binary Data

Failure Success N
Treated A B N1
Control C D N2

Meta-Analysis 143

Log risk ratio effect size

A risk ratio is the ratio of two risks (for example, the risk of a module
having one or more faults). Using the labels shown in Table 11.2, the risk
ratio is

RiskRatio = A/N1

C/N2
(11.21)

However, since the distribution of the risk ratio is extremely skewed, the effect
size is based on the log of the risk ratio:

LnRiskRatio = ln(RiskRatio) (11.22)

The approximate variance of the log risk ratio is:

VLnRiskRatio = 1
A
− 1
N1

+ 1
C
− 1
N2

(11.23)

Taking the logarithms means that the effect size is the difference between
the logarithms of the two risks. Meta-analysis calculations are based on the
log risk ratio, and are then transformed back to raw data scale to present the
results.

Log odds ratio effect size

Odds are defined as the proportion of entities that have a characteristic
divided by the proportion that do not have the characteristic. Thus, if p is
the proportion of modules that exhibited one or more faults, the odds of a
module having a fault are:

Odds = p

(1− p) (11.24)

If modules were constructed using a treatment technique and a control
technique, data from such an experiment might be shown in a 2× 2 table like
Table 11.2. The respective proportions of modules with faults is p1 = A

N1
and

p2 = C
N2

, so the odds ratio is:

OddsRatio =
p1

(1−p1)
p2

(1−p2)
(11.25)

Like the risk ratio, the odds ratio is extremely skewed, so the effect size is
based on the natural logarithm of the odds ratio. Also, the effect of taking
logs of the odds ratio is to construct an effect size equal to the difference
between natural logarithm of the odds.

The approximate variance of the log odds ratio is:

V arLnOddsRatio = 1
A

+ 1
B

+ 1
C

+ 1
D

(11.26)

144 Evidence-Based Software Engineering and Systematic Reviews

11.3 Conversion between different effect sizes
It is useful to be able to convert between different types of effect sizes,

if we want to include primary studies using different types of experimental
design in the same meta-analysis.

11.3.1 Conversions between d and r

Conversion from a standardised mean difference d to the equivalent point
bi-serial correlation coefficient r uses the formula:

r = d√
(d2 + a)

(11.27)

where a is a correction for cases when N1 6= N2,

a = (N1 +N2)2

N1N2
(11.28)

If only N = N1 + N2 is known, the only option is to assume N1 = N2 = N
2 ,

in which case a = 4. The equivalent variance is:

Vr = a2Vd

(d2 + a)3 (11.29)

This conversion assumes that the treatment group identifier can be treated as
a binary variable. Thus, any observation from the control group is treated as
the binary bivariate variable (0, OCi) and any observation from the treatment
group is treated as the binary bivariate variable (1, OT j).

Conversion from r to d is based on the equation:

d = 2r√
1− r2

(11.30)

with variance:
Vd = 4Vr

(1− r2)3 (11.31)

This conversion assumes that r has a bivariate distribution and that one of
the variables can be converted into a binary variable.

11.3.2 Conversion between log odds and d

Conversion from the log odds ratio to the standardised mean difference is
based on the equation:

d = LnOddsRatio× 3
π

(11.32)

Meta-Analysis 145

with variance
Vd = VLnOddsRatio ×

3
π2 (11.33)

The inverse conversion is:

LnOddsRatio = d× π√
3

(11.34)

with variance
VLnOddsRatio = Vd ×

π2

3 (11.35)

11.4 Meta-analysis methods
In this section we describe the procedures used to analyse the effect sizes.

Firstly we introduce the models underlying meta-analysis, then we explain
how to calculate the mean and standard error of an effect size.

11.4.1 Meta-analysis models
There are three basic analysis models: the fixed-effects model, the random-

effects model and the mixed-effects model. All these models are supported by
the metafor package in the R language (Viechtbauer 2010) which we have
used in our meta-analysis examples.

The fixed-effects model is based on having i = 1, ..., k independent effect
sizes estimates, each corresponding to a true effect size, such that:

yi = µ+ ei (11.36)

where yi is the observed effect in the i-th study, µ is the corresponding true
effect, ei is the sampling error which is assumed to be distributed normally
with mean 0 and variance σ2, so ei ∼ N(0, σ2). Thus, we assume that yi ∼
N(µ, σ2).

However, meta-analyses are usually based on studies that used neither
identical methods nor samples with exactly the same characteristics. Such
differences can introduce additional variability, that is heterogeneity, among
the true effects. The random-effects model treats the variability as being com-
pletely random, giving the model:

yi = θi + ei (11.37)

and
θi = µ+ ui (11.38)

where ui is the additional sampling variability caused by differences among

146 Evidence-Based Software Engineering and Systematic Reviews

studies and is assumed to be ∼ N(0, τ2). The extra parameter τ2 represents
the between-study variability around the underlying global effect µ. Using the
random-effects model we can estimate µ which is the average true effect and
τ2 which is the total heterogeneity among the true effects. If τ2 = 0, there is
no heterogeneity, so θ1 = ... = θk = µ is the true effect.

Alternatively, if we find that the degree of heterogeneity is significant and
we believe it is due to specific study level factors (for example, student subjects
in some studies and practitioner subjects in other studies), we can include
these factors as moderators in our analysis. This leads to a mixed-effects model
of the form:

yi = β0 + β1xi1 + · · ·+ βpxip + ui + ei (11.39)
where xij is the value of the j-th moderator for the i-th study. Again we
assume that ui ∼ N(0, τ2). However, in this case, τ2 measures the residual
heterogeneity among the true effects, that is, the variation among the effects
that is not accounted for by the moderators.

11.4.2 Meta-analysis calculations
The calculations used for meta-analysis depend on the meta-analysis model

used, not on the effect size metric used.

Fixed-effects mode
To calculate the average effect size using a fixed-effects approach use:

ES = ΣkWiESi

ΣkWi
(11.40)

where ES is the estimate of the average effect size, Wi = 1
Vi

is the weight
assigned to the ith study which is the inverse of the variance Vi, ESi is the
effect size calculated for the ith study and k is the number of primary studies.
The variance of ES is calculated as:

VES = 1
ΣkWi

(11.41)

The standard error of ES is the square root of VES = SEES . Then, the 95%
upper and lower confidence limits are estimates as:

LCLES = ES − 1.96× SEES (11.42)

and
UCLES = ES + 1.96× SEES (11.43)

In addition, the test statistic for the null hypothesis that the common true
effect µ is zero is:

Z = ES

SEES

(11.44)

Meta-Analysis 147

Figure 11.1 presents a forest plot showing a fixed-effects analysis of the data
presented in Table 11.1.

Random-effects model
In order to do a random-effects analysis, it is necessary to estimate the

between-studies variance τ2. The DerSimonian and Laird estimation method
is based on calculating:

T 2 = Q− df
C

(11.45)

where T 2 is the estimate of τ2, df = k− 1, k is the number of primary studies
and

Q = Σk
i=1WiES

2
i −

(Σk
i=1WiESi)2

Σk
i=1Wi

(11.46)

and
C = ΣWi −

ΣW 2
i

ΣWi
(11.47)

The data shown in Table 11.3 shows the working needed to calculate T 2

for our example dataset shown in Table 11.1:

Q = 506.83− (−772.44)2

1511.6 = 112.10

C = 1511.6− 1322243
1511.6 = 636.81

T 2 = 0.1713

TABLE 11.3: Calculating T 2

StudyID ESi Vi Wi WiESi WiES2
i W 2

i V ∗
i W ∗

i

Able −0.6667 0.0009 1111.11 −740.74 493.827 1234568 0.17222 5.8065
Baker −0.2381 0.0441 22.676 −5.399 1.2855 514.189 0.21542 4.6425
Carter −0.1667 0.0036 277.78 −46.296 77160.5 7.7160 0.17492 5.7168
Delta 0.0200 0.01 100 20 4 10000 0.18132 5.5150
Total 1511.6 −772.44 506.83 1322243

Once T 2 has been calculated, the variance for each study is adjusted as
follows:

V ∗
i = Vi + T 2 (11.48)

Then, the calculation of the weight per study, the mean effect size and the
standard error of the mean are calculated in the same way as the fixed-effects
parameters but using V ∗

i :
W ∗

i = 1
V ∗

i

(11.49)

148 Evidence-Based Software Engineering and Systematic Reviews

ES∗ = ΣkW
∗
i ESi

ΣkW ∗
i

(11.50)

VES
∗ = 1

ΣkW ∗
i

(11.51)

The metafor package will do a random-effects analysis by changing the
parameter method in the call to rma to method="DL".2 Figure 11.3 shows a
forest plot of a random-effects analysis of the artificial data in Table 11.1. R
will display the results of the random-effects analysis by typing the name of
the ‘object’ it was equated to by just typing mod2 if using the code snippet in
Figure 11.2, as shown in Figure 11.4.

The effect of using the random-effects model has to been to reduce the
estimate of the mean effect size and to increase its standard error. Because,
there is substantial heterogeneity among the studies, the value of T 2 is large
compared with the within study variances. The last two columns in Table 11.3
show that the values of V ∗

i andW ∗
i are similar across the four primary studies.

This has effectively equalized the weights given to the different studies, which
means, compared with the fixed-effects analysis, the random effects analysis
gives less weight to studies ‘Able’ and ‘Carter’ and more weight to studies
‘Baker’ and ‘Delta’. The overall effect is to increase the variance of the mean
effect size and the confidence limits about the mean, as shown by the elongated
diamond in the RE model row of Figure 11.4.

11.5 Heterogeneity
It is not sufficient just to calculate a summary effect. It is important to

understand the patterns of effect sizes. An intervention that consistently im-
proves a software engineering process by about 15% is very different from one
that has an average effect of 15% that sometimes improves the process by 25%
and sometimes degrades the process by 5%. It is important to know whether
effect sizes are consistent across studies or if they vary significantly among
studies. Measures of heterogeneity tell us whether studies are consistent or
not. Consistent studies are “homogeneous” and have low or zero heterogene-
ity.

Heterogeneity occurs when the variance among study effect sizes is greater
than the variance within studies. One of the first methods proposed for mea-
suring heterogeneity among priory studies was Cochran’s heterogeneity statis-

2Using metafor, the REML method is preferable to the DerSimonian and Laird method
for estimating τ2, but it cannot be easily used for manual calculations.

Meta-Analysis 149

FIGURE 11.3: Forest plot example (random-effects model).

tic Q (Cochran 1954). The formula for Q based on a fixed-effects analysis is:

Q =
∑

i=1,···,k

Wi(ESi − ES)2 (11.52)

where ESi is the observed effect size of the i-th study (irrespective of specific
type of effect size), ES is the average effect size and Wi is the weight for the
specific study, i.e the inverse of the effect size variance.

Under the null hypothesis that heterogeneity is zero, Q has a chi-squared
distribution with k− 1 degrees of freedom. Thus, theoretically Q can be used
to assess whether the heterogeneity among a set of studies is greater than zero
(this is called the Cochran Q-test). However, the Q-test is known to be of low
power and some researchers prefer the I2 statistic (Higgins & Thompson 2002).
The formula for I2 is:

I2 = 100× (Q− df)
Q

(11.53)

where Q is Cochran’s heterogeneity statistic and df = k − 1. Negative values
of I2 are set to zero, so I2 lies between 0% and 100%. Since under the null
hypothesis that heterogeneity is zero, the expected value ofQ is k−1, I2 can be
interpreted as the percentage of the total variation attributed to heterogeneity.
Higgins, Thompson, Deeks & Altman (2003) provide some benchmarks for I2

150 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 11.4: Random-effects analysis.

and assign adjectives of low, moderate, and high to I2 values of 25%, 50%,
and 75%, respectively.

Confidence intervals can be calculated for I2 based on a transformation of
I2 to H2:

H2 = 1
(1− I2) = Q

(k − 1) (11.54)

The details of how to construct the confidence intervals can be found in the
additional material associated with Higgins & Thompson (2002). H2 can be
interpreted as the ratio of the observed variability to the expected variability.

In addition, T 2, which is the estimate of the between study variance, can
be calculated using Equation 11.45.

T (which is the term R uses to refer to τ), H and I statistics are all reported
by the metafor package as shown in Figure 11.4. To obtain confidence intervals
on these statistics, use the confint(mod2) command on the calculated model
(called mod2), the output of which is shown in Figure 11.5.

FIGURE 11.5: Confidence intervals for measures of heterogeneity.

Since it is necessary to choose between a fixed-effects or a random-effects
model, it is tempting to perform a fixed-effects model, test for heterogeneity,
then do a random-effects analysis if heterogeneity is statistically significant.
This is not recommended by Borenstein et al. (2009), particularly since the

Meta-Analysis 151

tests of heterogeneity have low power. The decision to use a fixed-effects or
a random-effects model should be based on whether or not the outcomes of
all of the primary studies arise from the same underlying distribution. If we
believe the studies are all functionally identical and we are not interested
in generalising to other populations, we should use the fixed-effects model,
otherwise the random-effects model is preferable.

Furthermore, if the random-effects model is used, but heterogeneity is rela-
tively low or non-existent, the random-effects model results will be very similar
to the fixed-effects model. Thus, it would seem better always to use a random-
effects model. However, if the number of studies is very small the estimate of
τ2, is likely to have poor precision. In such a case, Borenstein et al. suggest
that a fixed-effect model would at least provide a descriptive analysis of the
included studies, and would be preferable to vote counting.

11.6 Moderator analysis
If there is extensive heterogeneity among the primary studies, it is useful

to consider whether there are any systematic differences among the primary
studies that might have caused the observed heterogeneity. These are potential
moderator factors. Possible moderator factors include:

• Differences in participant type, for example, using students in some stud-
ies and practitioners in others.

• Differences in the software engineering materials or tasks used in terms
of complexity or difficulty.

• Differences in experimental design, for example, within-subjects stud-
ies in some studies and {experimentexperiment!between-groupsbetween-
groups in others.

• Differences in the control or treatment used in different studies.

There are two different types of moderator analysis: subgroup-based meta-
analysis and meta-regression. Both types of analysis are supported by
metafor.

Subgroup analysis is very much like an analysis of variance with the mod-
erator factors as blocking factors. In most cases, subgroup effects are based
on a fixed-effects model across subgroups and random-effects model within
subgroups, this is called a mixed-effects model.

Meta-regression is equivalent to multiple regression with one or more
study-level moderators acting as the independent variables and effect size as
the dependent variable. However, in the meta-analysis case we use weighted
multiple regression.

152 Evidence-Based Software Engineering and Systematic Reviews

It should be noted that even if all the primary studies are randomised trials,
subgroup analyses based on post-hoc identification of possible moderators are
observational studies (like correlation and regression studies) and therefore do
not imply causation. They indicate areas for further research.

11.7 Additional analyses
Other analysis that should be part of a meta-analysis include: assessing

the impact of publication bias and general sensitivity analysis.

11.7.1 Publication bias
Publication bias refers to the fact that papers reporting positive effects are

more frequently submitted to journals and conferences and more frequently
published than papers that report negative or non-significant effects. There
are several methods to address this issue:

• Funnel plots display the effect size (on the Y-axis) for each primary study
against its standard error (on the X-axis). A funnel plot should exhibit
a triangular pattern of points about the overall average effect size since
studies with the smallest standard error should be close to the average
effect size but studies with larger standard errors should have greater
scatter about the average effect size. If there are more studies with effect
sizes less than the average effect size than studies with effect sizes greater
than the average effect size (so that the distribution is asymmetric), this
can indicate that there are so-called “missing studies”.

• Trim and fill plots assess the most probable number and magnitude of
missing studies, and plot the missing studies on the funnel plot together
with an adjusted estimate of the average effect size.

• The meta-analysis can be restricted to larger studies. One way of doing
this is to do perform a cumulative meta-analysis with the studies sorted
in sequence of smallest variance to largest variance. If the average effect
size stabilizes when the high precision studies are included and does not
change as low precision studies are included, then there is no evidence
of any systematic bias. If the estimate of the average effect size changes
when low precision studies are included, then there is some evidence of
bias among the studies.

All these methods are supported by metafor. However, none of the methods
are likely to be very accurate unless there are a reasonably large number of
primary studies. Hannay et al. (2009) present a funnel plot and a trim and fill
plot analysis of their meta-analysis results.

Meta-Analysis 153

11.7.2 Sensitivity analysis
Sensitivity analysis investigates whether the results are robust to the as-

sumptions and decisions that were made during the analysis. The sort of
sensitivity analyses that can be undertaken are:

• Identifying the impact of different experimental designs (which can be
done using a mixed-effects analysis).

• Assessing the impact of outliers using influential case diagnostics which
assess the impact on the various statistics (such as standardised resid-
uals, estimates of τ2, heterogeneity measures) of omitting each primary
study in turn from the meta-analysis. For example,the study by Han-
nay et al. (2009) report the impact of omitting one study at a time on
Hedge’s g and its confidence interval.

Both of these methods are supported by metafor.

This page intentionally left blankThis page intentionally left blank

Chapter 12
Reporting a Systematic Review

12.1 Planning reports . 157
12.2 Writing reports . 158
12.3 Validating reports . 162

The final phase of the systematic review process is to document or report the
study in ways that are suitable for the intended audiences. The context for
this phase is illustrated in Figure 12.1.

FIGURE 12.1: Reporting phase of the systematic review process.

Although, as we note below, the reporting of a systematic review may
need to address a wider audience than would be expected for a conventional
research paper, it still needs to answer the three key questions that Mary

155

156 Evidence-Based Software Engineering and Systematic Reviews

Shaw identified in her tutorial onWriting Good Software Engineering Research
Papers (Shaw 2003). These are:

• What, precisely, was your contribution [to your research field]?

• What is your new result?

• Why should the reader believe your result?

Indeed, one of her sub-questions expanding on the last of these does explicitly
ask “what concrete evidence shows that your result satisfies your claims?”, a
question that is directly relevant to this chapter. As Shaw observes, getting
one’s work accepted for publication needs both interesting and sound results
and also good clear communication of these to the reader. So far, we have
been concentrating on how to obtain the results from a review (addressing
the first two of the questions above), and now we need to consider how to
communicate these results to others.

As we indicated in Section 4.4.9, a review can be reported in a number of
ways. A journal paper, technical report or thesis chapter can usually provide
full details of the process followed (including the reasons for the decisions
taken and the approaches used for validation), together with the outcomes of
each stage of a review plus the conclusions drawn from the results of a review.
In contrast, conference papers (and sometimes journal papers too) are usually
limited in length (often to 8 or 10 pages) and so can only cover some of the
aspects of a review. And of course the use of these can be combined, with
full details being given in a Technical Report, and the key aspects perhaps
summarised as a conference or journal paper. Certainly, publication in some
form in a refereed venue can contribute towards persuading others of the
validity of your results.

So, in this chapter we consider three steps that need to be performed as
part of the reporting phase.

1. Planning reports—which involves specifying the possible audiences and
deciding what sort of document would suit their needs. Ideally, planning
of the final reports will be initiated during the preparation of a review
protocol.

2. Writing the actual reports.

3. Validating the reports—which involves asking internal, and possibly ex-
ternal, reviewers to assess the quality of reports.

The wider process of dissemination and publicising any important out-
comes is outside the scope of this book. You can find a discussion of the issues
involved in dissemination in Petticrew & Roberts (2006), and some aspects of
this are also addressed in Chapter 14.

Reporting a Systematic Review 157

12.1 Planning reports
The nature of a systematic review means that the reporting of its outcomes

is very likely to target a wider set of readers than would be the situation for
a conventional research study, aimed simply at other researchers in a specific
topic area, or in the case of a PhD thesis, the examiners. For example, Booth
et al. (2012), identify six other groups of stakeholders that might be inter-
ested in medical and sociological research comprising: research funders, policy
makers, practitioners, the research community, the media, and the general
public.

While software engineering research should also be relevant to the same
categories of stakeholder, the low levels of awareness usually exhibited by the
media and the public means that, for the present, software engineering attracts
little interest from these groups. Nevertheless, it is important that systematic
reviewers make their results accessible to practitioners as well as the research
community. In terms of policy making, the results may also be of relevance
to standards organisations, and to authors of software engineering guidelines
and text books. In contrast, mapping studies are usually of benefit only to the
research community.

In planning therefore, it is important to identify the groups most likely to
be interested in any outcomes (obviously, at this stage, you don’t know what
the actual results will be). Doing so may also provide an element of feedback to
the design of the review. If changes to the research question(s) could provide
outcomes likely to be of greater interest to one or more group, then this is the
stage at which it should still be feasible to make such changes.

As already noted, to ensure that systematic review and mapping study re-
ports are of benefit to the research community, they will need to be published
in refereed journals and conference papers. All the details of the review pro-
cess, data extraction and analysis/synthesis will need to be reported, including
the rationale and criteria for excluding any ‘marginal’ papers (and hence, it
is necessary to ensure that these details are all recorded while conducting the
review—which in turn will also affect the planning for data extraction). In
particular, the references for all the primary studies need to be provided, as
well the data extracted from each paper, including quality data and data re-
lated to the specified research questions. In some cases, this can mean that
the size of the resulting report exceeds journal and conference size guidelines.
In such cases, the report should be supported by ancillary information such
as a technical report and/or a database, if possible, held in an online reposi-
tory. Planning should therefore take account of the likely reporting forms and,
possibly, of the scale of these.

One way to make the results of a systematic review more accessible to other
interested parties, particularly practitioners, is to produce shorter versions of
the report concentrating on the practical implications of the results. These

158 Evidence-Based Software Engineering and Systematic Reviews

shorter versions can be directed to software engineering ‘magazines’ (as long
as you do not violate originality requirements). Again, the readers of shorter
versions of the report need be able to easily find a copy of the full report and
be able to access any ancillary material.

12.2 Writing reports
The use of systematic reviews and, to a certain extent, of mapping stud-

ies, are advocated because they adhere to a rigorous methodology. So any
resulting report should demonstrate clearly that you have used an appropri-
ate systematic review process, and also that you have used it rigorously. In
particular, a report should show:

• Traceability—providing the reader with a clear link from the research
questions to the data needed to answer the questions; from the data to
the data analysis; and finally from the data analysis to the answers to the
questions and the study conclusions. This is relatively straightforward
for quantitative systematic reviews and mapping studies, but may be
much more difficult to demonstrate in the case of qualitative systematic
reviews.

• Repeatability—ensuring that the methodology is defined clearly and in
sufficient detail that other researchers could replicate it. This does not
mean that other researchers would obtain exactly the same search out-
comes and results. Time differences, at the very least, would make the
results of searches different. Furthermore, differences are quite likely
to occur for qualitative systematic reviews where researchers often use
different synthesis methods which can result in different conclusions.
Nonetheless, if using the same basic protocol, researchers should get
broadly similar search results and be in a position to identify and inves-
tigate any divergences in conclusions.
Booth et al. note that many people prefer the term ‘replicability’ to
avoid implying claims for laboratory-like repetitions. (We discuss the
issues relating to replication of primary studies in Chapter 21, where we
also note that a ‘differentiated’ replication of a study may be useful for
determining the boundaries or scope of an effect.)

The structure of a report/paper is usually fairly well-defined. While there
may be variations, we would suggest that the following outline is one that
addresses most of the above needs.

1. The abstract. The role of the abstract is to aid selection, by providing the
reader (or search engine) with enough information to suggest relevance.

Reporting a Systematic Review 159

As noted earlier, we are advocates of structured abstracts (Budgen,
Kitchenham, Charters, Turner, Brereton & Linkman 2008, Budgen,
Burn & Kitchenham 2011), not least because their use encourages an
author to include relevant information.

2. Introduction. A major role for this is to set the context, and following
Mary Shaw’s criteria, to make clear why this study is a useful contri-
bution to a particular research field and why a systematic review is
appropriate. So this is where we usually pose the research questions too.

3. Background. Usually this relates to the topic of the review, expanding
on the description provided in the introduction, and where relevant,
providing information about previous studies or reviews (whether expert
reviews or systematic ones) and their contributions.

4. Method. This is where the core elements of the research protocol should
be included in the paper, justifying the choice of the type of review, and
the plan for its conduct, as well as the rationale for any other choices
involved.

5. Conduct. This section is usually used to highlight any divergences from
the plan, as well as to provide information about how well the team
agreed about such issues as inclusion and exclusion (including providing
kappa (κ) values to indicate the level of agreement where appropriate).

6. Results. This section usually describes the outcomes of searching and
inclusion/exclusion, as well as of data extraction. As a section, this needs
to be factual and thorough, leaving most of the interpretation for later
sections.

7. Analysis. The outcomes from the synthesis process are described here.
For a mapping study this may largely consist of tabulation and grouping.
Some ideas about other forms of representation to use when reporting
synthesis are covered in Chapters 9–11.

8. Discussion. This section is where the outcomes from analysis are consid-
ered within the wider context, and as such, has a large interpretive ele-
ment. This is also where we assess the limitations of our study, through
a discussion of the threats to validity.

9. Conclusion. This should seek to address how well the research questions
have been answered, and what the answers are. This section provides
the ‘take home’ message of a paper and so it is important for it to
be concise and well focused, building upon the Results, Analysis and
Discussion sections as appropriate.

Further ideas about how to report the outcomes from a systematic review may
be obtained by consulting the PRISMA guidelines discussed in Section 7.2.1.

160 Evidence-Based Software Engineering and Systematic Reviews

The way in which a report is written and presented is important too. There
are many good textbooks about how to write technical reports and papers and
so we have not tried to cover this aspect in any depth. However, there are some
recurring issues that we have observed when refereeing or reviewing reports
of systematic reviews, and so these are briefly discussed below.

Use diagrams and tables. Many authors illustrate the process involved in
conducting the early stages of a review with a diagram that shows how
this was conducted and the number of studies being retained at each
stage of searching and inclusion/exclusion. Usually this can provide a
good visual summary for the reader, and makes it easier to write the
description of the process, since this can be ‘written around’ the figure.
Figure 12.2 provides an example of such a figure, and is based upon one
that we ourselves used when reporting a systematic review of empirical
studies of the UML (Budgen, Burn, Brereton, Kitchenham & Pretorius
2011). We are not suggesting that this is the only way to structure such
a figure, simply that they can play a useful role.
Tables can also provide useful summaries of complex processes. For ex-
ample, when searching multiple sources for primary studies, tabulated
results can illustrate the numbers found from each source, and also how
many of these were unique (that is, not also found from other sources).
Table 12.1,reproduced by permission of the Institution of Engineering
& Technology, illustrates this using some of the values from a study
we did into how reproducible systematic reviews were, published as
(Kitchenham et al. 2012).

TABLE 12.1: Example of Tabulation: Papers Found at Different Stages
Papers Digital Scopus Additional Additional Duplicated
papers Libraries papers found papers from reports

from references previous search
Search 1480 1275
strings
After initial 160 94 22
screening
Unit testing 39 10 2 8 10
papers after
2nd screen
Regression 25 6 2 2 9
papers after
2nd screen
Total testing 64 16 4 10 19
primary papers

Take care with tenses. One of the arguments for producing a full and thor-
ough research protocol is that it then helps when writing the final report.

Reporting a Systematic Review 161

FIGURE 12.2: Example of a graphical model for the selection process.
Reproduced with permission.

This is indeed very true. However, this is not just a matter of ‘cut and
paste’, and one reason for this is that much of a protocol is likely to be
written using future tense (what we are going to do), whereas a report
is largely written in past tense (what we did). So yes, by all means reuse
the protocol, but do take care to edit it so that the tense for the resulting
report is consistent.

Avoid inventing new terms. Computing in general is a discipline that is
rather apt to reinvent its wheels, and authors of computing (and hence
software engineering) papers are often prone to try to introduce new
terms to describe what they do. We strongly recommend that you avoid
doing so when writing a report about a systematic review, largely be-
cause:

• the terminology used in systematic reviewing has been around for
quite some time now (especially for the analysis elements), and
should be quite adequate to describe what you are doing;

162 Evidence-Based Software Engineering and Systematic Reviews

• using ‘standard’ terminology makes it easier for others to find your
work (which after all, is usually what you want them to do of
course)—it is not unheard of for systematic reviewers to be found
complaining about failure by the authors of primary studies to use
consistent terminology, while demonstrating just such a failure on
their own part!

Conduct a review of the report. Because a systematic review can involve
many people, different sections of the report may well have been written
by different authors—and this sometimes shows in terms of differences
of style, terminology and even grammar and tenses. Given that there are
some marked differences between American and British English, using
a mix of these can also be confusing1. So, once the report is drafted,
an important task is that of an editorial review, carried out by one or
two people, with the aim of making the paper more consistent and (one
hopes) readable. The purpose of this type of review is editorial rather
than technical, and we address the latter role in the next section. Also,
where the paper is written in English, and none of the authors is a
native-English speaker, we suggest that it may be useful to get a native
speaker to go through the report, both to check grammar, and maybe
also to revise any idioms that might not have translated well. (As we
ourselves are essentially mono-lingual, we do admire the ability of others
to write reports in another language, but as referees, we are also aware
that even good papers can have some strange phrasing in places.)

12.3 Validating reports
Editorial aspects apart, all report authors have a responsibility to read

and review a report, with the aim of ensuring that the following situation is
true.

• The research questions are clearly specified and fully answered.

• The research methodology is fully and correctly reported.

• There is traceability from the research questions to data collection, data
synthesis and conclusions.

1The phrase ‘two nations separated by a common language’ can be very true. As an
illustration, fortunately unlikely to appear when reporting a systematic review, consider
the use of the word ‘momentarily’. To Americans, this means ‘in a moment’, while to the
British it means ‘for a moment’. So, consider the effect on British passengers of American
air-crew announcing that “we will be landing momentarily”!

Reporting a Systematic Review 163

• All the tables and figures used to present the results are correct and
internally consistent.

• In the case of systematic reviews, the conclusions are written clearly and
are targeted both at researchers and also practitioners.

If possible, reports of systematic reviews should be independently reviewed.
Within a research group (for example, a university department), colleagues
may be willing to undertake independent reviews of reports on a quid-pro-quo
basis.

This page intentionally left blankThis page intentionally left blank

Chapter 13
Tool Support for Systematic Reviews

with Christopher Marshall
Keele University

13.1 Review tools in other disciplines . 166
EPPI-reviewer . 167
Review manager (RevMan) . 168

13.2 Tools for software engineering reviews . 169
In summary... 170

Software tools can provide valuable support for many aspects of systematic
reviews and mapping studies. As we have seen in previous chapters, con-
ducting a review involves the systematic storage, management, validation and
analysis of what can be quite large quantities of data. Many of these review
activities are error prone and time consuming when performed manually. The
software systems that have been used to support systematic reviews and map-
ping studies in software engineering include basic productivity tools, such as
word processors and spreadsheets, reference managers, statistics packages and
purpose-built tools targeting either particular stages of a review or the review
process as a whole.

In this chapter we focus mainly on special purpose tools that aim to sup-
port most review activities although noting that spreadsheets and reference
managers are probably the most widely used tools to date. We note also that
the tools landscape is changing quite rapidly with a growing number of tools,
especially those targeting the software engineering domain, being developed,
adapted and enhanced. Before looking at the tools for software engineering
reviews, we summarise some of those used in other disciplines, specifically in
the medical and social sciences fields.

165

166 Evidence-Based Software Engineering and Systematic Reviews

13.1 Review tools in other disciplines
Tools used in the medical and social sciences domains range from the quite

basic (such as ‘paper and pencil’, forms and spreadsheets) to complex special-
purpose systems (such as EPPI-Reviewer1 and Review Manager (RevMan)2).

Tools that provide a degree of automated support for specific activities
within the systematic review process have been summarised and classified
by Tsafnat, Glasziou, Choong, Dunn, Galgani & Coiera (2014). Some of these
‘tools’ are essentially approaches or methods that can be applied. For example,
scoping studies (or mapping studies) can be used to identify research gaps and
hence can direct reviewers towards research questions for which evidence is
lacking. Software tools identified by Tsafnat et al. include:

• Quick Clinical - a federated meta-search engine,

• Abstractr - for initial screening of titles and abstracts (using a machine
learning approach),

• ParsCit - supports snowballing through automated extraction of refer-
ences,

• ExaCT - supporting data extraction using information highlighting,

• Meta-analyze - for meta-analysis of extracted data.

For data extraction in particular, a range of approaches have been com-
pared by Elamin, Flynn, Bassler, Briel, Alonso-Coello, Karanicolas, Guyatt,
Malaga, Furukawa, Kunz, Schnemann, Murad, Barbui, Cipriani & Montori
(2009). The approaches included in the comparison are:

• Paper and pencil,

• Email based forms,

• Spreadsheet software,

• The Cochrane Collaboration’s Review manager (RevMan),

• Database software,

• Web-based surveys,

• Web-based specialized applications.

1http://eppi.ioe.ac.uk/cms/er4
2http://tech.cochrane.org/Revman

http://eppi.ioe.ac.uk/cms/er4
http://tech.cochrane.org/Revman

Tool Support for Systematic Reviews 167

Several experienced systematic reviewers from different countries assessed
each candidate’s setup cost, project setup difficulty, versatility, training re-
quirement, portability/accessibility, ability to manage data, ability to track
progress, ability to present data and ability to store and retrieve data.

Not surprisingly each tool type was found to have some benefits and some
drawbacks. The authors of the study concluded that “specialized web-based
software is well suited in most ways, but is associated with higher setup costs”.
They suggest that the selection of a data extraction tool should be informed by
the availability of funding, the number and location of reviewers, data needs
and the complexity of the review.

Below we summarise EPPI-Reviewer and RevMan which are two of the
most widely used specialised applications.

EPPI-reviewer
The current version of EPPI-Reviewer, EPPI-Reviewer 4, is a comprehen-

sive single or multi-user web-based system for managing systematic reviews
across the social sciences and medical disciplines. It has been developed and
is maintained by the EPPI-Centre at the Social Science Research Unit at
the Institute of Education, University of London,UK. EPPI-Reviewer 4 is a
“comprehensive online software tool for research synthesis” which supports
all stages of the systematic review process. It can support narrative reviews
and meta-ethnographies as well as quantitative reviews and meta-analyses.
Functionality includes:

• Reference management - thousands of references can be managed and
can be imported using a variety of formats. Web services enable direct
access to PubMed3. Fuzzy logic is used to check for duplicate papers.
The tool also manages linked documents so that multiple reports of a
study can form a single ‘units of analysis’ (see Section 6.3).

• Study selection and data analysis - features include concurrent multi-
user classification of studies, based on inclusion and exclusion criteria,
disagreement resolution and the generation of summary reports. Com-
mon measures of effect using a variety of statistical methods can be
calculated.

• Synthesis - a range of features are offered including running meta-
analysis. Reports of categorical, numerical and textual data can be pro-
duced in a wide variety of formats. Also, text mining is used to support
automatic document clustering (and can enhance the search process once
there is a known set of relevant papers).

3http://www.ncbi.nlm.nih.gov/pubmed PubMed, which is supported by the US gov-
ernment, is a large-scale freely-available online database which indexes articles and books
relating to medical and other life sciences.

http://www.ncbi.nlm.nih.gov/pubmed

168 Evidence-Based Software Engineering and Systematic Reviews

• Review management - the system enables allocation of tasks to indi-
vidual members of a review team, reporting of progress and export of
review data to enable long-term storage.

Fees for use of the system are charged on a not–for–profit basis, and contribute
to infrastructure, development and a range of support mechanisms.

Review manager (RevMan)
This is a substantial special-purpose system for supporting systematic re-

views in the medical domain. It is mandatory (and free) for preparing and
maintaining Cochrane reviews4. It can also be used in non-Cochrane mode.
Information about using RevMan is widely available through a range of tuto-
rials, webinars and user guides. The system offers support for:

• Preparation of protocols - the tool provides support for developing a
protocol which adheres to the format required for a Cochrane review
(as documented in the Cochrane Handbook for Systematic Reviews of
Interventions5) or for developing protocols using other formats (in non
Cochrane mode).

• Text input - information about a review can be copied and pasted from
a word processor document or entered directly. Pre-defined headings
(such as Background and Description of the condition) can be used or
de-activated. The tool supports tracking of changes and spell checking.

• Adding studies and references - these can be added for included and
(optionally) for excluded studies and for other papers that are cited in
a review.

• Tables - two standard tables are available. These are the Characteristics
of included studies table and the Risk of bias table. A Characteristics
of excluded studies and other tables (generated using a New Additional
Table wizard) can also be incorporated.

• Data and analyses - substantial support is offered for data input, meta-
analyses and the generation of graphs (such as forest and funnel plots).

• Finishing the review - a Summary of findings table can be added when
a review is complete. The table can be imported from a separate ap-
plication designed to produce such tables (GRADEprofiler6) or can be
created directly using RevMan’s table editor.

RevMan is targeted at data management, meta-analysis and documentation
of quantitative systematic reviews.

4http://www.cochrane.org/cochrane-reviews
5handbook.cochrane.org
6http://tech.cochrane.org/gradepro

http://www.cochrane.org/cochrane-reviews
handbook.cochrane.org
http://tech.cochrane.org/gradepro

Tool Support for Systematic Reviews 169

13.2 Tools for software engineering reviews
Recent research7 suggests that problems relating to systematic reviews

(and mapping studies) faced in other disciplines are similar to those faced by
software engineering researchers and so it may be that EPPI-Reviewer (and
RevMan) could be used within software engineering too. We should bear in
mind though that EPPI-Reviewer is not free to use (although users do suggest
that payment provides a degree of confidence in the reliability and longevity of
the tool). A mapping study has identified tools (other than ‘standard’ general-
purpose tools such as spreadsheets and reference managers) that have been
used to support software engineering reviews (Marshall & Brereton 2013).
Information about these and a range of other tools (including those from other
disciplines), is available through an on-line catalogue which classifies the tools
and provides some useful links8. Tools identified by the mapping study are
summarised in Table 13.1 which indicates for each tool the stage or stages
of a review that are addressed, whether the tool was developed specifically
to support software engineering reviews, the underlying approach used and
a reference that can be followed for further information. As we can see, text
mining is the most common underlying approach.

Four systems that target the software engineering systematic review pro-
cess as a whole have been evaluated by Marshall, Brereton & Kitchenham
(2014). These are:

• SLuRp9 - supports many of the stages of the review process. One of the
major strengths of this tool is that it supports review teams, enabling
multiple reviewers to perform study selection and quality assessment
independently, and providing a mechanism for managing the resolution
of disagreements.

• StArt10 - comes with a full installation wizard and is well supported
by an introductory video providing an overview of the tool and its key
features. The tool provides some support for protocol development and
allows the results of searches to be imported using a range of formats.
It also supports, to some extent, study selection, data extraction and
synthesis. Major limitations of StArt are its lack of support for multiple
reviewers working as a team and for quality assessment.

• SLR-Tool11 - provides some support for protocol development, data ex-

7C. Marshall, P. Brereton and B. Kitchenham, Tools to support systematic reviews in
software engineering: a cross-domain survey using semi-structured interviews, in prepara-
tion.

8http://systematicreviewtools.com/
9https://bugcatcher.stca.herts.ac.uk/SLuRp/

10http://lapes.dc.ufscar.br/tools/start_tool
11http://alarcosj.esi.uclm.es/SLRTool/

http://systematicreviewtools.com/
https://bugcatcher.stca.herts.ac.uk/SLuRp/
http://lapes.dc.ufscar.br/tools/start_tool
http://alarcosj.esi.uclm.es/SLRTool/

170 Evidence-Based Software Engineering and Systematic Reviews

traction and quality assessment and data analysis. However, like StArt,
it does not support multiple users working together on a review.

• SLRTOOL12 - has a number of potentially useful features including
some support for searching, however, at the time of writing, much of
this potential seems to not yet be realised.

These tools are all free to use.

In summary...

Special-purpose tools to support software engineering reviewers are
at present:

• few in number
• immature
• not widely used
• in some cases showing promise
• in need of further independent evaluation

General purpose tools such as spreadsheets and reference managers
dominate.

In other disciplines, EPPI-Reviewer and RevMan support many
systematic review activities including collaborative working.

12http://www.slrtool.org

http://www.slrtool.org

Tool Support for Systematic Reviews 171

TABLE 13.1: Tools to Support Systematic Reviews in Software Engineering
Tool name Review stage New tool? Underlying

approach
Reference

Project Ex-
plorer

Study selection
Data extraction
Reporting

No Visualisation Felizardo
et al. (2010)

Revis Study selection Extension to
an existing
tool

Text mining Felizardo
et al. (2012)

SLR-Tool All Yes (Incorporates
text mining)

Fernández-
Sáez, Bocco
& Romero
(2010)

Hierarchical
Cluster Ex-
plorer

Synthesis No Visualisation Cruzes, Men-
donca, Basili,
Shull & Jino
(2007a)

Site Content
Analyzer

Synthesis No Text mining Cruzes, Men-
donca, Basili,
Shull & Jino
(2007b)

UNITEX Data extraction No Text mining Torres,
Cruzes &
do Nasci-
mento Sal-
vador (2012)

SLuRp All Yes - Bowes, Hall
& Beecham
(2012)

SLONT/
COSONT

Data extraction Yes Ontology Sun, Yang,
Zhang,
Zhang &
Wang (2012)

StArt All Yes - Hernandes,
Zamboni,
Fabbri &
Thommazo
(2012)

Uses DBpe-
dia, Open-
Calais, Naïve
Bayes tool

Study selection No Text mining Tomassetti,
Rizzo, Vetro,
Ardito,
Torchiano
& Morisio
(2011)

This page intentionally left blankThis page intentionally left blank

Chapter 14
Evidence to Practice: Knowledge
Translation and Diffusion

14.1 What is knowledge translation? . 175
14.2 Knowledge translation in the context of software engineering . . 177
14.3 Examples of knowledge translation in software engineering 180

14.3.1 Assessing software cost uncertainty . 180
14.3.2 Effectiveness of pair programming . 181
14.3.3 Requirements elicitation techniques . 181
14.3.4 Presenting recommendations . 182

14.4 Diffusion of software engineering knowledge . 183
14.5 Systematic reviews for software engineering education 184

14.5.1 Selecting the studies . 185
14.5.2 Topic coverage . 186

The preceding chapters making up Part I of this book have addressed the
various issues concerned with adapting the practices of the evidence-based
paradigm to the needs of software engineering. In particular, they have de-
scribed the role of a systematic review in amassing and synthesising evidence
related to software engineering topics. So in this, the final chapter of Part I,
we consider what should happen after the systematic review, and in particu-
lar, how the outcomes from a review (the data) can be interpreted to create
knowledge that can then be used to guide practice, to help set standards, and
to assist policy-making.

In other disciplines that make use of systematic reviews, this process of
interpretation for practical use is often termed Knowledge Translation (KT),
although as we will see, there are questions about how appropriate the “trans-
lation” metaphor is. Clearly, the way that KT is performed should itself be
as systematic and repeatable as possible, and it should also reflect the needs
and mores of practitioners, as well as of the different forms of organisational
context within which they work.

In the interpretation of evidence-based practices for software engineering
provided in Section 2.3, Step 4 was described as:

Integrate the critical appraisal with software engineering expertise
and stakeholders’ values.

This essentially describes the role of KT, and while this does occur (we will

173

174 Evidence-Based Software Engineering and Systematic Reviews

examine some examples later in the chapter), the processes used tend to be
rather ad hoc and to lack adequate documentation.

FIGURE 14.1: The pathway from data to knowledge.

Knowledge translation in itself is of course only part of the overall process
of encouraging practitioners and others to make use of the evidence from
a systematic review. Knowledge needs to be disseminated to be useful, and
the processes through which new forms of knowledge become accepted and
adopted by the relevant parts of society has been studied for many years,
with the classic work on this being the book Diffusion of Innovations by
Rogers (2003). The model shown in Figure 14.1 illustrates the sequence of
quite complex processes involved in turning data into something that forms
part of the professional’s “knowledge toolkit”.

Both KT and diffusion are large and complex topics, and we can only
address them fairly briefly here. So, in this chapter we examine how KT is

Evidence to Practice: Knowledge Translation and Diffusion 175

organised in other disciplines; discuss how it might be placed on a more sys-
tematic basis in software engineering; and review a number of examples of
where KT has been performed to provide guidelines about software engineer-
ing practices. We also provide a short discussion of the nature of knowledge
diffusion, and how this may occur for software engineering. Finally, we review
the software engineering knowledge that has emerged from the first ten years
of performing systematic reviews in software engineering and consider how
this might help to inform and underpin better quality teaching, practice and
research—which after all is the purpose of EBSE.

14.1 What is knowledge translation?
While there is quite an extensive literature exploring the concept of KT, we

should observe that it is not the only term used to describe “post-systematic-
review” activities. Other terms that are in use include “Knowledge To Action”
(KTA) and “Knowledge Exchange” (KE), and such words as ‘uptake’ and
‘transfer’ are also used in this context. Part of the reason for the frequent
use of “Knowledge Translation” appears to stem from it being a term used in
the mandate of the Canadian Institutes of Health Research (Straus, Tetroe &
Graham 2009), and because Canadian researchers have authored many papers
on this topic.

A useful definition of KT is that produced by the World Health Organisa-
tion (WHO) in 2005, as:

“the synthesis, exchange and application of knowledge by rele-
vant stakeholders to accelerate the benefits of global and local in-
novation in strengthening health systems and advancing people’s
health” (WHO 2005)

(We might note that this actually refers to the ‘exchange’ of knowledge.)
Other definitions are to be found, with a common thread being the emphasis
on putting the knowledge into use.

The use of guidelines for performing KT so as to produce recommenda-
tions for practice has been investigated extensively for both clinical medicine
and education. Rather confusingly, in the literature, both the procedures for
producing recommendations and the recommendations themselves are apt to
be referred to as guidelines. So in this chapter we will use KT recommenda-
tions for the guidance provided to the eventual users about how to interpret
the outcomes from an individual systematic review. Similarly, wherever we
refer to KT guidelines, these will refer to the set of activities used for deriving
recommendations for practice or policy (KT recommendations), along with
any guidance that might be provided about how to describe them.

An overview of how KT-related guidelines are used in clinical medicine

176 Evidence-Based Software Engineering and Systematic Reviews

is provided by the EU recommendations for drawing up KT guidelines on
best medical practices (Mierzewski 2001). This also reviews the KT guidelines
programmes used in different EU member states.

Within the UK, the National Institute for Clinical Excellence (NICE) has
produced its own KT guidelines (NICE 2009), and these also provide a use-
ful source of descriptions of translation models. International efforts towards
evaluating KT guidelines produced by different organisations have included
the AGREE II programme for appraisal of KT guidelines (Burgers, Grol,
Klazinga, Mäkelä & Zaat 2003, AGREE 2009) and the assessment of these pro-
cesses for the World Health Organisation (WHO) described in (Schünemann,
Fretheim & Oxman 2006). Together these provide systematic approaches, for
both producing KT recommendations, and also for evaluation of the proce-
dures involved.

As noted earlier, the literature on this topic is extensive, which emphasises
that, for healthcare, the process of translation is complicated by many factors.
For example, Zwarenstein & Reeves (2006) observe that KT is often directed
at producing KT recommendations for a single professional group, whereas
the treatment of patients is likely to involve inter-professional collaboration.
Similarly, Kothari & Armstrong (2011) observe that for KT research in more
general health care, “developing processes to assist community-based organi-
zations to adapt research findings to local circumstances may be the most
helpful way to advance decision-making in this area”.

We should also note that the appropriateness of this terminology has
been challenged. Greenhalgh & Wieringa (2013) argue that the ‘translation’
metaphor is an unhelpful one and that its use “constrains thinking”. Essen-
tially, they argue that this term implicitly creates a model in which the only
form of useful knowledge stems from “objective, impersonal research findings”.
In examining equivalent metaphors from other disciplines they emphasise the
need to also involve such factors as “tacit knowledge of the wider clinical and
social” situation when using such knowledge. In particular, they propose that
a wider set of metaphors should be used, including ones such as “knowledge
intermediation”.

So, what their work highlights is that there are dangers implicit in sim-
ply adopting the ‘translation’ metaphor with its implication of researchers
“handing down” scientifically distilled guidance. More realistically, the pro-
cess of developing guidelines for use should be something that is shared be-
tween researchers and other stakeholders (which reiterates the earlier point
about the use of ‘exchange’ in the definition from the WHO). And, taken to-
gether, what all of these studies also indicate is that systematising KT is a
specific research activity in its own right, and that the process of KT involves
much more than simply supplying the outcomes from systematic reviews to
professionals.

Evidence to Practice: Knowledge Translation and Diffusion 177

14.2 Knowledge translation in the context of software
engineering

In this section we examine how the activities of KT could be interpreted
for software engineering. As a starting point, we have adapted the description
of KT provided by the WHO, quoted in the previous section, as well as the
variation used in Davis, Evans, Jadad, Perrier, Rath, Ryan, Sibbald, Straus,
Rappolt, Wowk & Zwarenstein (2003), in order to define a process of KT for
software engineering as being:

The exchange, synthesis and ethically sound application of
knowledge—within a complex system of interactions between re-
searchers and users—to accelerate the capture of the benefits of
research to help create better quality software and to improve soft-
ware development processes.

The three key elements involved in achieving this are: the outcomes of a sys-
tematic review; the set of interpretations of what these outcomes mean in par-
ticular application contexts; and the forms appropriate for exchanging these
interpretations with the intended audience.

In health care, a widely-cited paper by Graham, Logan, Harrison, Straus,
Tetroe, Caswell & Robinson (2006) refers to this as “knowledge to action” (a
term which we noted earlier). In this, the authors suggest that the process of
KT (or KTA) can be described using a model of two nested and interlocked
cycles that are respectively related to knowledge creation and knowledge ap-
plication. Figure 14.2 shows how this concept can be interpreted for software
engineering (Budgen, Kitchenham & Brereton 2013). The inner knowledge
cycle is concerned with “knowledge creation” (which in the case of software
engineering will be based upon primary studies and systematic reviews). The
outer action cycle “represents the activities that may be needed for knowledge
application”, including the creation and evaluation of both KT guidelines and
KT recommendations produced by using these. This element of the KT pro-
cess is highly-interactive and holistic (Davis et al. 2003), being driven by the
needs of the given topic, and hence evaluation will need to be a key element
in maintaining consistency of practice.

Because of this, the positioning of the elements in the outer cycle should
not be regarded as forming a sequence in the same way as occurs for the
elements of the inner cycle. Rather, the outer cycle describes a set of activities
that may well be interleaved and iterative.

Indeed, the value of Figure 14.2 lies less in its structure than in its identifi-
cation of the various factors involved in performing KT. It also highlights the
point that a transition to an evidence-informed approach to software engineer-
ing can only be achieved through a partnership of researchers, practitioners,
and policy-makers.

178 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 14.2: A knowledge translation model for SE. Reproduced with
permission.

To conclude this discussion of KT, in the book by Khan, Kunz, Kleijnen &
Antes (2011), the authors make some useful observations about the form that
recommendations should have that are as relevant for software engineering as
they are for clinical medicine. In particular, they highlight the following key
points.

• Recommendations should convey a clear message and should be as sim-
ple as possible to follow in practice.

• What possible users “really want to know about recommendations is
how credible (trustworthy) they are”, noting too that ‘credibility of a
recommendation depends only in part on the strength of evidence col-
lated from the review’.

In particular, they suggest classifying any recommendations as being either
strong or weak. They define a strong recommendation as effectively forming
a directive to adopt a practice or treatment, whereas a weak recommendation
indicates that a decision about its adoption is something that needs to depend
upon due consideration of other relevant factors.

Another approach to categorising the quality of evidence and strength
of recommendations from a systematic review, again developed in a medical
context, is the GRADE system (Grades of Recommendation, Assessment, De-
velopment and Evaluation), described in (GRADE Working Group 2004). A
discussion and example of using GRADE in a software engineering context
can be found in the paper by Dybå & Dingsøyr (2008b). To employ GRADE
they used four factors: study design; study quality; consistency (“similarity of

Evidence to Practice: Knowledge Translation and Diffusion 179

estimates of effect across studies”), and directness (“the extent to which the
people, interventions and outcome measures are similar to those of interest”).

The GRADE scheme specifies four levels for strength of evidence, and
hence of recommendations. In Table 14.1 we provide the GRADE descrip-
tions for each level, and suggest how these might be interpreted in a software
engineering context. As expressed, this allows for the possibility that further
studies may increase the classification assigned to any recommendations.

Evidence-based studies in software engineering are still far from reaching
the level of maturity where strong recommendations can be generated with
any confidence. Indeed, the nature of the effects that occur for the creative
processes of software engineering is likely to make the generation of strong
recommendations a relatively rare occurrence, indeed, it is worth noting that
Dybå & Dingsøyr assessed the strength of evidence from their earlier study
on agile methods as ‘very low’.

TABLE 14.1: Strength of Evidence in the GRADE System.
Level GRADE definition SE Interpretation

High Further research is very un-
likely to change our confi-
dence in the estimation of ef-
fect.

Supported by significant re-
sults from more than one
good quality systematic re-
view as well as by expe-
riences from systematically
conducted field studies.

Moderate Further research is likely to
have an important impact
on our confidence in the es-
timate of effect and may
change the estimate.

Supported by moderately
significant results from at
least one good quality sys-
tematic review, and by ob-
servational studies.

Low Further research is likely to
have an important impact on
our confidence in the esti-
mate of effect and is likely to
change the estimate.

Supported by moderately
significant results from at
least one good quality sys-
tematic review.

Very
Low

Any estimate of effect is very
uncertain.

Only supported by results
from one systematic review.

So, in the next section we examine some examples of where systematic
reviews have led to the creation of some form of recommendations about how
the outcomes might be used, and how the authors have qualified these.

180 Evidence-Based Software Engineering and Systematic Reviews

14.3 Examples of knowledge translation in software en-
gineering

The catalogue of 143 published systematic reviews described in (Budgen,
Drummond, Brereton & Holland 2012) identified 43 reviews that contained
material that could be used to inform teaching and practice. However, only
three of these actually provided any form of recommendations about how the
outcomes from the review could be interpreted in terms of practice. So, in this
section we briefly describe each of the studies, the recommendations that they
made, and how these were derived (where known).

14.3.1 Assessing software cost uncertainty
Cost and effort estimation have been studied quite extensively, which is

perhaps not surprising given that they can have a major impact upon project
success (and company profit). The study by Jørgensen (2005) particularly
looked at uncertainty in forecasts, and some of the likely causes for this.

This particular study drew upon primary studies that came from both the
software engineering domain and also a range of other domains that employ
forecasting procedures. The paper presents a set of recommendations (termed
‘guidelines’ in the paper) derived from the analysis. For each recommendation,
the paper identifies both the primary studies that provide supporting evidence
and also identifies where this is discussed. The author also provides a rating
using the same terms that we use above, together with explanations of what
these mean in terms of the evidence provided.

Rather than present the whole set of seven recommendations here, we
simply give two examples from them.

Recommendation 1: “Do not rely solely on unaided, intuition-based pro-
cesses.” This is rated as being strong, based upon the number of studies
favouring it.

Recommendation 2: “Do not replace expert judgement with formal mod-
els.” This is rated as medium.

Indeed, although the author describes the rating process as informal and sub-
jective, it is actually quite systematic and provides an excellent model for use
by other authors.

It is also interesting to note that the conclusions from a more recent sum-
mary of work in this area suggest that most of these recommendations are
probably still valid (Jørgensen 2014b).

Evidence to Practice: Knowledge Translation and Diffusion 181

14.3.2 Effectiveness of pair programming
The meta-analysis on the effectiveness of pair programming described by

Hannay et al. (2009) found wide variation in the form and organisation of the
primary studies included, limiting the confidence with which any recommen-
dations could be produced. There are also many other factors that influence
whether or not such a technique might be considered effective, particularly
the expertise of the programmers and the complexity of the task involved.

However, they did suggest that two recommendations were appropriate
when pair programming was being used by “professional software developers”,
and in a context where “you do not know the seniority or skill levels of your
programmers, but do have a feeling for task complexity”. In this context they
suggested that it was appropriate to employ pair programming for either of
the following situations:

• When task complexity is low and time is of the essence

• When task complexity is high and correctness is important

No specific process for deriving these was described, although the analysis of
the data implicitly supported them. In terms of the classifications suggested
in Table 14.1 these should probably be considered as recommendations with
low strength. However, in the future, they could be regraded as moderate if
supporting outcomes from observational studies become available, given that
this was a ‘good’ systematic review.

14.3.3 Requirements elicitation techniques
Our third example is a paper by Dieste & Juristo (2011) that examines

elicitation techniques that are often used for determining system requirements.
They present five recommendations (again, termed ‘guidelines’ in the paper),
and for each one they identify the aggregated (synthesised) evidence that
supports or refutes the recommendation. The authors have not attempted to
assess the strength of these recommendations.

Again, we present two of these without attempting to include all of the
supporting detail. We have also slightly reworded them, mainly to fit the role
of a recommendation.

Recommendation 1: “The use of unstructured interviews is equally as, or
more effective than, using introspective techniques (such as protocol
analysis) and sorting techniques.” The authors observe that it is rea-
sonable to assume that this recommendation also applies to structured
interviews.

Recommendation 3: “The use of unstructured interviews is less efficient
than using sorting techniques and Laddering, but is as efficient as in-
trospective techniques such as protocol analysis.” Again, the authors
observe that this should also apply to structured interviews.

182 Evidence-Based Software Engineering and Systematic Reviews

One of the benefits (and complexities) of this paper was that it looked at
studies that made comparisons between the different techniques, allowing the
reviewers to provide an element of ranking in their recommendations.

14.3.4 Presenting recommendations
Looking at these three examples, we can see some common threads among

them.

• The authors are experts at performing systematic reviews and have ex-
tensive expertise related to the topic of the review, assisting them with
interpreting the outcomes of the review.

• Their reviews found quite substantial numbers of primary studies, so
that the authors have been able to identify areas where these reinforced
each other (or vice versa).

• They present supporting evidence for their recommendations, in two
cases, directly listing the studies that agree/disagree with the recommen-
dation. They also provide a discussion that explains how the primary
studies support a recommendation (or otherwise).

All three examples also follow the advice of Khan et al. (2011) to keep the
recommendations simple and to provide some indication of how trustworthy
they are (in these cases, by discussing the underpinning evidence).

So, where a review team has the technical expertise to do so, there is scope
to provide at least a basic element of knowledge translation of the review
outcomes, in the form of recommendations. We provide a summary of key
points for doing so in the box below.

Guidelines for Producing Recommendations

• Only do so if you have appropriate technical expertise.

• Only do so if your systematic review is a ‘strong’ one.

• Keep any recommendations simple and easy to follow.

• Identify the studies that support/refute each recommendation.

• Provide a separate derivation, related to the studies.

• Provide an indication of how strong a recommendation is (and what
you mean by this).

• Identify the audience for the recommendation, and, where appropriate,
whether the evidence comes from using practitioners or students as
participants in the primary studies.

Evidence to Practice: Knowledge Translation and Diffusion 183

14.4 Diffusion of software engineering knowledge
Neither innovativeness nor quality will necessarily ensure that new devices

or processes will be successful in being accepted by the communities most
likely to benefit from them. So, even if we can produce strong recommen-
dations that address topics of major importance to the software engineering
community, their adoption still requires the community to be persuaded of
their merits.

This situation is by no means unique to software engineering, and the
terminology that is used at the base of Figure 14.1 is drawn from the ideas of
diffusion research as set out by Rogers (2003). This is based upon the premise
that the process of acceptance of innovative ideas and technologies tends to
follow broadly similar processes, regardless of discipline. The topic overall is a
large one and we can only touch lightly upon it here, where our main concern
is to encourage awareness. The world does not automatically beat a path
to the doorway of the person with a better mousetrap, agricultural practice
or software development process. To gain recognition, that person needs to
ensure that knowledge about their innovation gets to, and is accepted by, the
people who will influence others.

The ‘classical’ diffusion model produced by Rogers recognises five major
‘adopter categories’ who are involved in the process of moving an innovation
into the mainstream. Briefly, these are as follows.

• The innovators are people who like to try new ideas and are willing to
take a high degree of risk in doing so. Communication between them is
a strong element in sharing of new ideas, but it is likely that this will
be across organisations rather than within them.

• The early adopters are opinion formers who have influence within organ-
isations, and so they are the people whose opinion is sought by others
who are considering change.

• The early majority are those who are more cautious than the preceding
two groups, but still tend to be ahead of the average. They take longer
to decide about changing their processes than the early adopters, and
tend to follow rather than lead.

• The late majority are even more cautious, and only join in when they
can see that their peers are taking up a change, and that they might
even be disadvantaged by not doing so.

• Finally, the laggards are apt to be suspicious of change and may have
only limited resources, which may also encourage caution about change.

So generally, the key to successful adoption lies in achieving buy-in from the
people who fall into the first two categories.

184 Evidence-Based Software Engineering and Systematic Reviews

An authoritative study in the field of health care by Greenhalgh, Robert,
MacFarlane, Bate & Kyriakidou (2004), based upon a large-scale systematic
review, suggests a wider and rather more proactive view of the way that
knowledge can be transferred. In particular the authors suggest that it is
useful to distinguish between the following three mechanisms.

1. diffusion where knowledge and awareness spread passively through a
community, largely through natural means

2. dissemination through the active communication of ideas to a target
audience

3. implementation through the use of communication strategies that are
targeted at overcoming barriers, using administrative and educational
techniques to make the transfer more effective

For recommendations produced from systematic reviews in software engineer-
ing, all three mechanisms can potentially play a useful role.

Pfleeger (1999) suggests that different adopter categories are motivated by
distinct transfer mechanisms. She introduces the idea of the gatekeeper whose
role is to “identify promising technologies for a particular organisation”. An-
other part of their role is to assess the evidence presented for a new or changed
technology. We should also note that identifying appropriate vehicles for com-
municating with the different gatekeeper roles is important, These vehicles
might be social networks (particularly for innovators), trusted media sources
(for early adopters) and some form of ‘packaging’ (which might be the incor-
poration of recommendations into standards) for the early and late majorities.

An associated issue here is that of risk. For the innovators and early
adopters, taking up a new or changed technology may involve a higher level
of risk. So any presentation of new knowledge has to help them make an as-
sessment of how significant this risk might be in their particular context (and
in exchange, what benefits they might derive).

While we cannot really delve deeper into these issues here, they are impor-
tant ones for systematic reviewers to note. Publication of the outcomes of a
review in respected refereed journals is only the first stage of getting knowledge
out to users. In particular, the knowledge embodied in any recommendations
may need to be spread through such means as social media, professional jour-
nals, and incorporation into standards. Another important vehicle is the use
of educational channels (relating to ‘implementation’), and we address this in
a little more detail in the next, and final, section of this chapter.

14.5 Systematic reviews for software engineering educa-
tion

One way in which software engineering does differ significantly from other
disciplines that use systematic reviews is in the way that the topics of these are

Evidence to Practice: Knowledge Translation and Diffusion 185

decided. For disciplines such as education, social science, and to some degree,
healthcare, systematic reviews are often commissioned by policy-makers, who
may well work within government agencies. To our best knowledge, there
are so far no instances of systematic reviews in software engineering being
commissioned by either government agencies or industry—this may be partly
because secondary studies are still immature for software engineering, but
also because IT-related decisions are rarely evidence-informed at any level.
So, the available secondary studies do tend to have been motivated more
by the interest of particular researchers than through any efforts to inform
decision-making.

So, in presenting this ‘roadmap’ to available systematic reviews, the reader
should remember that the distribution of topics is driven by ‘bottom-up’ in-
terest from researchers, rather than ‘top-down’ needs of policy-makers. This
may change in the future but for the present it is the situation that exists for
software engineering.

And of course, even before we have finished compiling such a roadmap, it
is inevitably out of date as new reviews become available.

14.5.1 Selecting the studies
The roadmap provided here is based upon a tertiary study that we per-

formed in 2011, and published as (Budgen et al. 2012). The research question
posed for this was:

What is available to enable evidence-informed teaching for software
engineering?

Although this was posed as an educational question, we did seek to identify any
systematic reviews that could provide knowledge, advice or guidance relevant
to either practice or teaching. We excluded any that were purely concerned
with research issues (and of course, almost all mapping studies).

To identify candidate systematic reviews we used a two-part search proce-
dure, organised as follows.

1. List all systematic reviews found in the three published ‘broad’ ter-
tiary studies that were available to us (Kitchenham, Brereton, Budgen,
Turner, Bailey & Linkman 2009, Kitchenham, Pretorius, Budgen, Brere-
ton, Turner, Niazi & Linkman 2010, da Silva et al. 2011). Together, these
covered the period up to the end of 2009. We also included one paper
that was subsequently known to have been missed by these studies.

2. List the systematic reviews found in five major software engineering
journals between the start of 2010 and mid-2011. While recognising that
this would be incomplete, it was felt that it would identify the majority
of published studies for this period.

Together, this produced a set of 143 secondary studies.

186 Evidence-Based Software Engineering and Systematic Reviews

We then excluded any studies that addressed research trends, those with
no analysis of the collected data and those that were not deemed to be relevant
to teaching. Conversely, we included studies that covered a topic considered to
be appropriate for a software engineering curriculum, using Knowledge Areas
(KAs) and Knowledge Units (KUs) from the 2004 ACM/IEEE guidelines for
undergraduate curricula in software engineering. This left us with 43 secondary
studies.

Our data extraction procedure then sought to categorise these studies
against the KAs and KUs, to extract any recommendations provided by the
authors, and in the absence of these, any that we felt were implied by the out-
comes, since few authors provide explicit recommendations. (As we have seen,
knowledge translation is not a trivial task.) Data extraction was performed by
pairs of analysts using different pairings of the four authors in order to reduce
possible bias.

14.5.2 Topic coverage
Table 14.2 provides a count of the number of studies we categorised against

each Knowledge Area.

TABLE 14.2: Number of Systematic Reviews for Each Knowledge Area
KA code Topic Count
QUA Software Quality 6
PRF Professional Practice 2
MGT Software Management 13
MAA Modeling & Analysis 7
DES Software Design 1
VAV Validation & Verification 7
EVO Software Evolution 2
PRO Software Process 5

Total Studies 43

Within these numbers, there are some substantial groupings for particular
Knowledge Units. In particular, nine of the studies classified as MGT were in
the area of project planning, with a preponderance of cost estimation stud-
ies among these. (As this is an important topic, and one that teachers may
not always be particularly expert in, this can of course be seen as a useful
grouping.)

Fuller details of the studies are provided in Appendix A.

Further Reading for Part I

General Reading
There is a range of books addressing practice for systematic reviews, al-

though usually written for use in disciplines other than software engineering.
The following is a selection of books that we have found useful when learning
our own way around this domain.

• Systematic Reviews in the Social Sciences: A Practical Guide. Mark Pet-
ticrew and Helen Roberts. This book is focused upon how to perform
a systematic review, and so has been used by many software engineers,
not least because it addresses many issues that are common to our dis-
cipline too. It was also available early on in the evolution of EBSE and
hence helped to influence thinking about how this might be organised.

• Systematic Approaches to a Successful Literature Review, Andrew
Booth, Diana Papaioannou and Anthea Sutton. This book approaches
its subject matter from an “information science” viewpoint, rather than
a discipline-specific one. And as might therefore be expected, it is partic-
ularly well provided with references to the research literature pertaining
to systematic reviews. It provides a useful taxonomy of the different
forms of systematic review, as well as offering practical guidance on the
actual procedures.

• Bad Science, Ben Goldacre. Ben Goldacre enjoys a substantial (and well-
deserved) reputation within the UK as something of an iconoclast, and
as also being willing to take on a range of formidable opponents when it
comes to mis-reporting of science (alternative therapies, pharmaceutical
companies, newspapers, . . .). So you might ask why we see his book as
useful, given that he is addressing bad practices. Well, one reason is that
he sees an antidote to many of these bad practices as being to use a good
one, with the use of systematic reviews being particularly important.
Another is that he explains the benefits of a systematic approach in clear
terms—as well as taking care to substantiate his arguments and to avoid
excessive claims. So, while systematic reviews are not the main topic of
the book, it gives some graphic ideas about the likely consequences of
adopting some of the alternatives!

187

188 Further Reading for Part I

We also suggest that readers might find the following paper interesting.

Profiles in Medical Courage: Evidence-Based Medicine and Archie
Cochrane, Richard A Robbins. Given that Archie Cochrane’s work
is considered to be the (substantial) pebble that set the evidence-
based movement cascading down on to the world, it is quite inter-
esting to know what motivated his views and how they emerged.
Many articles have been written about him and about the factors
that influenced his work, and this one is both representative and
also very readable.

Undertaking a Systematic Review
The following two papers focus on the overall review process.

• Lessons from Applying the Systematic Literature Review process within
the Software Engineering domain, Pearl Brereton, Barbara Kitchenham,
David Budgen, Mark Turner, and Mohamed Khalil. This paper reports
19 lessons learned from early systematic reviews and mapping studies
in software engineering. Most of the lessons are still relevant, although,
with respect to lesson 13, we would now suggest that data extraction is
performed independently by two or more reviewers rather than by one
reviewer with one checker.

• A Systematic Review of Systematic Review Process Research in Soft-
ware Engineering, Barbara Kitchenham and Pearl Brereton. This article
also reports experiences of undertaking systematic reviews and mapping
studies; however, it does so in a more formal way, reviewing studies that
assess techniques that could be used to improve the review process. The
paper discusses advice on performing reviews, proposes improvements
to the guidelines and provides references to the 68 papers, reporting 63
studies, that address the review process.

A discussion of search strategies and of digital libraries and indexing ser-
vices used in software engineering research can be found in the first of the
following two papers. The second paper provides useful information for re-
viewers who are considering the use of a quasi-gold standard approach to
validating their searches.

• Developing Search Strategies for Detecting Relevant Experiments, Oscar
Dieste, Anna Grimán, and Natalia Juristo. This paper covers a broad

Further Reading for Part I 189

range of topics relating to search strategies. Concepts such as optimal
search, recall (sensitivity), precision and a gold standard are discussed
as are some of the weaknesses of the commonly used digital libraries.
Also, the precision and recall for a range of different search terms are
compared using the set of papers found by Sjøberg et al. (2005) as the
gold standard.

• Identifying Relevant Studies in Software Engineering, He Zhang,
Muhammad Ali Babar and Paolo Tell. A detailed description of the
proposed 5-step quasi-gold standard approach to searching and search
validation is provided in this paper. The approach is clearly demon-
strated and evaluated through two participant-observer case studies.
Results from the case studies suggest that the approach is promising.

We are not aware of any software engineering research papers that fo-
cus specifically on study selection, other than those that propose the use of
text analysis approaches. Although the approach looks promising most of the
evaluation studies to date are rather limited.

Study selection is covered by a number of books on the use of systematic
reviews in the social sciences and medical domain, including those by Booth
et al. and Petticrew & Roberts listed above.

As indicated in Section 7.1, further discussion of the concepts of quality,
bias and validity, can be found in ‘Strength of evidence in systematic reviews
in software engineering’ by Dybå & Dingsøyr.

Researchers undertaking reviews where the primary studies take the form
of case studies can find further information about Runeson & Höst’s checklists
in their paper ‘Guidelines for conducting and reporting case study research in
software engineering’.

The paper Empirical Studies of Agile Software Development: A Systematic
Review, also by Dybå & Dingsøyr, provides details of their generic checklist
and illustrates its use in a qualitative technology focused systematic review
on Agile methods. This checklist can be used when a review includes primary
studies that utilise a range of empirical methods.

Finally, we suggest looking at the SURE Critical Appraisal Checklists1 and
the work of the SURE team more generally, as they continue to develop and
improve their checklists for quality assessment of a range of different types of
study.

1http://www.cardiff.ac.uk/insrv/libraries/sure/checklists.html

http://www.cardiff.ac.uk/insrv/libraries/sure/checklists.html

190 Further Reading for Part I

Synthesis
In the paper Systematic Mapping Studies in Software Engineering, Pe-

tersen et al. (2008) provided a major incentive for the adoption of mapping
studies in software engineering research. They proposed a review process for
mapping studies and introduced the idea of representing classification informa-
tion using bubble plots and the use of the classification system recommended
by Wieringa et al. (2006) in their paper “Requirements engineering paper clas-
sification and evaluation criteria”. This paper needs to be read before being
adopted by mapping study analysts both to ensure that the proposed cate-
gories are appropriate to the mapping study topic area, and to understand
the specific categories, in particular “Solution Validation” and “Implementa-
tion Evaluation”. This is important because the differences between validation
and evaluation is seldom well-understood and may be used inconsistently by
primary study authors.

Qualitative meta-synthesis of qualitative primary studies is a complex and
difficult task and there are a great many methods and techniques that can be
used. When planning a qualitative meta-synthesis, it is useful to read a study
that has used the same basic approach:

• For a meta-ethnography we recommend reading the paper Using Meta-
Ethnography to Synthesize Research: A Worked Example of the Relations
between Personality and Software Team Process written by Da Silva
et al. (2013) which is organised as an example of the method.

• For a thematic analysis, we recommend the paper entitled “Recom-
mended Steps for Thematic Synthesis in Software Engineering” written
by Cruzes & Dybå (2011a) which provides a detailed explanation of
the method. In addition, the paper “Using Qualitative Metasummary
to Synthesize Qualitative and Quantitative Descriptive Findings” writ-
ten by . (Sandelowski et al. 2007) presents an alternative to thematic
analysis that can be used if the primary studies include little interpretive
synthesis (that is, their outcomes are primarily lists of topics mentioned
by participants, associated with frequency statistics).

If the primary studies include quantitative findings, but a meta-analysis
is not possible, vote counting is an appropriate technique. We recommend
reading the papers:

• “Does the Technology Acceptance Model Predict Actual Use? A System-
atic Literature Review” written by Turner et al. (2010)

• “Cross versus within-Company Cost Estimation Studies: A Systematic
Review” Kitchenham et al. (2007).

Further Reading for Part I 191

We would also recommend reading the technical report entitled “Guid-
ance on the Conduct of Narrative Synthesis in Systematic Reviews” Popay
et al. (2006) both for its examples of vote counting and qualitative moderator
analysis and, more generally, for its broad overview of techniques that can
be incorporated into a narrative synthesis and the worked examples of those
techniques.

There are many good textbooks dealing with meta-analysis which are suit-
able for non-statisticians. Chapter 11 was based mainly on the book entitled
“Introduction to Meta-Analysis” written by Borenstein et al. (2009). How-
ever, “Understanding the New Statistics. Effect Sizes , Confidence Intervals
and Meta-Analysis” written by Cumming (2012) is particularity useful for
statistical novices. Cumming is a strong advocate of using confidence inter-
vals, effect sizes and meta-analysis to analyse statistical experiments rather
than null hypothesis significance testing. Given the topic of this book, it is
interesting to note that Cumming’s textbook is evidence-based both in terms
of its advice about statistical methods and in terms of its approach to learning
and teaching.

For a good example of a software engineering meta-analysis, we recommend
reading the paper The Effectiveness of Pair Programming. A Meta Analysis
written by Hannay et al. (2009). This paper includes examples of forest
plots based on both random-effects and fixed-effects models, sensitivity anal-
ysis based on assessing the impact on the meta-analysis results of removing
one primary study at a time, and funnel plots to investigate publication bias
including a trim-and-fill analysis.

Using Knowledge from Systematic Reviews
The paper What Scope is There for Adopting Evidence-Informed Teaching

in Software Engineering? published as (Budgen et al. 2012) provides an illus-
tration of a focused tertiary study. The aim was to identify where there was
material from existing secondary studies that might be useful when teaching
about software engineering. In this case the element of synthesis was provided
by categorising the selected studies against a set of major topic areas. The
material presented in Appendix A of this book is based upon an updated
version of that study, that has been extended to include studies published up
until the end of 2014.

192 Further Reading for Part I

Using EBSE in practice
In their paper “Analyzing an automotive testing process with evidenced-

based software engineering” Kasoju et al. (2013) present the only direct appli-
cation of evidence-based software engineering reported so far.

Kasoju et al. used a case study based on eight projects in a Swedish au-
tomotive company to investigate strengths and challenges/bottlenecks in the
software test process. Data collection was based on interviews with project
members.

Step 1 in EBSE is converting the need for information into an answerable
question. From their analysis they identified the following:

• Strengths and weakness of the current process as viewed by teams using
agile methods and teams using conventional waterfall processes. They
note that some of the advantages identified by agile teams such as the
developer and tester being the same person were regarded as problematic
by larger teams.

• 10 “challenge areas” related to organization of testing, time and cost
constraints, requirements, resource constraints, knowledge management,
interactions and communication, testing methods, quality, defect detec-
tion and documentation. Each challenge area identified specific process
problems. The specific process problems identified twenty-six issues for
which evidence was needed.

Step 2 in EBSE involves tracking down best evidence. For this step, the
authors used the top level research question “What improvements for the
automotive testing process based on practical experiences were suggested by
the literature?”. They undertook a targeted search of testing studies with an
emphasis on agile methods. In addition, they used the automotive software
domain as one of their inclusion criterion. They looked for relevant literature
in each of the 10 challenge areas and identified relevant information related to
seven approaches to improving testing including requirements management,
competence management, quality assurance and standards, test automation,
test tool deployment, agile incorporation, and test management. They mapped
the available evidence to each of the identified challenges.

Step 3 in EBSE involves critically appraising the evidence. For this ac-
tivity they used Value Stream Mapping, which is a process analysis tool used
for uncovering and eliminating waste. In the context of software engineering,
waste relates to bottlenecks and delays. The authors constructed a “current
state” map, identifying the process streams related to the five main test pro-
cesses: test planning, test design, test build, test execution and reporting.
They identified reasons for waste during the individual steps of each process
and mapped them to the related challenges. Finally, they integrated the re-
search evidence to produce a “future state” map. The future state map was

Further Reading for Part I 193

based on the observation that the current testing approach did not suit the
continuous flow of requirements, so there was a need for a new approach. They
recommended an agile approach compatible with the best practices already
used by small teams in the company, but including some more conventional
aspects such as experienced-based testing, and documenting test plans. Al-
though they were not able to validate the proposal solutions, the future state
map was presented to the practitioners and includes their feedback.

Step 4 in EBSE is based on integrating the evidence with SE expertise and
stakeholder values. Kajosu et al. do not mention this step explicitly but their
use of automotive industry evidence, value stream mapping which was devel-
oped in the automotive domain, and current best practice from the projects
used in their initial case study makes it clear that Step 4 was incorporated
into Steps 2 and 3.

Finally, Step 5 in EBSE involves evaluating the effectiveness and efficiency
of steps 1-4 and seeking ways to improve the EBSE process. (Kajosu et al. refer
to this as Step 4.) Reflecting on their study, they make the important point
that problems were scattered across several different sub-areas of software
engineering. This made a complete systematic review for all of the challenges
impossible and was the main rationale for using a domain specific literature
review. We entirely agree with their approach and believe it is completely
consistent with the view that evidence-based practice should be tailored to
SE expertise and stakeholder values. They also point out that it is difficult to
use existing systematic reviews which are topic specific rather than problem
specific. They stress the need for studies that address research questions that
relate to practical issues such as “Why testing windows get squeezed and what
do we do about it?” rather than academic concerns such as “What do we know
about software productivity?”.

Anyone seriously interested in evidence-based software engineering will
find much of value in this paper. For software engineers working in the auto-
motive industry, it should be essential reading.

This page intentionally left blankThis page intentionally left blank

Part II

The Systematic Reviewer’s
Perspective of Primary

Studies

195

This page intentionally left blankThis page intentionally left blank

Chapter 15
Primary Studies and Their Role in
EBSE

15.1 Some characteristics of primary studies . 199
15.2 Forms of primary study used in software engineering 201
15.3 Ethical issues . 203
15.4 Reporting primary studies . 205

15.4.1 Meeting the needs of a secondary study 205
15.4.2 What needs to be reported? . 208

15.5 Replicated studies . 208
Further reading . 209

If evidence-based research is to be more than an academic exercise, and is to
make a useful contribution to the discipline and practice of software engineer-
ing, then it needs to lead to evidence that can be used to:

• Deliver useful guidance about good practice, so that developers can de-
termine what benefits they might get from using particular techniques,
and be aware of the key factors influencing any effects;

• Enable organisations to make evidence-informed decisions about the
adoption of policies related to software development and procurement;

• Underpin the work of standards bodies.

Because a systematic review is a secondary study, with its value coming from
the objective synthesis of the outcomes of primary studies, these needs can
only be met successfully if they are supported by:

• An objective and rigorous process for producing evidence; and

• A set of sound empirical studies that address the given topic.

Part I described how we can achieve the first of these through the proce-
dures involved in conducting the different forms of secondary study normally
employed for software engineering. In Part II, we now examine the second
requirement, and identify what is needed if our primary studies are to provide
useful input to a secondary study. To do so, we need to understand the forms
and limitations of some major types of primary study, and how the reporting
of their outcomes might best be organised to aid future synthesis.

197

198 Evidence-Based Software Engineering and Systematic Reviews

Figure 1.5 presented a picture of the wider context within which systematic
reviews are conducted. In Figure 15.1 we refine that model and illustrate the
main relationships between primary and secondary studies that we will be
examining in this chapter and the following chapters.

FIGURE 15.1: How primary and secondary studies are related.

We will not go into the fine detail about each form of primary study used
in software engineering, not least because there are specialist textbooks that
already provide that level of knowledge. Rather, our concern here is more with
identifying and explaining what a systematic reviewer needs to know and un-
derstand about primary studies, the way that they are organised, and any
constraints that affect them, particularly when assessing study quality. Like
secondary studies, primary studies should be organised around a research pro-
tocol, and this in turn should take account of the likelihood of the outcomes
being used in a secondary study. Indeed, as Figure 15.1 emphasises, the re-
porting process acts as a filter between the actual outcomes from a primary
study, and what is eventually used for synthesis in a secondary study. Hence
it is important to consider the organisation of reporting as a process in its
own right.

How to report primary studies for the purpose of future synthesis is, quite
understandably, rarely addressed in books about empirical practice. However,
one of the frequent observations that systematic reviewers make when report-
ing on the conduct of their own study is the poor quality of reporting found
for primary studies. There are some indications of a gradual improvement in

Primary Studies and Their Role in EBSE 199

the conduct of primary studies, as reported by Kitchenham et al. (2013), but
clearly, from the comments of many frustrated reviewers, there is still room
for improvement!

This chapter forms a brief introduction to the material in Part II. It pro-
vides an overview of some of the key forms of primary study used in software
engineering and of their roles, together with an outline of what aspects of a
primary study need to be reported, when considered from the viewpoint of its
usefulness to a systematic review(er). We then elaborate further on both of
these in the next few chapters when we look at some specific empirical forms.
In addition, we briefly introduce the issue of replication from the viewpoint
of the systematic reviewers, with this being followed up in greater detail in
Chapter 21.

15.1 Some characteristics of primary studies
In Part I we focused upon the way that secondary studies are organised,

and how this involves finding and aggregating the outcomes of relevant pri-
mary studies. So, the role of a secondary study can easily be defined in terms
of its relationship to the constituent primary studies. Primary studies, how-
ever, exhibit a greater variation in form, and before examining some major
forms, it is useful to briefly consider what it is that specifically characterises
an empirical study as being a primary study, and two of the key concepts that
are related to this.

The main distinguishing characteristic is that a primary study involves
the researcher in making some forms of measurement that are related to the
“attributes of interest” for the topic of the study. Hence we can expect that
a primary study will usually involve using software engineering techniques or
technology in some way, and collecting data about this use in a systematic
manner. How exactly this is done will depend upon the form of study being
performed.

Measurement is itself a large and complex topic in its own right, although
we only require some very basic ideas about it here. In the context of software
engineering, the book by Fenton & Pfleeger (1997) provides much more com-
prehensive coverage of these issues. For now though, we are mainly concerned
with two particularly relevant concepts, namely those of the attribute and of
the measurement scale.

An attribute is a measurable (or at least, identifiable) property of an entity,
and hence measuring this in some way can be expected to tell us something
about that entity. In empirical studies related to software engineering we en-
counter various forms of entity, including:

• A process or procedure that is performed by people, such as pair pro-
gramming, writing test cases, or performing software inspection tasks;

200 Evidence-Based Software Engineering and Systematic Reviews

• A tool such as a compiler, version control system, or web browser;

• A software product, or part of one, such as a method, an object, or a
software service.

While each of these will have many properties and hence many attributes, an
empirical study will usually only be concerned with those that are of relevance
to the research question, although an awareness of the possible influence of
the others may well be relevant. So part of the task of developing a research
protocol for a primary study will be to identify the key entities, and hence the
attributes of interest to the study. These attributes may in turn be ones that
can be measured directly such as the number of lines of code in an object, or
the number of dependencies that it has upon other objects; or that can only be
measured indirectly by measuring other attributes and then combining these,
as occurs for effort estimation.

Identifying and collecting suitable measures of attributes is an important
element in designing a primary study. The choices made will also be important
for the systematic reviewer, and will help determine how well one is able to
aggregate the outcomes from different primary studies.

The second concept, that of ameasurement scale is closely related to that of
an attribute, since the choice of a suitable scale is related to the characteristics
of the attribute. Measurement scales are summarised in the Glossary section,
and here we just briefly review three forms of scale that are quite widely used
in software engineering.

• Nominal scales are used for categorisation (gender, programming lan-
guage, type of software component . . .), and there is no sense of there
being any ordering of the elements of the scale.

• Ordinal scales are widely used and often generated by the use of a Likert
response format (discussed in Section 19.2), and these provide a sense of
ordering, but do not have any specific ‘distance’ between each element
in the scale. Such scales are often used when assessing more qualitative
concepts such as quality (very poor, poor, adequate, good, very good)
or when seeking to rank features of entities in some way.

• Ratio scales relate to ‘countable’ items, with a zero point and fixed inter-
vals between the points on the scale. Examples of their use in software
engineering include counting lines of code, measuring elapsed time, and
counting the number of completed tasks. They are widely associated
with quantitative attributes.

The scales employed for assessing an attribute determine the form of analysis
that can be used in both the primary and secondary studies. And as indi-
cated, these concepts are particularly important for primary studies, as these
typically involve investigating the properties of software engineering entities.

Primary Studies and Their Role in EBSE 201

15.2 Forms of primary study used in software engineer-
ing

Although the terms ‘experimental’ and ‘empirical’ are sometimes used as
synonyms, especially by those unfamiliar with empirical studies, it is impor-
tant to appreciate that ‘formal’ experimentation is only one way to conduct
empirical investigations. As observed in Chapter 1, we may well begin our
investigation into a possible phenomenon by conducting studies that are of a
more informal observational nature, before undertaking more rigorous exper-
imentation and collecting more systematic observations and measurements.
Indeed, experimentation may not be the most appropriate way to address
many of the issues we address in software engineering, such as the adoption
of techniques and tools, and when performing assessments of specific software
tools and systems. Fortunately, the ‘empirical toolbox’ is well provided with
an assortment of empirical techniques that have evolved across a range of dis-
ciplines, and so the empirical software engineering researcher’s main task is
usually one of selecting from these to meet a particular need.

FIGURE 15.2: Primary study forms in the depth/generality spectrum.

When determining the form of study that is likely to be most appropriate
for addressing a given research question, two key factors are:

202 Evidence-Based Software Engineering and Systematic Reviews

• Determining the depth of knowledge required;

• Identifying the degree of generality needed for that knowledge.

Unfortunately, from a practical perspective, these are not independent choices.
Given finite resources, it is unlikely that an empirical investigation can be both
deep and also general in its scope. Figure 15.2 illustrates this concept for the
forms of study that we address in the next few chapters, and that have been
selected as being ones that are quite widely used in software engineering.
We might add that although other empirical forms are in use, none of these
overcome this constraint.

The positioning of the elements in Figure 15.2 should not be taken too
literally, as these characteristics will clearly vary quite considerably for indi-
vidual studies. What is more important is where they are positioned within
the grid, and in particular, that none can simultaneously provide both depth
of knowledge and generality. These characteristics are explained a little more
below.

Controlled Experiments & Quasi-Experiments. These are well-suited
to being used to answer quite focused research questions, often of a com-
parative nature (such as ‘does the use of technique A lead to fewer soft-
ware faults than occur when using technique B?’). However, for human-
centric experiments, which are widely used in software engineering, the
depth to which the issues around such a question can be addressed is
constrained both by the willingness of participants to undertake lengthy
tasks, and also by the need to recruit sufficient participants. We explore
the use of these further in Chapter 16.

Surveys. The use of a survey makes it possible to answer certain types of
research question by aggregating inputs from a large number of respon-
dents. It may well be possible to obtain a sample from people who have
a wide range of backgrounds, or who belong to very specific group-
ings, perhaps of those with particular types of skill or experience. Again
though, in order to obtain a large enough sample of respondents who
will complete the survey in full, the size of the survey task will need to
be kept relatively small, making it difficult to explore issues in depth. In
Chapter 17 we do examine ways in which selective “follow-up” activities
might make it possible to add depth, at least for a reduced sample, but
overall, surveys definitely fit into the ‘shallow’ category.

Case Studies. The use of case study research has increased considerably in
software engineering in recent years, as we explain in Chapter 18. Indeed,
for addressing some types of research question (such as those relating
to adoption of techniques ‘in the field’), this may well be the principal
form of study used. Case studies do allow for deeper probing of an issue,
and can be sustained over much longer periods of time than is usually
practical for experiments. In exchange, the effort expended upon each

Primary Studies and Their Role in EBSE 203

case usually makes it impractical to conduct very many of these, so that
the results usually lack generality.

Qualitative Studies. While experiments, surveys and case studies can, and
do, collect qualitative data, they are largely regarded as being part of the
‘quantitative toolbox’. Like case studies, qualitative forms can provide
considerable depth of knowledge, but such studies are almost invari-
ably very labour-intensive to conduct, making it difficult to use them
to achieve other than very specific knowledge. We discuss what forms
such studies may take in Chapter 19, where we also consider the types
of question that may best be addressed through their use.

Data-Mining. The use of this is more appropriate to research questions that
do not require human participants. Indeed, some surveys are effectively
conducted by using a restricted form of data-mining. We discuss its use
more fully in Chapter 20. In principle, with large amounts of data and
large amounts of processing power, use of this form could be both general
and deep, but achieving that is highly dependent on the available data
and upon how detailed the questions that can be asked through its use
can be. For that reason, the position given to this form in Figure 15.2
indicates that it can potentially probe more deeply than a survey, but
will still not be very deep.

While other forms of empirical study, such as ethnography and action research,
have been used quite successfully for software engineering tasks, their use is
relatively uncommon, and so far, they do not appear to have been used to
provide input to systematic reviews, at least, not to any significant extent.

Another important distinction between primary studies and the secondary
forms that we have described so far, apart from making measurement, is that
many of them involve direct contact with human participants. Because of this,
we need to consider whether our studies are likely to involve any ethical issues,
and if so, what forms these might take.

15.3 Ethical issues
When we involve people in our primary studies, we commonly refer to

these as participants, rather than subjects. This is because involvement both
in experimental forms of study, and also more observational forms, usually
requires that the people actively perform tasks, in contrast to being recipients
of some form of treatment.

Where our studies directly involve people in any way (and we include
surveys in this too), we need to ensure that such a study is performed in an
ethical manner—by which we mean that it will not disadvantage or harm those

204 Evidence-Based Software Engineering and Systematic Reviews

taking part (or conversely, give them an unfair advantage over their peers who
do not participate, which is a situation that can arise where students form the
source of participants).

Ethical issues have long been recognised as important by the major pro-
fessional bodies, as witnessed by the ACM/IEEE-CS code of ethical conduct
and professional practice (IEEE-CS/ACM 1999, Gotterbarn 1999). However,
their emphasis is largely concerned with the responsibilities of the software
engineer to the customer, employer and public, and when in the role of a pro-
ducer of software systems. Our concern here is with a rather different aspect,
which is the ethical responsibility of the researcher to those who are aiding
them in their research.

Fortunately this is an issue that has long been recognised by other human-
centric disciplines such as psychology, education and health. So most univer-
sities and similar organisations will have appropriate procedures for giving
approval to studies that involve humans. Certainly any researcher planning
a primary study of such a form will need to find out what their local proce-
dures are, and will need to address these when writing the protocol, as well
as seeking approval before actually beginning the study itself. The nature of
our research means that this should usually be a fairly straightforward pro-
cess, and any issues are more likely to arise from the way that the study is
organised than from the study treatment or topic.

So, what sort of issues do we need to consider in our planning? We suggest
a few examples of these below—most are related to experiments and also to
the use of student participants, since this is a common situation, but they
may also apply to surveys and observational forms of study too.

Informed participation. We need to ensure that any participants are fully
aware of what is being asked of them in a study. So it is usually
good practice to ask participants to begin their involvement by read-
ing through a written explanation of what they are being asked to do,
giving them the opportunity to ask any questions about this, and then
get them to ‘sign’ consent to their participation (the act of signing may
simply be one of pressing a button where the study is performed on-line).
Indeed, the inclusion of such a consent form is often required when sub-
mitting an application for ethical approval.

Pressure to take part. Recruiting participants can sometimes be quite
challenging, because in general both students and practitioners are unfa-
miliar with empirical studies. Since the researchers may also be teachers,
their classes may feel that refusing to take part might count against their
final grades. To avoid this, it is better if others (such as assistants) help
to do the recruitment and avoid mention of who is actually leading the
study.

Training benefits. Many software engineering experiments require some de-
gree of training for the participants. Again, for students in particular,

Primary Studies and Their Role in EBSE 205

taking part could be perceived as offering the benefit of additional tu-
ition and experience (creating further pressure to participate). This can
largely be avoided if the training is made freely available to anyone, not
just those taking part in the study.

Collecting demographic data. Our studies often require some element of
‘context’ about the participants, such as their level of technical knowl-
edge, education etc. It is important to collect only the information that
is relevant and needed for analysis, and also to ensure that any data
recorded is managed in accordance with data protection legislation.

Reporting. This needs to avoid anything that might identify individuals
in any way, particularly where we are analysing or comparing abilities
or skills. This is probably a greater risk with case studies than with
experiments or surveys, but the the authors of any forms of report do
need to be aware of it.

As a final thought from the perspective of the subject matter of this book,
the systematic reviewer also needs to be alert to any possible effects arising
from some of these issues (such as participant recruitment). If participants
felt pressurised to take part, could this have had an influence on the validity
of the results from the study?

15.4 Reporting primary studies
While reporting about a study well has always been an important goal for

researchers, the advent of secondary studies introduces a further perspective
on this task. Since secondary studies form the focus of this book, we therefore
address the issues related to their needs first, and then briefly consider more
general needs of reporting.

15.4.1 Meeting the needs of a secondary study
As illustrated in Figure 15.1, the way that a primary study is reported can

play an important role at almost every stage of any type of systematic review.
Since we are concerned here with the use of data from primary studies in
secondary studies, it may be helpful to begin by considering what the system-
atic reviewer will be doing while performing their review, and whereabouts in
a report they might expect to find the information needed to support these
activities.

1. To successfully find the report using a sensible set of keywords. (Title,
Keywords, Abstract.)

206 Evidence-Based Software Engineering and Systematic Reviews

2. To be able to confirm that the material in the report addresses the
research questions of the systematic review easily and quickly, without
needing to read the entire document. (Title, Keywords, Abstract.)

3. To be able to identify the goals and research question(s) of the study
being reported. (Abstract, Introduction.)

4. For a systematic review (as opposed to a mapping study), to be able
to confirm that the primary study is of good quality, and that its de-
sign and conduct conforms to appropriate “good practice guidelines”.
(Methodology and Conduct sections.)

5. For a systematic review, to be able to obtain the information needed for
synthesis. (Results section.)

6. To be able to identify any limitations, constraints or context factors, such
as any divergences from the original plan described in the experimental
protocol that may relate to, or affect, the results. (Discussion section.)

7. To be able to use this report to help find other related papers. (Refer-
ences, Discussion section, Related Work section.)

The first three and the last of these are very general points that apply to all
types of primary study, such as the way that title, abstract, keywords and
references are used. The others, relating to data extraction and synthesis are
more specific to individual types of study. So here we make some points about
the parts of a paper used for this first group of activities, leaving the others
to be covered more fully in the relevant chapters.

The Title. Clearly, getting all of the relevant information into a title, while
still keeping a manageable length, can be rather a challenge. Our advice
here is to use a sub-clause in the title such as “:An empirical study”. So
an example of this might be “Test-first versus test-last development: An
experimental study”. This provides the reader with information about
the topic (testing), about its form (a comparison between two testing
strategies) and an indication that the paper is an empirical one.

The Abstract. The abstract is a key element both for searching and also
for making decisions about inclusion. It is important to recognise that
an abstract is just that—a summary of the key elements of the paper,
including the outcomes and conclusions. Unfortunately, many software
engineering abstracts do seem to be rather poorly written, possibly be-
cause they have been produced in a hurry just before the paper is sub-
mitted. Empirical researchers need to be aware that their abstract is
important and that writing it well does merit the expenditure of time
and effort. We are strong advocates of the use of structured abstracts
(Budgen et al. 2008, Budgen, Burn & Kitchenham 2011). A structured
abstract is organised under a set of headings (such as: Context, Aim,

Primary Studies and Their Role in EBSE 207

Method, Results, Conclusions) with one or two sentences per heading.
We provide an example of such an abstract in Figure 15.3. Even if a
paper is not an empirical one, this form is still useful, so we strongly
advocate their use with all forms of software engineering papers.

Abstract

Context: In teaching about software engineering we currently make little use
of any empirical knowledge.
Aim: To examine the outcomes available from the use of Evidence-Based
Software Engineering (EBSE) practices, so as to identify where these can
provide support for, and inform, teaching activities.
Method: We have examined all known secondary studies published up to the
end of 2009, together with those published in major journals to mid-2011,
and identified where these provide practical results that are relevant to stu-
dent needs.
Results: Starting with 145 candidate systematic reviews (SRs), we were able
to identify and classify potentially useful teaching material from 43 of them.
Conclusions: EBSE can potentially lend authority to our teaching, although
the coverage of key topics is uneven. Additionally, mapping studies can pro-
vide support for research-led teaching.

FIGURE 15.3: Example of a structured abstract.

Keywords. How useful these are to a review team probably depends very
much upon how constrained the choice is. Our experience is that where
authors are constrained to use a ‘standard’ set of keywords, such as that
produced by the ACM, these keywords are rarely very useful because the
set is unlikely to contain any that are appropriate for use with empirical
studies. However, when the choice of keywords is unconstrained then, as
with the title and abstract, they can provide the means of positioning
key terms so that they can be found by a search engine.

Introduction. In part, the introductory section of a paper should overlap
with, and expand upon, the information provided in the abstract. Apart
from explaining more about the rationale for undertaking a study, it
should contain the research question for the paper, as well as any hy-
potheses or propositions (where relevant). It should also say something
about the research method used, and indicate why the results are im-
portant.

Related Work. While this term is not always the one used (a section title
such as Background is usually equivalent), the value of such a section is
that it identifies the studies that the authors consider to be comparable
with their own in some way, or that act as some form of baseline. For
the reviewer who is seeking to snowball from a paper, this is usually a

208 Evidence-Based Software Engineering and Systematic Reviews

good section to consult (another is Discussion). As such therefore, this
section acts as a useful index to the list of references.

References. These should be as comprehensive as possible, not just to aid
systematic reviewers, but also to position the contributions of the work,
and possibly to aid any future replication.

One last point related to finding primary studies is that wherever possible,
authors should seek to use established terminology. Inventing eye-catching new
terms or acronyms might seem like a good idea, but doing so increases the
risk that your paper will be missed by a search.

15.4.2 What needs to be reported?
For this more general aspect of reporting, which is related more to the

study itself rather than its use in secondary studies, we do have the benefits
of more established guidelines. Usually, these have been based in some way
upon analysis of published studies.

One of the first such sets of guidelines was that produced by Kitchenham,
Pfleeger, Pickard, Jones, Hoaglin, Emam & J.Rosenberg (2002). These address
the following six areas for a range of study types (we indicate the number of
guidelines provided for each area).

• Experimental context (4 guidelines).

• Experimental design (11 guidelines).

• Conduct and data collection (6 guidelines).

• Analysis (5 guidelines).

• Presentation of results (6 guidelines).

• Interpretation of results (4 guidelines).

Later work by other empirical researchers has produced further guidelines,
usually targeted at specific forms of study such as experiments and case stud-
ies. We will identify these in the relevant chapters, but will not go further into
detail on this aspect.

15.5 Replicated studies
We will be examining this topic in much more depth in Chapter 21, so at

this point, the main issue to raise is the potential value that replicated studies
may provide. In any discipline, new knowledge is only widely accepted when

Primary Studies and Their Role in EBSE 209

the original study can be replicated by other researchers, preferably ones who
are working independently in other institutions. For software engineering, the
use of replicated studies has proved to be quite a challenge. Indeed, it has
been observed that, in software engineering, replications conducted by the
same experimenters usually obtain results consistent with the original studies,
whereas those performed by other researchers do not always lead to similar
results (Sjøberg et al. 2005, Juristo & Vegas 2011).

The reason why we mention this here, is that in software engineering we
both need to conduct replications and also to report them. As referees for
journals and conferences, we also need to recognise that the report of a repli-
cation makes a valid contribution to knowledge, and that researchers do not
necessarily have to add new features to the issue under study in order to justify
submitting a report on the study. This is something of a cultural problem for
software engineering, for which it often seems that a paper needs to offer ‘new’
ideas if it is to be published, although this does occur for other disciplines too,
further compounding the problems of publication bias.

On a practical note, this is one occasion where the “grey literature” may
well be worth checking. There is reason to believe that many reports of repli-
cated studies often do not get beyond “Technical Report” status, and so even
when the inclusion criteria for a systematic review might normally require a
paper to have been published in a refereed source, reports of replicated studies
could well be considered as an exception.

Further reading
Each of the chapters of this second part suggests some further reading that

is related to the specific topic of the chapter. For this chapter, we suggest that
the book “Researching Information Systems and Computing” (Oates 2006)
offers a very good overview of the wide spectrum of empirical research methods
that can be, and largely have been, employed for software engineering studies.

This page intentionally left blankThis page intentionally left blank

Chapter 16
Controlled Experiments and
Quasi-Experiments

16.1 Characteristics of controlled experiments and quasi-experiments 212
16.1.1 Controlled experiments . 212
16.1.2 Quasi-experiments . 214
16.1.3 Problems with experiments in software engineering 215

16.2 Conducting experiments and quasi-experiments 217
16.2.1 Dependent variables, independent variables and

confounding factors . 218
16.2.2 Hypothesis testing . 219
16.2.3 The design of formal experiments . 221
16.2.4 The design of quasi-experiments . 222
16.2.5 Threats to validity . 223

16.3 Research questions that can be answered by using experiments
and quasi-experiments . 225
16.3.1 Pair designing . 226
16.3.2 Comparison of diagrammatical forms 227
16.3.3 Effort estimation . 227

16.4 Examples from the software engineering literature 227
16.4.1 Randomised experiment: Between subjects 228
16.4.2 Quasi-experiment: Within-subjects before–after study . 228
16.4.3 Quasi-experiment: Within-subjects cross-over study 228
16.4.4 Quasi-experiment: Interrupted time series 229

16.5 Reporting experiments and quasi-experiments 229
Further reading . 230

Experimentation (in the formal sense), as conducted in software engineering,
commonly involves a set of human participants being asked to perform soft-
ware development-related tasks by using one or more specific procedures. For
this chapter we will concentrate upon human-centric studies and their organ-
isation, both because they are quite widely used (and hence likely to form
inputs to a systematic review), and also because their use introduces many
additional complications that then need to be considered when designing an
experiment.

However, we should note that the methods used for some tasks (such as
generating unit tests, or selecting unit tests from a ‘pool’ of tests, as good

211

212 Evidence-Based Software Engineering and Systematic Reviews

examples) are based on computer algorithms, and are, therefore, not human-
centric. Such experiments are often organised as quasi-experiments where the
different algorithms are each invoked under a series of different testing sce-
narios.

The organisation of this chapter is one that we will be using for the next
few chapters where we examine some different forms of primary study. We
begin by discussing the general nature of the particular form, and how it
might be characterised, after which we look at how such studies are organised
and conducted in software engineering. We then briefly examine the type
of software engineering research question that might be answered through its
use, followed by some examples of how these research questions are addressed,
taken from the software engineering literature. We then return to the theme
of this book and consider each form of study from the perspective of how
it is used in secondary studies, and in particular, how data extraction and
synthesis might best be organised in order to best reflect its characteristics.
We also provide some suggestions for further reading.

16.1 Characteristics of controlled experiments and
quasi-experiments

A controlled experiment is a way of organising an empirical study that
(conceptually at least) is employed across a wide range of disciplines. The
underlying philosophy is one of establishing a link between a cause and an
effect, whereby we have some ‘theoretical’ model of how the two phenomena
are linked, and want to determine how far our model is correct. Ideally, we
make use of our model to create a hypothesis in the form of a statement
about the way that particular changes in one quantity or phenomena (the
‘cause’), will lead to changes in the other (the ‘effect’). It is then the role of
the experiment to test the hypothesis and enable us to decide whether it is
true, or false.

16.1.1 Controlled experiments
In the context of software engineering experiments, we are usually con-

cerned with comparing the efficiency or effectiveness of two different methods
of performing a software engineering task, procedure, or process. In the con-
text of an experiment, the methods may be referred to as the treatments or
interventions. In order to make such a comparison, we need to identify some
way of measuring efficiency or effectiveness. The specific measure or measures
are called the dependent (or response) variable(s). For example, we may want

Controlled Experiments and Quasi-Experiments 213

to determine whether one method of reading a software specification will on
average find more defects than another method. The simplest design for such
an experiment involves comparing the average number of defects found in a
software specification by a group of people using one reading method with the
average number found by a group of people using the other method. If one
of the treatments can be regarded as the normal or baseline reading method,
it is referred to as the control method. Thus, a simple controlled experiment
would have the framework shown in Figure 16.1.

FIGURE 16.1: The framework for a controlled experiment.

In addition, relating to software engineering methods, treatments may re-
fer to participant characteristics, such as software engineering experience, or
characteristics of the materials used to perform the task, such as the com-
plexity of design documents or code. If these characteristics can be mapped
to ordinal-scale measures such as high, medium, or low, we can organise our
experiments to investigate their impact on the effectiveness or efficiency of
performing a task. Treatments that correspond to ordinal-scale characteris-
tics are usually referred to as factors. We can also investigate the impact of
different software engineering methods and ordinal characteristics in the same
experiments by using two-way designs or factorial experiments.

In a controlled experiment randomisation is a major design element. There
are two different types of randomisation:

Random sampling which involves obtaining a random sample of participants
from a defined population of participants. We use the term participants
rather than subjects, because in most software engineering experiments
participants must use their personal skill and knowledge to perform a
software engineering task. In contrast, human participants in some other
disciplines, for example medicine, are often referred to as experimental
subjects because they are usually passive recipients of some treatment
(for example, a drug) prescribed by a doctor, and are required only to

214 Evidence-Based Software Engineering and Systematic Reviews

take the drugs as frequently, and for as long as, the doctor specifies. In a
random sample, each member of the population has an equal probability
of being selected for participation in the experiment. We note that, even
in disciplines such as medicine or psychology, it is difficult to specify the
population you want to sample, let alone identify all members of that
population so that a random sample can be obtained. This means that
samples are very seldom obtained by random sampling, and researchers
rely mainly on convenience sampling. Convenience samples cause prob-
lems if we want to generalise the results of an experiment. This aspect
of randomisation is related to the concept of external validity which will
be discussed later in this chapter.

Random allocation to treatment which means assigning each participant to
a treatment group at random. Random allocation to a treatment means
that each participant has an equal probability of being in each treatment
group. Even if we do not start our experiment with a random sample of
participants, if we allocate them at random to the different treatment
groups, we can still investigate cause-effect relationships. This aspect of
randomisation is related to the concept of internal validity which will
be discussed later in this chapter.

16.1.2 Quasi-experiments
The major difference between a controlled experiment and a quasi-

experiment is the use of random allocation to treatment. Quasi-experiments
are used when it is infeasible or impossible to perform random allocation to
treatment. This situation can occur if the “treatment” we are interested in
is an ordinal scale measure of the characteristics of the participants or the
specific task, or specific materials.

One of the most common uses of quasi-experiments in software engineering
is when we have relatively few potential participants and we want to minimise
extraneous variability in response variables, so we ask participants to try out
each treatment, and act as their own control. In this case we are deliberately
deciding to use a quasi-experiment rather than a randomised experiment. It is
important that researchers understand the difference between the two designs
and the advantages and limitations of each design. A similar approach is taken
in technology-centric testing experiments, when we have a number of programs
with a known number of defects, and we evaluate the performance of a set of
competing algorithms or tools undertaking the same automated testing task
on each of the identified programs.

Quasi-experiments can also be used to track the impact of organisation-
wide changes. For example, if working practices in a software development
organisation are changed, so that projects before one date used one set of
working practices and projects in a subsequent period used a different set of
working practices, we can use a time-series based analysis to track the impact

Controlled Experiments and Quasi-Experiments 215

of the changes on project characteristics such as productivity and delivery
time. This example illustrates how quasi-experiments allow us to perform
experiments within an industrial setting.

Conducting formal experiments in the field is extremely difficult because
of the complexity of large scale software engineering. Industrial software engi-
neering requires a complex mix of skilled processes (for example, requirements
engineering, design, coding, testing, maintenance). The outcomes of a specific
process become the input materials for other processes. In large organisations,
individuals work in teams that have specialist responsibilities either process-
oriented ones (such as a systems architecture role) or product-oriented ones
(such as having responsibility for specific applications or components). The al-
location of individuals to specific tasks depends on their knowledge of existing
components, or involvement in the preceding processes. Furthermore the im-
pact of changes to early life-cycle activities may not be observable until much
later in the development process. All these factors make field experiments
difficult, so quasi-experiments, which were initially developed to assess the
impact of legislative changes or social improvement programs, become a more
practical option for evaluating the “real” performance of software engineering
methods.

Although not always recognised as such, quasi-experiments are used quite
widely in software engineering (Kampenes, Dybå, Hannay & K. Sjøberg 2009).
Quasi-experiments can take many different forms (Shadish et al. 2002), al-
though only a few of these are normally used in software engineering. In Sec-
tion 16.2, where we look at how experiments and quasi-experiments are organ-
ised and conducted, we discuss some of the main forms of quasi-experiment
that are of relevance to software engineering.

Regardless of the form of an experiment, the fundamental goal of its design
is to enable adequate testing of the hypothesis. In turn, the task of testing
the hypothesis remains a statistical one, since we need to differentiate between
the effects that could happen at random, and those that might arise from the
intervention. We discuss this further in the next section.

16.1.3 Problems with experiments in software engineering
In the context of performing software engineering tasks, human partici-

pants have much more impact on the outcome of software engineering exper-
iments than do subjects in other disciplines such as medicine or psychology
because they are usually asked to perform skilled tasks, the outcomes of which
depend on their individual ability; they remember things they have done be-
fore and learn from them; they make decisions that might well be influenced
by a range of factors, and may not even be conscious that some of these influ-
ences exist. In addition, when they take part in a study they are aware that
the activities they are undertaking are being performed within some form
of experimental context. These issues lead to specific problems with formal
experiments:

216 Evidence-Based Software Engineering and Systematic Reviews

• Incompletely specified control treatments, which arise when the control
method is assumed to be well understood by everyone but may also be
implemented slightly differently by each participant. For example, if the
treatment being studied is the use of pair programming, and the control
is the use of ‘solo programming’, then while we will probably have con-
siderable methodological guidance as to how the pair programming tasks
should be performed, solo programming tasks may not be well-defined.
Lack of a defined control is likely to increase the variability of outcomes
from participants using the control method and could make it more dif-
ficult to detect real differences between the methods. It might also make
it difficult to undertake comparable replications of experiments and, so,
diminish the opportunities for reliable meta-analysis.

• Experimenter and subject expectation bias, which occurs because peo-
ple’s expectation can influence the outcome of experiments (which is
discussed in more detail below).

• Difficulties performing controlled field experiments, which make it hard
to provide strong evidence about the behaviour of our methods and
tools in practical industry situations. Commercial software development
processes are often extremely complex, involving the development of
systems and components over long periods of time, and they seldom
give rise to small isolated tasks that can be used as the basis of formal
experiments.

• Software experiments are often small-scale laboratory experiments in-
volving small stand-alone tasks, so it is questionable, therefore, whether
the results of such experiments “scale-up” to the complexity of software
engineering tasks undertaken by practitioners1. This, of course, is re-
lated to the difficulty of performing field experiments. We note the some
researchers strongly advocate the use of more realistic laboratory exper-
iments such as using (and paying for) professional participants rather
than student participants (Sjøberg, Dybå & Jørgensen 2007).

• The need for special training to use new software engineering methods
means that the participants in a treatment group may be treated dif-
ferently from those in a control group, although the basic experimental
process is based on the premise that the only difference between the
two groups is the use of the method. In particular, treating participants
in the treatment groups differently can affect participant expectations.
Furthermore, using the setting of a training course to investigate the
impact of a new methods is also problematic.

1It is also possible that some methods that would be valuable in the context of a real
industrial situation would appear to be an unnecessary overhead in the context of small
isolated tasks.

Controlled Experiments and Quasi-Experiments 217

When people take part in an empirical study, even as rather passive re-
cipients of a treatment, psychologists have found that there are a number of
human factors issues that can cause experimental bias, in particular subject
and experimenter expectations, see for example, Rosnow & Rosenthal (1997).

Experimenter expectation bias occurs when the experimenters expect one
treatment to be better than another and influence (often unintentionally) the
experiment in order to “prove” that their expectation is correct. In such cir-
cumstances, they could assign the individuals most likely to benefit from a
specific treatment to that treatment group. Random allocation to treatment
aims to minimise the likelihood of this form of selection bias. However, if
experimenters know to which treatment group each participant has been as-
signed, they can encourage subjects in the preferred treatment group to believe
they are receiving the best treatment or using the better software engineer-
ing method which sets up subject expectations about how the experiment will
progress. Unfortunately, even simple encouragement for, or against, a specific
method can influence the outcomes of a human-intensive experiment.

In the context of medicine, in addition to random allocation, the main
strategy to reduce experimenter and subject expectation is blinding. Blinding
the participants means that they are unaware of whether they are receiving
the treatment or a placebo, and also blinding the person administering the
treatment, so that they cannot subconsciously provide clues to the recipient
(double-blinding). However, in the context of software engineering, blinding is
rarely a practical option and we need to consider other methods to reduce these
effects. Rosnow & Rosenthal (1997) discuss strategies adopted in behavioural
research to control experiment and subject effects including: increasing the
number of experimenters, monitoring the behaviour of experiments, statis-
tical analysis, maintaining blind contacts, minimizing experimenter-subject
contacts and using expectancy control groups. These techniques are intended
to reduce the extent to which individual experimenters can influence outcomes
and to monitor and correct for any observed forms of bias.

16.2 Conducting experiments and quasi-experiments
A controlled experiment involves comparing what happens under one ex-

perimental condition with what happens under an alternative experimental
condition. A simple example would be comparing the effectiveness of two unit
testing methods (for example, functional testing versus structural testing).

The process of conducting an experiment involves:

1. Formulating your research question as a testable hypothesis. This re-
quires defining dependent variable(s) and how it will be measured.

2. Planning an experiment that is appropriate to test the hypothesis. This
involves:

218 Evidence-Based Software Engineering and Systematic Reviews

• Defining the treatments at an operational level. For example, defin-
ing the coverage of the component required for the structural test-
ing and the method to be used to identify functional tests from the
parameters on the component interface. Also, if the treatment is
one that can be applied with different degrees, levels, or amounts
for example, a quality control process that can be either stringent,
standard, or lightweight, quality control would be referred to as a
factor with three levels.
• Specifying the design of the experiment. For example, how many
software components will be tested (one or many), what software
components will be used, how many participants will be required,
how participants will be recruited, and how participants will be
trained.
• Identifying any problems inherent in the plan (which is often re-
ferred to as the experimental protocol) and where possible, adopting
procedures to minimise any problems.
• Defining how the data will be analysed. The analysis should be
derived from the experimental design but should consider issues
such as whether the dependent variable needs to be transformed or
not and what sensitivity analyses will be performed.

3. Conducting the experiment according to the plan. It also involves record-
ing any deviations from the planned process, such as participants drop-
ping out of the study, or participants failing to adhere to the treatment
to which they were assigned.

4. Analysing the results of the experiment in order to test our hypotheses.

5. Reporting the study results, including their implications for software re-
searchers and practitioners, and a discussion of any limitations of the
study which are usually discussed in terms of threats to validity.

We discuss the most important of these issues below.

16.2.1 Dependent variables, independent variables and con-
founding factors

Experiments are concerned with establishing whether some form of cause
and effect relationship exists. Testing for this usually involves the experimenter
in manipulating one or more independent variables associated with ‘cause’, and
measuring one or more dependent variables associated with ‘effect’.

The independent variable(s) are specified or controlled as a result of the
activities of the investigator (for example, the number of errors ‘seeded’ in the
case of a study on unit testing, the length of an item of software, the time
allocated to a task, or the form of procedure to be followed).2

2We do not address controlled regression analyses, such as those used to establish the

Controlled Experiments and Quasi-Experiments 219

The dependent variable(s) (also called response variables) are associated
with ‘effect’ and are expected to change as a result of changes that the experi-
menter makes to the independent variable(s). If we can demonstrate that these
changes are as predicted by the hypothesis, and are statistically significant,
then the hypothesis can be considered to be supported by our results. Measur-
ing any changes in the values of the dependent variables is therefore necessary
in order to assess the outcomes of the experiment. In software engineering
experiments, dependent variable measures usually relate to the performance
of software engineering tasks such as staff effort, productivity, elapsed time or
defect rates.

However, where experimentation involves people, there are likely to be
other factors that might affect or influence the outcomes of a study, and
which also need to be considered. We term these the confounding factors.
A confounding factor is the presence of some (undesirable) element in an
empirical study that makes it difficult to distinguish between two or more
possible causes of an effect (as measured through the dependent variable).
For software engineering two commonly-encountered examples of confounding
factors are the skill levels of the individual participants and the extent of their
prior experiences with the experimental subject matter.

Designing an experiment or quasi-experiment therefore involves careful
choice of independent and dependent variables. These need to be appropriate
measures in terms of the hypothesis, and the independent variables also need
to be controllable, while the dependent variables should be readily measurable.
The experimenter also needs to consider the presence of likely confounding
factors and to seek to design the experiment so as to keep their likely effects
to a minimum.

16.2.2 Hypothesis testing
The baseline for any statistical testing is the null hypothesis, which states

that there is no effect from the treatment and therefore that any difference
we see between the average value of the dependent variables for each of the
treatment groups is a matter of chance. More formally, the role of a statistical
test is then to distinguish between the null hypothesis and the alternative
hypothesis, that states that an effect occurs because there is some form of
cause-effect relationship present. This is illustrated in Figure 16.2.

Testing can be one-sided (one-tailed), where we are only interested in the
effect of the treatment being to increase (or decrease) our measure. It can
also be two-sided (two-tailed), where we are only interested in the question of
whether the values produced by the treatment are different from those of the
control. Hypothesis testing is treated as a decision process in which we have

optimum settings for industrial processes where the one or more independent variables
vary over a pre-specified range of values and the dependent variable is obtained for each
combination of independent values.

220 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 16.2: Hypothesis testing through use of an experiment.

two choices: reject the null hypothesis or do not reject the null hypothesis. We
can also make two decision errors:

1. We can reject the null hypothesis when it is actually true. This is called
a Type I error. By convention, if the chance of a Type I occurring
by chance is 5% or less (a probability value of p < 0.05), we consider
that the association does demonstrate the presence of a genuine effect.
The probability of a Type I error is usually denoted by the use of the
symbol α, and so if in a report of a study we see that the value of this is
reported as (say) α = 0.01 then we know that the statistical tests used
by the experimenters have indicated a likelihood that there is no more
than a 1% chance that the outcomes could have occurred by chance.

2. We can fail to reject the null hypothesis when it is really false. This is
called a Type II error and the probability of a Type II error is referred
to as β. The related concept of statistical power (1 − β) is a measure
of the probability of correctly rejecting the null hypothesis. While some
software engineering experiments do report a value for statistical power,
this is relatively uncommon (Dybå et al. 2006). However, it is important
to note that α and β measure different probabilities, and if the value of
β is low (for example < 0.5), the power of the experiment will be low,
and we have high probability of making a Type II error.

Generally, we aim to set the value of the Type I error we will tolerate (which
should be specified in advance in the protocol), while attempting to minimise
the probability of a Type II error. However, the default choice of a value of
0.05 for α as a criterion for significance, although a widely used convention,

Controlled Experiments and Quasi-Experiments 221

is just that. Indeed, a significant result is not necessarily an important one.
Given enough participants, it is usually possible to obtain a low value of α
even when the effect of the treatment is not very large, and hence less likely
to be of interest.

The arbitrary nature of significance levels, the ability to change signifi-
cance levels by increasing the number of participants, and the disconnect be-
tween the significance of the results and their importance, are the reasons why
many statisticians are strongly opposed to the standard null hypothesis test-
ing framework described above. As an alternative, they recommend reporting
effect sizes (which we discuss in the context of meta-analysis in Chapter 11)
and confidence intervals. This approach is presented in detail by Cumming
(2012).

16.2.3 The design of formal experiments
Standard design elements in formal experiments include:

• Random allocation to treatment.

• Blocking which is used both to allocate participants to homogeneous
subgroups prior to allocation to treatment and to control confounding
factors. Note, the term matching is used when participants are matched
into similar pairs and one of each pair is assigned to each treatment
group.

• Treatments which, in the context of software engineering, are the soft-
ware engineering methods or procedures believed to affect the response
variable and the characteristics of participation and software materials
that can affect task outcome.

• Covariates which are measurements taken on the participants or the
experimental materials prior to the experiment that are used to explain
variations in the experimental response variable.

Although, by definition, all formal experiments include random allocation,
simple random allocation does not guarantee equal numbers of participants
in each experimental group. Since unequal numbers of participants can com-
plicate statistical analyses, it is usual to restrict the randomisation procedure
to ensure equal numbers of participants in each experimental group.

Another problem is that random allocation does not guarantee to deliver
an unbiased sample, it only ensures that we ourselves have not introduced any
so-called selection bias. It is possible that a random allocation could deliver
biased treatment groups, for example by allocating better software engineers
to one of the treatment groups. So, if we are aware that there are any charac-
teristics of our participants or our experimental materials that could influence
the results of the experiment, we should adopt other experimental design prac-
tices, such as blocking or the use of covariates, to control the impact of the

222 Evidence-Based Software Engineering and Systematic Reviews

characteristics. We use blocking to group participants into homogeneous sub-
groups and we can then allocate participants in each subgroup at random to
each treatment. If instead we can measure some characteristic, such as years of
experience, we can use covariate analysis to adjust the outcomes of the exper-
iment by allowing for any relationship between the covariate and the response
variable

16.2.4 The design of quasi-experiments
Standard design elements for quasi-experiments include:

• Time since most quasi-experiments take place over a discernible time
period.

• Treatment, often referred to as an intervention, which is a policy or
method intended to cause some measurable factor to change.

• Controls which are units not receiving the treatment that are matched
in some way to units receiving the treatment.

• Pre-tests which are measurements taken before the treatment condition
is applied.

• Post-tests which are measurements taken after the treatment condition
is applied.

The simplest form of quasi-experiment is to apply the treatment to a number
of participants and then take a single post-test measure on each one. The
obvious weaknesses of this design are that there is no way of knowing whether
anything actually changed and, if anything did change, whether it was due
to the passage of time rather than the treatment. Other design elements are
used to address these basic weaknesses:

• One or more pre-test measures can be used to assess the situation prior
to the treatment.

• Controls are added to see what happens if the treatment is not applied.

• Additional post-test measures are taken to see whether changes persist
over time.

One form of quasi-experiment occasionally used in software engineering is
based on measuring the results of each participant performing a task using
the control method (which is equivalent to a pre-test) and then measuring the
results of each participant performing a similar task using the new method
(which is a post test). This is a very simple within-subjects design. It is called
this because we measure both treatment conditions on the same subject, and
each subject acts as their own control. However, this design still suffers from

Controlled Experiments and Quasi-Experiments 223

the problem that the effect of the treatment is confounded with the passage
of time, and may be the result of other factors such as a learning effect.

A more sophisticated design is to use a within-subjects cross-over design,
where half of the participants (selected at random) undertake a task using
the control method and then undertake a similar task using the new method.
The other half of the participants use the new method first and then the
control method. Again, the outcome of the task(s) performed by each par-
ticipant are measured after using both treatments, so they can act as their
own control, but the design does not confuse the treatment effect with the
passage of time. However, as we pointed out in Chapter 11, the standard er-
ror of the difference between the means of within-subject studies is not the
same as the standard error of the difference between means of independent
between-group studies, and statistical tests must be based on paired t-tests.
This design is used quite often in software engineering experiments because of
problems finding sufficient participants for between-groups experiments. It is
a very reliable design as long as the order in which the participants used the
methods did not affect the experimental results. For example, if having used
the treatment method first, participants were likely to use it for the second
task, even though instructed to use the control method (or vice versa), or us-
ing the control method first made using the treatment method easier (perhaps
because the task was better understood), the results would be unreliable, see
Kitchenham, Fry & Linkman (2003).

Quasi-experiments were introduced in sociology in order to assess the im-
pact of large-scale interventions in complex social situations. In a software
engineering context, we might want to assess impact on a specific organisation
of undertaking a major process improvement. In such cases quasi-experiments
can be based on taking a series of measurements on project outcomes (such
as elapsed time, size, productivity, and defect rates) before the treatment is
introduced and a series of measurements on project outcomes after the treat-
ment is introduced. A time-series analysis of the average measures for projects
per year should indicate whether the process change has been accompanied
by an improvement in productivity, delivery times, or defect rates.

The basic time-series approach can be enhanced by including a control
group as well as a treatment group—in a software engineering context, this
might be appropriate if one department is trialling a major change to the
software development process, while other departments are continuing to use
the current software development process. In such a design, the control group
keeps to the control method throughout the time period of experiment but the
treatment group changes from the control method to the treatment method
part way through the time period.

16.2.5 Threats to validity
To conclude this section, we consider how well we can determine whether

the design and conduct of an experimental study can reliably detect an ex-

224 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 16.3: Threats to validity and where they arise.

perimental effect, and how confident we are that this is not also an artefact
of the particular experimental context.

Given that there are likely to be many factors affecting a study, a key ques-
tion for its design must be how trustworthy the outcomes from it are likely
to be.? To be considered as valid, the results should be trustworthy for the
‘population of interest’ (for example, students, software developers, maintain-
ers). A threat to validity is therefore a factor that may put the outcomes of a
study in question. While these need to be considered for all forms of empiri-
cal study, threats to validity were initially identified and categorised to help
researches to understand the limitations of quasi-experiments and, to a lesser
extent controlled experiments, when any extrapolation of the outcomes be-
yond the immediate controlled environment can be more problematical. The
anticipated threats to validity are usually identified in the experimental proto-
col, and their likely effects assessed as part of the design task. Further threats
may then arise from the way that the experiment is conducted and analysed.
So when reporting a study, it is conventional to report the experimenter’s as-
sessment of the threats to validity arising from its design, conduct and analysis
in order to identify what confidence can be placed upon the results.

Four major forms of threat, associated with different phases of the conduct
and reporting of an experiment, as shown in Figure 16.3, are as follows.

Construct validity is concerned with how well the outcomes of the study
are linked to the concepts or theory behind the study—for software engi-
neering there might be doubts about this if the model used in the study

Controlled Experiments and Quasi-Experiments 225

is inadequate (for example, performing a comparison between two pro-
cedures to determine which is ‘better’ without having a clear definition
of what is meant by ‘better’). It also relates to how well the concepts in-
volved have agreed-upon operational definitions, for example if the term
‘quality’ is used without having a clear definition of its meaning for the
study. Essentially this is an assessment of how well the concepts used in
the study are defined.

Internal validity is where we seek to identify any factors that might have
affected the outcomes (the dependent variable) without the researcher’s
knowledge and which might put any causal relationship that appears to
exist between the treatment and the outcome in question—for software
engineering, problems with this might arise because of the lack of a
control group. This is therefore determined both by the design of a
study, and also (to a greater degree) from the way that it is conducted.

Statistical conclusion validity reflects how well the experimenters were
able to analyse the outcomes of a study, and also whether the way it
was done is appropriate. The issue here is to assess how confident the
experimenters are that any correlations between the variables that are
found actually demonstrate that a cause-effect relationship does exist.

External validity is concerned with how well the conclusions from the study
may be generalised to the intended population of interest. Here the
threat is that the results may only be applicable to the particular con-
text of the study—in software engineering these may often arise from
the choice of participants: for example, using students rather than ex-
perienced developers may limit confidence that the results would apply
to software development practice.

With experiments and quasi-experiments, as with other forms of empirical
study, it is good practice for any report on a study to make an assessment of
likely factors that could have influenced these, and how extensive this influence
might have been. An extensive discussion of the issue of validity can be found
in (Shadish et al. 2002).

16.3 Research questions that can be answered by using
experiments and quasi-experiments

The research questions that can be addressed by experiments and quasi-
experiments are, not surprisingly, very similar to the quantitative systematic
review questions we discussed in Chapter 4. They are usually based on asking
questions of the form “Is technique A better than technique B?”. As discussed

226 Evidence-Based Software Engineering and Systematic Reviews

in Chapter 4, it is necessary to specify what is meant by the term ‘better’ and
under what conditions any defined relationship might hold.

In this section, we present some examples of the research questions re-
searchers have used in software engineering experiments and the detailed hy-
potheses relating to those questions. We have tried to select these based on the
variety of the ways the research questions were tested and used, and also that
they are studying topics that should be reasonably familiar to most software
engineers and students.

16.3.1 Pair designing
There are many experimental studies that look at pair programming, often

using student participants. However, the paper by Canfora, Cimitile, Garcia,
Piattini & Visaggio (2007) looks at how well pairing works for design tasks,
and in particular, describes a study performed using participants who were
practitioners in industry. The authors stated two research questions:

1. ‘Does pair designing require less effort than solo designing for a given
task?’

2. ‘Is pair designing better than solo designing in terms of the quality of
the produced artefacts?’

Based on these they stated two null hypotheses, together with matching al-
ternative hypotheses as follows.

• Null hypothesis H0a states that “there is no difference in the effort
employed between pair and solo designing”, which they express as
µeffort−pair = µeffort−solo.

• Alternative hypothesis H1a states that ‘there is a difference in the effort
employed between pair and solo designing’, expressed more formally as
µeffort−pair 6= µeffort−solo.

• Null hypothesis H0b states that ‘there is no difference in the quality
produced between pair and solo designing’, expressed as µquality−pair =
µquality−solo.

• Alternative hypothesis H1b states that “there is a difference in the
quality produced between pair and solo designing”, or µquality−pair 6=
µquality−solo.

In this example there are two practices to note. The first is that of stating
the null hypothesis first (essentially a matter of style). The second is that
the alternative hypothesis states only that there is a difference, and makes no
assumptions about which will involve more effort or produce better quality
software, which in turn will affect the form of statistical test used (as noted
earlier, this is a two-tailed form).

Controlled Experiments and Quasi-Experiments 227

16.3.2 Comparison of diagrammatical forms
The paper by Lucia, Gravino, Oliveto & Tortara (2010) examines how well

using the class diagram, which is one of the notational forms used in the Uni-
fied Modeling Language (UML) compares with using the traditional ‘database’
notation of the Entity Relationship Diagram (ERD) during ‘comprehension,
maintenance, and verification activities on data models’. The paper does not
state the research questions explicitly, and there are three hypotheses that
relate to these three qualities, as listed below.

• H0c ‘there is no difference between the support provided by ER and UML
class diagrams when performing comprehension tasks on data models
(Comprehension Support)’.

• H0m
‘there is no difference between the support provided by ER and

UML class diagrams when identifying the change to perform on data
models to meet a maintenance request (Maintenance Support)’.

• H0v
‘there is no difference between the support provided by ER and

UML class diagrams when identifying the defects in data models during
verification activities (Verification Support)’.

There are also three alternative hypotheses, and this time these are stated
in a one-tailed form as it is expected that the UML notation will be more
effective, as in for example:

Alternative Hypothesis Hac
: ComprehensionSupport(UML) >

ComprehensionSupport(ERD)

16.3.3 Effort estimation
The third example is based upon the paper by Grimstad & Jørgensen

(2007). This paper states no formal hypotheses, but does state its research
questions clearly, and bases the analysis upon these. So these are:

1. “How consistent are software professionals’ expert judgment-based effort
estimates?”

2. “Do more accurate estimators have more consistent expert judgment-
based effort estimates than less accurate estimators?”

16.4 Examples from the software engineering literature
However lucid our descriptions, it is sometimes helpful to look at an exam-

ple of the sort of features that have been discussed in this chapter. So in this

228 Evidence-Based Software Engineering and Systematic Reviews

section, we briefly review an example of the major form of randomised exper-
iment together with three examples of quasi-experiment in order to illustrate
the different forms of organisation discussed earlier.

16.4.1 Randomised experiment: Between subjects
An interesting example is that by Phalp, Vincent & Cox (2007). This

study compared two different sets of guidelines for writing use cases, which are
widely used to specify systems requirements. The experimental task consisted
of reading the given set of guidelines, reading the descriptions of the system,
and producing a set of use case descriptions.

A set of 60 student participants were divided into four groups of equal
size. Two groups worked on one system description, and a second pair of
groups worked on a different one. For each system description, one group used
a smaller set of content guidelines (effectively, the control group) while the
other used a more extensive set generated from a previous research project.
Assessment was based upon assessing counts of usage of specific guidelines
from each set.

16.4.2 Quasi-experiment: Within-subjects before–after study
This is the weakest form of quasi-experiment, where subjects use one tech-

nique to perform a software engineering task, then undergo training for a new
technique, and then perform a task similar to the previous one, but using the
new technique. An example study of this form is “The empirical investigation
of perspective-based reading” (Basili et al. 1996).

The limitation of before-after studies is that the treatment effect is con-
founded with order. For software engineering this is a problem because if the
task is skill-based, you would expect participants to improve their performance
on the second task, irrespective of the treatment used. Also, if the initial task
is not well-defined then the effect size observed between different studies will
not be comparable. For example, if there is no training in the first technique
then improvements in performance may arise simply because of the training
and not because of the specific treatment. In other words, if the participants
do not know how to undertake a task, then any systematic approach may
improve their performance.

16.4.3 Quasi-experiment: Within-subjects cross-over study
As indicated earlier, this approach is used for comparing two (or more)

techniques. Half of the participants, chosen at random, use technique A then
technique B, while the other half use technique B first then technique A. An
example of this is An Internally Replicated Quasi-Experimental Comparison
of Checklist and Perspective-Based Reading of Code Documents (Laitenberger,
Emam & Harbich 2001).

Controlled Experiments and Quasi-Experiments 229

This is a stronger form of quasi-experiment since treatment and order are
no longer confounded and there are well-defined approaches to analysing the
data that allow both for period effects, that is, any systematic effect that
occurs due to the fact that tasks are performed sequentially, and for having
unequal numbers of participants in each group.

16.4.4 Quasi-experiment: Interrupted time series
This form is used when measures of some attribute are available (perhaps

yearly or monthly) both before and after some intervention. This is regarded
as the best way of assessing the impact of policy changes. An example of
this is “Measuring the impacts individual process maturity attributes have
on software products” (McGarry, Burke & Decker 1998). Although McGarry
et al. did not provide any detailed statistical analysis, their time-based plots
showed clearly that while two project outcomes appeared to have improved as
the organisation achieved increased its CMM levels, other project outcomes
were clearly the result of organisation changes pre-dating the CMM initiative.

16.5 Reporting experiments and quasi-experiments
Guidelines on how to report an experiment are provided in both Kitchen-

ham, Pfleeger, Pickard, Jones, Hoaglin, Emam & J.Rosenberg (2002) and in
Jedlitschka & Pfahl (2005).

Experiments and quasi-experiments usually produce a mix of quantitative
and qualitative data, together with some form of statistical analysis. One of
the advantages of these types of studies is that data collection can usually be
quite tightly controlled.

In Chapter 8 we considered the data extraction process and looked at
some examples of this. Obviously, one way that the researchers performing
primary studies can help with this is with ensuring that their data is clearly
presented. However, for the purposes of the secondary study, the data is not
the only thing that needs to be provided, and experiments that are otherwise
well reported sometimes fall short when it comes to some of the ‘contextual’
issues. Here, we provide a brief guide as to what needs to be presented in
order to ensure that the experimental results can be adequately included in a
Systematic Review.

1. The research question and any associated hypotheses (and null hypothe-
ses). While this might seem obvious, this information is not always ex-
plicitly provided.

2. The design of the experiment, and in particular, the form used. Where a
dry run was conducted beforehand using one or two participants in order

230 Evidence-Based Software Engineering and Systematic Reviews

to test out the experimental procedures, the report should indicate the
nature of any resulting changes. It is helpful to use terminology such as
that provided in (Shadish et al. 2002), particularly when describing the
design of a quasi-experiment.

3. The profiles of the participants, addressing such aspects as whether they
were students or practitioners (or both), degree of experience with the
topic, and any relevant information about allocation to groups.

4. The conduct of the study, providing information about any training pro-
vided, whether any participants dropped out (either between training
and performing the study, or between sessions where a study took place
over more than one session), or about any other divergences from the
study plan.

5. The results themselves, organised as appropriate for the topic.

6. Details of the analysis methods used (and why they were chosen).

7. The outcomes from the analysis, together with any interpretation of
these.

8. An assessment of any threats to validity or limitations.

Further reading
The authoritative text on the design of experiments and quasi-experiments,

is widely viewed considered to be “Experimental and Quasi-Experimental
Designs for Generalized Causal Inference” by Shadish, Cook and Campbell
(Shadish et al. 2002). This book provides both philosophical underpinnings as
well as good tactical guidance for the subject of experimentation in general.
In particular, it explains the issue of design for quasi-experimental studies
in depth, highlighting the strengths and weaknesses of each of the forms it
identifies.

As a statistical textbook that emphasises alternatives to simple hypothesis
testing, we recommend the book Understanding the New Statistics. Effect
sizes, Confidence Intervals, and Meta-Analysis by Geoff Cumming (Cumming
2012).

Human participants form an important factor in most software engineering
studies, and in their book People Studying People. Artifacts and Ethics in
Behavioural Research, Rosnow and Rosenthal provide a summary of research
bias in behavioural research. The range and extent of the possible problems is
particularly sobering if we note that behavioural research does not have the

Controlled Experiments and Quasi-Experiments 231

requirement for skilled participants, nor the requirement to provide for special
training for participants, that are needed in software engineering experiments.

For an approach that is more centred upon the needs of software engineer-
ing, although less extensive in coverage of the different experimental forms, the
reader might turn to “Experimentation in Software Engineering”, by Wohlin
et al. (2012), which also gives some guidance on the issues involved with sta-
tistical analysis of such studies.

Finally, the limitations involved when experimental studies are conducted
in industry are examined in the Systematic Review reported in (Dieste, Juristo
& Martinez 2014). While the number of primary studies identified was small
(10 experiments and five quasi-experiments), they provide important lessons
about this type of study, which is one that will increasingly be needed if
evidence-based studies are to be relevant for practitioners.

This page intentionally left blankThis page intentionally left blank

Chapter 17
Surveys

17.1 Characteristics of surveys . 234
17.2 Conducting surveys . 236
17.3 Research questions that can be answered by using surveys 238
17.4 Examples of surveys from the software engineering literature . . 239

17.4.1 Software development risk . 240
17.4.2 Software design patterns . 240
17.4.3 Use of the UML . 242

17.5 Reporting surveys . 242
Further reading . 242

The basic idea of a survey is one that is familiar enough to most of us from
everyday life. Surveys take many forms and play a number of different roles.
At election time, surveys of a proportion of the electorate are used to fore-
cast likely voting patterns. Businesses might use surveys that are targeted
at particular groups of customers in order to plan their business and mar-
keting strategies. And not all surveys require people to complete forms or
answer questions—for example, a traffic survey might well involve counting
the number and types of vehicles passing a particular point during different
periods of the day. Similarly, a survey might study documents—for example,
how many of the e-mails sent around an organisation have attachments, and
what types of attachment are most commonly used. Indeed, the survey is a
versatile tool and it is a form that is widely used in many ‘human-centric’
academic disciplines.

Surveys are also used in software engineering, although not particularly
extensively. One reason is that where the purpose or topic of a survey requires
the collection of information from people with specialist knowledge, which is
likely to be the situation for software engineering, then this group may well
be both quite small in number, and also quite difficult to identify reliably.
Indeed, while our familiarity with surveys may make the option of conducting
one look like a fairly easy choice, this is rarely the case, at least in software
engineering.

In Figure 15.2 we positioned surveys as being both shallow and broad. We
classified them as ‘shallow’ because respondents are rarely willing to spend
very much time on responding to a survey (simply getting people to start
responding to a survey is only part of the task; many will still not complete
it). Similarly, if collecting data by observation, it is difficult to collect it in

233

234 Evidence-Based Software Engineering and Systematic Reviews

great detail. Hence surveys rarely enable us to probe very deeply into an
issue. They were also classified as ‘broad’ because they are a useful means of
exploring around a theme using multiple questions.

Surveys can, and sometimes are, used as input to secondary studies and
hence we discuss them here. However, while there are many roles for surveys,
they tend to be used in a rather limited way in software engineering. So we
will constrain our discussion to those aspects that are of the most importance
in this particular context.

17.1 Characteristics of surveys
The purpose of a survey is to collect information from a large group of

people (or documents) in a systematic manner, and then to seek patterns in
the data that can be generalised to a wider population than just the people
making up the sample. The way a survey is organised will depend upon the
question(s) it is seeking to answer, and the following represent two major
purposes for undertaking a survey.

• Experimentation: where the role of the survey is to assess the impact of
some intervention, such as the adoption of a new technique or program-
ming language.

• Description: where the survey enables assertions to be made about some
phenomenon of interest and its attributes—here the concern is not why
the attributes have the forms they do, but what those forms are. For
example, we might be interested in conducting a survey to determine
which version control tools are used most widely in software development
organisations.

For this chapter we will concentrate on surveys of people, since surveys in-
volving documents are addressed in a later chapter (data mining).

Two important characteristics of a survey that matter to us when consid-
ering whether or how to use its outcomes in a secondary study are the way
that data was collected, and how the sampling of respondents was organised.
Between them, they determine what confidence we are able to place in the
wider relevance of any findings.

Data collection for a survey can be performed in a number of ways, includ-
ing observation. The mechanism used for data collection is usually termed the
instrument, and in software engineering, surveys are commonly conducted by
using the following two forms of instrument.

Questionnaires. The act of completing a questionnaire, either on paper or
on-line is often thought of as almost synonymous with the idea of a
survey. Many software engineering surveys use this approach, not least

Surveys 235

because it lends itself to the globally distributed nature of the software
engineering community. If we need expertise on a particular topic, such
as (say) use of modelling notations, then we may well need to access the
international community in order to get an adequate level of response
as well as to identify any regional variations.

Interviews. These have the advantage that they can be more tightly targeted
at a particular group, and if using semi-structured interviews, it may
also be possible to probe more deeply into the issues identified (usually
related to “why”). However, interviews are time-consuming to perform,
as well as requiring the researcher to possess some ‘people skills’, and it
may also be more difficult to access the relevant group of respondents.
Using phones or video links does offer scope for wider access, although
these appear to have been little used in software engineering surveys.

Survey instruments usually make use of two forms of question. Open ques-
tions do not have any pre-determined set of possible answers, and are generally
useful for collecting data for descriptive surveys. While they offer flexibility in
proving issues, analysis of the responses usually needs a qualitative approach
and any outcomes may be difficult to include in a systematic review. Closed
questions may ask the respondent to select one or more values from a pre-set
list (a rating question), a form that includes the use of Likert scales, or to
order a set of pre-determined options (a ranking question). Closed questions
can therefore be used in a quantitative analysis.

Collecting data is only part of the story of course, and an important el-
ement of this is to ensure that we collect data from the relevant group of
interest. This is determined by the way that sampling is organised.

Sampling is important from two aspects. Firstly, in planning a survey it is
necessary to decide what the population is that we are interested in, and from
which we wish to draw our respondents. This is usually termed the sampling
frame, and one of our problems in software engineering is that this may often
be difficult to define clearly, and even when it is well defined, it might still be
difficult to identify the individuals making up the sampling frame.

For example, we might be interested in conducting a survey of everyone
who has had experience with using pair programming on a software develop-
ment project (that is, not just experience from a teaching context). So these
people would constitute our sampling frame. However, defining exactly what is
required for potential respondents to qualify for membership of this (in terms
of measures that can be used to define some basic level of experience) is quite
difficult, as is what exactly we mean by such words as “using” too. And once
we have a definition, there is no obvious place that we can go to in order to
access this group of people. Some may belong to on-line special interest groups
and can be accessed that way, others can perhaps be contacted through their
organisation, but in general, we don’t have any well-defined means of reli-
ably identifying those people who make up the sampling frame—or even of
estimating how many of them there are.

236 Evidence-Based Software Engineering and Systematic Reviews

We will discuss sampling a bit more in the next section, but for the mo-
ment, assuming that we can define a sampling frame in some way, we need
to define the size of sample that we need to obtain from this in order to be
able to make sound inferences about the larger group. If we do know, or can
reasonably estimate, the size of the sampling frame, then it is possible to de-
termine the size of sample that we need (the number of respondents) in order
to achieve the required confidence interval in our results. (That is, know how
certain we are that the true population values will match those in our sam-
ple.) Table 17.1 shows some examples of the size of the sample we need in
order to achieve a 95% confidence interval with an accuracy range of plus or
minus 3 (that is, we are between 92% and 98% confidence of matching the
true population with our sample). As a ‘rule of thumb’, a minimum of at least

TABLE 17.1: Sample Size Needed for 95% Confidence
Target population size Sample size

50 47
5000 760

100,000 888
900,000 895

30 responses is really desirable if aiming to perform any form of statistical
analysis.

So, given this information, we can start to make some sort of assessment of
how the outcomes from a survey can be incorporated into a systematic review.
In the next section, we look at one or two practical details that will also be
significant when determining how we might use its outcomes.

17.2 Conducting surveys
Since a major concern for a survey is with determining how far we can

have confidence in the outcomes, in this section we look a little more at how
a survey might be conducted (including some aspects of its design).

We have already mentioned the issue of sampling and the basic challenge
that this presents for most software engineering studies, where we often do
not know the population size. A related issue is the sampling technique itself,
used to obtain a sample from the overall sampling frame. There are two main
categories of sampling technique, each of which can be performed by using a
number of different strategies.

Probabilistic Sampling. This seeks to obtain a sample that is intended to
be a representative cross-section of the population. Depending on the
nature of the sampling frame, a random sampling of the population may

Surveys 237

suffice, or this might be stratified, to try and ensure that the sample
has a similar profile to the overall population. (For example, if years
of experience is a key factor, then this might be used as the basis for
the stratification.) Another approach is to use cluster sampling, using a
grouping of people with a like interest (for example, all the people who
have ever attended a particularly relevant conference series).

Non-Probabilistic Sampling. While this form of sampling is generally con-
sidered as forming a much poorer basis for inference about the whole
population, it may well be the only option available. One example of
where this might occur is where we construct a website to collect the data
and then post invitations to people to respond using this (termed self-
selection sampling). Other strategies include purposive sampling (send-
ing requests to people who have specific characteristics as well as being
thought likely to respond); snowball sampling (asking respondents to
identify others who might be willing to participate); and convenience
sampling where people are recruited on the basis of being readily avail-
able or likely to be willing to take part.

Issuing a request to a set of likely respondents is only the first step. Surveys
tend to have low response rates, with a figure of 10% usually being considered
to be quite good. Ways to improve this include providing a good explana-
tion about why participation is important when making the original request,
and following up non-responders with a reminder after a suitable interval of
time. With on-line surveys there may also be instances of partial completion,
where people have started to enter their responses but have not completed
the task. Criteria for deciding when such responses should be included need
to be specified when writing the research protocol for the survey.

Design of the questionnaire, or the set of questions to be used in a semi-
structured interview is an important design element. Questions need to be
clear, and to check consistency of responses, it may be appropriate to use
more than one question to address a topic. The set of questions should be
assessed for the following qualities.

• Ensuring that the questions address a well-balanced sample of issues
(content validity).

• Measuring the relevant attributes through the data collected by the
questions (construct validity).

• Being confident that if the questions were given repeatedly to the same
people that they would obtain the same answers (reliability).

So, when considering the use of the outcomes from a survey, these are all
factors that should be reported and that can help a systematic reviewer to
assess its usefulness.

238 Evidence-Based Software Engineering and Systematic Reviews

17.3 Research questions that can be answered by using
surveys

As indicated earlier, both experimental and descriptive surveys tend to be
used to answer research questions that are concerned more with asking “what”
rather than asking “how”. It may be possible to dig deeper with a survey,
particularly if using a small survey to probe the rationale behind responses to
a larger survey, but this task is probably best performed by using interviews.

Surveys performed in software engineering tend to be descriptive and we
provide two examples of such a form along with an example of the use of
interviews.

Our first example is one that is used as an example by Kitchenham
and Pfleeger in their review of the use of surveys in software engineering
(Kitchenham & Pfleeger 2008). This is described in the paper “Components
of Software Development Risk: How to Address Them? A Project Manager
Survey” by Ropponen & Lyytinen (2000). This survey was conducted with
over 80 project managers and asked the following two questions.

1. “What are the components of software development risk?”

2. “What risk management practices and environmental contingencies help
to address these components?”

Both of these questions address descriptive issues (since they both begin
with “what”). Kitchenham and Pfleeger describe this form of survey as cross-
sectional, case control form, and observe that “most surveys in software en-
gineering are of this kind of design”. In a cross-sectional study, respondents
are asked for information at a fixed point in time (which may be highly con-
strained, such as requesting information based upon a particular data and
even time, or relatively relaxed, as when people are polled about some ‘cur-
rent’ preference). A case-control design retrospectively asks about previous
circumstances in order to seek patterns that might help explain a current
phenomenon. (For details about the design options for both descriptive and
experimental forms, see (Kitchenham & Pfleeger 2008) and (Kitchenham &
Pfleeger 2002a).)

The survey itself used purposive sampling (mailing requests to people in
Finnish software companies whose job title included either the word “man-
ager” or some equivalent term).

Our second example addresses a more technical issue about the role of
software design patterns and was motivated by the experiences of conducting
a secondary study about their use (Zhang & Budgen 2012).

The survey, reported in Zhang & Budgen (2013), obtained responses from
over 200 respondents, and sought to obtain opinions about how well used and
effective were the well-known design patterns catalogued in the book from the

Surveys 239

“Gang of Four” or GoF (Gamma, Helm, Johnson & Vlissides 1995). For this
the research question was:

“Which design patterns from the GoF do expert pattern users con-
sider as useful or not useful for software development and mainte-
nance, and why?”

Since this was based upon the experiences that users had had with these
patterns, this can again be considered as being a “cross-sectional case-control”
study. However, as we explain in Section 17.4, this can also be considered to
have an experimental element too.

Our example of the use of interviews is the paper by Petre (2013), with the
title “UML in Practice”. Stimulated by a number of questions about how much
the UML (Unified Modeling Language) is actually used by software developers,
and by our own systematic review about the UML and its use (Budgen, Burn,
Brereton, Kitchenham & Pretorius 2011), the author set out to conduct a
series of interviews with software developers to establish whether they used
the UML, and if so, how it was used. While the paper does not provide an
explicit research question, the author states that the main questions she asked
were:

1. “Do you use the UML?”

2. If the response was “yes” then the second question was “Can you tell
me about how you use it?”. If the response was “no”, then the second
question was “Why not?”.

While the author does not claim that this study is a survey as such, it does
provide an excellent example of the effective use of interviewing to probe
reasoning that would not be easily extracted by the use of a more formal
questionnaire.

17.4 Examples of surveys from the software engineering
literature

We will continue to use as our examples the three surveys that were used
to provide examples of research questions in Section 17.3. Only a brief descrip-
tion is provided for each one, identifying how it addressed some of the issues
involved in designing and conducting surveys that were identified in Sections
17.1 and 17.2.

For each one, we provide an outline description of:

• The sampling frame

• The sampling technique(s)

240 Evidence-Based Software Engineering and Systematic Reviews

• Data collection mechanisms

• Organisation

• Questionnaire design

based upon the information provided in each paper. Taken together, these do
show some of the challenges that occur when conducting a study, especially in
terms of obtaining ‘suitable’ samples of respondents, as well as in the design
of the questionnaire.

17.4.1 Software development risk
The study described in the paper by Ropponen & Lyytinen (2000) aimed to

sample a representative set of people with experience of project management
within Finland. The sampling frame that was used was the membership list
of the Finnish Information Processing Association, and the authors sent a
copy of the questionnaire to those members of this organisation whose titles
indicated that they had a managerial role, and also constrained the sampling
so that they contacted no more than two people from any company. They
do not indicate in the paper how they selected these when there were more
than two, so their sampling method, although probably well defined, remains
unknown.

The authors sent out 248 questionnaires (by post), and received 83 re-
sponses (a response rate of 33.5%, which can be considered to be very good).
While the paper describes how they followed up a sample of non-responding
people to find out why they did not respond (to check for possible bias), they
do not indicate whether they sent out any form of follow-up prompt after
making the initial request.

Their questionnaire was organised as a set of 20 questions about risk, based
upon different scenarios and providing response options using a 5-point Lik-
ert Scale (ordinal scale), with values ranging from “hardly ever” to “almost
always”. In addition, they asked a set of “demographic” questions related to
organisational characteristics as well as about the profile of experience pos-
sessed by the individual respondents. The paper also provides details of how
the questions in the survey were validated by using a panel of experts, although
as Kitchenham and Pfleeger observe, they “did not conduct an independent
pilot study” (Kitchenham & Pfleeger 2002b).

17.4.2 Software design patterns
As mentioned earlier, the study described in this paper was motivated

by the experiences from conducting a systematic review of studies of design
patterns (Zhang & Budgen 2012). This review found very few experimental
studies (11) and ended up augmenting the knowledge from these by using a

Surveys 241

small sample of observational papers (7). Since even well-known design pat-
terns were hardly examined in any real depth, and some were not evaluated
at all, the survey constituted an attempt to obtain further knowledge about
how useful these widely-known design patterns were considered to be.

The desired sampling frame was that of software developers who had had
experience of using some or all of the 23 design patterns catalogued by the
“Gang of Four” in (Gamma et al. 1995). (These were the only design pat-
terns that were examined in the set of studies included in the systematic
review.) Lacking any obvious means of identifying or contacting all of these
people, the surrogate sampling frame adopted was that of all of the people
who had authored the papers on patterns that were found during the search-
ing process used for the systematic review (whether or not those papers were
empirical). So the initial sampling procedure could be described as indexsur-
vey!sampling!cluster sampling cluster sampling (people with like interests).

This initial sampling frame consisted of 877 unique authors, but with the
passage of time, some contacts were no longer valid, reducing the size of the
sampling frame to 681. Of these, 128 responded, giving a response rate of
19%. Respondents were also asked to pass the survey to others whom they
knew were knowledgeable (snowball sampling). A further group were contacted
through a special interest group mail-list (cluster sampling again), and the
final total of usable responses was 206. All non-respondents from the original
list of authors were followed up once (after an interval of two weeks). So, the
survey employed a mix of sampling methods, and the size of the final sampling
frame could only be estimated.

The questionnaire was administered by using an on-line site (SurveyMon-
key), and a dry run was performed using two experienced assessors, leading
to some changes in wording and in presentation. The survey began with some
initial demographic questions about respondent roles and experience with pat-
terns, and then used both rating questions and ranking questions to ask about
the 23 patterns. For each pattern, respondents were asked to provide a rating
of its usefulness using a 4-point Likert Scale (together with a ‘no experience’
option). In addition, they were also asked to provide a ranking of up to three
patterns they considered to be the most useful, and of up to three that they
considered to be of little use. For the ranking questions, respondents were also
invited to provide comments to explain their choices (although few did).

While the survey was primarily descriptive, the authors argue that there
was an experimental element, in that it was possible to make some comparison
between the responses from different groups of respondents (classified either
by experience or by role). This aspect was categorised as a concurrent study
in which participants are not randomly assigned to groups.

Two limitations in the design of this study were the potential bias arising
from the sampling (many of the respondents had higher degrees, which might
be expected from the authors of papers, of course), raising the question of
how representative they were of the target population, and the mixed forms of
question used. The use of both rating and ranking questions made it impossible

242 Evidence-Based Software Engineering and Systematic Reviews

to check for consistency in the responses, and a design that simply used rating
questions would probably have been better.

17.4.3 Use of the UML
Marian Petre’s study (which won a “Best Paper” award) does carefully

position itself against previous surveys conducted about the roles of the UML.
The author interviewed some 50 practising software developers, taking no more
than one per company. So, informally, the sampling frame was the set of all
software developers, and the sample was obtained on a convenience basis (the
author uses the term “opportunistic”).

The key issue here is the word ‘use’, and this is where interviews allow for
clarification of what is meant by this. Only 30% of respondents did use the
UML, and the main three categories of use that they identified were: retrofit
to meet a customer’s requirement; selective, using the UML informally when
it seemed appropriate; and for automated code generation, once the design has
stabilised. This ability to categorise reasons for using (and also, for not using)
something demonstrates a strength of using interviews, making it possible to
follow up issues and obtain explanations.

So, although not formally presented as such, it can be argued that this
was a descriptive survey, and as the author suggests, the results are indicative
rather than definitive (the sample was relatively small). Responses were also
verified by observation where practical.

While conducting such a survey on a larger scale would be quite chal-
lenging, one benefit of this type of study is to gain a deeper understanding
of issues that can then be potentially explored more fully through a more
extensive survey if desired.

17.5 Reporting surveys
This task involves reporting many of the same issues as for experiments

(research question, design, conduct, results, analysis, outcomes, and threats
to validity). Where appropriate, there may also be hypotheses to report as
well. However, the report of a survey should also provide information about
such issues as the population of interest, the sampling frame used, and the
way that the sampling was performed.

Further reading
For those wishing to know more about survey design, there is an extensive

literature on surveys. In most libraries, this is largely to be found catalogued

Surveys 243

under the headings of “social science” and “psychology”, since for both of these
disciplines the survey is an important tool. A widely-cited and very readable
resource is the ten-volume Survey Kit, edited by Arlene Fink, although to
obtain a basic understanding of key issues, the first volume alone should be
sufficient. See (Fink 2003).

A detailed review of the use of surveys from a software engineering per-
spective can be found in (Kitchenham & Pfleeger 2008).

This page intentionally left blankThis page intentionally left blank

Chapter 18
Case Studies

18.1 Characteristics of case studies . 247
18.2 Conducting case study research . 248

18.2.1 Single-case versus multiple-case . 249
18.2.2 Choice of the units of analysis . 250
18.2.3 Organising a case study . 251

18.3 Research questions that can be answered by using case studies 253
18.4 Example of a case study from the software engineering

literature . 255
18.4.1 Why use a case study? . 255
18.4.2 Case study parameters . 256

18.5 Reporting case studies . 256
Further reading . 258

From the perspective of the systematic reviewer, case studies represent an
important category of primary study, largely because they provide a very rel-
evant way to study many software engineering topics. Unfortunately though,
the term case study has often been used rather loosely to describe what are re-
ally rather informal observational studies. And as a further complication, the
term “case study” may also be used to refer to a large-scale teaching example,
particularly when used in the context of business and management studies (a
“teaching case study”).

As indicated in Figure 15.2, for our purposes the case study can be consid-
ered to be a form of empirical study that allows deeper probing of issues, but
at the price of reduced generality. It can be considered to be an observational
study (as there is no controlled intervention), with the crucial distinctions
being that it is planned, sets out to answer a specific research question, and
collects data pertinent to that research question in a systematic manner. Case
studies are widely used for research in the social and behavioural sciences, and
in recent years, software engineers have looked to these disciplines in order to
learn how to make the most effective use of this form of research. However, we
should note that within the disciplines that make extensive use of case study
research, there are two major schools of thought about its role.
• The positivist view enshrines a belief that there are general rules and
patterns that govern human behaviour, and so any use of case studies can
be geared towards identifying and exploring these. Software engineers,
and scientists in general, are usually positivists.

245

246 Evidence-Based Software Engineering and Systematic Reviews

• An interpretivist view takes the opposing position, whereby the out-
comes of a case study can only be understood within the context of that
study and there are multiple realities accessed through social constructs
such as language. Hence the conclusions from a case study cannot be
generalised or extended for wider use or application (including being
used as an input to a systematic review). Some information science re-
searchers tend to adopt this viewpoint.

So, case studies are used by both ‘camps’, but differently. Since software engi-
neers have been predominantly influenced by the work of Robert K Yin, who
is a major exponent of the positivist use of case studies (Yin 2014), and the
positivist perspective does consider case studies as being suitable inputs for
systematic reviews, not surprisingly, this chapter too will employ a positivist
interpretation.

Yin’s view of a case study is that it is an empirical enquiry that “is used
to understand complex social phenomena” and hence that it:

• “Investigates a contemporary phenomenon (the “case”) in depth and
within its real-life context” (in contrast to an experiment, which seeks
to isolate a phenomenon from its context);

• Is a particularly appropriate form to employ when “the boundaries be-
tween phenomenon and context may not be clearly evident” (in software
engineering, the effects arising from software development practices and
from their organisational context are often confounded).

This chapter is again written largely from the perspective of the needs
of a systematic reviewer, and what knowledge they need about, and from, a
case study. A much more extensive and detailed exposition of the use of case
study research in software engineering (and especially about their design) is
provided in the book Case Study Research in Software Engineering: Guidelines
and Examples by Runeson et al. (2012). There is also a useful chapter on the
conduct of case studies in Wohlin et al. (2012).

Drawing upon the definition provided by Yin, and also the definitions
provided by Robson (2002) and Benbasat, Goldstein & Mead (1987), Runeson
et al. suggest the following, software engineering-specific, definition for a case
study.

“An empirical enquiry that draws on multiple sources of evidence
to investigate one instance (or a small number of instances) of a
contemporary software engineering phenomenon within its real-life
context, especially when the boundary between phenomenon and
context cannot be clearly specified.”

So, why are case studies so important to software engineering? In essence,
it is because they are a form of study that can be used “in the field”, to study
how companies or individuals adopt and use new practices, as well as how they

Case Studies 247

use well-established ones, often over a period of time (which we refer to as a
longitudinal study). They can be used to address issues that do not readily
lend themselves to the use of experiments or surveys, and to ask a range of
different forms of question.

In exchange for this flexibility there are, of course, some associated trade-
offs. The most obvious one is the lack of generality for any findings. Another,
very important one, is the need to adopt a disciplined approach to conducting
a case study, in order to ensure that any outcomes are both reliable, and also
that they are as unbiased as possible. A case study does need to be designed in
advance, and not fitted to a project retrospectively in order to confer greater
respectability upon what is really an informal observational study. Recognising
these issues is important for the systematic reviewer, who may need to be able
to interpret and aggregate the outcomes from different case studies.

The rest of this chapter follows the same general format as the preceding
ones by first examining the characteristics and forms that case studies take
and how they are conducted, identifying the sort of research question that
can be addressed through case studies, and providing an example for fuller
illustration.

18.1 Characteristics of case studies
If we continue to focus our ideas around the positivist approach espoused

by Yin (2014), then he suggests that some key characteristics of a case study
inquiry are that it:

• “Copes with the technically distinctive situation in which there will be
many more variables of interest than data points” (again this provides
a contrast with an experiment, where the aim is to use as few variables
as possible);

• As a consequence of having so many variables, it “relies on multiple
sources of evidence, with data needing to converge in a triangulating
fashion” (by ‘triangulation’, we mean that different sources of data are
used to establish a conclusion, rather as a navigator uses ‘fixes’ on dif-
ferent points in order to determine his or her position);

• And as a further consequence, it “benefits from the prior development
of theoretical propositions to guide data collection and analysis”. (Here,
we should view ‘theory’ as being a rather general concept, more akin
to the concept of a ‘model’, rather than necessarily meaning something
that is mathematical in nature. Indeed, the basis of such ‘theory’ could
also be the outcomes from other primary or secondary studies.)

So, where an experiment assumes that relationships between different factors
can be studied separately, a case study is particularly appropriate when the

248 Evidence-Based Software Engineering and Systematic Reviews

interconnection between the object of interest and its context is both complex
and also likely to be an important factor. A case study is therefore well suited
for use with a task such as studying the transition to the use of agile methods
within a particular organisation. Here, important factors are likely to be the
skills and attitudes of individual developers, the organisational context, the
type of systems being developed, and the way that new practices are intro-
duced. The effects of these are not readily separated, and even if they could
be separated, studying them in isolation would be unlikely to provide an un-
derstanding of how they behave as a whole. A similar example, illustrating a
similar software engineering context, is provided by the study of the adoption
of object-oriented practices described in Fichman & Kemerer (1997).

These examples point to another significant characteristic of case studies,
which is that the duration of a case study may well extend over a long pe-
riod of time, particularly when studying issues such as the adoption of new
technologies, or how a technology evolves. This ability to perform longitudi-
nal studies of effects is both distinctive and valuable, but may also be quite
demanding of effort on the part of the researcher.

So, having identified some key concepts about the nature of case study
research, we now examine how this may be employed in the context of software
engineering.

18.2 Conducting case study research
Case study research can be employed for a number of different purposes.

Yin suggests that there are three primary roles that can be performed by a
case study (Yin 2014), which are as follows.

• An explanatory study is concerned with determining how some process
works, and with why it works successfully or otherwise. This role is one
that cannot easily be performed using experiments or surveys, and so is
a particularly important one for case studies.

• A descriptive study “provides a rich and detailed analysis of a phe-
nomenon and its context”, but without the element of interpretation
and explanation of an explanatory study. So, here a case study can per-
form a role similar to that of a descriptive survey, being concerned more
with what exists or occurs, although probing more deeply than a survey,
and also being less general.

• An exploratory study is one that is mainly concerned with identifying
the issues of interest for, and the scope for, a future, more extensive
study (not necessarily a further case study, although possibly so). The
benefits of using a case study for this role lie in its inclusive nature,
drawing together many data sources, and so helping to identify possible
links and relationships that can then be explored in more depth.

Case Studies 249

The first two forms may also benefit from the development of one or more
propositions. These are derived from a theory or model, and a proposition
“directs attention to something that should be examined within the scope of
the study” (Yin 2014). For a case study, a proposition plays much the same
role as a hypothesis does for an experiment, although it is unlikely to be tested
statistically. Yin also makes the point that case study research should not be
confused with qualitative research. A case study can use both quantitative
and qualitative forms of data, as well as a mix of these.

Runeson et al. also suggest a fourth category as relevant to software engi-
neering, derived from the classifications used by Robson (2002).

• An improving study is one that is conducted for the purposes of im-
proving some aspect of the studied phenomenon.

In this form, the case study is performing a role similar to that of action
research, although in a less iterative manner, aiming to learn from practice
how to improve that practice.

Two further concepts that need to be examined before we look at the
procedural aspects of conducting a case study are the distinction between
single-case and multiple-case forms of study, and the choice of the units of
analysis to be used in a case study. Yin categorises the four combinations of
these as Type 1–Type 4 designs, as illustrated in Figure 18.1.

18.2.1 Single-case versus multiple-case
Yin suggests that single-case study, where only one case is employed (Types

1 and 2), can be considered as an appropriate design in situations such as those
where:

• There is a critical case that needs to be examined, perhaps because it can
help decide whether or not a theoretical model is likely to be ‘correct’;

• An extreme or unique case might exist, which is therefore worth studying
for itself;

• Studying a representative case is sufficient to describe many other pos-
sible cases;

• Something new and previously inaccessible becomes available to an in-
vestigator (he terms this a revelatory case);

• A study may take place over a long period of time (a longitudinal case).

In software engineering research, neither extreme nor revelatory cases are
likely to occur very often, and there may be few instances where a critical
case exists. However, using single-case studies may well be appropriate for
representative and longitudinal cases. The main risk in using a single-case
study design is that the chosen case might turn out to be inappropriate (such

250 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 18.1: Characterising basic case study designs (adapted from (Yin,
2014)).

as a ‘typical’ case that emerges as being untypical). With so many possible
factors to address, this may well be the situation in a software engineering
context, so this is a design choice that needs to be viewed with caution when
conducting a secondary study.

In contrast, multiple-case forms (Types 3 and 4) can provide more com-
pelling evidence and also make it possible to use replication logic, whereby
different cases produce the same results (or different ones, if there are good
reasons for this, and if different results are predicted by theory). However,
such a study is more limited in terms of the type of case that it can address
(clearly its use is unsuited to extreme or revelatory cases), and it requires
greater effort to manage multiple cases and their data.

The issue of replication is an important one and something that we return
to in Chapter 21. For the moment, we might note that replication in case
studies performs much the same role as replication in experiments, except
that for a case study there is much less risk of having replications that are too
close to the original study in terms of their parameters.

18.2.2 Choice of the units of analysis
This raises the question of what exactly constitutes a case in a case study?

The case essentially forms the “unit of analysis” for a case study, and in
software engineering this might be a particular company, or a project, or even
an individual. As Yin observes, “the tentative definition of your case (or of
the unit of analysis) is related to the way that you define your initial research
questions”. If these are concerned with how a company adopts a technology,

Case Studies 251

or with how a particular agile process is used across different organisations,
then the respective cases will be the company and the specific agile process.

The common distinction made here is between case studies that have a
single holistic unit of analysis (whether used in a single-case or multiple-case
design), and those that may have embedded units within the main unit. As an
example of the latter, our unit of analysis might be a company, but we might
then also study different projects within the company, with the latter being
the embedded units.

In the same way that the research questions help to determine the ap-
propriate units of analysis, so the choice of our research questions helps to
determine what data needs to be collected. And that in turn leads us on to a
brief description of how a case study can be organised.

18.2.3 Organising a case study
Yin identifies a five-step procedure for designing a case study. This struc-

ture is important, and needs to be clearly documented in the research protocol.
By doing so, the researcher helps to ensure that a case study is conducted as
a rigorous empirical study. It is also this planned element that particularly
distinguishes case study research from observational studies and other less
rigorous forms, and in turn, it is this additional rigour that should influence
how we treat the outcomes from a case study when performing a systematic
review. The five steps are as follows.

1. Determine the study questions by identifying the research question that
represents the high level concern of the study. For example, a study
question might be to “investigate changes to the development process
that arise from adopting agile processes in an organisation”.

2. Identify any propositions where these (if present) will be more detailed
than the research question and will identify specific issues that need to
be investigated by the case study. Continuing with the same example,
in refining the general research question, the resulting propositions may
be that the use of agile methods within the organisation should result
in:

• Reduced development time
• Increased customer satisfaction
• Improved developer motivation

(forming three separate propositions that clearly address different stake-
holder viewpoints).

3. Select the unit(s) of analysis. This step involves positioning the study
within the set of four design types identified in Figure 18.1 and hence:

252 Evidence-Based Software Engineering and Systematic Reviews

• Determining whether to employ single-case or multiple-case forms,
and if deciding to use a single-case form, choosing between: a typical
instance; an extreme instance; an instance that has elements that
will help test out a theory; or a convenient instance
• Deciding upon the form(s) of unit to use: a company; a development
project; a technology; a system etc.

4. Determine the logic that links the data to the propositions. Here the de-
sign task is one of determining what sort of data needs to be collected in
order to evaluate the propositions. For example, addressing the propo-
sition about “increased customer satisfaction” might involve conducting
interviews with customers using questions about past and current satis-
faction. And in order to do this, the different attributes comprising what
might be considered to be ‘satisfaction’ for this particular stakeholder
also need to be identified, along with ways of measuring them. There
is a related issue of data collection and the role of the researcher that
also arises here, since, depending upon how the study is organised, the
researcher might be involved as either an observer or as a participant.
Runeson et al. (2012) emphasise the importance of triangulation as a
means to “increase the precision and strengthen the validity of empirical
research” (and particularly of case study research of course). They note
that this can take four forms.

• Data triangulation involves making use of different data sources or
of repeated measures.
• Observer triangulation uses more than one person to collect the
data.
• Methodological triangulation makes use of a set of different data
collection methods.
• Theory triangulation employs different viewpoints or theoretical
models for analysis.

An interesting discussion of triangulation and an example of the use of
data triangulation in a single-case holistic study (Type 1) is provided in
(Bratthall & Jørgensen 2002).

5. Define the criteria to be used for interpreting the findings. This last step
is concerned with analysing and evaluating the data we have collected
in order to answer such questions as how well the findings support the
proposition; to determine what ‘level’ of satisfaction is considered to
provide support; and to establish whether the findings from the case
study allow other explanations to be rejected. Here, the choice of analysis
method is an important one, and Yin does warn that anyone with limited
experience “may not easily identify the likely analytic technique(s) or
anticipate the needed data to use the techniques to their full advantage”.

Case Studies 253

This reinforces the point that a case study is a complex empirical study,
and not simply something to be retro-fitted at the late stages of a project
in order to provide a veneer of empirical evaluation!

So, when the systematic reviewer is considering whether or not a candidate
primary study consists of a case study that is suitable for being included in
a secondary study, these are some of the elements that we should expect to
see reported. And of course, as with any empirical study, there is the need to
assess and report on any threats to validity.

We should note here that construct validity is “especially challenging in
case study research” (as a reminder, threats to validity were discussed in
Section 16.2.5). Yin emphasises the need to address this by such mechanisms
as multiple sources of evidence, with these being used in a convergent manner,
so that the findings of the case study are supported by more than one source
of evidence. Internal validity is also an important issue for explanatory case
studies since, as always, establishing that a causal relationship exists does
require confidence that the outcomes have not arisen because of some other
factor.

Although ethical issues are not necessarily a major issue for the systematic
reviewer, we should take note that they can form more of a challenge for case
study research than most other forms of primary study. Where experiments
and surveys usually deal with aggregated data, and participants are less read-
ily identified, the same is not necessarily true for a case study. Because a case
study addresses at most a few cases, there is greater likelihood of a reader
being able to identify organisations or teams or individuals.

Where a systematic review is concerned with data that is in the public
domain (usually through refereed conferences and journals) the use of case
studies may not be an issue. However, greater care may well be needed when
using material from the “grey literature”.

18.3 Research questions that can be answered by using
case studies

When considering the research questions that can be addressed by using a
case study, it might be useful to note the observation by Runeson et al. (2012)
about the distinctive nature of the most common objects of study for software
engineering case studies. They identify four key properties.
• They are organisations developing software rather than using it.

• The organisation are project-oriented rather than function-oriented.

• The work studied is conducted by highly educated people performing
advanced engineering tasks, rather than routine activities.

254 Evidence-Based Software Engineering and Systematic Reviews

• Part of the reason for conducting a case study is to improve the practices,
so there is an element of design research involved.

As one of our examples illustrates, we also consider research in software engi-
neering is a valid object of study, although not a particularly common one.

The many different roles and forms that case studies can take means that
there are many possible research questions that could be asked. So, rather
than trying to be all-inclusive, we have selected a small number of examples.

An explanatory case study essentially addresses how and why questions in
a context where the researcher cannot control the conditions for the study.
Hence, explanatory case studies can be used to answer the type of question
that other forms of empirical study can only address in a more limited way.
They are also used quite widely in software engineering.

An example of this type of question is that addressed in the study by Moe,
Dingsøyr & Dybå (2010) that examined the way that agile teams work. For
this, the research question was:

“How can we explain the teamwork challenges that arise when
introducing a self-managing agile team?”

This study is an example of a single-case holistic case study (Type 1), for
which the unit of analysis was the project team. It also used a ‘theoretical
model’ in the form of a particular management science teamwork model, and
involved some “theory building” related to this by suggesting two further
elements that could be included in the model.

Our second example is a study of our own (Kitchenham, Budgen &
Brereton 2011). Here the case study was used in a more ‘methodological’
role, providing a framework to help assess how mapping studies could be used
to aid research. The specific research question was:

“How do mapping studies contribute to further research?”

The study was a multiple-case study where a ‘case’ consisted of “a research ac-
tivity following on directly from a preceding mapping study”. In all there were
five cases, with a mix of experienced and inexperienced researchers involved
in each one. Since all of the cases were based on the same unit of analysis
(a mapping study), this formed a Type 3 study. Data collection was mainly
through the use of questionnaires. As a triangulation exercise, the findings
were also compared with the experiences of two other researchers who had
undertaken recent mapping studies.

While this was an investigation of the effectiveness of research practice
rather than of software development practice, the use of a case study enabled
a deeper understanding of the issues involved in using secondary studies in
this role.

The case study by Bratthall & Jørgensen (2002) that was mentioned earlier
in conjunction with the issue of data triangulation can be positioned as an
exploratory case study. While the authors do not state an explicit research
question, they do so indirectly as:

Case Studies 255

“there is a question regarding in which contexts different types of
triangulation are beneficial”

after which they narrow this question down to data triangulation. (This too
can be considered as having a ‘methodological’ element although it is firmly
set in the context of a software development organisation.)

18.4 Example of a case study from the software engi-
neering literature

Rather than attempting to review examples that cover the many variations
of case study form, we expand here a little more on one of the examples
that we discussed above, which is the study of a Scrum project discussed in
(Moe et al. 2010). This allows us to highlight some of the key characteristics
discussed in the preceding sections.

We first examine why this is a research challenge that is best suited to the
use of a case study approach, and then examine some of the case study design
choices it exhibits.

18.4.1 Why use a case study?
The emergence of the agile approach to software development has signif-

icantly altered the way that a software development team operates. In the
‘traditional’ plan-driven approaches as embodied in ‘design methods’, as the
authors note, the role of the team “involves a command-and-control style of
management in which there is a clear separation of roles”. In contrast, an ag-
ile approach such as Scrum (the form studied here), is centred upon the use
of self-managing teams for which there is no formulaic guidance—a team is
expected to adapt its operation and forms of interaction to meet the needs of
the development task as they evolve.

From an empirical perspective therefore, studying the teamwork challenges
created by the need to adapt to a self-managing approach is one that is well-
suited for a case study approach. For the researcher it is essentially an obser-
vational task, as opposed to a controlled one. There are very many variables
involved in a complex set of interactions, again, as the authors observe, “the
actual performance of a team depends not only on the competence of the team
itself in managing and executing its work, but also on the organizational con-
text provided by management”. The study task is essentially a long-term one,
and there is scope for triangulation of multiple data sources from the team
and the researchers.

For this particular study, there was the added benefit that there is a range
of theoretical material available, related to the study of teams. The researchers

256 Evidence-Based Software Engineering and Systematic Reviews

adopted a teamwork model based upon (Dickinson & McIntyre 1997), which
identified seven core components of teamwork, structured as a learning loop.
Combined with the real-life context, this all provided a very sound basis for
adopting a case study approach.

18.4.2 Case study parameters
As we noted earlier, this was an explanatory single-case holistic study, in

which the researchers studied one team within an organisation. Data collection
took three forms: observations by the researchers (including attendance at
project meetings); interviews with team members (and the Scrum master);
and documents produced as part of the project records.

Analysis of this drew strongly on the management model, both as a frame-
work as well as its role in providing a vocabulary for categorising data (an
important benefit). One observation by the researchers was that the model was
not really comprehensive enough, and in particular that it did not “describe
certain important components, such as trust and shared mental models”. (This
might suggest that one problem for software engineering is to find management
and organisational models that relate to a creative development process.)

Overall, the researchers were able to identify some challenges that arise
when organisations move to the use of self-organising teams (and some limita-
tions in terms of Scrum guidance). As such therefore, it can be argued that use
of a case study did indeed allow in-depth field study of a complex phenomenon
that could not readily have been performed in any other manner.

18.5 Reporting case studies
In Section 15.4 we discussed some generic issues concerning how primary

studies needed to be reported in order to assist with the tasks of the systematic
reviewer. These were more concerned with identifying whether or not a study
was relevant than with its actual outcomes, and here we need to address the
needs of the latter.

As for any empirical study, reporting its outcomes is only really useful if
accompanied by a description of the methodological aspects, both as planned
and as conducted. Within this, we would of course include the need to assess
the threats to validity involved in the study.

For a case study, the reporting of both methodological elements and also
of the outcomes can take many forms. Indeed, the very flexibility of the case
study method makes it difficult to be overly prescriptive about how it should
be reported, while at the same time making such reporting particularly im-
portant.

One aspect that can make life a little easier for the systematic reviewer is

Case Studies 257

the careful use of terminology, particularly when reporting the methodological
aspects. It is important to make clear how any terms are being used, perhaps
by quoting a widely-known source such as Yin (2014) or a more domain-
specific one such as Runeson et al. (2012). Both of these use much the same
vocabulary and meanings, although drawing their examples from different
domains.

Runeson et al. (2012) suggest the use of checklists when reporting a case
study in order to ensure that all key material is included, and they also explain
how the checklists have been systematically derived. (Actually, they identify
useful checklists for many purposes, including design, data collection and anal-
ysis. However, our focus here is upon reporting of case studies.) Their checklist
for reporting includes the following (Reproduced with permission.):

1. Are the case and its unit of analysis adequately presented?

2. Are the objective, the research questions and corresponding answers
reported?

3. Are related theory and hypotheses clearly reported?

4. Are the data collection procedures presented, with relevant motivation?

5. Is sufficient raw data presented (for example, real-life examples, quota-
tions)?

6. Are the analysis procedures clearly reported?

7. Are threats to validity analyses reported, along with countermeasures
taken to reduce threats?

8. Are ethical issues reported openly (personal intentions; integrity issues;
confidentiality)?

9. Does the report contain conclusions, implications for practice, and future
research?

10. Does the report give a realistic and credible impression?

11. Is the report suitable for its audience, easy to read, and well structured?

Together, these should provide a clear report about the motivation, conduct
and analysis involved in the case study.

If provided with this information, our remaining question is what further
information is needed for the systematic reviewer? As always, this is partly
dependent upon the type of review: for a mapping study where the main
synthesis activity involves categorisation, the preceding list may well be suf-
ficient. However, for a fuller degree of synthesis, the reviewer may also need
both contextual information about the case and also some additional topic-
specific material in order to be able to make best use of the case study in their
review.

258 Evidence-Based Software Engineering and Systematic Reviews

Further reading
The main source of knowledge about case study research comes from the

social sciences, and this chapter has drawn heavily upon the positivist research
model that has been developed by Robert K Yin. His book Case Study Re-
search: Design and Methods (Yin 2014) has formed a major influence upon the
adoption of this form by software engineers. It has also probably been a ma-
jor influence in ensuring that case study research is viewed as a ‘respectable’
form of empirical study for many disciplines, being very solidly grounded in
the research literature, as well as very readable. For a software engineer, the
main limitations are probably the examples, which inevitably are drawn from
more ‘social’ disciplines, although the number of citations to this work in the
software engineering literature suggests that this has obviously not proved a
major barrier.

From a software engineering perspective, the book Case Study Research
in Software Engineering: Guidelines and Examples by Runeson et al. (2012)
forms a major addition to the empirical software engineering literature. This
book is organised as two parts: a first part that discusses the methodologi-
cal issues of case study research in general, and how it can be and has been
adapted for use in software engineering; and a second part that provides some
substantial discussions about examples of its use. Like this chapter, it is heav-
ily influenced by Yin’s work, although balancing this with other influences
from case study research in social science by Robson (2002), and in informa-
tion systems by Benbasat et al. (1987). For a software engineer planning on
conducting or reviewing a case study, this book provides an excellent resource,
including checklists, examples and analysis models.

Chapter 19
Qualitative Studies

19.1 Characteristics of a qualitative study . 259
19.2 Conducting qualitative research . 260
19.3 Research questions that can be answered using qualitative

studies . 262
19.4 Examples of qualitative studies in software engineering 262

19.4.1 Mixed qualitative and quantitative studies 263
19.4.2 Fully qualitative studies . 265

19.5 Reporting qualitative studies . 267
Further reading . 268

Software engineering research has been fairly late to recognize the value of
qualitative studies. Carolyn Seaman was one of the first strong advocates of
qualitative studies (Seaman 1999). She suggested that the advantage of quali-
tative approaches is that “they force the researcher to delve into the complex-
ity of the problem rather than abstract away from it”. She also pointed out
that, in the context of software engineering, “the blend of technical and hu-
man behavioural aspects lends itself to combining qualitative and quantitative
methods, in order to take advantage of the strengths of both”.

This chapter discusses the role of qualitative studies in software engineering
from the viewpoint of their use as primary studies in systematic reviews.
We define what we mean by a qualitative study, and discuss how qualitative
research is conducted, what sorts of software engineering research questions
can be addressed using qualitative methods and what a meta-analyst requires
from a qualitative primary study.

19.1 Characteristics of a qualitative study
A qualitative study addresses research questions that are related to the

beliefs, experiences, attitudes and opinions of human beings either as indi-
viduals or in groups. Many qualitative studies are organized as case studies
(see Chapter 18) or surveys (see Chapter 17). Qualitative researchers aim to
gather in-depth understanding of human experiences, beliefs and behaviour

259

260 Evidence-Based Software Engineering and Systematic Reviews

using relatively small focused samples, for example theoretical samples rather
than one-off random samples. Theoretical samples are based on soliciting infor-
mation from participants likely to have insight into the research topic. The aim
is to select participants that, taken together as a group, are able to shed light
on all aspects of the research question. Theoretical samples may be extended
to include other participants as the researcher develops his/her theories about
the research topic. Theoretical sampling terminates when theoretical satura-
tion is achieved, that is, when the researcher believes that no new information
will be obtained by interviewing or observing any more participants. Thus
qualitative research aims to identify as many different viewpoints as possible
rather than the most-commonly expressed viewpoint.

19.2 Conducting qualitative research
In software engineering research, qualitative studies often involve either

asking participants about their experiences and opinions as software engineers
(or managers), or observing their behaviour when they are in their usual
working environment.

There are various approaches used to ask questions including:

• Self-administered questionnaires. These usually have a semi-quantitative
form where participants are asked to assess the extent of their
(dis)agreement with a question based on a Likert response format. There
is some confusion between a Likert scale and Likert response format
(Carifio & Perla 2007). A Likert scale refers to a set of positive and
negative questions or statements (referred to as items) about some un-
derlying concept. A Likert response format is an ordinal scale used to
assess each item in the Likert scale. A Likert response format is often
based on a five point response of the form:

1. Strongly agree
2. Agree
3. Neither agree nor disagree
4. Disagree
5. Strongly disagree.

Some researchers prefer a four point (even) set of responses removing the
middle option. This is to make respondents think seriously about their
preferences rather than simply take a “neutral” middle option. Other
researchers prefer more response categories, up to a maximum of seven,
to allow respondents to give more precise answers, since if increased

Qualitative Studies 261

precision proves unnecessary, little used response format categories can
be collapsed.
Questions based on Likert response formats are called closed questions
because they have a restricted number of possible answers. However,
self-administered questionnaires may also include open questions, where
the participant is asked to comment about some question or issue in their
own words. Many surveys are based on self-administered questionnaires
(see Chapter 17).

• Interviews. For these the researcher meets participants, usually in a one-
to-one meeting (although it is possible to have more than one researcher
or participant in some situations) and discusses the topic of interest. In
unstructured interviews the researcher discusses the general topic with
the participant and allows the discussion to have its own momentum,
similar to a personal conversation. In semi-structured interviews the
researcher has a list of questions related to the topic (s)he will ask,
which provides an overall structure to the interview. In many circum-
stances, with permission of the participant, the researcher will take an
audio-recording of the interview for later transcription; otherwise the
researcher will have to take notes during the interview.

• Focus groups. Here a researcher meets with groups of participants and
obtains group answers to his/her research questions. Focus groups are
often used in marketing to get opinions about products or services.

Observational studies are based on researchers watching software engi-
neers in their working environment, including team meetings. They may also
involve reviewing documents used/produced by software engineers. They are
often longitudinal studies, that is, studies that take place over a relatively long
time period, monitoring the same participants or workplace throughout. Some-
times, working processes and meetings may be video-recorded (as may focus
group sessions). If the researcher is part of the software development team, the
study is called a participant-observer study. Participant-observer studies are
often used for action research. In software engineering, action research occurs
when researchers introduce a change in working practices, usually in order to
address a perceived process problem, and then monitor the resulting practice
to assess the impact of introducing that change.

Qualitative researchers acknowledge that what participants do, and what
they say they do, may differ. To address this issue qualitative researchers
recommend triangulation. Triangulation, in this context, means using infor-
mation from different sources to cross-check results and validate findings, see
for example, the paper by Bratthall & Jørgensen (2002) which provides empir-
ical evidence that a multiple data source case study is more trustworthy than
a single source case study. Triangulation also refers to a variety of methods to
be used to validate qualitative findings. The methods are based on:

262 Evidence-Based Software Engineering and Systematic Reviews

• Theories, that is, theories derived in a specific qualitative study can be
compared with theories derived in other comparable studies.

• Methods, that is, using multiple methods to assess the same data.

• Researchers, that is, different researchers analyse the same data inde-
pendently and compare their findings.

Regardless of how a qualitative study is organized, it must be converted
into text. Videos or recordings need to be transcribed and initial notes need
to be converted into detailed field reports.

19.3 Research questions that can be answered using
qualitative studies

Qualitative studies in software engineering address questions related to the
way people work, both in teams and as individuals, and how the environment
in which they work helps or hinders their software engineering tasks. Research
questions may typically address:
• The organisation of teams and their working practices, for example, how
do agile teams manage to work successfully?

• Interactions among teams with different software engineering roles, for
example, what is the best way to encourage effective working between
testing and development teams?

• Opinions of people about their working experiences, for example, what
do individuals find most useful about test-before programming?

• Opinions of people about barriers and risks associated with a new
method or process, for example, what are the major problems facing
companies providing global outsourcing solutions?

The main assumption behind qualitative methods is that such questions
are best answered either by asking the software engineers and software man-
agers involved in the tasks for their opinions concerning the topic of interest,
or by observing their behaviour when performing their software engineering
tasks.

19.4 Examples of qualitative studies in software engi-
neering

In this section, we describe some qualitative software engineering studies.
Firstly, we discuss three studies that used a mixed methods approach including

Qualitative Studies 263

both quantitative and qualitative data. Then we describe two papers that used
completely qualitative approaches.

19.4.1 Mixed qualitative and quantitative studies
Seaman & Basili (1998) report a mixed qualitative and quantitative study

looking at how companies organize document inspection meetings aimed at
finding defects in software programs. They used a participant-observer method
which included observing 23 inspection meetings, each of which covered 2
or 3 C++ classes. The intention was to “capture first hand behaviours and
interactions that might not be noticed otherwise”. At each inspection the
observer recorded:

• Names and roles of each inspector, the amount of code inspected (in
lines of code).

• Details of each discussion during an inspection meeting: its length, par-
ticipants, the type of discussion, and notes describing the discussion.

After each inspection, the observer wrote extensive field notes.
The observer also undertook a series of semi-structured interviews with

inspection participants which obtained information about organizational re-
lationships, data on non-meeting-based inspection activities and a subjective
assessment of the inspected code’s complexity. Most of the interviews were
recorded (but not transcribed) and used to assist with producing detailed
field notes.

Data analysis was based on the constant comparative method advocated by
Glaser & Strauss (1967) and the comparison method suggested by Eisenhardt
(1989). Both of these approaches aim to develop theory from qualitative data
rather than test hypotheses. The actual data analysis involved performing
case-by-case comparisons aimed at finding patterns among the characteris-
tics of the inspection meetings. This led to the construction of a network of
relationships among variables identified during the analysis. Variables were
categorized into three types: outcome variables (such as the length of meet-
ings, time spent on specific discussions), organizational variables (such as the
organizational distance among participants and the physical distance among
participants) and two moderating variables: the length of code and the com-
plexity of the code. Quantitative information (that is, the average time for
long and short meetings) was incorporated into the network to further define
the relationships among elements. The end result of the study was a set of
“well supported hypotheses for further investigation”, for example:

• Hypothesis: The more complex the material being inspected, the less time
will be spent discussing global issues.

• Hypothesis: The more experienced or skilled the author is perceived to
be, the less preparation time will be reported.

264 Evidence-Based Software Engineering and Systematic Reviews

Rovegard, Angelis & Wohlin (2008) also used a mixed qualitative and
quantitative approach to investigate change impact analysis (IA). They had
three research questions:

1. RQ1. How does the organizational level affect one’s assessment of im-
portance of IA issues?

2. RQ2. What difference does the perspective make in determining the rel-
ative importance of IA issues?

3. RQ3. Which are important IA issues and how are these addressed in
software process improvement (SPI)?

They used a three-step research process, of interviews, post-test tasks and
workshops. They interviewed a convenience sample of 18 people in a variety of
roles involved in the change management process who were asked “which po-
tential issues are associated with performing impact analysis?”. The post-test
tasks were used to let participants determine their level in the organization
(strategic, tactical, operational) and to let them prioritize issues from their
own viewpoint and from the viewpoint of their organization. The prioritization
was based on the cumulative voting technique which provided a quantitative
measure of priority. Disagreements between individuals at their personal level
and the organization level could therefore be quantified. The workshops pro-
vided a forum for participants to discuss the prioritization, to identify possible
ways of mitigating important issues, and to understand each others’ views.

Although there were substantial disagreements at both levels, and dis-
agreements were correlated across levels, the researchers were able to identify
the types of issues important at different levels, and a number of ideas for
improving the process.

Zhang & Budgen (2012) report the results of a study aiming to investigate
why three popular design patterns (specifically, Facade, Singleton, and Visi-
tor) received conflicting opinions of their value in an earlier survey. Zhang &
Budgen sent another questionnaire to the people who responded to their first
survey. Part of the survey involved stating their agreement (based on a three-
point response scale: agree, no opinion, disagree) to a set of statements about
each pattern The statements included both positive and negative character-
istics each pattern derived from comments reported in the original survey.
Respondents were also asked to add:

• “Their own observation about that patterns and any thoughts about
why it attracts conflicting views”,

• “Provide any examples of good or bad use of the pattern based on their
own experiences”.

The quantitative analysis involved reporting the number of responses of
each type for each question about each pattern. Across the three patterns, the
positive questions achieved a large number of agree responses and relatively

Qualitative Studies 265

few disagree or no opinion responses. In sharp contrast, negative questions
received a more mixed response: for Visitor, the number of agree, disagree
and no opinion responses were very similar, for Singleton the majority of
respondents disagreed although a substantial minority agreed, for Facade the
number of agreements and disagreements was very similar while for the other
question a large majority of respondents disagreed.

The qualitative analysis involved a four-step process of categorising and
coding the six datasets ‘comments’ and ‘experiences’ for each of the three
patterns. For each dataset:

1. Each of the co-authors read the responses and wrote a list of common
issues.

2. The co-authors met and merged their lists generating a short agreed list
of categories.

3. Each co-author independently coded the responses using the agreed cat-
egories.

4. They met and reviewed the codes, and discussed and resolved any dis-
agreements.

5. They produced a set of categories and frequency counts for the comments
and the positive and negative experiences for each pattern.

The authors used the Cohen’s κ statistic to assess the agreement among
coders. They discussed the implications for each of the patterns considering
both the quantitative and qualitative results. They also identified threats to
validity inherent in the survey method and the analysis. They conclude that:

• Visitor should “carry a ‘health’ warning, in that used outside of a well-
constraint context, it is likely to increase complexity”.

• Singleton appears to polarize opinion, and should only be used by ex-
perts. They note that it is often used in teaching because it is relatively
simple, but their results suggest this practice should be avoided.

• Facade has some benefits in specific circumstances, but needs to be used
with care since the consequences of misuse “may be more significant
than for many other patterns”.

19.4.2 Fully qualitative studies
Sharp & Robinson (2008) report an ethnologically-informed study involv-

ing three different companies with experience of eXtreme Programming (XP).
They investigated the use of story cards, which are 3× 5 inch index cards on
which engineers write self-contained user functionality, and the Wall which is

266 Evidence-Based Software Engineering and Systematic Reviews

a physical place used to organise and display story cards. Each study was con-
ducted at the XP teams’ offices and lasted between 5 and 8 working days, plus
one day at a later stage to report the findings. The data gathered included
extensive field notes, photographs, and copies of work artefacts

Although there were some differences in working practices, they found
substantial similarities among the three companies. The concepts of the story
card and the Wall are simple but provide a “sophisticated and disciplined way
to support levels of co-ordination and collaboration”. Cards are annotated
as they pass through the development process but but describe chunks of
work that are to small to stand alone. The Wall provides an overview of the
development plans and progress and supports various co-ordination activities:

• The daily meeting takes place around the Wall.

• Taking a card down acts as a means to signal that the work item will be
addressed by the person taking the card, and prevents anyone else from
working on it.

• Colour coding and annotating cards provide progress-tracking informa-
tion.

• The structure of the Wall shows the current status of an iteration and
it is continually updated.

• During a meeting, holding a card signifies an engineer has something to
say.

• Cards can be moved around to help group reasoning

Sharp & Robinson also discuss why the physical Wall and cards are better
than automated alternatives. They suggest it may be because using physical
artefacts “relies on trust and a highly disciplined team”.

It is not often the case that “raw” data from a qualitative study is compact
enough to present in full. However, Kitchenham, Brereton & Budgen (2010)
report a small study investigating the educational benefits of mapping studies,
in which all the raw data was reported. The data was obtained from a self-
reported questionnaire completed by six participants who had just finished a
mapping study project. Based on personal knowledge of mapping studies and
systematic reviews, we developed five propositions:

• P1: Mapping studies teach students how to search the literature system-
atically and organize the results of such searches.

• P2: Postgraduate PhD students will find a mapping study a valuable
means of initiating their research activities.

• P3: Postgraduate students and undergraduate students will find under-
taking a mapping study provides them with transferable research skills.

Qualitative Studies 267

• P4: Problems students find with mapping studies will primarily be con-
cerned with the search and study classification processes.

• P5: Students should find mapping studies relatively easy to document
and report.

The questionnaire included questions about the students and their own
experiences of undertaking mapping studies including:

• Was this a satisfactory educational experience?: Yes/Mostly/Somewhat/No.
Please explain your answer?

• What (if anything) have you learnt from the experience?

• Did you find any aspect(s) of the projects particularly troublesome?
Yes/No. If Yes please specify.

The free-format responses for each student for each question were read and
linked to the propositions and other recurring themes. The responses of the
students were then used to assess the validity of the propositions. The results
found good support for propositions P1, P2 and P3, some support for P4 but
little support for P5. Additional comments of interest were that some students
found the work challenging and/or enjoyable and gave a good overview of the
topic, but that it was time-consuming.

Since we performed the study ourselves, and can hardly be regarded as
neutral commentators on systematic reviews, we were careful to discuss our
personal bias and how we attempted to minimize its impact.

19.5 Reporting qualitative studies
If a qualitative study is going to contribute to a systematic review, it is

helpful if the study reports clearly the methods it used and its findings. The
meta-analyst needs to be clear about:

• Whether the study is of relevance to his/her systematic review.

• Whether the study results are trustworthy given the methodology re-
ported by the author(s).

• What the actual findings of the study are.

Based on the discussion by Greenhalgh (2010) and the findings from
CASP1, authors of qualitative studies should ensure they report clearly the
following information:

1The Critical Appraisal Skill Programme, see www.cap-uk.net

http://www.cap-uk.net

268 Evidence-Based Software Engineering and Systematic Reviews

• The aims of the research.

• A justification for their choice of research method and an explanation
of why it is appropriate given the aims of the study.

• An explanation of how they recruited appropriate participants, provide
context and demographic details about the participants and information
about the settings in which the participants were encountered.

• The methods they used to collect and analyse data. These activities often
take place in parallel in a qualitative study, so authors might consider
using a flow diagram to describe their research process.

• Data analysis showing how the raw data was converted into the study
findings, for example, initial codes with examples of quotes from partic-
ipants, and how initial codes relate to higher level codes

• The relationship between the researchers and the participants and any
methodological issues arising from that relationship, for example, any
limitations or caveats as a result of using a participant-observer design

• Any limitations or caveats related to the research design or the conduct
of the research.

• A clear statement of ethical issues and how they were addressed. This
is a particular issue when using student participants.

• A statement of the findings from the study, clearly separated from any
more speculative discussion or discussion of other related research.

• A final summary of what the findings imply for software engineering
practice.

Further reading
There are many books that discuss qualitative research methods. In the

book “Qualitative Data Analysis. A Methods Sourcebook”, Miles et al. (2014)
provide detailed guidance on how to collect, display, and interpret qualitative
data. In her book “Researching Information Systems and Computing”, Oates
(2006) provides a general overview of qualitative methods from an Information
Systems viewpoint.

Other texts discuss specific methods in detail. In “Grounded Theory. A
reader for Researchers, Students, Faculty and Others” Remenyi (2014) pro-
vides a general overview of grounded theory. There are, of course, books writ-
ten by the original developers of grounded theory but unfortunately their

Qualitative Studies 269

ideas have diverged over the years. In her paper “A synthesis technique for
grounded theory data analysis”, Eaves (2001) provides flow diagrams showing
the different versions of grounded theory and presents an integrated approach
she used for her research.

Hammersley & Atkinson (1983) discuss the principles of ethnography. In
the context of software engineering research, Robinson et al. (2007) describe
the ethnographically-informed approach they have used to study software engi-
neering practices in their paper “Ethnographically-informed empirical studies
of software practice”. They note the need both to base research on real prac-
tice not official procedures reported in company manuals, and to minimize the
impact of the researcher’s own background prejudices and assumptions. They
also identify two major challenges: ensuring a good working relationship be-
tween researchers and participants, and adopting a rigorous method to avoid
bias.

This page intentionally left blankThis page intentionally left blank

Chapter 20
Data Mining Studies

20.1 Characteristics of data mining studies . 272
20.2 Conducting data mining research in software engineering 272
20.3 Research questions that can be answered by data mining 274
20.4 Examples of data mining studies . 275
20.5 Problems with data mining studies in software engineering 275
20.6 Reporting data mining studies . 277

Further reading . 278

This chapter discusses the use of data mining techniques in software engineer-
ing and how data mining studies should be reported for purposes of future
meta-analysis. Software engineering researchers have a long history of un-
dertaking post-hoc analysis of industrial software project data to investigate
issues such as:

• Factors that influence the costs of software projects.

• Factors that influence the quality of software components.

• Factors that affect the probability of a software project being judged a
success.

This type of research has expanded even more with the availability of large
datasets produced by the configuration management and change monitoring
tools adopted by Open Source Software (OSS) projects.

In contrast to other types of empirical study, the analysis of industrial
datasets, which we shall refer to as data mining, is one of the few areas of
software engineering research that has a large volume of empirical studies.
These studies have already led to interesting systematic reviews and mapping
studies, some of which we discuss in this chapter, but there are also problems
with the quality of primary studies that make meta-analysis difficult, and need
to be addressed to facilitate aggregation of data mining research findings.

Readers should note that data mining techniques are used in many different
disciplines for many different purposes. In this chapter, we discuss only the
uses of data mining in the context of software engineering, which do not utilize
the more complex machine learning methods needed for problems such as face
recognition, speech recognition, or language translation.

271

272 Evidence-Based Software Engineering and Systematic Reviews

20.1 Characteristics of data mining studies
Data mining is about the organizing and searching of large amounts of

data with the aim of extracting important patterns and trends. It is used
in many fields for many different purposes. In the context of software engi-
neering, it is usually used to develop prediction models aimed at identifying
some important characteristic of a project or of a software component that is
currently unknown.

Data mining analyses can be categorized into two broad types: supervised
or unsupervised. In supervised learning the goal is to predict the value of
some outcome measure (for example, the expected effort required to develop a
software project) given a number of input variables (for example, the estimated
size of the project, the experience of the developers). In unsupervised learning
there is no outcome measure, and the goal is to find patterns within the data
(for example, groups of items that share similar properties).

The “data” in a software engineering data mining study is usually repre-
sented as one or more n×m data matrices with n rows specifying the number
of data points (referred to as instances or cases) in a data matrix and m
identifying the number of attributes associated with each data point. Thus,
a data point is a vector with m elements. In the context of data describing
software engineering projects, n would denote the number of projects in the
dataset and m would denote the number of attributes (referred to as variables
by statisticians and as features by data mining researchers) containing data
about each case.

20.2 Conducting data mining research in software engi-
neering

Data mining-based research involves:

• Identifying one or more datasets that can be used to answer the research
questions. This may involves constructing a dataset from data held in a
number of different sources.

• Pre-processing the data which involves

– cleaning the data to remove or correct untrustworthy observations,
– removing data points of attributes with missing values, or imputing

(that is, estimating the value of) the missing values,
– transforming the raw data values into values that have useful prop-

erties (such as having an approximately Normal distribution). For

Data Mining Studies 273

example, in studies concerned with predicting the effort needed to
complete a software project, effort values are often transformed into
the logarithmic scale.

• Applying a computer-based algorithm to summarize and/or analyse the
data in order to answer the research questions.

Many datasets related to software engineering activities are relatively small,
however, we use the term data mining to cover the analysis of historic datasets
that were not (usually) collected specifically to address the research questions
of interest to the analyst.

Methods of analysis are usually based either on statistical methods or ma-
chine learning methods:

1. Statistical methods for data mining usually include:

• For unsupervised learning problems, cluster analysis (which can
be used to identify subsets of the data points that have similar
properties) or principal component analysis (which can be used to
identify subsets of the variables that exhibit similar patterns),
• For supervised learning problems, regression analysis of various
types (including logistic regression if the outcome variable is a bi-
nary variable and least squares regression if the outcome value is
an ordinal or ratio-scale measure of some kind).

2. Machine learning methods usually use a k-nearest neighbour method
for finding groups of k cases that are most similar to one another with
respect to the measured attributes. Similarity measures are constructed
between each pair of cases based on the attribute values and the resulting
n × n matrix is analysed to find subsets of similar cases. This basic
approach can be used to find clusters of similar cases for an unsupervised
learning problem. For supervised learning, the algorithm can find the
set of k cases that are most similar to a new case (based on a similarity
measure, such as Euclidean distance). From this, the value of an outcome
variable for the new case can be estimated (for example, by a weighted
mean of the k similar data points with a weight based on the value of
the similarity measure of the kth case to the new case).
For a supervised learning problem, it is usual to separate the dataset into
a training set (that is, a random subset of cases) and a validation dataset
(that is, the other cases). The training set usually comprises between
two-thirds and 90% of the dataset and is used to construct the predictors.
Predictor construction may involve screening out redundant attributes
and, for machine learning nearest neighbour methods, determining the
optimum value of k to use when making predictions. The effectiveness
of the predictor is then assessed by comparing the predictions of the
outcome variable for the validation dataset with the actual values of the
validation cases.

274 Evidence-Based Software Engineering and Systematic Reviews

Hastie, Tibshirani & Friedman (2009) discuss and compare least squares
and nearest neighbour methods and point out that:

• A regression predictor is relatively stable in the sense that the
estimates increase smoothly as the input variables increase, but
depends critically on the assumption that a linear relation is ap-
propriate and can, therefore, result in very inaccurate predictions.
Thus, regression methods have low variance but potentially high
bias.
• A nearest neighbour predictor does not rely on any stringent as-
sumptions but each estimate depends on a small number of cases
and their specific attribute values, so estimates of the outcome at-
tributes of different cases can fluctuate unpredictably. Thus, nearest
neighbour methods have high variance but low bias.

20.3 Research questions that can be answered by data
mining

Software engineering research questions addressed by data mining studies
are usually supervised learning research questions and include:

• Which of several different predictors produces the most accurate esti-
mates of the staff effort to develop a software product?

• Which of several different predictors provides the most accurate estimate
of the number of remaining defects in a software component, or is best
able to identify components likely to have defects?

• Which factors influence software effort predictions?

• Which is the best method of several different methods of identifying the
likely success or otherwise of a development project?

• Which factors influence software project success?

Cost estimation and fault-proneness studies are extremely popular in soft-
ware engineering research. In a mapping study, Jorgensen & Shepperd (2007)
identified more than 300 refereed journal papers published up to 2004 and a
recent update to this has located a further 268 journal papers in the decade
2004-2013 (Sigweni, Shepperd & Jørgensen 2014). Hall et al. (2012) identified
208 fault prediction studies published between January 2000 and December
2010.

Data Mining Studies 275

20.4 Examples of data mining studies
There are two different types of data mining study that occur in software

engineering research. Some studies use data mining approaches to address
a specific software engineering problem, whereas other studies view software
engineering data as a means of investigating different data mining methods.
In practice, however, many studies address both issues.

Briand, Melo & Wust (2002) investigated whether fault-proneness models
built on data obtained from one system would work well on data from another
system, which is an important issue if models are to be used in software engi-
neering practice. At the same time they compared a new exploratory analysis
method MARS (Multivariate Adaptive Regression Splines) with multivariate
logistic regression. They concluded that a model based on one system could
be used to rank modules from another system in terms of the likelihood of
fault-proneness. They also concluded that MARS was a more cost effective
predictor than logistic regression.

Studies that are more interested in data mining usually analyse many
different data sets to assess data mining methods rather than investigating
a specific data set that addresses specific research questions. For example,
Kocaguneli, Menzies, Keung, Cok & Madachy (2013) evaluate a method called
QUICK that aims to find the “least number of features and instances required
to capture information within software engineering datasets”. They evaluated
QUICK on 18 different data sets and concluded that a k=1 nearest neigh-
bour predictor on reduced data sets worked as well as the Correlation and
Regression Tree method (CART) when using the full dataset.

From a more practical software engineering viewpoint Kitchenham,
Pfleeger, McColl & Eagan (2002) investigated whether regression models
based on a function point size metric would produce more accurate project
effort estimates than the estimates produced by company estimation experts
working with the nominated project manager. From a dataset based on 145
projects they found expert estimates out-performed a regression-based func-
tion point model, even when the model was restricted to a homogeneous subset
of the data and the model was re-calculated for separate time periods.

More recently Jørgensen (2014a) analysed a dataset of 785,325 small-scale
global outsourcing software projects, in order to identify when and why such
projects fail. He constructed a binary logistic regression model using informa-
tion known at the time of project start-up as input variables that correctly
predicted 74% of project failures and 64% of non-failures. The two factors that
most strongly reduced the risk of project failure were previous collaboration
between a client and a provider, and a low failure rate of previous projects by
the provider.

276 Evidence-Based Software Engineering and Systematic Reviews

20.5 Problems with data mining studies in software
engineering

There are several significant problems with the quality of many data min-
ing studies in software engineering:

• Shepperd, Song, Sun & Mair (2013) have identified a variety of qual-
ity problems with the NASA defect datasets that are frequently used
in data mining studies. They point out that there are two very differ-
ent versions of the datasets and both versions exhibit numerous quality
problems. These include problems with features, such as identical or con-
stant features, features with missing or implausible values, and problem
with individual cases, such as identical cases, inconsistent cases, and
cases with missing, conflicting or implausible values.

• Many studies use invalid evaluation metrics to compare the accuracy of
different cost estimation methods. In particular, relative error metrics
such as the mean magnitude relative error (MMRE) are biased met-
rics but are still in common use, both for assessing prediction accu-
racy and for use as a fitness function in machine learning situations
(Foss, Stensrud, Myrtveit & Kitchenham 2003, Myrtveit, Stensrud &
Shepperd 2005, Myrtveit & Stensrud 2012). One “excuse” is that they
are commonly-used metrics, so continuing to use them allows for com-
parisons with previous studies. For example, two recent papers published
in IEEE Transactions on Software Engineering used the MMRE statis-
tic and other related relative error metrics as their evaluation metrics
(Kocaguneli, Menzies & Keung 2012, Kocaguneli et al. 2013).

• A meta-analysis undertaken by Shepperd et al. (2014) analysed 600
experimental results from primary studies that compared methods for
predicting fault-proneness. They found that the moderator factor that
explained most of the variation among study results was the research
group that performed the study. This factor accounted for over 30% of
the variation. This can be contrasted with differences among estimation
methods which was the topic being investigated by most of the studies,
and which accounted for only 1.3% of the variation among studies. They
conclude that “it matters more who does the work than what is done”.
Furthermore they observe that “Until this can be satisfactorily addressed
there seems little point in conducting further primary studies”.

Data Mining Studies 277

20.6 Reporting data mining studies
There are no agreed standards for reporting data mining studies nor for

what constitutes a good quality data mining study. However, based on the
issues raised by studies criticising current data mining studies, we suggest
that authors of data mining studies should consider the following guidelines,
if they want their results to be incorporated into meta-analyses:

• Ensure that they define the source of their data, and justify why they
have selected the specific ones they used from among the large numbers
of available datasets identified by Mair et al. (2005).

• Explain clearly what they have done to validate and clean the data,
including issues such as transforming any of the attributes and handling
missing or implausible values.

• Define clearly how their prediction method(s) work with appropriate
citations, identifying any study or dataset specific variants of the basic
methods.

• Assess the accuracy of prediction methods based on an independent
validation dataset.

• Avoid the use of accuracy metrics or fitness functions based on relative
error statistics. For cost estimation prediction Shepperd & MacDonell
(2012) recommend accuracy metrics based on the mean absolute residual
(MAR)1, which can be converted into an accuracy statistic by compar-
ing MARP i for predication method i with MARP 0 based on random
guessing. This gives a standardised accuracy measure SAi for prediction
method i of:

SAi =
(

1− MARP i

MARP 0

)
× 100 (20.1)

MAR can also be used to construct an effect size given an estimate of
the standard deviation (sP 0) of the random guessing metric (based on
simulation):

∆ = MARP i −MARP 0

sP 0
(20.2)

• Report the 2×2 confusion matrix for fault-proneness studies that identi-
fies the number of components that exhibited, or did not exhibit, faults
in a validation dataset and the number of components predicted as fault-
prone or not by a prediction algorithm. In their recent meta-analysis,
Shepperd et al. used the Matthews correlation coefficient (MCC) as an

1There is an argument for using the median absolute residual because it is more robust
than the mean absolute residual.

278 Evidence-Based Software Engineering and Systematic Reviews

effect size for fault proneness studies. Unlike many metrics based on the
confusion matrix, MCC is based on all four quadrants of the confusion
matrix, and, in addition, as a correlation coefficient, it is relatively easy
to interpret.

• Clearly specify the study findings.

• Explain the implications of the study for researchers and practitioners.

Further reading
In their book The Elements of Statistical Learning, Data Mining, Infer-

ence, and Prediction, Hastie et al. (2009) provide a detailed discussion of the
statistical methods underlying data mining, including comparisons of nearest-
neighbour and regression-based estimation methods that are particularly rel-
evant to software engineering data.

Chapter 21
Replicated and Distributed Studies

21.1 What is a replication study? . 279
21.2 Replications in software engineering . 282

21.2.1 Categorising replication forms . 282
21.2.2 How widely are replications performed? 284
21.2.3 Reporting replicated studies . 286

21.3 Including replications in systematic reviews . 286
21.4 Distributed studies . 287

Further reading . 289

At the end of Chapter 15 we observed that the general acceptance of any
new knowledge that has been derived from the outcomes of empirical studies
first needs the outcomes to be confirmed by being replicated by other ex-
perimenters. Indeed, such replication is generally considered to be “a crucial
aspect of the scientific method” (Lindsay & Ehrenberg 1993). We also noted
that achieving consistent results from replicated studies has sometimes proved
to be rather problematical for software engineering, an issue that we discuss
a little more fully in this chapter.

When considered from the perspective of systematic reviews, replications
of primary studies can provide two specific contributions to a review. Firstly
they provide additional inputs, and secondly a replication can provide a degree
of quality assessment for the outcomes from the original primary study.

So in this chapter, we examine the meaning of replication both as a general
concept, and as employed in software engineering. We discuss why this has
proved a challenging and sometimes contentious issue, and identify some of
the work that has been done in this area. We also discuss the potentially useful
concept of a distributed study, organised along lines that are in many ways
quite similar to a replicated study, while addressing a different, but relevant,
purpose.

21.1 What is a replication study?
An empirical study may be replicated, by the original researchers or by

others, for a number of different reasons. As indicated above, a replication
may be performed to verify the effects detected by the ‘original’ study. A

279

280 Evidence-Based Software Engineering and Systematic Reviews

replication may also be performed to investigate how far different changes
made to the conditions of the study may alter the outcomes (the scope of the
effects).

Both purposes require quite close control and measurement of the condi-
tions of the study, so for software engineering, the concept of replication tends
to be largely associated with experiments and quasi-experiments, where the
environment, tasks and measures can be at least partly controlled. However,
even here, the human-centric nature of so many software engineering experi-
ments does introduce a substantial element of variability that the experimenter
cannot easily control, with consequences for any attempts at replication.

Case studies, particularly multiple-case forms, may implicitly or explicitly
involve a degree of replication. So, repeating a case study with a case from
(say) another organisation might well be considered as being a replication, or
can just be viewed as another case in the set.

A survey can also be replicated, for example, by varying the sample or the
sampling frame, or by re-sampling periodically. However, the benefits of doing
so are not evident for surveys that address software engineering questions.
Although there might be good reason to repeat a survey periodically in social
science, perhaps to study how the profile of responses changes over time, we
are not aware of any examples of surveys from software engineering that have
involved such an approach.

An important influence on thinking about the meaning of replication in
such a context (in this case, the social sciences) has been the paper by Lindsay
& Ehrenberg (1993). In this, they make a number of key points about the
design of replicated studies.

• Achieving an identical repetition of a study is impractical. Indeed, as
they point out, even if this were achievable, it would be of no real value
in a human-centric context where we want to know whether the result
remains the same despite any differences. A result that only applies to
the specific group of people involved in the original study is likely to be
of little general value.

• Replications can therefore be categorised as being close or differentiated
in nature.

– A close replication seeks to “keep almost all the known conditions
of the study much the same or at least very similar”. Lindsay &
Ehrenberg suggest that at least one repeated study of this form is
“particularly suitable early in a program of research to establish
quickly and relatively easily and cheaply whether a new result can
be repeated at all”. So, if there is some factor that differs, but is
(wrongly) assumed to have no effect (such as the time of year when
the study is carried out), then if this does matter it will mean
that the study will not replicate successfully. The problem with
extremely close replications is that if the outcome is an artefact

Replicated and Distributed Studies 281

of the specific experimental design, the results will be successfully
replicated, but the replication process itself will be invalid.

– A differentiated replication involves “deliberate or at least known,
variations in fairly major aspects of the conditions of the study”.
Such a replication then helps to determine the boundaries within
which particular results may occur, and possibly, how much the
results might be changed as a result of other factors.

• The role of close replication is therefore one of confirming the existence
of an effect, while the role of differentiated replication is to determine
the scope within which the effect occurs.

Figure 21.1 provides an illustration of this ‘spectrum of replication’ in an
abstract form. The vertical axis represents some measured ‘effect’, to which
we arbitrarily assign a range of possible values between 0.0 and 1.0, while the
horizontal axis represents the ‘degree’ of differentiation. Obviously the latter
is not really one axis, but for illustrative purposes we have assumed that we
have a single measure of this. The star represents the value measured in the
original study, the squares are close replications (1 and 2), while the circles
(3–6) are a set of differentiated replications.

So, our interpretation of this is that the two close replications produce
effect values that are fairly near to the value observed in the original study,
while the outcomes from three of the differentiated replications do not differ
very much. However, one of them (5) does differ considerably, suggesting that
one or more of the factors being adjusted in that study does probably have
some influence upon the measured effect.

FIGURE 21.1: Illustration of replications.

282 Evidence-Based Software Engineering and Systematic Reviews

A key issue for close replication is the question of exactly how close to the
original this should be. In general, repeating a study while using a different
group of participants drawn from the same “sampling frame” as the original
participants, or using similar but different experimental material, can be con-
sidered to constitute a close replication, for which we don’t expect to find a
significant difference in the outcomes. From the viewpoint of synthesis for a
systematic review however, close replications do not constitute a useful con-
tribution, since they add “no useful information to the aggregation process”
(Kitchenham 2008)1. Hence anyone conducting a systematic review is gener-
ally likely to be more interested in differentiated replications—and therefore
needs to be able to distinguish between the two forms.

21.2 Replications in software engineering
As indicated earlier, for software engineering to date, replication has

formed the major strategy for providing increased confidence in the out-
comes from primary studies, (Miller 2005, Kitchenham 2008, Gómez, Juristo
& Vegas 2010, Juristo & Vegas 2011). However, both Sjøberg, and later Juristo
and Vegas have observed that, in software engineering, replications that were
conducted by the same experimenters as those who conducted the original
study usually obtain the same results as the original studies, whereas those
performed by other researchers do not always lead to similar results (Sjøberg
et al. 2005, Juristo & Vegas 2011).

21.2.1 Categorising replication forms
Although the model of Lindsay & Ehrenberg based on close and differenti-

ated forms has been used quite widely in software engineering, other categori-
sations are in use within other disciplines. Gómez et al. (2010) have examined
these, and sought to translate them to a software engineering context.

Their study identified some 18 different categorisation schemes (including
that of Lindsay & Ehrenberg), which together included 79 ‘types’ of repli-
cation. Most schemes came from Social Science (61%) and Business (33%).
Unfortunately, they found that there was no consistency in the naming of
replication types—with different categorisation schemes sometimes using the
same term to mean different types of replication. Their analysis suggested a
slightly extended form of categorisation, using three types.

1Kitchenham should perhaps have qualified her statement to say that concentrating on
extremely close replications to the exclusion of differentiated replications is problematic.

Replicated and Distributed Studies 283

• Replications which have little or no variation of conditions when com-
pared with the original study (the ‘close’ category fitted into this type).

• Those that do vary, but where the same experimental method is used as
in the original study.

• Those that use different experimental methods.

In effect, the last two sub-divide the differentiated form according to whether
it differs from the original study by using different experimental materials or
a different experimental process.

Within software engineering they found little evidence of methodological
research into replication, apart from the concept of families of experiments
(FoE) (Basili, Shull & Lanubile 1999). The goal for an FoE is to create and
employ “a framework that makes explicit the different models used in the
family of experiments”. The motivation for developing the concept of an FoE
is to enable better use of replication, as a step towards building a body of
software engineering knowledge. One aspect of the framework is a set of three
categorisations containing six replication types, summarised in Table 21.1.

TABLE 21.1: Replication Types Used in Families of Experiments
Category Types

Replications that do not vary
any research hypothesis (the de-
pendent and independent vari-
ables are unchanged).

1. Strict replications. In effect these are
‘close’ replications that “duplicate as accu-
rately as possible the original experiment”.

2. Replications that vary the way the ex-
periment is run. This might involve using
different group sizes, allocation criteria etc.

Replications that vary the re-
search hypotheses (and hence
vary attributes of the process,
product and context models).

3. Replications that vary variables intrin-
sic to the object of study (that is, indepen-
dent variables). Used to determine “what
aspects of the process are important”.
4. Replications that vary variables intrinsic
to the focus of the evaluation (dependent
variables). Essentially, this is using differ-
ent “effectiveness measures”.
5. Replications that vary context variables
in the environment in which the solution is
evaluated. For example, using practitioners
rather than students as participants.

Replications that extend the
theory.

6. These are a form of ‘differentiated’ repli-
cation making large changes to determine
the bounds of an effect.

Based upon their study, Gómez et al. identified five elements of exper-
imental practice that may usefully be varied in a replication study that is
performed in software engineering.

284 Evidence-Based Software Engineering and Systematic Reviews

1. The site. A replication can be conducted at the same location as the
original study, or at a different one.

2. The experimenters. These might be the team who performed the original
study, or a different team, or a mix of the original team plus others.

3. The apparatus. By this they mean the design, instruments, experimental
material and procedures used for an experiment.

4. The operationalizations. These are the way that a construct is inter-
preted. They suggest that there are cause operationalizations in the form
of the treatments that are to be evaluated, and effect operationalizations
that represent the dependent variables used to measure the effect of the
treatments.

5. The population properties. They suggest that there are two forms of
population. One is the participants themselves, characterised by their
role, experience etc. There are also the experimental objects such as the
design documents, code, programs or any other artefact involved.

Clearly the choices made for each of these factors will be strongly influ-
enced by the purpose of a replication. For the rest of this chapter we will
continue to use the broad categorisations of close and differentiated replica-
tion, while recognising that there are many factors that might be involved
in creating the most appropriate form of differentiation. However, one ques-
tion that does arise is how many factors should be altered when performing
a differentiated replication, and related to this, what degree of alteration is
necessary to distinguish between a close and a differentiated replication.

21.2.2 How widely are replications performed?
To answer this question, we examine the outcomes from a systematic map-

ping study that charted the use of replication in software engineering up to
the end of 2010. In particular, the study sought to identify which topics were
most likely to be the subject of replicated studies (da Silva, Suassuna, França,
Grubb, Gouveia, Monteiro & dos Santos 2014).

In summary, based upon a search of over 16,000 articles, they selected
96 articles that reported on 133 replications of 72 original studies. All were
published between 1994 and 2010, with most being published after 2004, and
with 70% of the studies (94) being “internal replications” (that is, performed
by the same researchers who performed the original study). In this case, a
study was classified as being ‘internal’ if there were one or more authors
common between the articles describing the original study and the replication,
otherwise as ‘external’. An interesting observation was that, from their analysis
of which authors were involved in a replication, there appeared to be two
distinct research cultures present: one group preferring to perform internal
replications and a second preferring to perform external ones.

Replicated and Distributed Studies 285

Replications were mainly of quasi-experiments, and together with con-
trolled experiments these formed 88% of the studies. Interestingly though,
they found one survey and 15 case studies that were replications, with the
latter being a fairly even mix of internal and external replications.

Topics where most replications occurred (in descending order) were: soft-
ware requirements; software quality; software construction; software engineer-
ing management; and software maintenance. As the authors observe, this may
simply be a reflection of there being more empirical studies on these topics
that can be replicated, but they had no way to confirm that this was so. Only
for software construction was the number of external replications close to the
count of internal ones.

The study does not report how many replications were close and how
many were differentiated. Indeed, the authors observe that the poor quality of
reporting, particularly about the context of the original study, made it difficult
to distinguish this aspect with any confidence.

One interesting discussion provided in the study is how well the replica-
tions confirmed the results of the original studies. We have already noted that
previous studies have suggested a much greater likelihood that an internal
replication will confirm the original outcomes than an external replication
(Sjøberg et al. 2005, Juristo & Vegas 2011). For this review, the results of a
replication were classified as being confirmatory, partial or non-confirmatory.
Since four studies did not provide clear comparisons, the reviewers were left
with 129 studies for this purpose.

Some 82% of internal replications confirmed results, with a further 9%
providing partial confirmation. In contrast 46% of the external replications
did not confirm the original results, reinforcing the trends previous observed.
However, as the authors of the review note, there could be many factors in-
fluencing this, with one being publication bias. In particular, they observe
that:

• Researchers are unlikely to publish non-confirmatory results for their
own work;

• Negative results are probably less likely to be accepted for publication;

• Negative results might be easier to publish when related to the work of
others.

There is also the likelihood that unintended variations are probably more
likely to occur for external replications, and also it is possible that effective
replication may well need access to tacit information about how the original
study was conducted. Whatever the cause, as the authors of the review observe
“the bulk of the replications analyzed in our review are isolated confirmatory
internal or non-confirmatory external, and do not contribute to substantial
knowledge building in our field”. So while awareness of the value of replica-
tion studies does seem to be increasing, these are still making only a limited
contribution.

286 Evidence-Based Software Engineering and Systematic Reviews

21.2.3 Reporting replicated studies
The workshop paper by Carver (2010) provides some useful aggregated

ideas about reporting of replications in the form of a small set of suggested
guidelines. (Appropriately, these were also partly derived by performing a
systematic review.)

The guidelines themselves address four key aspects of a replication.

1. Information about the original study. Key information about this is iden-
tified as being: the research question(s); the number and characteristics
of the participants; the experimental design; details of any artifacts used;
any important context variables that might have affected either the de-
sign or the analysis of the results; and a summary of the major findings
from the study.

2. Information about the replication. The guidelines identify three impor-
tant pieces of information that need to be provided:

(a) Themotivation for conducting the replication, and hence implicitly,
the type of replication being reported (close/differentiated).

(b) The degree of interaction with the original researchers, assuming
that the replication is an external one of course.

(c) What changes were made to the original experiment in terms of
design, participants, procedures followed, artifacts used, data col-
lection and analysis. It is also suggested that the reasons for any
changes are also explained.

3. Comparison of results with the original study. This should highlight dif-
ferences and similarities, and the guidelines suggest that this really mer-
its a section of its own. (The paper also notes that in a few cases, this
has been done very effectively by using a summary table.)

4. Drawing conclusions across the studies. For a replication to provide use-
ful knowledge, it should really augment the conclusions drawn from the
original in some way. So, the guidelines very sensibly suggest that a
report should discuss what the studies indicate when viewed as a whole.

All of this information is of course very relevant for anyone performing a
systematic review of any form, and particularly where this involves any form
of aggregation.

21.3 Including replications in systematic reviews
From the perspective of a systematic review, close replications are of little

direct value, since they are not sufficiently independent to be included in a

Replicated and Distributed Studies 287

meta-analysis—and indeed, should not be. However, they do potentially offer
a quality measure for the original study, although as the discussion about
publication bias in the previous section indicated, this might require to be
treated with some care, depending upon who conducted the replication.

In contrast, most differentiated studies are likely to be a useful addition,
assuming that their reporting is adequate. So, distinguishing whether a repli-
cation is close or differentiated is an important task, although as da Silva
et al. (2014) have noted, this is not always made clear when researchers are
reporting a replicated study.

So an important need is to be able to distinguish which type of study is
being reported. Madeyski & Kitchenham (2014) suggest that pairs of studies
where most or all of the factors below apply should be treated as being close
replications.
• Both studies were run by the same experimenters.

• The same subject types were used (such as students, or staff from the
same organisation).

• The same experimental materials were used.

• The same experimental design and analysis method were used.

• The studies took place in the same setting, such as the same university
or within the same organisation.

For this purpose, the “same experimenters” might not be exactly the same
group, but at least one, and probably more, of the authors will be common to
both studies.

We might note too that, although the concept of families of experiments
(FoE) is a potentially useful one, it does not specify a procedural approach
to be followed by researchers (in contrast to the proposals of Juristo & Ve-
gas (2011)). So, when viewed in terms of the needs of secondary studies, a
major downside is that the individual experiments comprising the family can
potentially violate the assumption that individual primary studies are inde-
pendent, a characteristic which is essential to meta-analysis procedures. It is
not clear whether studies comprising a family of experiments should count as
independent for the purpose of meta-analysis, nor is it clear what the impact
of violating the assumption would be on the outcomes from a meta-analysis.
This therefore makes aggregating the results from a family of experiments
problematic, and so the above criteria from Madeyski & Kitchenham should
be applied quite strictly.

21.4 Distributed studies
One of the challenges for anyone conducting an experiment or quasi-

experiment is to recruit an adequate number of participants. One reason for

288 Evidence-Based Software Engineering and Systematic Reviews

this is that software engineering experiments tend to require an element of
technical knowledge or skill, and even when training is provided for this as-
pect, this still assumes a basic level of computing knowledge. So this usually
forms an upper bound on the number of participants who can be recruited at
any one site. As a result, software engineering experiments often have results
with poor statistical power (Dybå et al. 2006). (As a reminder, the statis-
tical power is the probability that a given test will correctly reject the null
hypothesis.)

A second factor, which usually acts to reduce the number of available par-
ticipants, is that students and practitioners who work in software engineering
are usually unfamiliar with the idea of acting as participants. In many cases,
they will have been exposed to little or no experience of empirical studies, and
so be unaware of the importance these have in providing knowledge. Overcom-
ing this can be quite challenging, as it is important to avoid applying undue
and inappropriate pressure on people to take part, for both ethical reasons
and also those of potentially biasing the outcomes.

One way of increasing the number of participants is to spread the study
across a number of sites, so giving access to an increased number of potential
participants. This is quite often done in clinical medicine, where such studies
are termed “multi-site trials”, and where the situation is helped by the way
that participants are usually recipients of the ‘treatment’, rather than actively
using their skills, as in software engineering. For the software engineering con-
text, we prefer to use the terms distributed (quasi-)experiment or distributed
study, which emphasises the need for suitable organisation.

In some ways this is similar to replication, although with the results from
the different sites being aggregated for the analysis, rather than treated sep-
arately. An example of this is the study reported in (Gorschek, Svahnberg,
Borg, Loconsole, Börstler, Sandahl & Eriksson 2007), which reports on a fam-
ily of experiments undertaken at a number of sites, but presents the outcomes
as a single entity, although this was not actually planned as a distributed
study.

We ourselves have been involved in a trial distributed quasi-experiment,
and describe our experiences of this in (Budgen, Kitchenham, Charters, Gibbs,
Pohthong, Keung & Brereton 2013). We used a methodological topic (assess-
ing completeness of structured abstracts when compared with conventional
ones) as this was one that did not require any skill training. We chose this
to limit the complexity of the experimental task, allowing us to concentrate
on the distributed aspects. The core lessons from our study were the need for
comprehensive documentation and effective communication in order to ensure
that the five sites involved did conduct sufficiently similar elements of the
quasi-experiment.

So, while distributed studies do provide the potential to address the limi-
tations of single-site studies, they do need to be planned and conducted with
considerable care. Both the recruitment of participants who have generally
similar skill levels, and also the provision of training (or skill assessment) also

Replicated and Distributed Studies 289

needs to be considered. As such, this is still an area of research, but is men-
tioned here because the concept of the distributed study does offer a different
perspective, while also involving many organisational issues that are common
with replicated studies.

Further reading
The organisation and conduct of both replicated and distributed empirical

studies are still very much issues of active research, and hence there is rela-
tively little in the way of authoritative material that can be consulted. Two
papers that we suggest are useful as further reading are as follows.

• The Design of Replicated Studies by Lindsay & Ehrenberg (1993) is
highly readable and sets out many key issues of replication in a very
clear form. As we note, other forms of category do exist, but the software
engineering community seems to have largely adopted their terminology
and while relatively simple, it seems to capture the key issues.

• Towards Reporting Guidelines for Experimental Replications: A Pro-
posal. The value of this very short paper by Carver (2010) is that it sets
out how a replication should be reported, and why. As such, it provides
a useful baseline for anyone writing a paper that describes a replicated
study.

This page intentionally left blankThis page intentionally left blank

Part III

Guidelines for Systematic
Reviews

291

This page intentionally left blankThis page intentionally left blank

Chapter 22
Systematic Review and Mapping
Study Procedures

22.1 Introduction . 295
22.2 Preliminaries . 297

Point to remember . 297
22.3 Review management . 298

Point to remember . 298
22.4 Planning a systematic review . 299

22.4.1 The need for a systematic review or mapping study 299
Points to remember . 301
22.4.2 Specifying research questions . 302

22.4.2.1 Research questions for systematic reviews . 302
22.4.2.2 Research questions for mapping studies . . . 302

Points to remember . 303
22.4.3 Developing the protocol . 304
Points to remember . 304
22.4.4 Validating the protocol . 304
Points to remember . 306

22.5 The search process . 306
22.5.1 The search strategy . 306

22.5.1.1 Is completeness critical? 306
22.5.1.2 Validating the search strategy 307
22.5.1.3 Deciding which search methods to use 309

Points to remember . 310
22.5.2 Automated searches . 310

22.5.2.1 Sources to search for an automated search 310
22.5.2.2 Constructing search strings 311

Points to remember . 312
22.5.3 Selecting sources for a manual search 313
Points to remember . 313
22.5.4 Problems with the search process . 314
Points to remember . 314

22.6 Primary study selection process . 315
22.6.1 A team-based selection process . 315
Points to remember . 317
22.6.2 Selection processes for lone researchers 318
Points to remember . 318

293

294 Evidence-Based Software Engineering and Systematic Reviews

22.6.3 Selection process problems . 318
Points to remember . 319
22.6.4 Papers versus studies . 319
Points to remember . 320
22.6.5 The interaction between the search and selection

processes . 321
Point to remember . 321

22.7 Validating the search and selection process . 321
Points to remember . 322

22.8 Quality assessment . 322
22.8.1 Is quality assessment necessary? . 323
22.8.2 Quality assessment criteria . 323

22.8.2.1 Primary study quality . 323
22.8.2.2 Strength of evidence supporting review

findings . 324
22.8.3 Using quality assessment results . 328
22.8.4 Managing the quality assessment process 328

22.8.4.1 A team-based quality assessment process . 329
22.8.4.2 Quality assessment for lone researchers . . . 330

Points to remember . 331
22.9 Data extraction . 331

22.9.1 Data extraction for quantitative systematic reviews 331
22.9.1.1 Data extraction planning for quantitative

systematic reviews . 331
22.9.1.2 Data extraction team process for

quantitative systematic reviews 334
22.9.1.3 Quantitative systematic reviews data

extraction process for lone researchers 335
22.9.2 Data extraction for qualitative systematic reviews 336

22.9.2.1 Planning data extraction for qualitative
systematic reviews . 337

22.9.2.2 Data extraction process for qualitative
systematic reviews . 337

22.9.3 Data extraction for mapping studies . 338
22.9.3.1 Planning data extraction for mapping

studies . 338
22.9.3.2 Data extraction process for mapping

studies . 340
22.9.4 Validating the data extraction process 342
22.9.5 General data extraction issues . 342
Points to remember . 343

22.10 Data aggregation and synthesis . 343
22.10.1 Data synthesis for quantitative systematic reviews 343

22.10.1.1 Data synthesis using meta-analysis 344
22.10.1.2 Reporting meta-analysis results 346

Systematic Review and Mapping Study Procedures 295

22.10.1.3 Vote counting for quantitative systematic
reviews . 347

22.10.2 Data synthesis for qualitative systematic reviews 348
22.10.3 Data aggregation for mapping studies 350

22.10.3.1 Tables versus graphics . 351
22.10.4 Data synthesis validation . 351
General points to remember . 352

22.11 Reporting the systematic review . 353
22.11.1 Systematic review readership . 353
22.11.2 Report structure . 353
22.11.3 Validating the report . 355
Points to remember . 356

22.1 Introduction
This rather long chapter is a revision of our previous guidelines for system-

atic reviews for software engineering research (Kitchenham & Charters 2007).
There are deliberate overlaps with information provided in the preceding chap-
ters of this book, so that this chapter can be used as a self-standing set of
guidelines. However, we do cross-reference sections of the book where more
detailed information about specific topics can be found.

Compared with the previous version of the guidelines, we have included
more detailed advice for mapping studies and for the procedures needed by
lone researchers including PhD students. We also include more guidelines
based on our experiences of performing systematic reviews and the experiences
of other software engineering researchers (Kitchenham & Brereton 2013).

Diagrams used in this chapter follow one of two standards:

1. When simple yes/no decisions are involved, we use a simple flowchart
with the decisions shown as diamonds and actions shown in rectangles.
Links (lines) between diamonds and rectangles have arrows which show
the direction of flow, see Figure 22.1.

2. If decisions are more complex, as is often the case when planning a
part of the systematic review process, we specify the decision using a
rectangle with double lines. If decisions are inherently sequential, they
are linked with lines using arrows to show the direction of flow. Simple
rectangles are used to specify factors that affect a decision, or options
available for a decision, or factors that influence the choice of options.
Factors that influence a decision or an option are linked to the respective
decision or option with a broken line with arrows at each end. Decisions
are linked to options using a line with an arrow pointing at the option.
An example of this form of diagram is shown in Figure 22.2.

296 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 22.1: A simple flowchart.

FIGURE 22.2: A complex planning process diagram.

Systematic Review and Mapping Study Procedures 297

22.2 Preliminaries
Before starting on a systematic review or mapping study, consider whether

you have adequate background knowledge of the proposed topic area to be able
to make decisions about the various choices involved. If not, you should begin
by first reading about the topic (see Figure 22.3).

Are you
familiar with
the topic?

yes

Read an overview of the topic
area (try Google Scholar, IEEE
Computer, IEEE So�ware,
CACM).

Go to Planning a
systema�c
review/mapping study

no

Search for specialist
conferences/workshops. Read
some of the papers.

FIGURE 22.3: Initial considerations.

Point to remember
If you don’t have any knowledge about the topic area, do not start planning

your systematic review or mapping study yet. You need to read around the
topic before you start.

298 Evidence-Based Software Engineering and Systematic Reviews

22.3 Review management
A review is usually conducted by two or more researchers who comprise

the review team. One researcher must act as the review manager or team
leader in order to ensure all task activities are properly coordinated.

In the context of developing the protocol, the team leader is responsible
for:

• Producing the protocol.

• Specifying the time scales for the review.

• Assigning the tasks specified in the protocol to named individuals.

• Obtaining any tools required to manage the review process and conduct
individual tasks.

• Deciding how the protocol will be validated.

• Overseeing the protocol validation.

• Signing off the protocol and any subsequent changes to the protocol.

During the conduct of the review the team leader is responsible for monitor-
ing the review progress, ensuring that team members complete their assigned
tasks and managing any contingencies that arise during the review (such as
disagreements about such aspects as primary study selection, quality evalua-
tion, and data extraction).

Once the review is complete, the team leader is also responsible for signing
off the final report.

Point to remember
The more researchers there are in a team, the more critical the role of the

team leader becomes.

Systematic Review and Mapping Study Procedures 299

22.4 Planning a systematic review
Planning involves four main processes:

1. Justifying the need for a systematic review or mapping study.

2. Specifying the research questions.

3. Developing the protocol.

4. Validating the protocol

However, since reviews are usually done by a research team, planning also
involves undertaking the basic project management actions such as task as-
signment, review coordination and monitoring, as discussed in the previous
section.

22.4.1 The need for a systematic review or mapping study
An overview of the process of justifying the need for a systematic review

is shown in Figure 22.4.
You should begin by checking whether any systematic reviews or mapping

studies already exist in the topic area you want to study. If there are some, you
may not need to do a review. Don’t forget it is correct to use other researchers’
work as the foundations for your own research. A major goal of systematic
reviews in general, and mapping studies in particular, is to facilitate future
research in a specific topic area.

However, if the existing reviews(s) do not cover the specific area you are
interested in, or those that do exist are out of date, continue with planning
the review. If there are already some existing secondary studies (that is, any
literature reviews or state of the art surveys, whether systematic or not), you
need to read these studies and decide whether you can use their results as-is,
or you need to update one the review(s), or whether you need to undertake a
new more focussed systematic review. In the case of an out of date systematic
review, a sensible choice is to base your study on the protocol used by the ini-
tial study, while also amending the process if you can identify any limitations
with the initial protocol.

If you decide to undertake a new more focussed review, the existing re-
view(s) will have a significant impact in your research:

• You should read the papers describing the reviews and summarize their
results. This will be the basis of the “related work” section in your
final report. It should also allow you to specify the baseline of existing
knowledge about the topic area and explain clearly how your results add
to existing knowledge in the discussion part of your final report.

300 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 22.4: Justification for a systematic review.

• You should extract a list of any primary studies found by the previous
reviews that are relevant to your topic area. These will be the basis for
your set of known papers that can be used to construct and refine search
strings for digital libraries and to help assess the completeness of your
search (see Figure 22.5.1.3).

If there are no previous reviews, you need to be sure that there are likely
to be sufficient relevant papers to make a systematic review or mapping study
worthwhile. One way is to undertake a quick informal search using Google
Scholar or a digital indexing system to look for relevant studies. In some cases
a limited form of mapping study, called a scoping review, can be performed

Systematic Review and Mapping Study Procedures 301

to determine whether there are sufficient empirical primary studies to justify
a systematic review.

Finally, justifying the need for a review is about making a case that the
topic is of interest and that it is an appropriate time to engage in an ac-
tivities aimed at organising the literature or answering questions raised by
the literature. For example, the reasons for performing a systematic review
include:

1. There is a new development or testing method and practitioners would
like to know if it is better than existing methods.

2. There are disagreements among researchers about the efficacy of a new
method and the current empirical evidence needs to be collated.

3. There are field reports about a new software development method, or an
international standard, and practitioners would like to understand what
is known about the method or standard in terms of benefits and risks.

Reasons for doing mapping studies include:

1. To help assess the extent of research available in a topic area in order
to identify sub-areas suitable for systematic reviews and sub-areas that
need more basic research.

2. To organise a large number of independent research papers into a struc-
tured body of knowledge.

Points to remember

1. You need a genuine reason for undertaking a review, such as the likely
existence of a large number of independent studies that have not previ-
ously been organised.

2. The existence of a substantial body of literature is not by itself a justi-
fication for a review. The topic for the review needs to be important to
researchers and/or practitioners and the review needs to be timely.

3. Previous literature reviews (systematic or not) are extremely valuable for
identifying known primary studies and validating your search process.

302 Evidence-Based Software Engineering and Systematic Reviews

22.4.2 Specifying research questions
Research questions (RQs) are related to the justification for doing the

review and the type of review being proposed.

22.4.2.1 Research questions for systematic reviews

If you are concerned with evaluating a technology, you should be planning
to do a systematic review and the research questions should specify the type
of evaluation you propose. For systematic reviews, the research question de-
fines much of the search process. It is important to make sure the research
questions(s) are properly formulated and stable, since changes to the RQ(s)
will propagate other changes throughout the systematic review protocol.

If you are comparing two alternative techniques your research question will
be of the form: Is technique A better than technique B? This basic question
may need to be refined to determine what is meant by better, for example,
more cost effective. Furthermore, you may want to qualify any answer in terms
of any limitations or constraints on the answer, for example, does the answer
apply to students or professionals, or to particular types of tasks, leading to
questions of the type:

Under what conditions, if any, is technique A more cost effective
than technique B?

In software engineering, many empirical studies consider the impact and effec-
tiveness of paradigm, method or standard A in an industry setting. Systematic
reviews of such studies have research questions of the type:

• What are the risks or benefits associated with adopting paradigm,
method or standard A?

• What factors motivate or de-motivate adoption of paradigm, method or
standard A?

• How best should an organisation plan the adoption of paradigm, method
or standard A?

22.4.2.2 Research questions for mapping studies

For mapping studies, research questions are often quite high level. This is
because the characteristics of interest in the specific topic area may be hard to
specify in advance. Thus, there is more likelihood of research questions being
amended as result of identifying interesting aspects of the topic during data
extraction.

Mapping studies usually have the overall goal of categorising the research
literature for a specific topic in some way. This leads to research goals of the
type: What trends can be observed among research studies discussing topic B?.
The problem with a mapping study is deciding what trends will be of interest.

Systematic Review and Mapping Study Procedures 303

In practice, most software engineering mapping studies consider issues such
as:

• The number of publications per year over the time period of the review,
which gives an indication of the interest in the topic.

• The number of papers reporting studies of different types, often using
the requirements engineering classification developed by Wieringa et al.
(2006), which indicates the type of research being undertaken.

• The main researchers and research groups which identifies groups that
interested researchers or practitioners might want to keep up with.

• The sources which published papers on the topic which identifies sources
interested researchers or practitioners might want to monitor for future
research.

This may be sufficient for the purposes of a student mapping study but is
unlikely to be sufficient for a conference or a journal publication.

Mapping studies are far more interesting and beneficial to other researchers
(and more likely to be published) if they also identify interesting subsets of the
literature for example, the main subtopics, the different approaches/methods
reported in the topic area and the extent to which they have been evaluated
empirically, any significant limitations in existing research, as well as any
significant controversies.

Points to remember

• For systematic reviews, research questions need to be well-defined and
agreed to before the protocol is developed.

• For mapping studies, research questions are usually fairly high level and
may be refined as the mapping study progresses.

• Student mapping studies are not always suitable for publication.

304 Evidence-Based Software Engineering and Systematic Reviews

22.4.3 Developing the protocol
The research protocol defines and justifies what technical processes will be

used to conduct and report the review and identifies which individuals will
be assigned to which tasks. A template for a systematic review protocol is
shown in Figure 22.5. The main technical issues that have not already been
considered (that is, points 3 to 9 of Figure 22.5) will be discussed in later
sections.

Search strings, quality extraction, data extraction, and data synthesis pro-
cedures need to be trialled as the protocol is developed.

Points to remember

• Sections of the protocol need to be tried out to ensure that the process
is feasible and understood by all.

• The team leader is responsible for developing the protocol although some
aspects can be delegated to other team members.

22.4.4 Validating the protocol
The protocol is a critical element of any systematic review. Researchers

must agree to a procedure for validating the protocol. Where possible, you
should try to find an independent reviewer.

Research teams should walk through the protocol and ensure that each
researcher understands exactly what tasks he or she is scheduled to perform
and the process he or she needs to follow to perform their allocated tasks.
PhD students should present their protocol to their supervisors for review
and criticism.

Since a systematic review aims to address specific research questions, the
protocol should explain how those questions will be answered. Thus, a reviewer
of a protocol needs to confirm that:

• The search strings are appropriately derived from the research questions.

• The data to be extracted will properly address the research question(s).

• The data analysis procedure is appropriate to answer the research ques-
tions.

The systematic review team leader is responsible for coordinating all the
changes to the draft protocol and the final decision that the protocol is suffi-
ciently complete for the systematic review to formally get under way.

Systematic Review and Mapping Study Procedures 305

FIGURE 22.5: Template for a systematic review protocol

306 Evidence-Based Software Engineering and Systematic Reviews

Points to remember

• Protocols will change throughout the conduct of a study.

• The team leader should take responsibility for keeping the protocol up
to date and the team notified of all changes.

22.5 The search process
Planning the search process begins by defining a search strategy. After

deciding the basic scope of the search strategy, you will need to determine the
specific sources that will be searched and the search strings that will be used
for automated searches and the sources that will be searched manually.

The final element of the search process is to integrate the set of candidate
primary study references, remove duplicate copies of the same paper found in
different sources, and store the references in the agreed storage tool (which
can be a reference manager system, a spreadsheet or a database).

22.5.1 The search strategy
The factors that influence your search strategy are shown in Figure 22.6.

There are three main decisions:

1. To decide whether completeness is critical or not.

2. To decide how to validate your search process.

3. To decide on an appropriate mix of search methods.

22.5.1.1 Is completeness critical?

The first issue to be decided is whether completeness is critical or not.
In the case of a systematic review comparing SE technologies, completeness
is a critical issue. In the case of a mapping study looking at the high level
research trends in a broad topic area, completeness might be less critical;
however, having an unbiased search strategy remains crucial. Nonetheless,
there are occasions where even a mapping study may have a requirement for
completeness. In particular, the more detailed the topic area, the more likely
it is that completeness will be important. If you are in doubt consider your
research questions. Can they be answered adequately if some relevant papers
are not found by your search process?

Systematic Review and Mapping Study Procedures 307

FIGURE 22.6: How to devise a search strategy.

22.5.1.2 Validating the search strategy

The next issue involves how you intend to refine and validate your search
process. In the context of a systematic review or mapping study, validating

308 Evidence-Based Software Engineering and Systematic Reviews

the search process means quantifying, in some sense, the level of completeness
achieved. The best way of doing this is to compare the primary studies iden-
tified by your search process with a known set of studies. To obtain a known
set of studies several processes are possible:

1. If you have done some preliminary reading, you should be able to identify
a set of papers that ought to be included in your review.

2. If you (or one of your research team) is an expert in the topic area,
you (or your expert colleague) should make a list of the papers that are
already known to be relevant.

3. If there are other related literature reviews (systematic or not) in the
same topic area, review the papers which were included by them, and
identify those papers that should also be included in your review.

4. For mapping studies, if none of these options is possible or the number
of known papers is insufficient, you will need to construct a quasi-gold
standard as proposed by Zhang et al. (2011). A quasi-gold standard is
explained in Chapter 5 and involves conducting a systematic manual
search of several defined sources including important journals and spe-
cialist conferences to identify a set of primary studies that is treated as
a set of known papers. Deciding how many known papers is sufficient is
clearly a subjective assessment, and depends upon the expected number
of primary studies (which is obviously unknown at the start of a review,
but may be clarified as you try out some of your search procedures).
We suggest that 10 papers or fewer are insufficient for an assessment of
completeness for a mapping study, whereas 30 papers would be enough
(since completeness is judged by the percentage of known papers found).

Option: If you have a large set of known papers, select half the papers at
random to use for constructing and refining automated search strings, and
put aside the other half of the papers to help measure completeness.

In the case of mapping studies you should set an acceptable level of com-
pleteness which should be larger than 80%.

In the case of a systematic review there are likely to be fewer available
papers and you may only have one or two known papers, so a numerical mea-
sure of completeness may be inappropriate. In this case, your search process
needs to be as stringent as possible (that is, covering all options, automated
and manual), and completeness may only be assessed against all the elements
of your process rather than a numerical figure attached to the outcome of the
process.

If the search process does not reach the required level of completeness, you
need to specify a contingency plan in the protocol. For example:

1. Adding other search methods such as backwards snowballing.

2. Refining your search strings until the required completeness level is ob-
tained.

Systematic Review and Mapping Study Procedures 309

22.5.1.3 Deciding which search methods to use

Finally you need to specify the detailed processes you will adopt. Methods
include:

• Automated searches of digital libraries using search strings derived from
the research questions. An automated search is usually required if you
are doing a systematic review (and require completeness) or performing
a mapping study of a broad topic area.

• Manual search of a restricted set of sources (that is, specific journals
and conference proceedings). A manual search process aimed at specific
journals is likely to find good quality research papers on mature topics. A
manual search of specialist conferences is usually needed as an auxiliary
method for reviews of new Software Engineering topics.

• Backwards and forwards snowballing, that is, searches based on extract-
ing information from reference lists (backwards snowballing) and cita-
tion information (forwards snowballing). Backwards snowballing is based
on searching the citations in each candidate paper to look for additional
candidate studies. It is an ancillary method which is mainly used to sup-
port string-based automated searches. Forwards snowballing is based on
finding all the papers that have cited a specific paper and searching
that list for candidate primary studies. It is particularly useful if there
are one or two seminal papers that first introduced the topic and are
therefore cited by most subsequent papers. Both types of snowballing
are supported by general indexing systems such as Scopus and Web of
Science.

• Direct approach to active researchers or searching DBLP Computer Sci-
ence Bibliography1 for papers published by a specific author. A direct
approach to active researchers is usually an ancillary method and is used
to find out whether there are any related studies that have not yet been
published. If there are specific authors who are known to contribute to
the topic area, you can use the DBLP database to list all papers by
those authors. This can be used as a completeness check.

A good search strategy will use a combination of these methods, although
in most cases, one option is selected as the main search method, and then
supported by other method(s).

When checking the references found by primary studies (that is, doing
backwards snowballing), there are two main approaches:

1. If you have relatively few primary studies (for example, < 10), you
may decide to use a manual approach. Two researchers should read the
“Introduction”,“Related Work” and “Discussion” sections of each paper

1http://dblp.uni-trier.de/db/

http://dblp.uni-trier.de/db/

310 Evidence-Based Software Engineering and Systematic Reviews

and identify candidate studies. The candidate studies are the union of
the set of studies found for each paper by each researcher.

2. Another approach is to use a general indexing system such as Scopus.
Find each selected research paper in turn and extract all the references
for that paper. The set of candidate studies is the union of the references
extracted from each research paper.

The manual approach results in fewer candidate studies, since some screen-
ing of references takes place when the papers are read. However, both ap-
proaches can have some difficulties identifying duplicate reports because au-
thors do not report their references in the same format and some authors make
mistakes in their citations (for example, putting in the wrong date or leaving
out “The” or “A” in the title).

Points to remember

• Systematic reviews usually require completeness. Mapping studies usu-
ally don’t.

• Have a set of known studies to help assess completeness.

• Specify an appropriate completeness level.

• Have a contingency plan if your search does not reach the required com-
pleteness level.

• You will almost certainly need to do an automated search either using
search strings or using citation analysis.

• You will usually need to consider ancillary search processes to achieve
required completeness levels.

22.5.2 Automated searches
There are two main decisions:

• Decide on the sources that will be searched.

• Specify the search strings that will be used (unless the search is to be
based on snowballing of some sort).

22.5.2.1 Sources to search for an automated search

Appropriate sources include publisher specific sources and general index-
ing systems. A mix of the two types of sources is best. In particular, the IEEE
Digital library and the ACM digital library together cover important inter-
national journals such as IEEE Transactions on Software Engineering and

Systematic Review and Mapping Study Procedures 311

most of the important computing-related conferences. These seem to be the
best combination of publisher specific libraries. In addition, Springer publish
a large number of conference proceedings and for new topics you may want to
use SpringerLink as an additional source.

General indexing systems find many publisher specific sources (including
ACM and IEEE papers) but may not index conference proceedings as quickly
as ACM and IEEE. The Scopus, Web of Science and EI Compendex indexing
systems are all possibilities and index papers published by Elsevier, Wiley and
Springer which together with the IEEE publish most of the main internation-
ally recognised software engineering journals that regularly publish empirical
studies (which are of particular importance for systematic reviews). These
include:
• Empirical Software Engineering Journal (Springer)

• Journal of Systems and Software (Elsevier)

• Information and Software Technology (Elsevier)

• Software Quality Journal (Springer).

• Journal of Software Maintenance and Evolution: Research and Practice
(Wiley).

If completeness is critical, use several different indexing systems. The general
indexing systems often provide mechanisms for extracting the references of
papers they index and/or lists of papers that have cited a specific paper. These
features are essential for efficient snowballing. It is possible to do backwards
snowballing manually, although it is easier to extract references using facilities
in an indexing system. It is not possible to perform citation analysis (forwards
snowballing) without an automated system.

Standards in other domains emphasise the need to search for unpublished
material such as Masters and PhD theses, technical reports, or industry “white
papers”. This is to ensure completeness of systematic reviews and minimise
the possibility of publication bias (which occurs if negative results are less
likely to be accepted by journals or conferences). It is unlikely to be necessary
for mapping studies, but does need to be considered in the context of sys-
tematic reviews. Some researchers suggest using Google Scholar to search for
unpublished searches but our experience of Google Scholar is that although it
does identify unpublished material, it is often not possible to find a reliable
source document that can be properly cited and guaranteed to remain publicly
available. An alternative procedure is to approach key researchers directly and
ask them if they have any relevant unpublished studies (including Masters or
PhD theses or technical reports) that are publicly available.

22.5.2.2 Constructing search strings

PLEASE NOTE. Previous versions of systematic review guide-
lines for software engineering researchers suggested using struc-

312 Evidence-Based Software Engineering and Systematic Reviews

tured questions to construct search strings. However, this approach
has not proved to be very useful for software engineering reviews.
Terminology in software engineering is neither well-defined nor
stable, making it difficult to identify reliable keywords. Digital
sources have limitations on the complexity of search strings and
these are different for different libraries. Complex search strings
are intended to identify a small number of highly relevant papers;
however, in software engineering, they usually deliver large num-
bers of false positives.

Although in some rare cases a structured research question may help spec-
ify appropriate search strings, we recommend using fairly simple search strings
based on the main topic of interest. Simple strings are more likely to work on a
variety of different digital libraries without extensive refinement. To determine
appropriate keywords:

• Review your research questions (RQs) and identify important concepts
or terms used in the RQs.

• Review the terms used in the abstracts, keywords and title of your known
set of papers. Match the frequently used terms to those found from your
RQs.

• Try out your search strings on one of your selected digital indexing
systems and identify the percentage of known papers you find. If the
percentage of known papers found is low (< 50%) (excluding, of course,
any papers that could not have been found, such as papers not indexed
by the specific digital indexing system or papers published in very recent
conferences), review the papers that were not found. Refine your search
strings by replacing existing keywords (for example, using more general
terms) or adding new keywords (for example, adding qualifiers to make
terms more specific).

If you are undertaking a systematic review aimed at aggregating comparative
studies, you will need to specify some keywords to restrict your search to
empirical studies, for example, “empirical” or “experiment”.

Points to remember

• If automated searching is your main search strategy, you should search a
variety of sources including IEEE, ACM and general indexing systems.

• General indexing systems have useful facilities for supporting the use of
snowballing.

• Derive search strings from your research questions and terms used in
known studies.

Systematic Review and Mapping Study Procedures 313

• Keep your search strings fairly simple.

• Try out your search strings on a general indexing system and refine them
if they do not find the majority of known papers.

22.5.3 Selecting sources for a manual search
If you are using a manual search as the main strategy for a mapping

study, there are several approaches you can take. If you are interested in high
quality studies in a relatively mature topic (particularly if you are interested
in empirical studies), the following sources are likely to be suitable for general
software engineering topics:

• IEEE Transactions on Software Engineering

• ACM Transactions on Software Engineering Methodology (TOSEM)

• Empirical Software Engineering Journal

• Journal of Systems and Software

• Information and Software Technology

• Proceedings of the International Conference on Software Engineering
(ICSE)

• Empirical Software Engineering and Metrics Conference (ESEM).

For a new topic area, you will need to review specialist conference and
workshop proceedings. Whatever the circumstances, you should check the
sources that published your known papers.

Points to remember

• Look for sources that are particularly likely to publish papers on your
topic of interest.

• New topics are most likely to be reported in specialist workshops and
conferences.

• If a topic is new, terminology may not be well-defined, complicating
automated searches.

• Use your known papers to help with identifying possible sources.

314 Evidence-Based Software Engineering and Systematic Reviews

22.5.4 Problems with the search process
A major search process problem is searching for topics that are unlikely

to be the main research topic of research papers. For example, if you are
interested in the use of some specific automated tools in a particular topic
area, there may be many papers that report the use of the tools to support
their validation or evaluation activities but do not mention the name of the
tool in the title, abstract or keywords. Alternatively, if you are interested in
the use of specific research practices, there will be difficulties because not only
are specific experimental methods seldom identified in the title, abstract and
keywords of primary studies, but it is also the case that software engineers
are extremely poor at correctly specifying the empirical methods they used.

Searching for detailed aspects of a research process or a topic requires
searches of the full research papers, which is not supported by indexing services
nor by all the publishers’ digital libraries. In such cases, you will probably
need to do a relatively broad search and prepare to manage a large number
of candidate primary studies including many false positives. In some cases,
you might be able base your set of candidate papers on a randomly selected
subset of the papers within the broad topic area.

Two other problems with the search process are finding too many (for
example, many thousands) or too few candidate primary studies (for example,
one or two).

You may find yourself with a very large number of primary studies if
you are doing a mapping study of a topic with a very broad scope. In this
case, you need to consider revising any automated search strings. However,
before changing any search strings, you may need to reconsider your research
questions. Are the research questions too broad in scope? Are any research
questions unnecessary for your main research goals?

If you are doing a more focused systematic search you may find yourself
with very few studies. In this case you have several options:

• Check whether your search parameters are too stringent. It might be
possible that broadening the search would find additional relevant stud-
ies.

• If you have a well-designed search process, for example, your initial set of
known papers was small and all those papers were found by the search,
it may be that there is insufficient research for a systematic review.
This can be recorded as an outcome of your systematic review, and you
should, perhaps, plan to undertake your own primary study.

Points to remember

• In some cases, the information needed to answer your research ques-
tion(s) won’t be found in the title, abstract or keywords. This raises
problems both for the search process and the selection process.

Systematic Review and Mapping Study Procedures 315

• If you have too many candidate papers about a topic likely to be men-
tioned in the title or abstract, are your research questions too broad?

• If you have too few candidate papers about a topic likely to be mentioned
in the title or abstract, are your research questions too narrow, or are
more primary studies needed?

22.6 Primary study selection process
Study selection is a multi-stage screening process by which irrelevant pa-

pers are removed from the set of candidate primary study papers. The selection
process needs to be documented in the review protocol.

22.6.1 A team-based selection process
For a team-based systematic review or mapping study, the process is shown

in Figure 22.7. At least two researchers should assess each candidate paper.
The team leader is responsible for assigning researchers to individual papers
and for collating the result of their evaluation.

Stage 1 selection is usually based on title and abstract. However, if the
number of papers found by the search process is very large (for example,
> 500), it may be appropriate to base a preliminary screening on title alone.
Any paper that is considered irrelevant by all the researchers who assess it,
based on the inclusion and exclusion criteria that can be evaluated from the
title alone, is removed from the set of candidate papers.

The main Stage 1 selection activity is based on assessing the title, abstract
and keywords of the remaining candidate papers. Again the process is to
remove any paper that is considered irrelevant by all researchers that assess
it, based on the inclusion and exclusion criteria that can be evaluated from
the title, abstract and keywords alone.

At this point the team leader should review the agreement among the
researchers and calculate an appropriate agreement statistic such as Cohen’s
kappa (Cohen 1960) or Krippendorff’s alpha (Krippendorff 1978). If the agree-
ment is poor, it is possible that some members of the research team are unclear
about the interpretation of the research questions or the inclusion and exclu-
sion criteria. The research team should meet to discuss possible reasons for
poor agreement (which in our experience of software engineering papers, is
sometimes due to poor quality abstracts).

After Stage 1 selection, the Stage 2 selection activity is based on the full
text of the paper and all the defined inclusion and exclusion criteria. The goal
of this screening activity is to positively include relevant papers as well as to
exclude irrelevant papers.

316 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 22.7: The team-based primary study selection process.

For a mapping study, it may be appropriate to apply the detailed inclu-
sion/exclusion process only to papers where researchers disagreed about their

Systematic Review and Mapping Study Procedures 317

relevance during Stage 1. That is, if all researchers agreed that a paper was
relevant during Stage 1, it is not necessary to check the paper again against
all the inclusion and exclusion criteria. However, for a systematic review it is
usually better to apply the inclusion and exclusion criteria explicitly to each
paper that passes the initial screening.

After Stage 2 screening, there may be some disagreements among re-
searchers about the inclusion of specific papers. At this point, it is important
to record the agreement among researchers in terms of an agreement statistic.
If agreement is very poor, the team leader may need to initiate a procedure to
investigate whether there is a systematic problem with the selection process.
For example:

• If all the researchers show poor agreement, the team leader could call
a team meeting to discuss the inclusion and exclusion criteria, in case
there are previously overlooked ambiguities or other problems with the
criteria.

• If the problem appears to involve a particular researcher, the team leader
might initiate some additional training before asking the researcher to
reassess their inclusion/exclusion decisions.

After identifying all disagreements, the team leader needs to institute a
moderation process to gain an agreement on the relevance of each disputed
paper. The moderation process can involve:

• Discussion among the researchers who assessed the paper.

• Assessment of the paper by another researcher.

• A trial data extraction to confirm whether or not the required data can
be obtained from the paper.

It is sometimes necessary for the team leader to make a final decision but
it is preferable for the researchers to come to a mutually agreed decision.

Points to remember
• The main study selection process usually involves two or three stages.

• If you have a very large number of papers, base initial inclusion/exclusion
assessments on title alone, then assess the retained papers based on the
keywords and abstract of the remaining papers, and finally assess the
retained papers based on their contents.

• With a relatively small number of papers, base the initial inclu-
sion/exclusion assessment on the title, abstract and keywords and then
assess the retained papers based on their contents.

• Ancillary searches usually require a separate selection process.

318 Evidence-Based Software Engineering and Systematic Reviews

22.6.2 Selection processes for lone researchers
The team-based process cannot be followed by a lone researcher or a PhD

student. If you are a lone researcher, you should adopt a test-retest approach
whereby you assess the papers once and then, at a later time, assess them again
(preferably not in exactly the same order). A substantial disagreement should
prompt you to review your research questions and inclusion and exclusion
criteria.

If you are a PhD student, you can involve your supervisors by asking them
to assess a random selection of papers. This also gives your supervisors an
opportunity to provide you with feedback. Again a substantial disagreement
would be an indication that you (or your supervisor) misunderstand some
aspects of your research question(s) or inclusion and exclusion criteria. If you
and your supervisors plan to publish the results of the systematic review or
mapping study, it is appropriate for the supervisors to act as members of
the research team to ensure the selection process is of an appropriately high
quality.

Points to remember
• Lone researchers should use test-retest to validate their inclu-
sion/exclusion decisions.

• PhD students should ask their supervisors to apply inclusion/exclusion
criteria to a proportion of the candidate papers and assess the level of
agreement.

22.6.3 Selection process problems
If you are doing a broad mapping study rather than a focussed systematic

review you may find you have a very large number of candidate primary
studies (that is, many thousands of articles rather than a few hundreds). If, in
addition, you are a lone researcher or the leader of a small review team, you
may find this number of studies impossible to screen in the time available for
the review.

Assuming that the search process has been performed correctly, you have
two main options for the preliminary stage in the process:

• Recruiting more members to your review team, but bear in mind any
new recruits will require time to get up to speed on the planned review
procedures.

• Using a text mining tool to identify the set of papers that are most likely
to be relevant to your research questions and excluding papers with a
low probability of relevance.

Systematic Review and Mapping Study Procedures 319

If you are at the end of your selection process and still have a very large
number of primary studies (for example, many hundreds of papers) that are
now confirmed as being relevant to your research questions, you may anticipate
a potential problem with managing the primary study analysis and synthesis
process. In this, case options include:

• Recruiting more review team members, but bear in mind that, the later
in the process that you decide to recruit more team members, the more
difficult it will be for them to get up to speed on the planned review
procedures.

• Revising your research questions, which is possible if your research ques-
tions are answered by different subsets of the primary study. You may
be able to use a text mining tool to look for primary study clusters.

• Basing selection on a random sample of primary studies, using stratified
sampling if the primary studies cluster by research question, domain or
topic. Several systematic studies of research methods in software engi-
neering have been based on a sampling strategy (for example, Glass
et al. (2004) and Zelkowitz & Wallace (1998))

Points to remember

• Managing an extremely large number of candidate primary studies is
difficult and time consuming.

• Consider contingencies for managing large numbers of primary studies
during the planning process.

22.6.4 Papers versus studies
An important issue for a systematic review is the relationship between

papers and individual studies. Software engineering papers often exhibit over-
laps:

• There may be several different papers reporting the same study. This
can occur if there is a conference version of the paper followed by an
extended journal version of the paper.

• It is possible that the results of a large study may be published in a
series of different papers.

• It is also possible that a single paper may report the results of several
independent studies.

It is important that a systematic review does not double-count study re-
sults, particularly if some form of statistical meta-analysis is to be performed.

320 Evidence-Based Software Engineering and Systematic Reviews

Thus, after the completion of the primary study selection, a research team
must review papers that have similar titles and authors and assess the rela-
tionship between the papers and individual studies. We advise you to keep a
record of papers related to a specific study (for completeness and auditability),
but ensure your results are reported against the individual study.

Furthermore, all papers should be scanned for the possibility of multiple
studies. This is by no means a straightforward procedure since authors may
regard some studies as independent that you consider to be a single study.
Issues that occur are:

• Researchers may report both a pilot experiment and a main experiment.
In some cases, it may be appropriate to ignore the pilot experiment.
This is likely to be appropriate if the authors report many changes to
the research methods as a result of the pilot experiment, or the pilot
experiment was based on a very small sample. In other cases, it may be
appropriate to treat the pilot study and main study as one study with
two blocks.

• Researchers may report several case studies, and it is unclear whether
their design is a multi-case case study or several independent case stud-
ies. If the case studies have the same research questions and used the
same methodology then our advice is to treat the study as one multi-case
case study. If the case study methodologies are very different, for exam-
ple, ethnography in one case and semi-structured interview in another,
we would suggest treating the paper as reporting two independent case
studies.

Often there is no obvious “right” answer to the number of independent
studies. You need to report your basic approach (for example, two researchers
will discuss each case) and the decisions you make in each individual case.

In most cases, this is less of a problem for mapping studies, since they
are usually able to work at the paper level irrespective of the relationship
between papers and individual studies. However, it is often useful to identify
duplicate reports of the same piece of research, particularly if the aim of
the mapping study is to identify whether sufficient research is available for a
detailed systematic review. Furthermore, if a mapping study aims to assess
the quality of research, you may need to consider quality at the study level
rather than the paper level.

Points to remember

• The relationship between studies or pieces of research and published
paper is many-to-many.

• For systematic reviews, it is important not to over-count (or under-
count) the number of independent studies.

Systematic Review and Mapping Study Procedures 321

22.6.5 The interaction between the search and selection
processes

Although the search and selection activities are different, the process of
undertaking those activities is often entwined. If you intend to use backwards
snowballing, you cannot do such a search until you have selected a set of pri-
mary studies from the set of candidate primary studies you found during your
main search process. A similar issue arises if you want to write to authors who
have published a number of primary studies to seek other as yet unpublished
results.

Thus, after performing your main selection process be it automated or
manual or a mixture, you need to suspend the search process and enter the se-
lection process to screen the current set of candidate papers. After the screen-
ing process is complete, you will need to reactivate the search process in order
to check the references of the current set of primary studies or identify the
most frequently cited authors.

Clearly if you find more candidate primary studies, the selection process
needs to be re-activated.

Point to remember

Ancillary searches often depend on having an existing list of candidate
studies, which means they cannot be started until an initial round of the
search and selection process has been completed

22.7 Validating the search and selection process
The team leader should assess the validity of the search process against

the criteria specified in the protocol. This information should be reported in
the methods section of the final report.

The team leader should expect to:

• Justify the comprehensiveness of the search process given the type of
review, that is, whether it is a quantitative or qualitative systematic
review or a mapping study.

• Report the agreement achieved during the Stage 2 selection process,
prior to any moderation process (see Figure 22.7).

• Confirm that all papers that were known before the start of the selec-
tion process were found by the search process and selected during the
selection process.

322 Evidence-Based Software Engineering and Systematic Reviews

• Optional. Consider validating the search process using textual analysis
tools (see Chapter 13). Such tools can be used to check the frequency of
the use of main keywords to investigate whether included papers that
and excluded papers that differed with respect to usage of keywords and
if they did, whether any papers might have been misidentified. Tools can
also be used to review the extent to which included and excluded pa-
pers cross-reference one another. Again, such an analysis can be used to
identify any papers that might have been misclassified. Any papers that
may have been misclassified can be reviewed again and their classifica-
tion revised if necessary. This approach is particularly useful for single
researchers.

• If any known papers were kept separate for validation purposes, the
team leader must report the coverage of these papers. For a systematic
review, coverage should be 100% if the study involves a comparison of
two technologies.

• If any previous systematic reviews or mapping studies were kept sepa-
rate for validation purposes, the team leader must identify the primary
studies reported by the previous reviews that should have been found by
the current review. The team leader should report the number of such
primary studies that were missed by the current review.

Of course, if the final two validation exercises discover missing papers they
must be added to the set of primary studies.

Points to remember
• You will need to justify your overall search and selection process.

• You will need to provide evidence that your search process was effective.

• You should report the values of agreement statistics to confirm selection
process was effective.

22.8 Quality assessment
The main decisions that need to be made during quality assessment are:

1. Deciding whether or not a quality assessment is necessary.

2. Deciding appropriate quality assessment criteria.

Systematic Review and Mapping Study Procedures 323

3. Deciding how the quality assessment will be used to support the goals
of the review.

4. Deciding how the quality assessment will be managed.

The results of these decisions should be documented in the protocol. Each
of these issues is discussed below.

22.8.1 Is quality assessment necessary?
For any systematic review, quality assessment should be considered

mandatory. It is important to ensure that the results of any aggregation are
based on best available evidence. This means either simply excluding poor
quality studies from the aggregation, or investigating the impact of excluding
such studies.

For mapping studies, quality assessment is not required, unless one of the
aims of the mapping study is to assess the quality of existing studies. This
can happen in the case of tertiary studies investigating the methodology used
in systematic reviews.

22.8.2 Quality assessment criteria
There are two aspects to quality assessment:

• Assessing the quality of individual primary studies.

• Assessing the overall strength of evidence of the review findings.

These are discussed in the following sections.

22.8.2.1 Primary study quality

Quality assessment of primary studies is usually done by means of a quality
instrument comprising a number of questions related to the goals, design,
conduct and results of each study. The questions are referred to as quality
criteria. The quality instrument is often referred to as a quality checklist. A
checklist for a particular study type is usually made up of questions related
to:

• The goals, research questions, hypotheses and outcome measures.

• The study design and the extent to which it is appropriate to the study
type.

• Study data collection and analysis and the extent to which they are
appropriate given the study design.

324 Evidence-Based Software Engineering and Systematic Reviews

• Study findings, the strength of evidence supporting those findings, the
extent to which the findings answer the research questions, and their
value to researchers and practitioners.

Quality assessment criteria usually depend on the type of primary study
being evaluated since factors that determine a good example of one type of
study may be irrelevant for a different type of study. For example, factors
that identify a good quality experiment such as random allocation to treat-
ment, and sufficient experimental units to achieve a reasonably high power
are different from the factors that determine a good case study such as an
appropriate choice of case, and consideration of alternative explanations for
the case study findings.

Quality assessment criteria also depend on the subject type. For studies
that compare human-intensive methods or techniques, the subjects will be hu-
man beings and checklists can be adapted from the many recommendations
available in the medical and healthcare domain. We advise you to look at
some of the published checklists, choose the one(s) most appropriate for your
systematic review, and adapt it (if necessary) to your own study. For exam-
ple, checklists for randomized controlled trials (which are field experiments),
qualitative studies, and systematic reviews can be found at the Critical Ap-
praisal Skills Programme (CASP) website2 or the SURE Critical Appraisal
Checklists3. A version of the randomised trials checklist suitable for software
engineering experiments is shown in Figure 22.9. In addition, Runeson et al.
(2012) provide checklists specifically designed to help researchers undertaking
and reading software engineering case studies.

In contrast, for studies that compare or evaluate algorithms or tools which
are technology-intensive studies, specialised checklists will need to be con-
structed, see for example Figure 22.8 which is adapted from a checklist devel-
oped by Kitchenham, Burn & Li (2009), and includes suggestions for scoring
each question.

For non-comparative or qualitative systematic reviews, or if a large variety
of study types are found, a more general quality assessment instrument may
be appropriate. The quality criteria proposed by Dybå & Dingsøyr (2008a)
based on the CASP checklist for qualitative studies has been used in several
software engineering systematic reviews. However, if you have a large number
of different study types but only one quality checklist, you need to consider
the study type as well as answers to the checklist questions when using the
quality assessment (see Section 22.8.2.2 below).

22.8.2.2 Strength of evidence supporting review findings

Dybå & Dingsøyr (2008b) recommend using the GRADE approach
(Guyatt, Oxman, Vist, Kunz, Falck-Ytter, Alonso-Coello & Schünemann

2http://www.casp-uk.net/find-appraise-act/appraising-the-evidence/
3http://www.cardiff.ac.uk/insrv/libraries/sure/checklists.html

http://www.casp-uk.net/find-appraise-act/appraising-the-evidence/
http://www.cardiff.ac.uk/insrv/libraries/sure/checklists.html

Systematic Review and Mapping Study Procedures 325

Question
No

Question Scoring

1 Are the goals of the experiment clear No=0, Partly=0.5, Yes=1
2 Were the research questions and

hypotheses defined?
No=0, Partly=0.5, Yes=1

3 Was there any replication, for example,
multiple test objects, multiple test sets?

Yes=1, No=0 – If No this is not an experiment and
should be considered a case study, feasibility study or
example.

4 Are the study measures valid? None=0 / Some (0.33) / Most (0.75) / All (1)
5 If test cases were required by the Test

Treatment, how were the test cases
generated?

Not applicable (reduce number of questions by 1)
By the experimenters (Yes=0)
By an independent third party (Yes=0.5)
Automatically (Yes=0.75)
By industry practitioners when the test object was
created (Yes=1)

6 How were Test Objects generated? Small programs (Yes=0)
Derived from industrial programs but simplified
(Yes=0.5)
Real industrial programs but small. (Yes=0.75)
Real industry programs of various sizes including
large programs (Yes=1)

7 How were the faults/modifications found? Not applicable (reduce number of questions by 1 and
go to question 8)
Naturally occurring Yes=1, go to question 8
If No go to questions 7a

7a For seeded faults/modifications, how were
the faults identified?

Faults introduced by the experimenters (Yes=0),
Independent third party (Yes=0.25)
Generated automatically (Yes=0.5)

7b For seeded faults/modifications, were the
type and number of faults/modifications
introduced justified?

Type & Number: Yes (0.5)
Type or Number (Yes=0.25)
No=0

8 Did the statistical analysis match the
study design?

No=(0), somewhat (0.33) Mostly (0.66), Completely
(1)

9 Was any sensitivity analysis done to
assess whether results were due to a
specific test object or a specific type of
fault/modification?

Yes=1 / Somewhat=0.5 / No=0

10 Were limitations of the study reported
either during the explanation of the study
design or during the discussion of the
study results?

No=0, Somewhat=0.5, Extensively=1

11 Were the findings clearly reported? No=0, Partly=0.5, Fully-1
12 Are the findings of value to industry or

researchers?
No=0, Somewhat=0.5, Extensively=1

FIGURE 22.8: Quality criteria for studies of automated testing methods.

2008) to assess the strength of the evidence for recommendations. The
GRADE approach is mainly used to assess the strength of recommendations
when a decision has to be made concerning the adoption of a recommendation
in a particular situation. However, it can also be considered for assessing the
strength of evidence associated with individual findings.

GRADE defines strength of evidence in terms of the confidence we have
that further research will or will not change the estimate of effect size:

1. High confidence means that further research is unlikely to change the
estimate.

2. Moderate confidence means further research may change the estimate.

3. Low confidence means further research is likely to change the estimate.

326 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 22.9: Quality criteria for randomised experiments.

4. Very Low confidence means the estimate is very uncertain.

GRADE also considers factors that may decrease or increase confidence in
the strength of evidence. Factors that decrease the strength of evidence relate
to poor methodological quality, inconsistent findings, sparse data, or reporting
bias found in individual studies. Factors that increase the strength of evidence
relate to very large effect sizes, only having confounders that would decrease

Systematic Review and Mapping Study Procedures 327

the effect size, or evidence of a “dose response gradient” (which means that
more of the treatment results in a better outcome).

Formulating GRADE evidence in terms of effect sizes and study bias indi-
cates that the method is intended to apply primarily to randomised controlled
trials (which are controlled field experiments) or systematic reviews of such
studies. However, such studies are extremely rare in software engineering. We
must often make do with much weaker forms of study and more varied types
of empirical study

To apply the GRADE concept to findings from software engineering sys-
tematic reviews, specific findings from the review will need to be discussed in
the light of the methodological quality of the related primary studies and their
study type(s). For example, if a specific finding is supported only by feasibility
studies, even if they are high quality feasibility studies, the evidence for that
finding must be considered to be very weak.

Study types that provide very weak evidence are:

• Feasibility studies, including small experiments (that is, experiments
with very few subjects), and small-scale examples.

• Lessons learned studies.

• Before-after within-subject quasi-experiments which are the weakest
form of quasi-experiment.

Types of study that provide slightly stronger evidence (although still rel-
atively weak) include:

• Post-hoc re-working of large-scale examples (often mistakenly called case
studies).

• Post-hoc analyses of industry datasets (for example, correlation and re-
gression studies).

Types of study that provide moderately strong evidence include:

• Laboratory-based experiments and quasi-experiments. Good quality
studies of these types are likely to give a reliable indication of whether
or not an effect size is significant and the direction of the effect size.
However, they are likely to give biased estimates of the magnitude of
the effect size (probably overestimates) because the studies did not take
place in an industrial context where other factors such as time scale
pressure, team dynamics, task complexity, task dependencies, and per-
sonal motivation influence outcomes. Also, if the studies involve students
rather than professionals or the software engineering task is particularly
straightforward, confidence in the evidence should be downgraded.

• Industry case studies, preferably using multiple cases, which can provide
reasonably reliable evidence.

328 Evidence-Based Software Engineering and Systematic Reviews

The most trustworthy form of evidence in software engineering comes from
industry-based field studies including:

• Randomised field experiments. Such designs represent the most reliable
form of empirical study but can seldom be performed in software engi-
neering contexts.

• Field-based quasi-experiments based on cross-over designs, interrupted
time-series, regression discontinuity, or differences-in-differences designs
(Shadish et al. 2002) which can provide highly reliable evidence.

22.8.3 Using quality assessment results
There is little point in collecting data about primary study quality if you

have no plan as to how such data will be used. There are several possibilities:

• Specific quality criteria may be used as part of the inclusion criteria to
screen out low quality studies.

• The quality score (that is, the sum of numerical values assigned to the
answer of each quality question) for each primary study may be used
to identify poor quality studies. Then, the impact of the poor quality
studies on the results of the review findings can be assessed to investigate
whether poor quality studies are causing the results to be biased.

• The quality data may be assessed to see if there are systematic problems
with primary study quality, for example it may be problematic if most
or all of the studies use student participants.

• Specific quality criteria may be used as moderating factors (that is,
factors that might explain the differences among study results) in meta-
analysis, for example whether or not the empirical study was an exper-
iment (formal or quasi) or a less rigorous form of study type.

Finally, as mentioned above, the quality score of studies can be used as part
of an assessment of the strength of evidence supporting individual findings.

22.8.4 Managing the quality assessment process
Many quality criteria require subjective assessment, for example, any cri-

terion that asks whether something was appropriate. To reduce the problem
of bias associated with subjective assessments, it is customary for at least two
researchers to assess the quality criteria of each paper and for disagreements
to be moderated.

The general process used for managing quality assessment in a team-based
systematic review is shown in Figure 22.10. The specific process you decide to
adopt should be documented in the systematic review protocol.

Systematic Review and Mapping Study Procedures 329

FIGURE 22.10: Process for managing team-based quality assessment.

22.8.4.1 A team-based quality assessment process

For team-based systematic reviews, the team leader should assign at least
two researchers to assess the quality (and study type, if necessary) of each
primary study. Each researcher should complete the quality evaluation form
independently, then the results of the evaluations for a specific primary study
should be compared and disagreements recorded (this may be done by the
team leader, a systematic review management tool, or the two assigned re-
searchers working together).

If there are disagreements, some form of moderation must take place as
defined in the systematic review protocol. Options include:

• Assigning a third person to assess the quality of the primary study and
discuss the assessments with the two original researchers.

330 Evidence-Based Software Engineering and Systematic Reviews

• Asking the researchers assigned to the primary study to work together
to arrive at an agreed assessment.

• If more than two assessments are available, aggregating the assessment
into a combined score (for example, by taking the mean).

The team leader should expect to report initial agreement rates using an
appropriate agreement measure. The agreement between independent asses-
sors is used to assess the validity the evaluation process. If the agreement
for individual primary studies is very low, the quality criteria may not be
well understood, so there should be a contingency plan ready. Options for the
contingency plan should include:
• Calling a team meeting to discuss the quality criteria and the reasons
for disagreements.

• Additional training for specific members of the team.
The team leader is responsible for deciding which option should be chosen

given the specific circumstances. It should also be noted that unusually high
agreement can also be a sign of misunderstandings among team members.
The team leader should be prepared to invoke the contingency plan if this
condition arises.

The actual quality evaluation process may take place as part of the general
data collection process or may precede the data collection phase. If some of
the quality criteria are being used as inclusion/exclusion criteria, it is better
to complete quality evaluation before beginning data extraction.

22.8.4.2 Quality assessment for lone researchers

If you are a lone researcher or a PhD student, the main problem you will
have is validating your quality assessment.

If you are a PhD student, options include:
• Requesting your supervisors to assess a random selection of primary
studies and comparing the results.

• Re-assessing of a random selection (or all) of the primary studies after
a suitable elapsed time and calculating the test-retest agreement.

In both cases, you should specify in the protocol what constitutes a dan-
gerous level of disagreement, and have ready a contingency plan to deal with
this possibility. Any disagreements identified during this validation exercise
need to be resolved. This should usually be done by discussing each case with
a supervisor.

If you are a lone researcher you must also specify how to validate your
quality assessment process. This will usually require a test-retest assessment
based on all the primary studies and a justification of the process for reaching
an agreed evaluation for any disagreements (which might be taking the mean
score) or recording a justification for each revised score.

Systematic Review and Mapping Study Procedures 331

Points to remember
• The subjective nature of many quality criteria makes quality assessment
far from simple.

• You should be clear about how the quality assessment will be used.

• If your primary studies include many different study types and you use
a general-purpose quality checklist, keep a record of the study type as
well. In this case you should use the quality assessment information and
study type to assess the reliability of individual findings.

• You should report agreement statistics to indicate the reliability of the
quality assessment process.

22.9 Data extraction
Data extraction and data synthesis are phases where the differences be-

tween quantitative systematic reviews, qualitative systematic reviews and
mapping studies are most significant. You need to consider the type of re-
view you are undertaking both when planning your data extraction process
and when conducting data extraction.

22.9.1 Data extraction for quantitative systematic reviews
The data extraction process is most well-defined for quantitative system-

atic reviews. You should be in a position to define in advance the data you
intend to extract from each paper in order to answer your research question(s).
However, this presupposes that you know enough about the topic area and
the available literature to determine whether a meta-analysis is feasible and if
so what effect sizes are most appropriate. If this is not the case, you will need
to defer formalising the data extraction and analysis processes until you have
selected the primary studies and identified the statistical designs used in the
studies and the nature of the outcome metrics they report.

22.9.1.1 Data extraction planning for quantitative systematic re-
views

Once you have adequate knowledge of the primary studies, the decisions
you need to make to identify the data you need to collect are shown in Fig-
ure 22.11.

332 Evidence-Based Software Engineering and Systematic Reviews

You will need to decide whether you intend to undertake a formal meta-
analysis or a more qualitative-style of analysis. Even with a quantitative sys-
tematic review, you will not be able to do a formal meta-analysis:

• If the primary studies use different treatment combinations, and there
are insufficient studies that compare the same pair of treatments.

• If your outcome measures include many different incompatible metrics.
For example, the quality of a program (or a maintenance change made to
a program) might be evaluated using static complexity measures, num-
ber of residual errors, subjective quality assessments, or test coverage
statistics. You may be able to identify whether differences are statisti-
cally significant which is all that is needed for vote-counting, but more
detailed meta-analysis methods may not be possible.

Whether you are aiming for vote-counting or a full meta-analysis, data
extraction will be based on:

• Basic information about the study, including the treatments being com-
pared and the outcome metrics reported.

• The quantitative outcomes of the experiments being included in the
review, as required for the type of meta-analysis being planned (see
Chapter 11 and Table 22.1). This would include all the metrics needed
to construct the specified effect size such as values of any test statistics,
the probability level achieved by the test(s), sample sizes, mean values,
standard deviations.

• Contextual information that can be used in any meta-analysis to inves-
tigate any heterogeneity among primary studies or support a detailed
qualitative analysis (Chapter 11 and Table 22.2). Note, however, that
some relevant contextual information may already have been specified
in the quality criteria.

After defining the data to extract, you will need to construct a data col-
lection form. This can be a paper form, a spreadsheet, or database form. The
data collection form and any necessary associated documentation should de-
fine the data being extracted and provide clear guidelines for data extractors.
To complete the planning process, the form should be trialled using some
known primary studies.

All members of the review team who are expected to extract data should
take part in the trial and report any problems with the data collection form
to the team leader. Any problems with the form should be resolved prior to
finalizing the protocol. A procedure both for checking individual extraction
forms and for resolving any disagreements should be defined in the review
protocol.

Systematic Review and Mapping Study Procedures 333

T
A
B
LE

22
.1
:C

om
m
on

Eff
ec
t
Si
ze
s
U
se
d
in

M
et
a-
A
na

ly
sis

T
yp

e
Fo

rm
ul
a

D
efi

ni
tio

n
Va

ria
nt
s

Si
gn

ifi
ca
nc

e
le
ve
l

p-
va
lu
e

P
ro
ba

bi
lit
y

ob
ta
in
ed

fr
om

a
st
at
is
tic

al
te
st

Po
in
t
se
ria

lc
or
re
la
tio

n
fo
r

be
tw

ee
n
gr
ou

ps
de

si
gn

r
=

∑ (x
i
j

−
x
)(

y
i
j

−
y
)

√ ∑
(x

i
j

−
x
)2
∑ (y

i
j

−
y
)2

Pe
ar
so
n
co
rr
el
at
io
n
w
he

re
x

ij
=

0
fo
r
gr
ou

p
1
an

d
x

ij
=

1
fo
r
gr
ou

p
2
an

d
y

ij

is
th
e
ou

tc
om

e
va
lu
e
fo
r

ob
se
rv
at
io
n

j
in

gr
ou

p
i.

R
-s
qu

ar
ed

fo
r
A
N
O
VA

de
si
gn

s.
St
an

da
rd

Pe
ar
so
n

co
rr
el
at
io
n
fo
r
re
gr
es
si
on

or
co
rr
el
at
io
n
st
ud

ie
s.

St
an

da
rd
iz
ed

m
ea
n

di
ffe

re
nc

e
fo
r
nu

m
er
ic
al

ou
tc
om

e
m
et
ric

s
d

=
(m

1
−

m
2
)

st
d
ev

D
iff
er
en

ce
be

tw
ee
n
th
e

m
ea
ns

of
ob

se
rv
at
io
ns

in
ea
ch

gr
ou

p
di
vi
de

d
by

an
ap

pr
op

ria
te

st
an

da
rd

de
vi
at
io
n.

C
oh

en
’s

g,
H
ed

ge
’s

d,
an

d
G
la
ss
’s

∆
.

O
dd

s
ra
tio

fo
r
co
un

ts
an

d
pr
ob

ab
ili
ty

ou
tc
om

e
m
et
ric

s
O

=
p

1
(1

−
p

2
)

p
2
(1

−
p

1
)

R
at
io

of
od

ds
re
la
te
d
to

on
e
gr
ou

p
an

d
od

ds
re
la
te
d
to

a
se
co
nd

gr
ou

p.
O
dd

s
ar
e
th
e
pr
ob

ab
ili
ty

of
an

ev
en
t
di
vi
de

d
by

1
m
in
us

th
e
pr
ob

ab
ili
ty
.

Lo
g
od

ds
w
hi
ch

is
th
e

lo
ga

rit
hm

of
th
e
O
dd

s
ra
tio

.

334 Evidence-Based Software Engineering and Systematic Reviews

TABLE 22.2: Contextual Information Appropriate for Meta-Analysis

Type Options Value

Study type

Experiment, Case study,
Quasi-experiment, Survey,
Benchmarking, Data
mining, Lessons learnt

Provides information about
constraints on study rigour.

Participants
Students, Practitioners,
Consultants, Academics

Indicates the population to
which results apply.

Materials
Programs, Software
specifications, Test cases

For benchmarking studies
or testing studies, define
type of systems to which
results apply.

Settings
University course, Training
course, Industry Indicates realism of setting.

Task Task time, Task complexity Indicates realism of task.

22.9.1.2 Data extraction team process for quantitative systematic
reviews

Once the data collection form has been designed and tested, the actual
data extraction process should be fairly straightforward. For a team-based
review, the team leader must assign two team members to each primary study
and monitor the data extraction process (see Figure 22.9.1.1). Note that data
extraction may be done at the same time as extracting quality data.

However, it is always possible that a primary study could be found that
performed a novel analysis and presented its results in a manner that was not
anticipated in the protocol. This should be reported to the team leader, who
needs to halt further data extraction in case there are other examples of such
analyses among the primary studies. Data extraction should only be restarted
when it is clear how to deal with papers using the new type of analysis. This
might involve amending the data collection form and/or providing additional
training/guidelines for data extractors.

Systematic Review and Mapping Study Procedures 335

FIGURE 22.11: Initial planning decisions for quantitative systematic re-
views.

22.9.1.3 Quantitative systematic reviews data extraction process
for lone researchers

If you are a lone researcher, you should use a test-retest approach to vali-
date that all the data was correctly extracted.

336 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 22.12: Quantitative systematic reviews data extraction process.

PhD students can either use test-retest, or ask their supervisors to act as
independent extractors. Note, however, performing a full systematic review
would be a major task for a PhD student and should be suitable for a journal
publication. In such circumstances supervisors should be prepared to act as
members of the review team and ensure all the extracted data is properly
validated.

22.9.2 Data extraction for qualitative systematic reviews
Qualitative systematic reviews are usually based on data extracted from

qualitative primary studies. Qualitative studies are primary studies that:

• used semi-structured or unstructured interviews, or

• were based on observations researchers made about software developers,
software teams or managers and their work processes, or

Systematic Review and Mapping Study Procedures 337

• were based on subjective opinion surveys.

They are the most difficult type of review from the viewpoint of data
extraction and data synthesis. This is because such reviews are looking for
textual information provided by the study authors of issues such as risks,
cost benefits, motivators, barriers to adoption, definitions of terminology and
other themes or concepts related to the research topic. Problems arise because
authors of primary studies may use different terms for the same concept or the
same terms for different concepts. This means the textual information required
from each primary study cannot usually be defined in advance. Furthermore,
data extraction and data synthesis become inextricably linked as you attempt
to identify and define core terms including all homonyms and synonyms.

22.9.2.1 Planning data extraction for qualitative systematic
reviews

In most cases you should expect the data extraction process to centre on
creating a database of evidence, similar in concept to a case study database
(Yin 2014). You should specify, in the protocol, the tool that will be used
to hold the data. The data itself would usually include textual information
extracted from each primary study, a reference to the place in the primary
study the text was found, and a comment indicating the relevance of the text
(if you have several different research questions, you should identify which
research question(s) it addresses.)

Some general points can be made:

• The more specific your research questions are, the easier data extraction
and synthesis will be, since you will be able to specify relevant themes
prior to starting data extraction. In contrast, if you have some general
high level topic such as “Global Software Development” or “Cloud-Based
software engineering” and intend looking for unspecified “themes” from
the information reported by the primary study authors, your task will
be much more difficult.

• The more familiar you are with the topic area, the more likely you are to
be able to identify appropriate research questions and interesting themes
in advance.

22.9.2.2 Data extraction process for qualitative systematic reviews

It is difficult to organise a team-based data extraction/synthesis process.
Since any primary study could introduce a new homonym or synonym, none of
the primary studies can be considered as independent for the purposes of data
extraction and synthesis. Currently our personal experience and experiences
reported by other researchers have consisted only of two-person teams where
either one person does all the extraction and defines a set of terms which the
other member of the team then checks, or both team members jointly read

338 Evidence-Based Software Engineering and Systematic Reviews

and extract data from each paper agreeing terminology together. In both
cases, the extraction is likely to involve considerable iteration as new terms
and concepts are identified and need to be reconciled with the data extracted
from previously reviewed primary studies. There are several other options:

• You could use a text analysis tool such as NVivo to identify relevant
areas of text across all the studies, but as yet there have not been any
large-scale software engineering systematic reviews that have reported
using such tools. If you are a lone researcher or post-graduate student,
the use of a textual analysis tool is a particularly attractive option.

• All team members could read all the primary studies to get a sound
overview of the topic area, and then work together to define appropriate
themes and agreed terminology before undertaking a systematic data
extraction and synthesis process.

However, as yet we have no definitive evidence as to which process is the most
effective.

Whether you are a lone researcher or a member of a team, we advise you
to read some of the papers and trial various data extraction and synthesis
processes on some known studies before making any firm decisions about how
to organise data extraction and synthesis.

22.9.3 Data extraction for mapping studies
Mapping studies are generally about finding and classifying the literature

related to a specific topic area. Reviewers need to specify a set of characteris-
tics that define the nature of the topic area. In the sense that characteristics
might seem similar to themes, there may appear to be some overlap with
qualitative systematic reviews, the differences are:

• In a mapping study, the type of study (for example, theoretical or em-
pirical) is a means of classifying the primary study. In contrast, a qual-
itative systematic review will usually use the type of study as an inclu-
sion/exclusion criterion (for example, including only empirically-based
qualitative studies) or as part of a quality assessment of the primary
studies.

• A mapping study is not usually concerned with the outcomes of empir-
ical studies whereas a qualitative systematic review aims to aggregate
information from the outcomes of qualitative primary studies.

22.9.3.1 Planning data extraction for mapping studies

Mapping studies aim to organise and classify the literature on a specific
topic area. This process is done by identifying a set of features (sometimes

Systematic Review and Mapping Study Procedures 339

referred to as attributes, or characteristics) that describe the research goals
and methods employed in the topic area. A feature is often specified as a
set of mutually exclusive categories to which a primary study can belong, for
example, the research type might be one feature with categories case study,
experiment, quasi-experiment, opinion survey, lessons learnt, personal opin-
ion, etc. In this case, the feature is represented as a nominal scale metric.
Features may also be ordinal scale, for example, the feature concept defini-
tion might have one of the values fully defined, partially defined, undefined.
Other features may be or integer-valued or real-values. Features may relate
to one another in hierarchies, for example the category experiment belonging
to the feature research type, might be a sub-feature with categories fully ran-
domised, randomised block, latin square, n by m factorial, etc. The features
required for a mapping study are related to the specific topic area and the
research questions.

The planning activities for a mapping study are shown in Figure 22.13. You
need to specify in the protocol the features you will use to classify each primary
study, as discussed in Section 22.4.2.2. The major problem with mapping
studies is that it may be difficult to identify in advance all the features of
interest. We suggest a multiple-phase data extraction process.

Firstly some information needed to answer some of your research questions
will already be available from the primary study citation information, for
example:

Specify data extrac�on process.

Iden�fy primary study data needed to
address research ques�ons.

Iden�fy data required from
cita�on informa�on.

Define first stage data
collec�on form.

Define valida�on process.

FIGURE 22.13: Planning mapping studies.

340 Evidence-Based Software Engineering and Systematic Reviews

• Date of Publication

• Publication type (journal, conference, workshop, technical paper)

• Publication source (journal, conference, workshop name)

• Authors’ names, affiliation and country

This information can be specified in the protocol and should be in a suit-
able format as the outcome of the primary study selection process.

Next, some information you need will be derived from your research ques-
tions and can be specified in the protocol. This information will be the basis
of the first stage of data extraction. This will include some features and some
free-format textual information such as:

• The type of study (using, for example, the categories proposed
by Wieringa et al. (2006)).

• The goal(s) of the paper.

• The specific topic(s) or subtopic(s) being addressed in the paper.

• Any issues of interest raised in the paper.

Other information of interest may be identified during the data extraction
process.

22.9.3.2 Data extraction process for mapping studies

The overall process for mapping study data extraction is shown in Fig-
ure 22.14. The first task is to ensure that all the citation information is held
in a format suitable for analysis.

The first stage of data extraction uses the standard data extraction process
with at least two members of the team manually extracting data from each
primary study.

The team leader should then convene a team meeting to discuss whether
there are any more trends or general topics of interest against which to classify
your primary studies. If more features are identified, the team leader will
need to amend the protocol to include some additional research questions and
organise a second round of data extraction to classify the primary studies
against the newly defined features. A further round of data extraction would
follow the usual data extraction process (that is, two extractors and a process
for moderating disagreement). This iterative process continues until no more
interesting topics are identified.

Note in the case of mapping studies, the quality of individual primary
studies is rarely evaluated and data extraction can usually begin as soon as
study selection is completed.

Systematic Review and Mapping Study Procedures 341

FIGURE 22.14: Mapping study data extraction process.

342 Evidence-Based Software Engineering and Systematic Reviews

22.9.4 Validating the data extraction process
For quantitative systematic reviews, the team leader should expect to re-

port initial agreement rates using an appropriate agreement measure. Similar
to the quality evaluation process, the agreement between independent asses-
sors is used to assess the validity of the data extraction process. If the agree-
ment for individual primary studies is very low, the data form may not be
well understood, so there should be a contingency plan ready. Options for the
contingency plan should include:

• Calling a team meeting to discuss the data form and the reasons for
disagreements.

• Additional training for specific members of the team.

The team leader is responsible for deciding which option should be chosen
given the specific circumstances.

For mapping studies, the process is similar to that for quantitative system-
atic reviews but if the data extraction process requires two (or more) separate
data extraction steps, the agreement measures should be evaluated for each
step separately. Felizardo et al. (2010) have suggested using visual text min-
ing tools to support the classification of primary studies in mapping studies.
This may be a useful validation approach, particularly for lone researchers
and postgraduate students.

It is not clear how data extraction for qualitative primary studies should
be validated. It might be possible to use a tool such as NVivo to check whether
it finds the same textual elements as the review team, but we are not aware
of any systematic reviews that reported using this approach.

22.9.5 General data extraction issues
Whatever type of review you are doing, you are supposed to employ critical

reasoning when reading primary studies. If you identify some interesting trend
or characteristic common to many studies, but it is not mentioned in the
protocol, do not ignore it. You should notify your team leader. The team leader
needs to decide whether the data extraction process (and the protocol) need to
be enhanced to collect information about the newly identified characteristic.

If you are a postgraduate student doing a mapping study as a starting
point for your PhD, you need to recognise that the main aim is not to classify
a set of primary studies. A mapping study should help you to find the most
relevant studies to read, and classifying them may allow you to present a well-
organised literature review in your thesis. However, the main aim is for you to
read and understand the topic area you intend to study. The secondary aim
is for you to understand how to conduct a systematic literature search.

Systematic Review and Mapping Study Procedures 343

Points to remember
• For quantitative systematic reviews the data extraction process should,
in principle, be fully defined in the protocol. However, you need to be
alert to any circumstances that indicate an omission in the protocol and
be prepared to amend the protocol if necessary.

• For mapping studies, it is not always possible to define all the trends
and topics of interest in the protocol. You should expect to iterate the
data extraction process if new trends or topics of interest are identified
during the data extraction process.

• For qualitative systematic reviews, it is difficult to define the data ex-
traction process or the data synthesis process in advance. You are usually
only able to decide whether or not to use a textual analysis tool, and
specify the basic strategy that will be used.

• For qualitative systematic reviews, data extraction and data synthesis
cannot be regarded as independent processes. In general, you should
expect data extraction and synthesis to be iterative including re-reading
papers and re-evaluating definitions of terms and themes.

22.10 Data aggregation and synthesis
Like data collection, data synthesis depends on the type of review you are

undertaking. There is some disagreement among quantitative and qualitative
researchers about the use of the terms “synthesis“ and “aggregation”. Qualita-
tive researchers use the term “aggregation” to describe results obtained either
from statistical analysis or simple counts, whereas “synthesis” is used to refer
to analyses that interpret findings from qualitative studies. However, quanti-
tative meta-analysts also refer to their statistical analyses as “synthesis”. For
the purposes of these guidelines we will refer to meta-analysis and qualitative
meta-synthesis using the term “synthesis” and we use the term “aggregation”
to refer to analysing results from a mapping study.

22.10.1 Data synthesis for quantitative systematic reviews
Your data synthesis process will depend on your data collection plan. This

will either be vote counting with a qualitative analysis or a full meta-analysis.
For more details on how to perform a meta-analysis consult Chapter 11; vote
counting is discussed in Chapter 10.

344 Evidence-Based Software Engineering and Systematic Reviews

22.10.1.1 Data synthesis using meta-analysis

Meta-analysis is a statistical method to synthesise the results from primary
studies that have reported a statistical analysis of the same (or very similar)
hypotheses. For a full meta-analysis, we recommend the process shown in
Figure 22.15. It comprises the following steps:

1. Calculate the specified effect size for a specific outcome metric and its
variance from the extracted data. If several different outcome metrics are
reported in the primary studies, you will need to analyse each outcome
metric separately.

2. Tabulate the effect size, its variance and the number of observations per
study.

3. Check whether any of the primary studies should be considered de-
pendent replications (that is, primary studies performed by the same
researchers, using the same subjects types, and materials). If any of the
studies are dependent, you will need to decide how to incorporate these
studies. This will involve either using a multi-level analysis model or
integrating the dependent studies into a single large-scale experiment.

4. Import the data to an appropriate statistical tool, for example, the R
metafor package, see Viechtbauer (2010).

5. Perform a random effects analysis to identify whether there is significant
heterogeneity among the primary studies, see Viechtbauer (2007). Note,
a fixed effects analysis is only appropriate when you have a very small
number of effect sizes to aggregate or you are sure that the effect sizes
all come from very close replications.

6. If heterogeneity is not significant, data synthesis is completed (subject
to appropriate sensitivity analysis, as discussed below) and the overall
mean and variance derived from aggregating the primary study results
provide the best estimate of the difference between the treatment out-
comes.

7. If there is significant heterogeneity, you will need to investigate whether
any of the context factors and/or specific quality criteria might have
influenced the outcomes and could be used as explanatory factors in a
moderator analysis. This will require a mixed-effects analysis. Synthe-
sis will depend on whether statistically significant explanatory factors
(often referred to as moderators) can be found.

8. You will need to consider sensitivity analysis for example, assessing the
impact of removing each primary study turn, the impact of high influ-
ence studies, and the impact of removing low quality primary studies.

Systematic Review and Mapping Study Procedures 345

no

Significant
heterogeneity?

Dependent studies?

Calculate effect size.

Tabulate meta-
analysis data.

Decide how to
handle dependent
studies.

Use mul�-level
analysis.

Integrate dependent
study groups into
single large-scale
experiments.

yes

Import data into
sta�s�cal tool.

Do random-effects
analysis.

yes Use context factors
and/or quality
criteria in a mixed
effects analysis.

Do sensi�vity
analysis.

no

FIGURE 22.15: Meta-analysis process.

346 Evidence-Based Software Engineering and Systematic Reviews

22.10.1.2 Reporting meta-analysis results

The R metafor package provides the standard meta-analysis graphics to
report results (see Chapter 11). The most important graphics are:

• Forest plots to show the mean and variance of the effect size metric for
each primary study as well as the overall mean and variance. An example
of a forest plot is shown in Figure 22.16. Such plots can also be used to
show the impact of significant moderating factors.

• Funnel plots to investigate publication bias (which is the tendency for
only papers with significant results to be published). Funnel plots plot
the effect size metric for each study against its standard error. The
effect size of studies with large standard errors should be more varied
than the effect size of studies with relatively small standard errors. The
white funnel on the funnel plot shows the acceptable variation for the
data points. The funnel plot application can also estimate the number of
missing studies and display the funnel plot with estimated missing data
points filled-in. An example of a funnel plot is shown Figure 22.17. It is
based on the same data as the forest plot and includes three extra data
points (shown by 3 white filled dots in the left-side of the plot) which
correspond to estimated missing data points. The funnel plot also shows

RE Model

-2.00 -1.00 0.00 1.00

Fisher's z Transformed Correlation Coefficient

Study 8

Study 7

Study 6

Study 5

Study 4

Study 3

Study 2

Study 1

-1.22 [-1.72 , -0.71]

-0.13 [-0.83 , 0.56]

-0.18 [-0.83 , 0.48]

-0.22 [-0.59 , 0.15]

-0.32 [-0.70 , 0.06]

-0.02 [-0.46 , 0.41]

-0.32 [-0.91 , 0.27]

 0.00 [-0.51 , 0.51]

-0.30 [-0.58 , -0.03]

FIGURE 22.16: Forest plot example.

Systematic Review and Mapping Study Procedures 347

Fisher's z Transformed Correlation Coefficient

S
ta

nd
ar

d
E

rr
or

0.
35

4
0.

26
5

0.
17

7
0.

08
8

0.
00

0

-1.00 -0.50 0.00

FIGURE 22.17: Funnel plot example.

that one data point is outside the acceptable range (that is, the black
dot on the left-hand side of the plot).

Sensitivity analysis can be performed using the influential case diagnostic
procedures. In addition Q-Q (Quantile-Quantile) plots can be used to inves-
tigate whether the distribution of the primary studies is normal.

22.10.1.3 Vote counting for quantitative systematic reviews

If you cannot do a full meta-analysis because there is too much diversity
among the outcome measures or experimental methods, we recommend using
a vote counting approach. Vote counting is based on counting the number
of primary studies that found a significant affect, and if they constitute the
majority, assuming that there is a true effect.

Most meta-analysts object to the use of vote counting for two reasons:

1. Assuming that a study is valid, a significant effect indicates a true effect.
However, a non-significant effect does not indicate that there is no effect,
because it can be due to low power.

348 Evidence-Based Software Engineering and Systematic Reviews

2. Vote counting does not consider the size of effect, so it is not clear
whether an effect is of practical importance as well as being significant.

However, in practice, the technique is useful for synthesizing software engineer-
ing studies, particularly when it is integrated with some form of moderator
analysis. That is, you look for additional factors that might explain differ-
ences in primary study outcomes. This is similar to moderator analysis in a
meta-analysis, but is qualitative rather than quantitative.

Before considering moderator factors, you need to define the outcome of
each primary study. Popay et al. (2006) suggest a five-point scale to describe
the outcome:

1. Significantly favours intervention

2. Trends towards intervention

3. No difference

4. Trends towards control

5. Significantly favours control.

They also recommend reporting any effect sizes that can be calculated, not
the significance of the outcome.

Some of the synthesis methods used for qualitative primary studies support
vote counting (see Chapter 10 and Table 22.3). In particular, the display
methods used for Qualitative Cross-Case Analysis (Miles et al. 2014) can
also be used to display the results of vote counting and qualitative moderator
analysis. The outcomes of each primary study can be tabulated, together
with the identified moderator factor values for the study. The display can be
organised so that primary studies with the same outcome are kept together.
Alternatively, if there is a good reason for displaying the results in a different
order (for example, based on the date of the study), it is useful to colour-code
the entries according to the outcome. You should then look for any trends
among the moderator factors that seem consistent with favourable outcomes.
In some cases, it may be possible to use more sophisticated methods such
as Comparative Analysis (Ragin 1989) or Case Survey Analysis (Yin &
Heald 1975) to analyse vote counting and moderator factor data.

22.10.2 Data synthesis for qualitative systematic reviews
As far as planning is concerned, you should specify in the protocol, the type

of synthesis method you intend to use (see Chapter 10 and Table 22.3, for an
overview of qualitative methods that have been used in software engineering
studies).

In most cases, data synthesis will be integrated with data extraction. You
should expect an iterative process whereby the results of reading, extracting
and synthesizing data from some primary studies influence the data extraction

Systematic Review and Mapping Study Procedures 349

TABLE 22.3: Synthesis Methods for Qualitative Analysis
Type Description

Narrative Synthesis
(Popay et al. 2006)

The results and any trends are reported as a textual
narrative. Narrative synthesis must be supported by
tabulating results or it is very difficult to demonstrate
traceability from research questions to the data, to
aggregated results that answer the research questions.

Thematic Analysis
(Thomas &
Harden 2008)

Cruzes & Dybå (2011a) define a 5 stage process start-
ing with reading the text and identifying specific seg-
ments of text. The segments of text are labelled and
coded, then the codes are analysed to reduce over-
laps and define themes. Themes are analysed to cre-
ate higher-order themes and/or models of the phe-
nomenon being studied. Note some themes are likely
to be defined in advance as a result of the research
questions, while others may arise as a result of read-
ing the primary studies.

Comparative
Analysis
(Ragin 1989)

List and categorises cases and attempts to assess what
inferences the data supports using boolean algebra.
For example, looks for factors that are consistently
associated with favourable outcomes AND not associ-
ated with unfavourable outcomes.

Meta-Ethnography
(Noblit & Hare 1988)

7 stage process in which interpretations and explana-
tions reported in the primary studies are translated
into one another. Translations may result in agreement
among studies, contradictions among studies, or may
form parts of a coherent argument.

Case Survey (Yin &
Heald 1975)

This is similar to Comparative Analysis but is appro-
priate when there are a large number primary studies.
Individual primary study results and context informa-
tion are classified and tabulated looking for common-
alities and differences.

Qualitative
Cross-case Analysis
(Miles et al. 2014)

This uses matrices to report textual and quantitative
information from each primary study. The matrices al-
low similarities and differences among primary studies
to be identified.

Metasummary
(Sandelowski
et al. 2007)

This is a quantitatively oriented aggregation method
for analysing thematic analysis papers and opinion
surveys. Counts of themes such as risks, motivators,
barriers to adoption are made on a primary study ba-
sis irrespective of the number of participants in each
study.

350 Evidence-Based Software Engineering and Systematic Reviews

and synthesis of subsequent primary studies and may initiate a re-assessment
of some of the primary studies which have already been synthesised. If you are
using a textual analysis tool you need to decide whether it will be used during
the initial data extraction and synthesis process or as part of the validation
process. The basic data extraction and qualitative synthesis process involves:

1. Identifying textual elements (which can be phrases, sentences, para-
graphs, items in tables) in each primary study. The textual element
should be stored in your data collection form (which can be a database,
document or spreadsheet) with associated information identifying where
in the document the element was found, and the research question(s)
that it addresses.

2. Each textual element is coded, that is, allocated a single word or phrase
that defines its content.

3. Codes are cross-checked for consistency across different primary studies
and the data extracted by different team members.

4. Codes may be used for context analysis, that is, the frequency of occur-
rence of the individual codes are counted for research questions.

5. Codes may be used to create a model of the topic of interest by grouping
codes together into related higher-level characteristics and themes. Then
the relationships among those higher level characteristics and themes are
investigated.

In these guidelines it is not possible to describe every approach to quali-
tative synthesis. You will find more detailed information in Chapter 10. We
recommend reviewing existing software engineering systematic reviews that
have used qualitative approaches. A good starting point is a paper written
by Cruzes & Dybå (2011b) which cross-references software engineering sys-
tematic reviews to the qualitative synthesis methods they used. For specific
qualitative methods, Cruzes & Dybå (2011a) provide a detailed explanation
of thematic analysis, while Da Silva et al. (2013) present a worked example
of using meta-ethnography to synthesise four primary studies. In addition,
Cruzes et al. (2014) present an example of synthesising two case studies using
three different methods: thematic analysis, qualitative cross case analysis and
narrative analysis.

22.10.3 Data aggregation for mapping studies
Mapping study data collection involves identifying important features that

describe the characteristics of the primary studies and identifying the appro-
priate metrics to measure those features. Mapping study aggregation involves
tabulating the primary study features. In the case of nominal and ordinal scale
features, you should count the number of primary studies in the different cate-
gories. For numerical features, you should use standard statistical measures of

Systematic Review and Mapping Study Procedures 351

location and scale (for example, mean and standard deviations, and graphical
representations such as box plots or histograms). It is often useful to represent
the data in two-way tables that show the relationship between two different
categorical features.

For features represented as nominal and ordinal scale metrics, two graph-
ical representation are particularly useful:

1. Trend plots that have counts of primary studies in a specific category
as the y-variable and a year as the x-variable. It is sometimes useful to
have more than one y-variable. For example, trend plots might be used
to show the number of primary studies of different types per year.

2. Bubble plots that are graphical representations which allow you to view
information from two two-way tables on the same diagram when the ta-
bles share a nominal scale measure. An example is shown in Figure 22.18.
In this diagram, the y-variable is called “Variability Context Factor” and
has six categories. There are two x-variables, one called “Contribution
Facet” which has five categories, and the other called “Research Facet”
which has six categories. The bubble containing the value 21 identifies
that 21 studies were categorised as having a y-category of “Requirement
Variability” and a “Research Focus” category of “Solution”. The dia-
gram shows the total number of primary studies classified by “Research
Facet” was 128 (which is the number next to the name of the x-variable)
and that 21 primary studies corresponds to 16.4% of those studies. The
fact that there are different numbers of primary studies classified against
each variable indicates that either that some primary studies were not
classified against one of the x-valuables or some studies were classified in
more than one category for the same x-variable. Note this is not a three-
dimensional table because it does not show the distribution of the third
nominal variable conditional on the values of the two other variables.

More information about synthesis for mapping studies can be found in Chap-
ter 9.

22.10.3.1 Tables versus graphics

Although graphical representations of the data are important for showing
the distribution of primary studies, it is also important to tabulate the results.
Without a table showing the values of the categories for each primary study
(or a publicly available on-line supporting database), other researchers cannot
make constructive use of the results of a mapping study.

22.10.4 Data synthesis validation
There are no standard validation procedures for data synthesis. You must

aim to ensure that there is a clear link from the research questions to the data
and then to the syntheses that answers those research questions.

352 Evidence-Based Software Engineering and Systematic Reviews

Contribution Facet 114 (100%) Research Facet 128 (100%)

1

3

1

2

1

1

2

7

2

8

11

9

2

3

5

4

19

17

3

1

8

4

2

3

6

9

17

13

2

7

4

3

19

21

1

2

4

5

2

4

1

3

M
et

ric
 4

 3
.3

%

To
ol

 5
 3

.5
%

M
od

el
 3

9
34

.2
%

M
et

ho
d

50
 4

3.
9%

P
ro

ce
ss

 1
6

14
.0

%

E
va

lu
at

io
n

50
 3

9.
1%

V
al

id
at

io
n

0
0%

S
ol

ut
io

n
56

 4
3.

7%

P
hi

lo
so

ph
y

14
 1

0.
9%

E
xp

er
ie

nc
e

8
6.

2%

O
pi

ni
on

 0
 0

%

Requirements

Variability

Architecture

Variability

Implementation

Variability

Verification and

Validation

Variability

Management

Orthogonal

Variability

Variability Content Facet

0.88%

2.63%

0.88%

1.75%

0.88%

0.88%

1.75%

6.14%

1.75%

7.02%

9.65%

7.89%

1.75%

2.63%

4.39%

3.51%

16.67%

14.91%

2.63%

0.88%

7.02%

3.51%

1.56%

2.34%

4.69%

7.03%

13.28%

10.16%

1.56%

5.47%

3.13%

2.34%

14.84%

16.41%

0.78%

1.56%

3.13%

3.91%

1.56%

3.13%

0.78%

2.34%

FIGURE 22.18: Bubbleplot example.

General points to remember
• Quantitative systematic reviews can sometimes be analysed using meta-
analysis but it may still be necessary to use qualitative synthesis if indi-
vidual primary studies use non-comparable measurements or treatments.

• Qualitative synthesis is difficult. You should aim to maintain traceability
from the data to the synthesis.

• Mapping study aggregation is relatively straightforward.

• If a mapping study is intended for publication in a conference or journal
papers, you must make sure that all the primary study data including

Systematic Review and Mapping Study Procedures 353

the citations and classification information is available to the reader.
For very large mapping studies, this may mean publishing an on-line
database holding the citations and feature data for each primary study.

22.11 Reporting the systematic review
There are three things you need consider when reporting your results:

1. Who do you expect to be interested in the results of the systematic
review and what format of the report(s) do they need?

2. The format of each type of report you need to write.

3. How you plan to validate the report.

22.11.1 Systematic review readership
Systematic reviews (in contrast to mapping studies) should consider two

main types of reader: researchers and practitioners. A reader of an academic
journal or conference paper will expect to see a full description of the method-
ology, as well as a report of the results of the study with traceability between
the data and the analysis. Practitioners, however, will be more concerned
about the implication of the result for software engineering practice. It is also
the case that practitioners are more likely to read short magazine articles than
ponderous academic papers.

Thus, there is an argument for writing both an academic paper and a
separate article for practitioners. Remember, however, to reference any related
journal paper in the practitioner article and vice versa. You also need to
ensure that you do not violate any originality or copyright requirements of
the publication outlets.

For mapping studies, the main readership will be researchers. It is im-
portant to include information about each primary study including the full
citations, as well as how it was classified against each feature. For conference
papers, it may be difficult to fit in all the data for each primary study. In such
cases you need to consider providing ancillary data on-line (either an extended
technical report or a database).

22.11.2 Report structure
With respect to the structure of a systematic review report, PRISMA, the

current guideline for reporting systematic reviews and meta-analysis studies
in health care, has been published in several open-access papers (one example
being Liberati et al. (2009)).

354 Evidence-Based Software Engineering and Systematic Reviews

The high-level structure for a PRISMA report is very similar to the stan-
dard scientific format which comprises the Title and Abstract followed by the
IMRAD sections (Introduction, Methods, Results, and Discussion). In soft-
ware engineering, we usually have a separate Conclusions section but PRISMA
makes Conclusions a subset of the Discussion section and adds a final section
called Funding.

We recommend using the basic PRISMA structure with a few minor
changes:

1. Title: Identify the topic of the study and that it is a systematic review,
meta-analysis or mapping study.

2. Abstract: Structured abstract, including headings for background, ob-
jectives, methods, results, conclusions.

3. Introduction: Justification for the review and the research question(s).

4. Background: Any information needed to understand the topic of the
systematic review.

5. Methods: Indicate where the protocol can be accessed. Report search
and selection process including databases searched, search terms and in-
clusion and exclusion criteria - consider what needs to be in the body of
the paper and what can be put into appendices. Report data collection
process and data items collected including quality data and the data
items needed to answer the research questions. For meta-analysis, iden-
tify the principal summary measures and methods of aggregation. For
other forms of review, describe the data analysis and synthesis process.
Report how quality data will be used and any other means of identify-
ing possible biases. Describe any additional analysis such as sensitivity
analysis or subgroup analysis.

6. Results: Report the study selection process including number of studies
excluded at each major stage, preferably with a flow diagram. Report
the identified primary study characteristics. Discuss the quality of indi-
vidual studies and any systematic biases. Present data syntheses using
the graphical methods discussed in Section 22.10. Report the results of
any additional analyses.

7. Discussion: provide a summary the evidence for each research question
and any additional analyses. Discuss the limitations of the review at the
primary study level and at the review level.

8. Conclusions: Provide a general interpretation of the result in the context
of any other evidence. Provide recommendations for researchers and
practitioners.

Systematic Review and Mapping Study Procedures 355

9. Acknowledgements: Identify the funding agency (if any). Thank any
researchers who made useful contributions to the study but were not
part of the research team, for example external reviewers of the protocol
or final report.

10. Appendices: Report the search strings used for individual digital sources.
Specify the data collection form. Provide a list of “near miss” papers,
for example, candidate primary studies excluded from the review after
the second screening process. Report any quality checklists used.

If you are intending to report your results in a practitioner magazine, you
should expect to use a much less formal presentation. You should aim to ex-
plain the topic covered by the review and why it is important. It is unnecessary
to provide any detailed description of the methodology. When presenting the
findings you should explain what the implications are for practice and the
confidence that can be placed in the findings.

22.11.3 Validating the report
All report authors have a responsibility to read and review the report, with

the aim of ensuring:

• The research questions are clearly specified and fully answered.

• The research methodology is fully and correctly reported.

• There is traceability from the research questions to data collection, data
synthesis and conclusions.

• All the tables and figures used to present the results are correct and
internally consistent.

• In the case of systematic reviews, the conclusions are written clearly and
are targeted both at researchers and practitioners.

If possible, for systematic reviews, you should find someone to act as an
independent reviewer of the report. For example, within a research group or
a university department, you can try to encourage colleagues to undertake
independent reviews on a quid-pro-quo basis. An independent reviewer would
probably find useful the following questions, which are based on review as-
sessment questions suggested by Greenhalgh (2010):

• Q1: Does the review address an important software engineering problem?

• Q2: Was a thorough search done of the appropriate databases(s) and
were other sources considered?

• Q3: Was methodological quality assessed and primary studies weighted
accordingly?

356 Evidence-Based Software Engineering and Systematic Reviews

• Q4: How sensitive are the results to the way the review was done?

• Q5: Have numerical results been interpreted sensibly in the context of
the problem?

Points to remember
• Identify your target audience and write appropriately.

• Make sure to report your methodology fully.

• For reviews including a large number primary studies, consider providing
an online database to hold the information collected about each primary
study.

• Particularly for systematic reviews, consider the implications for prac-
titioners.

• All authors need to review the final report carefully.

• For systematic reviews, an independent reviewer can be very helpful.

• For journal or conference papers reporting mapping studies, you may
need to provide citation and classification information in a separate tech-
nical report or online database.

Appendix
Catalogue of Systematic Reviews
Relevant to Education and Practice

with Sarah Drummond and Nikki Williams

A.1 Professional Practice (PRF) . 358
A.2 Modelling and Analysis (MAA) . 359
A.3 Software Design (DES) . 361
A.4 Validation and Verification (VAV) . 361
A.5 Software Evolution (EVO) . 362
A.6 Software Process (PRO) . 363
A.7 Software Quality (QUA) . 364
A.8 Software Management (MGT) . 365

In seeking to identify what evidence-based management can learn from
evidence-based medicine, Barends & Briner (2014) observed that, in the field
of medicine, “evidence-based practice started out as a teaching method, de-
veloped at McMaster University in Canada”. Hence, it was looking for better
ways to teach about clinical practice that formed the key driver for the emer-
gence of evidence-based medicine. Later in their paper the distinction is made
between a minority of “evidence practitioners” who “critique the literature”
(by conducting systematic reviews) and the majority of “evidence users” who
have an understanding of where the evidence comes from, and turn to those
sources to advise their practices. So, while this book is largely concerned with
the activities of the “evidence practitioners” in software engineering, this ap-
pendix concerns itself with the needs of our many potential “evidence users”.

Perhaps because EBSE-related research has so far been mainly focused
upon applying evidence-based research practices to specific topics, its poten-
tial role in support of the ways that we teach our subject has received less
attention. However, the growing number of systematic reviews does provide
scope to make our teaching more evidence-informed by being able to illus-
trate it with evidence about how well software engineering techniques and
models work, as well as with data drawn from industrial settings. In (Budgen
et al. 2012) we identified 43 systematic reviews, published up until mid-2011,
that contained material that could be used to support introductory courses
about software engineering practices and concepts. This is not to say that

357

358 Evidence-Based Software Engineering and Systematic Reviews

many other systematic reviews may not also be useful for teaching in some
way, and obviously, more specialist courses might be able to use a rather dif-
ferent set of studies. For this appendix, we have extended the restricted search
used in (Budgen et al. 2012) up to the end of 2014, and this has added a further
16 reviews. All of the studies have been categorised using the Knowledge Areas
(KAs) and Knowledge Units (KUs) identified in the 2004 ACM/IEEE guide-
lines for undergraduate curricula in software engineering—although we should
note that some studies do not easily fall into just one of these categorisations.

Obviously, not all the KUs have been covered by this set of systematic
reviews, especially those concerned with ‘fundamentals’ and ‘concepts’. How-
ever, from the viewpoint of the teacher, these reviews can help to provide the
student with a realistic picture of the many complexities of software engineer-
ing practice, and by aiding evidence-informed teaching, they can help ‘flesh
out’ our students’ knowledge about the discipline. However, we would advise
that before using any of these it is also worth checking if newer systematic
reviews have been published on those topics.

Each of the following sections provides a summary of the studies cate-
gorised as belonging to one Knowledge Area, highlighting some examples for
each KA and then listing the others. We should however emphasise that we
have chosen highlights that are intended to be illustrative and that these do
not form specific recommendations. Each person teaching about software en-
gineering therefore needs to identify the set of studies that can provide the
best support for their specific course.

Table A.1 summarises the distribution of studies across the different KAs
and KUs, identifying both clusters and gaps as appropriate for a mapping
study. (Indeed, this provides an example of using an existing set of categories
to help identify any gaps.)

A.1 Professional Practice (PRF)
There are two studies that were categorised as addressing this Knowledge

Unit.

Professionalism (pr) Useful insight into human aspects of the discipline
is provided in Ghapanchi & Aurum (2011), which examines why IT
professionals change their jobs, and identifies some of the factors that
might help an organisation retain its technical staff.

Group dynamics/Psychology (psy) The review by Renger, Kolfschoten
& de Vreede (2008) examines the challenges faced by teams of developers
and stakeholders when working together to create graphical models for
describing systems, and identifies some trade-offs in the processes such as

Catalogue of Systematic Reviews Relevant to Education and Practice 359

TABLE A.1: Distribution of Systematic Reviews across Knowledge Areas
Knowledge
Area

No.
KU

KUs covered No.
gaps

KUs not covered

Professional
Practice

2 psy(1), pr(1) 1 com

Modelling &
Analysis

4 tm(4), af(1), er(3),
rsd(1)

3 md, rfd, rv

Design 2 str(1), ar(2) 4 con, hci, dd, ste
V & V 3 rev(2), tst(6),

par(1)
1 fnd, hct

Evolution 1 ac(3) 1 pro
Software
Process

2 imp(6), con(3) 0

Software
Quality

3 pro(3), pca(1),
pda(2)

2 cc, std

Software
Management

3 pp(11), per(2),
ctl(2)

2 con, cm

“involving stakeholders can improve correctness, buy-in and complete-
ness, but lead to conflict (with developers) due to different perspectives”
and “including a skilled modeller can improve model quality but reduce
the sense of ownership by stakeholders”.

A.2 Modelling and Analysis (MAA)
We have highlighted three studies that provide a spectrum of the issues

covered, and then listed the remaining ones in Table A.2.

Types of models (tm) One of the studies under this heading looks at
experience with using model-driven engineering (MDE) in industry
(Mohagheghi & Dehlen 2008). Perhaps in part because the primary stud-
ies were industry studies they found some difficulty in generalising their
results, and they also noted that there was a lack of suitably mature
tool support. However, they did comment that they “found reports of
improvements in software quality and of both productivity gains and
losses, but these reports were mainly from small-scale studies. There are
a few reports on advantages of applying MDE in larger projects, how-
ever, more empirical studies and detailed data are needed to strengthen
the evidence.” From the teaching perspective this has the benefit of being

360 Evidence-Based Software Engineering and Systematic Reviews

one of the few systematic reviews to have looked at what is happening
in industry, and hence can provide a useful perspective upon this.

Eliciting requirements (er) The study by López, Nicolás & Toval (2009)
is a fairly short report on the risks to requirements elicitation that can
occur when moving from co-located development to a global software
development context. While set in the context of exploring a particular
approach to addressing the problems, this can help to provide the reader
with an appreciation of the potential pitfalls of moving to what is an
increasingly popular form of software development.

Eliciting requirements (er) We have discussed the study by Dieste & Ju-
risto (2011) earlier in the context of knowledge translation (see Section
14.3.3). Its main value for teaching is that it compares different tech-
niques for requirements elicitation and gives a number of recommenda-
tions, together with reasoning.

TABLE A.2: Other Studies Addressing MAA
KA Title Reference
tm Comparing Local and Global

Software Effort Estimation
Models—Reflections on a Sys-
tematic Review

(MacDonell & Shepperd
2007)

Does the technology acceptance
model predict actual use? A sys-
tematic literature review

(Turner et al. 2010)

A systematic literature review on
fault prediction performance in
software engineering

(Hall et al. 2012)

af A systematic review of domain
analysis tools

(Lisboa, Garcia, Lu-
crédio, de Almeida,
de Lemos Meira &
de Mattos Fortes 2010)

rsd On the generation of require-
ments specifications from soft-
ware engineering models: A sys-
tematic literature review

(Nicolás & Toval 2009)

er A systematic literature review of
stakeholder identification meth-
ods in requirements elicitation

(Pacheco & Garcia 2012)

Catalogue of Systematic Reviews Relevant to Education and Practice 361

A.3 Software Design (DES)
Only three papers were categorised as coming under this heading.

Design strategies (str) The paper by Ali, Babar, Chen & Stol (2010)
addresses an important if challenging topic, which is comparing the
strengths and weaknesses of aspect-oriented programming with those
of other design approaches. The authors identified a range of gener-
ally positive effects, particularly for performance, memory consumption,
modularity etc. However, some studies did report negative effects and
many of the primary studies included were rated as being ‘poor’ for the
credibility of any evidence provided.

Architectural design (ar) The paper by Shahin, Liang & Babar (2014)
looks at the different forms used to visualise software architecture, how
extensively they are used and for what purposes, and the forms most
widely used in industry. While there are no guidelines as to which form to
choose, it does provide a useful report of what is happening in industry.

The third paper, listed in Table A.3 has already been described earlier in the
book.

TABLE A.3: Other Studies Addressing DES
KA Title Reference
dd What do We Know about the

Effectiveness of Software Design
Patterns?

(Zhang & Budgen 2012)

A.4 Validation and Verification (VAV)
This topic is fairly well covered, with a number of systematic reviews, some

on fairly specialist topics. We have identified two that may be particularly
useful for general teaching, summarising the remaining papers in Table A.4.

Reviews (rev) The paper by Kollanus & Koskinen (2009) looks at software
inspection research and profiles what is known about inspections, based
on 153 articles and considering both technical and management aspects.

Testing (tst) The topic addressed in (Haugset & Hanssen 2008) is that of
automation of acceptance testing, and in particular its application in

362 Evidence-Based Software Engineering and Systematic Reviews

agile development. The authors identify eight different effects and discuss
the benefits of these in terms of encouraging developers to reflect on
design and system behaviour.

TABLE A.4: Other Studies Addressing VAV
KA Title Reference
rev Capture-recapture in software

inspections after 10 years
research—theory, evaluation and
application

(Petersson, Thelin, Rune-
son & Wohlin 2004)

tst In Search of What We Experi-
mentally Know about Unit Test-
ing

(Juristo, Moreno, Vegas &
Solari 2006)

A systematic review of search-
based testing for non-functional
system properties

(Azfal, Torkar & Feldt
2009)

A systematic review on regres-
sion test selection techniques

(Engström, Runeson &
Skoglund 2010)

On evaluating commercial Cloud
services: A systematic review

(Li, Zhang, O’Brien, Cai
& Flint 2013)

A systematic review on the func-
tional testing of semantic web
services

(Tahir, Tosi & Morasca
2013)

par What Do We Know about Defect
Detection Methods?

(Runeson, Andersson,
Thelin, Andrews &
Berling 2006)

A.5 Software Evolution (EVO)
The three papers categorised under this heading demonstrate some very

relevant aspects of software engineering knowledge in an area where students
will usually have little first-hand experience.

Evolution activities (ac) The first paper, by Williams & Carver (2010)
sought to identify the architectural characteristics that link changes in
software to the resulting effects in a system. From this, they created
a software architecture change characterisation scheme (SACCS) map-
ping high-level changes to lower-level characteristics, together with an
assessment of likely impact. So here, we see how a systematic review led
to the development of a categorisation model.

Catalogue of Systematic Reviews Relevant to Education and Practice 363

The second paper, by (Arias, van der Spek & Avgeriou 2011) is concerned
with dependency analysis concerned with making explicit the details and
form of interconnections between program units, with particular concern
about their effects upon the evolution of software-intensive systems. It
provides an assessment of how usable the different techniques are, and
assesses some of their limitations.
The third paper, by Hordijk, Ponisio & Wieringa (2009), examined
whether duplication of code (cloning) affected the ease with which a
system could be changed. They found that it was not possible to demon-
strate or reject the existence of any direct link between duplication
of code and changeability, so demonstrating the limitations of a sec-
ondary study when lacking enough strong primary studies. However,
their study did identify some useful guidelines for handling systems con-
taining cloned code, based on the studies that they reviewed.

A.6 Software Process (PRO)
All of the papers under this heading are of relevance to teaching, and most

have a bias towards practice (although in turn, this may limit the number of
primary studies available). However, we have identified three as particularly
relevant for providing insight into industry practices, with details of the other
two being provided in Table A.5.

Process implementation (imp) All three papers are in this category, al-
though addressing very different issues.
The study by Hanssen, Bjørnson & Westerheim (2007) addresses the
way that the Rational Unified Process (RUP) can be tailored to meet
the needs of individual organisations. A key conclusion from a teaching
perspective is that the RUP is too complex and that software develop-
ment needs more agile practices.
Regarding agile practices, the review by Hossain, Babar & Paik (2009)
does address the use of agile practice, although in a rather specific con-
text, examining how Scrum can be used in global software development
(GSD) projects. The authors conclude that Scrum practices may be
constrained by GSD contextual factors affecting communication, coor-
dination and collaboration.
Finally the study by Mohagheghi & Conradi (2007) addresses the issues
of software reuse and its effect upon quality and productivity as well
as any economic benefits it provides, finding a positive and significant
effect for both software quality and productivity.

364 Evidence-Based Software Engineering and Systematic Reviews

TABLE A.5: Other Studies Addressing PRO
KA Title Reference
con A systematic literature review

on the industrial use of software
process simulation

(Ali, Peterson & Wohlin
2014)

Software fault prediction met-
rics: A systematic literature re-
view

(Radjenović, Heričko,
Torkar & Živkovič 2013)

The Effects of Test Driven Devel-
opent on External Quality and
Productivity: A Meta-analysis

(Rafique & Misic 2013)

imp The effectiveness of pair pro-
gramming: A meta-analysis (Hannay et al. 2009)
Challenges and Improvements in
Distributed Software Develop-
ment: A systematic review

(Jiménez, Piattini &
Vizcaíno 2009)

Reconciling software develop-
ment models: A quasi-systematic
review

(Magdaleno, Werner &
de Araujo 2012)

Considering rigor and relevance
when evaluating test driven de-
velopment: A systematic review

(Munir, Moayyed &
Peterson 2014)

Agile product line engineering: A
systematic literature review (Díaz, Pérez, Alarcón &

Garbajosa 2011)

A.7 Software Quality (QUA)
There are several useful studies that address issues such as process im-

provement and the assessment of processes and products. For illustration, we
have summarised two studies that address these process and product aspects,
with the remaining papers being listed in Table A.6.
Software quality processes (pro) Galin & Avrahami (2006) investigated

the value for an organisation in investing in a CMM program for soft-
ware process improvement. Their results were expressed using seven
common performance metrics and the authors argue that these indi-
cate that CMM programs can lead to improved software development
and maintenance.

Product assurance (pda) Riaz, Mendes & Tempero (2009) examined tech-
niques and models commonly used for predicting the maintainability of
software. Their study provides classification of techniques and a list of
metrics that were successful for predicting maintainability, as well as
providing a review of definitions of maintainability.

Catalogue of Systematic Reviews Relevant to Education and Practice 365

TABLE A.6: Other Studies Addressing QUA
KA Title Reference
pro Software process improvement in

small and medium software en-
terprises: a systematic review

(Pino, Garcia & Piattini
2008)

Systematic review of organiza-
tional motivations for adopting
CMM-based SPI

(Staples & Niazi 2008)

pac Towards a Defect Prevention
Based Process Improvement Ap-
proach

(Kalinowski, Travassos &
Card 2008)

pda Coupling Metrics for Aspect-
Oriented Programming: A Sys-
tematic Review of Maintainabil-
ity Studies

(Burrows, Garcia &
Taïani 2009)

A.8 Software Management (MGT)
The large number of studies in the ‘pp’ KA (project planning) is in part

because of the importance of estimation for software engineering projects,
and also because some of the pioneering EBSE researchers were particularly
interested in this. Again, we have highlighted two studies to provide examples
and then listed the remaining ones in Table A.7 This is in part because it is
quite difficult to know how these topics will be addressed in a course, and so
the highlighted studies are again essentially indicative.

Project planning (pp) Our example for this is (Jørgensen 2007). While
there has tended to be the expectation that model-based estimation will
be ‘better’ than expert judgement, this paper observes that this is not
necessarily so, and explains some reasons for this.

Project personnel & organisation (per) Understanding how program-
mers and programming teams are motivated, and the effect that mo-
tivation has is important knowledge for project management. The study
by Sharp, Baddoo, Beecham, Hall & Robinson (2009) identifies key mo-
tivation factors and creates a new model of motivation.

366 Evidence-Based Software Engineering and Systematic Reviews

TABLE A.7: Other Studies Addressing MGT
KA Title Reference
pp A review of studies on expert esti-

mation of software development ef-
fort

(Jørgensen 2004)

The Consistency of Empirical
Comparisons of Regression and
Analogy-based Software Project
Cost Prediction

(Mair et al. 2005)

A Survey on Software Estimation in
the Norwegian Industry

(Moløkken-Østvold,
Tanilkan, Gallis, Lien
& Hove 2004)

The Clients’ Impact on Effort Es-
timation Accuracy in Software De-
velopment Projects

(Grimstad, Jørgensen &
Moløkken-Østvold 2005)

Evidence-Based Guidelines for As-
sessment of Software Development
Cost Uncertainty

(Jørgensen 2005)

A Comparison of Software Cost,
Duration, and Quality for Waterfall
vs. Iterative and Incremental Devel-
opment: A Systematic Review

(Mitchell & Seaman 2009)

Managing Risks in Distributed
Software Projects: An Integrative
Framework

(Persson, Mathiassen, Boeg,
Madsen & Steinson 2009)

Empirical evidence in global soft-
ware engineering: a systematic re-
view

(Smite, Wohlin, Gorschek &
Feldt 2010)

Barriers in the selection of offshore
software development outsourcing
vendors: An exploratory study us-
ing a systematic literature review

(Khan et al. 2011)

Software development in start-up
companies: A systematic mapping
study

(Paternoster, Giardino, Un-
terkalmsteiner & Gorschek
2014)

per Motivation in Software Engineer-
ing: A systematic literature review (Beecham et al. 2008)
Empirical studies on the use of
social software in global software
development–A systematic map-
ping study

(Giuffrida & Dittrich 2013)

ctl Factors Influencing Software Devel-
opment Productivity — State-of-
the-Art and Industrial Experiences

(Trendowicz & Münch 2009)

Measuring and predicting software
productivity: A systematic map
and review

(Peterson 2011)

Bibliography

AGREE (2009), ‘Appraisal of Guidelines for Research and Evaluation II
(AGREE II)’, AGREE Next Steps Consortium Report.

Ali, M. S., Babar, M. A., Chen, L. & Stol, K.-J. (2010), ‘A systematic review
of comparative evidence of aspect-oriented programming’, Information
and Software Technology 52(9), 871–887.

Ali, N. B., Peterson, K. & Wohlin, C. (2014), ‘A systematic literature review
on the industrial use of software process simulation’, Journal of Systems
& Software 97, 65–85.

Alves, V., Niu, N., Alves, C. & Valença, G. (2010), ‘Requirements engineering
for software product lines: A systematic literature review’, Information
and Software Technology 52(8), 806–820.

Ampatzoglou, A. & Stamelos, I. (2010), ‘Software engineering research for
computer games: A systematic review’, Information and Software Tech-
nology 52(9), 888–901.

Anjum, M. & Budgen, D. (2012), A mapping study of the definitions used
for Service Oriented Architecture, in ‘Proceedings of 16th EASE Confer-
ence’, IET Press, pp. 1–5.

Arias, T. B. C., van der Spek, P. & Avgeriou, P. (2011), ‘A practice-driven
systematic review of dependency analysis solutions’, Empirical Software
Engineering 16, 544–586.

Atkins, S., Lewin, S., Smith, H., Engel, M., Fretheim, A. & Volmink, J. (2008),
‘Conducting a meta-ethnography of qualitative literature: Lessons learnt’,
BMC Medical Research Methodology 8(21).

Azfal, W., Torkar, R. & Feldt, R. (2009), ‘A systematic review of search-based
testing for non-functional system properties’, Information and Software
Technology 51, 957–976.

Babar, M. A. & Zhang, H. (2009), Systematic literature reviews in software en-
gineering: Preliminary results from interviews with researchers, in ‘Pro-
ceedings of the 2009 3rd International Symposium on Empirical Soft-
ware Engineering and Measurement’, ESEM ’09, IEEE Computer Soci-
ety, Washington, DC, USA, pp. 346–355.

367

368 Bibliography

Barends, E. G. R. & Briner, R. B. (2014), ‘Teaching evidence-based practice:
Lessons from the pioneers—An interview with Amanda Burls and Gordon
Guyatt’, Academy of Management Learning & Education 13(3), 476–483.

Barnett-Page, E. & Thomas, J. (2009), ‘Methods for the synthesis of qual-
itative research: a critical review’, BMC Medical Research Methodology
9(59).

Basili, V., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sorumgard, S.
& Zelkowitz, M. (1996), ‘The empirical investigation of perspective-based
reading’, Empirical Software Engineering 1(2), 133–164.

Basili, V. R., Shull, F. & Lanubile, F. (1999), ‘Building Knowledge through
Families of Experiments’, IEEE Transactions on Software Engineering
25(4), 456–473.

Beecham, S., Baddoo, N., Hall, T., Robinson, H. & Sharp, H. (2006), Protocol
for a Systematic Literature Review of Motivation in Software Engineer-
ing, University of Hertfordshire.

Beecham, S., Baddoo, N., Hall, T., Robinson, H. & Sharp, H. (2008), ‘Motiva-
tion in software engineering: A systematic literature review’, Information
and Software Technology 50(9–10), 860–878.

Benbasat, I., Goldstein, D. K. & Mead, M. (1987), ‘The case research strategy
in studies of information systems’, MIS Quarterly 11(3), 369–386.

Boehm, B. W. (1981), Software Engineering Economics, Prentice-Hall.

Booth, A., Papaioannou, D. & Sutton, A. (2012), Systematic Approaches to a
Successful Literature Review, Sage Publications Ltd.

Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. T. (2009),
Introduction to Meta-Analysis, John Wiley and Sons Ltd.

Bowes, D., Hall, T. & Beecham, S. (2012), Slurp: A tool to help large complex
systematic reviews deliver valid and rigorous results, in ‘Proceedings 2nd
International Workshop on Evidential Assessment of Software Technolo-
gies (EAST’12)’, ACM Press, pp. 33–36.

Bratthall, L. & Jørgensen, M. (2002), ‘Can you trust a single data source
exploratory software engineering case study?’, Empirical Software Engi-
neering 7(1), 9–26.

Briand, L. C., Melo, W. L. & Wust, J. (2002), ‘Assessing the applicability of
object-oriented software projects fault-proneness models across’, IEEE
Transactions on Software Engineering 28, 706–720.

Brooks Jr., F. P. (1987), ‘No silver bullet: essences and accidents of software
engineering’, IEEE Computer 20(4), 10–19.

Bibliography 369

Budgen, D. (1971), ‘A KN → Λπ partial-wave analysis in the region of the
Σ(1670)’, Lettere al Nuovo Cimento 2(3), 85–89.

Budgen, D., Burn, A., Brereton, P., Kitchenham, B. & Pretorius, R. (2011),
‘Empirical evidence about the UML: A systematic literature review’, Soft-
ware — Practice and Experience 41(4), 363–392.

Budgen, D., Burn, A. & Kitchenham, B. (2011), ‘Reporting student projects
through structured abstracts: A quasi-experiment’, Empirical Software
Engineering 16(2), 244–277.

Budgen, D., Drummond, S., Brereton, P. & Holland, N. (2012), What scope is
there for adopting evidence-informed teaching in software engineering?,
in ‘Proceedings of 34th International Conference on Software Engineering
(ICSE 2012)’, IEEE Computer Society Press, pp. 1205–1214.

Budgen, D., Kitchenham, B. A., Charters, S., Turner, M., Brereton, P. &
Linkman, S. (2008), ‘Presenting software engineering results using struc-
tured abstracts: A randomised experiment’, Empirical Software Engi-
neering 13(4), 435–468.

Budgen, D., Kitchenham, B. & Brereton, P. (2013), The Case for Knowledge
Translation, in ‘Proceedings of 2013 International Symposium on Em-
pirical Software Engineering & Measurement’, IEEE Computer Society
Press, pp. 263–266.

Budgen, D., Kitchenham, B., Charters, S., Gibbs, S., Pohthong, A., Keung,
J. & Brereton, P. (2013), Lessons from conducting a distributed quasi-
experiment, in ‘Proceedings of 2013 International Symposium on Em-
pirical Software Engineering & Measurement’, IEEE Computer Society
Press, pp. 143–152.

Burgers, J. S., Grol, R., Klazinga, N. S., Mäkelä, M. & Zaat, J. (2003), ‘To-
wards evidence-based clinical practice: an international survey of 18 clini-
cal guidelines programs’, International Journal for Quality in Health Care
15(1), 31–45.

Burrows, R., Garcia, A. & Taïani, F. (2009), Coupling metrics for aspect-
oriented programming: A systematic review of maintainability studies,
in ‘ENASE 2009 - Proceedings of the 4th International Conference on
Evaluation of Novel Approaches to Software Engineering, Milan, Italy,
May 2009’, pp. 191–202.

Canfora, G., Cimitile, A., Garcia, F., Piattini, M. & Visaggio, C. A. (2007),
‘Evaluating performances of pair designing in industry’, Journal of Sys-
tems & Software 80, 1317–1327.

Carifio, J. & Perla, R. J. (2007), ‘Ten common misunderstandings, miscon-
ceptions, persistent myths and urban legends about likert scales and

370 Bibliography

likert response formats and their antidotes’, Journal of Social Science
3(3), 106–116.

Carver, J. C. (2010), Towards reporting guidelines for experimental replica-
tions: A proposal, in ‘Proceedings of the 1st International Workshop on
Replication in Empirical Software Engineering Research (RESER 2010)’,
ACM Press, pp. 1–4.

Casey, V. & Richardson, I. (2008), The impact of fear on the operation of vir-
tual teams, in ‘Proceedings of IEEE International Conference on Global
Software Engineering’, IEEE Computer Society Press.

Chen, L. & Babar, M. A. (2011), ‘A systematic review of evaluation of vari-
ability management approaches in software product lines’, Information
and Software Technology 53(4), 344–362. Special section: Software En-
gineering track of the 24th Annual Symposium on Applied Computing
Software Engineering track of the 24th Annual Symposium on Applied
Computing.

Ciolkowski, M. (2009), What do we know about perspective-based reading? an
approach for quantitative aggregation in software engineering, in ‘Pro-
ceedings 3rd International Symposium on Empirical Software Engineer-
ing & Measurement (ESEM)’, pp. 133–144.

Cochran, W. (1954), ‘The combination of estimates from different experi-
ments.’, Biometrics 10(101-129).

Cochrane, A. L. (1971), Effectiveness and Efficiency: Random Reflections on
Health Services, The Nuffield Provincial Hospitals Trust.

Cohen, J. (1960), ‘A coefficient of agreement for nominal scales’, Educational
and Psychological Measurement 20(1), 37–46.

CRD (2009), ‘Systematic reviews crd’s guidance for undertaking reviews in
health care’, Centre for Review and Dissemination.

Cruzes, D. S. & Dybå, T. (2011a), Recommended steps for thematic synthesis
in software engineering, in ‘Proceedings ESEM 2011’.

Cruzes, D. S. & Dybå, T. (2011b), ‘Research synthesis in software engineering:
A tertiary study’, Information and Software Technology 53(5), 440–455.

Cruzes, D. S., Dybå, T., Runeson, P. & Höst, M. (2014), ‘Case studies syn-
thesis: a thematic, cross-case, and narrative synthesis worked example’,
Empirical Software Engineering .

Cruzes, D. S., Mendonca, M., Basili, V., Shull, F. & Jino, M. (2007a), Au-
tomated information extraction from empirical software engineering lit-
erature, in ‘Proceedings of First International Symposium on Empirical
Software Engineering & Measurement (ESEM 2007)’, pp. 491–493.

Bibliography 371

Cruzes, D. S., Mendonca, M., Basili, V., Shull, F. & Jino, M. (2007b), Us-
ing context distance measurement to analyze results across studies, in
‘Proceedings of First International Symposium on Empirical Software
Engineering & Measurement (ESEM 2007)’, pp. 235–244.

Cumming, G. (2012), Understanding the New Statistics. Effect Sizes, Confi-
dence Intervals, and Meta-Analysis, Routledge Taylor & Francis Group,
New York, London.

Da Silva, F. Q. B.; Cruz, S. S. J. O.; Gouveia, T. B.; & Capretz, L. F.
(2013), ‘Using meta-ethnography to synthesize research: A worked ex-
ample of the relations between personality and software team process’,
2013 ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, pp. 153–162 .

da Silva, F. Q., Santos, A. L., Soares, S., França, A. C. C., Monteiro, C. V. &
Maciel, F. F. (2011), ‘Six years of systematic literature reviews in soft-
ware engineering: An updated tertiary study’, Information and Software
Technology 53(9), 899–913.

da Silva, F. Q., Suassuna, M., França, A. C. C., Grubb, A. M., Gouveia, T. B.,
Monteiro, C. V. & dos Santos, I. E. (2014), ‘Replication of empirical
studies in software engineering research: A systematic mapping study’,
Empirical Software Engineering 19, 501–557.

Davis, D., Evans, M., Jadad, A., Perrier, L., Rath, D., Ryan, D., Sibbald,
G., Straus, S., Rappolt, S., Wowk, M. & Zwarenstein, M. (2003), ‘The
case for knowledge translation: shortening the journey from evidence to
effect’, BMJ 327, 33–35.

Díaz, J., Pérez, J., Alarcón, P. P. & Garbajosa, J. (2011), ‘Agile product
line engineering—A systematic literature review’, Software: Practice and
Experience 41, 921–941.

Dickinson, T. L. & McIntyre, R. M. (1997), A conceptual framework of team-
work measurement, in M. T. Brannick, E. Salas & C. Prince, eds, Team
Performance Assessment and Measurement: Theory, Methods and Appli-
cations, Psychology Press, NJ, USA, pp. 19–43.

Dieste, O., Grimán, A. & Juristo, N. (2009), ‘Developing search strate-
gies for detecting relevant experiments’, Empirical Software Engineering
14(5), 513–539.

Dieste, O., Griman, A., Juristo, N. & Saxena, H. (2011), Quantitative deter-
mination of the relationship between internal validity and bias in software
engineering experiments: Consequences for systematic literature reviews,
in ‘Empirical Software Engineering and Measurement (ESEM), 2011 In-
ternational Symposium on’, pp. 285–294.

372 Bibliography

Dieste, O. & Juristo, N. (2011), ‘Systematic review and aggregation of em-
pirical studies on elicitation techniques’, IEEE Transactions on Software
Engineering 37(2), 283–304.

Dieste, O., Juristo, N. & Martinez, M. D. (2014), Software industry ex-
periments: A systematic literature review, in ‘Proceedings of the 1st
International Workshop on Conducting Empirical Studies in Industry
(CSEI’14)’, IEEE Computer Society Press, pp. 2–8.

Dieste, O. & Padua, O. (2007), Developing search strategies for detecting
relevant experiments for systematic reviews, in ‘Empirical Software En-
gineering and Measurement, 2007. ESEM 2007. First International Sym-
posium on’, pp. 215–224.

Dixon-Woods, M., Sutton, A., Shaw, R., Miller, T., Smith, J., Young, B.,
Bonas, S., Booth, A. & Jones, D. (2007), ‘Appraising qualitative research
for inclusion in systematic reviews: a quantitative and qualitative com-
parison of three methods’, Journal of Health Services Research and Policy
12(1), 42–47.

Dybå, T. & Dingsøyr, T. (2008a), ‘Empirical studies of agile software develop-
ment: A systematic review’, Information & Software Technology 50, 833–
859.

Dybå, T. & Dingsøyr, T. (2008b), Strength of evidence in systematic reviews
in software engineering, in ‘Proceedings of International Symposium on
Empirical Software Engineering and Metrics (ESEM)’, pp. 178–187.

Dybå, T., Kampenes, V. & Sjøberg, D. (2006), ‘A systematic review of statis-
tical power in software engineering experiments’, Information & Software
Technology 48(8), 745–755.

Eaves, Y. D. (2001), ‘A synthesis technique for grounded theory data analysis’,
Journal of Advanced Nursing 35(5), 654–663.

Eisenhardt, K. M. (1989), ‘Building theories from case study research’,
Academy of Management Review 14, 532–550.

Elamin, M. B., Flynn, D. N., Bassler, D., Briel, M., Alonso-Coello, P., Karan-
icolas, P. J., Guyatt, G., Malaga, G., Furukawa, T. A., Kunz, R., Schne-
mann, H., Murad, M. H., Barbui, C., Cipriani, A. & Montori, V. M.
(2009), ‘Choice of data extraction tools for systematic reviews depends
on resources and review complexity’, Journal of Clinical Epidemiology
62(5), 506–510.

Elberzhager, F., Rosbach, A., Münch, J. & Eschbach, R. (2012), ‘Reducing test
effort: A systematic mapping study on existing approaches’, Information
and Software Technology 54, 1092–1106.

Bibliography 373

Engström, E., Runeson, P. & Skoglund, M. (2010), ‘A systematic review on re-
gression test selection techniques’, Information and Software Technology
52, 14–30.

Ericsson, K. & Simon, H. (1993), Protocol Analysis: Verbal Reports as Data,
MIT Press.

Felizardo, K. R., Andery, G. F., Paulovich, F. V., Minghim, R. & Maldon-
ado, J. C. (2012), ‘A visual analysis approach to validate the selection
review of primary studies in systematic reviews’, Information and Soft-
ware Technology 54(10), 1079 – 1091.

Felizardo, K. R., Nakagawa, E. Y., Feitosa, D., Minghim, R. & Maldonado,
J. C. (2010), An approach based on visual text mining to support cate-
gorization and classification in the systematic mapping, in ‘Proceedings
EASE ’10’, British Computer Society.

Fenton, N. E. & Pfleeger, S. L. (1997), Software Metrics: A Rigorous and
Practical Approach, 2nd edn, PWS Publishing.

Fernández-Sáez, A. M., Bocco, M. G. & Romero, F. P. (2010), SLR-Tool—a
tool for performing systematic literature reviews, in J. A. M. Cordeiro,
M. Virvou & B. Shishkov, eds, ‘Proceedings of ICSOFT (2)’, SciTePress,
pp. 157–166.

Fichman, R. G. & Kemerer, C. F. (1997), ‘Object technology and reuse:
Lessons from early adopters’, IEEE Computer 30, 47–59. (Reports on
four Case Studies).

Fink, A. (2003), The Survey Handbook, 2 edn, Sage Books. Volume 1 of the
Survey Kit.

Foss, T., Stensrud, E., Myrtveit, I. & Kitchenham, B. (2003), ‘A simulation
study of the model evaluation criterion MMRE’, IEEE Transactions on
Software Engineering 29(11), 985–995.

Galin, D. & Avrahami, M. (2006), ‘Are CMM program investments beneficial?
Analysing past studies’, IEEE Software pp. 81–87.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995), Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley.

Ghapanchi, A. H. & Aurum, A. (2011), ‘Antecedents to IT personnel’s in-
tentions to leave: A systematic literature review’, Journal of Systems &
Software 84, 238–249.

Giuffrida, R. & Dittrich, Y. (2013), ‘Empirical studies on the use of social
software in global software development–A systematic mapping study’,
Information & Software Technology 55, 1143–1164.

374 Bibliography

Glaser, B. & Strauss, A. (1967), The Discovery of Grounded Theory: Strategies
for Qualitative Research, Aldine Publishing Company.

Glass, R., Ramesh, V. & Vessey, I. (2004), ‘An Analysis of Research in Com-
puting Disciplines’, Communications of the ACM 47, 89–94.

Goldacre, B. (2009), Bad Science, Harper Perennial.

Gómez, O. S., Juristo, N. & Vegas, S. (2010), Replications types in experi-
mental disciplines, in ‘Proceedings of Empirical Software Engineering &
Measurement (ESEM)’, pp. 1–10.

Gorschek, T., Svahnberg, M., Borg, A., Loconsole, A., Börstler, J., San-
dahl, K. & Eriksson, M. (2007), ‘A controlled empirical evaluation of
a requirements abstraction model’, Information & Software Technology
49(7), 790–805.

Gotterbarn, D. (1999), ‘How the new Software Engineering Code of Ethics
affects you’, IEEE Software 16(6), 58–64.

GRADE Working Group (2004), ‘Grading quality of evidence and strength of
recommendations’, British Medical Journal (BMJ) 328(1490).

Graham, I. D., Logan, J., Harrison, M. B., Straus, S. E., Tetroe, J., Caswell, W.
& Robinson, N. (2006), ‘Lost in knowledge translation: Time for a map?’,
Journal of Continuing Education in the Health Professions 26(1), 13–24.

Greenhalgh, T. (2010), How to read a paper The basics of evidence-based
medicine, 4th edn, Wiley-Blackwell BMJIBooks.

Greenhalgh, T., Robert, G., MacFarlane, F., Bate, P. & Kyriakidou, O. (2004),
‘Diffusion of Innovations in Service Organisations: Systematic Review and
Recommendations’, The Milbank Quarterly 82(4), 581–629.

Greenhalgh, T. & Wieringa, S. (2013), ‘Is it time to drop the “knowledge
translation” metaphor? a critical literature review’, Journal of the Royal
Society of Medicine 104, 501–509.

Grimstad, S. & Jørgensen, M. (2007), ‘Inconsistency of expert judgment-based
estimates of software development effort’, Journal of Systems & Software
80, 1770–1777.

Grimstad, S., Jørgensen, M. & Moløkken-Østvold, K. (2005), The clients’
impact on effort estimation accuracy in software development projects,
in ‘Proceedings of 11th IEEE International Software Metrics Symposium
(METRICS 2005)’, pp. 1–10.

Gu, Q. & Lago, P. (2009), ‘Exploring service-oriented system engineering chal-
lenges: a systematic literature review’, Service Oriented Computing and
Applications 3(3), 171–188.

Bibliography 375

Guyatt, G. H., Oxman, A. D., Vist, G. E., Kunz, R., Falck-Ytter, Y., Alonso-
Coello, P. & Schünemann, H. J. (2008), ‘Grade: an emerging consensus
on rating quality of evidence and strength of recommendations’, British
Medical Journal 336, 924–926.

Guzmán, L., Lampasona, C., Seaman, C. & Rombach, D. (2014), Survey on
research synthesis in software engineering, in ‘18th International Con-
ference on Eavluation and Assessment in Software Engineering’, ACM,
New York, USA.

Hall, T., Beecham, S., Bowes, D., Gray, D. & Counsell, S. (2012), ‘A systematic
literature review on fault prediction performance in software engineering’,
IEEE Transactions on Software Engineering 38(6), 1276–1304.

Hammersley, M. (2005), ‘Is the evidence-based practice movement doing more
good than harm? Reflections on Iain Chalmers’ case for research-based
policy making and practice’, Evidence & Policy 1(1), 85–100.

Hammersley, M. & Atkinson, P. (1983), Ethnography, Principles in Practice,
Tavistock.

Hannay, J., Dybå, T., Arisholm, E. & Sjøberg, D. (2009), ‘The effectiveness of
pair programming. A meta analysis’, Information & Software Technology
51(7), 1110–1122.

Hannes, K., Lockwood, C. & Pearson, A. (2010), ‘A comparative analysis of
three online appraisal instruments’ ability to assess validity in qualitative
research’, Qualitative Health Research 20(12), 1736– 1743.

Hanssen, G. K., Bjørnson, F. O. & Westerheim, H. (2007), Tailoring and intro-
duction of the rational unified process, in ‘Software Process Improvement
(EuroSPI 2007)’, Vol. LNCS 4764/2007, Springer, pp. 7–18.

Hastie, T., Tibshirani, R. & Friedman, J. (2009), The Elements of Statistical
Learning Data Mining, Inference, Prediction, 2nd edn, Springer.

Haugset, B. & Hanssen, G. K. (2008), Automated acceptance testing: A liter-
ature review and an industral case study, in ‘Proceedings of Agile 2008’,
IEEE Computer Society Press, pp. 27–38.

Hedges, L. V. & Olkin, I. (1985), Statistical Methods for Meta-Analysis, Aca-
demic Press.

Hernandes, E., Zamboni, A., Fabbri, S. & Thommazo, A. A. D. (2012), ‘Us-
ing GQM and TAM to evaluate StArt–a tool that supports systematic
review’, CLEI Electronic Journal 15, 3.

Higgins, J. P. T. & Thompson, S. G. (2002), ‘Quantifying heterogeneity in a
meta-analysis.’, Statistics in Medicine 21(11), 1539–1558.

376 Bibliography

Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. (2003),
‘Measuring inconsistency in meta-analyses’, BMJ 327(7414), 557–560.

Hordijk, W., Ponisio, M. L. & Wieringa, R. (2009), Harmfulness of code
duplication–a structured review of the evidence, in ‘Proceedings of 13th
International Conference on Evaluation and Assessment in Software En-
gineering (EASE 2009)’, pp. 1–10.

Hossain, E., Babar, M. A. & Paik, H. (2009), Using scrum in global software
development: A systematic literature review, in ‘Proceedings of 4th In-
ternational Conference on Global Software Engineering’, IEEE Computer
Society Press, pp. 175–184.

IEEE-CS/ACM (1999), ACM/IEEE-CS software Engineering Code of Ethics
and Professional Practice. (Version 5.2).
URL: http://www.acm.org/about/se-code/

Jalali, S. & Wohlin, C. (2012), Systematic literature studies: Database
searches vs. backward snowballing, in ‘Empirical Software Engineering
and Measurement (ESEM), 2012 ACM-IEEE International Symposium
on’, pp. 29–38.

Jedlitschka, A. & Pfahl, D. (2005), Reporting guidelines for controlled exper-
iments in software engineering, in ‘Proc. ACM/IEEE International Sym-
posium on Empirical Software Engineering (ISESE) 2005’, IEEE Com-
puter Society Press, pp. 95–195.

Jiménez, M., Piattini, M. & Vizcaíno, A. (2009), Challenges and improvements
in distributed software development: A systematic review, in ‘Advances
in Software Engineering’, pp. 1–14.

Jørgensen, M. (2004), ‘A review of studies on expert estimation of software
development effort’, Journal of Systems & Software 70(1–2), 37–60.

Jørgensen, M. (2005), ‘Evidence-based guidelines for assessment of software
development cost uncertainty’, IEEE Transactions on Software Engineer-
ing 31(11), 942–954.

Jørgensen, M. (2007), ‘Forecasting of software development work effort: Evi-
dence on expert judgement and formal models’, Int. Journal of Forecast-
ing 23(3), 449–462.

Jørgensen, M. (2014a), ‘Failure factors of small software projects at a global
outsourcingmarketplace’, The Journal of Systems and Software 92, 157–
169.

Jørgensen, M. (2014b), ‘What we do and don’t know about software develop-
ment effort estimation’, IEEE Software pp. 37–40.

http://www.acm.org/about/se-code/

Bibliography 377

Jorgensen, M. & Shepperd, M. (2007), ‘A systematic review of software de-
velopment cost estimation studies’, Software Engineering, IEEE Trans-
actions on 33(1), 33–53.

Juristo, N., Moreno, A. M., Vegas, S. & Solari, M. (2006), ‘In search of what
we experimentally know about unit testing’, IEEE Software pp. 72–80.

Juristo, N. & Vegas, S. (2011), ‘The role of non-exact replications in software
engineering experiments’, Empirical Software Engineering 16, 295–324.

Kabacoff, R. I. (2011), R in Action, Manning.

Kakarla, S., Momotaz, S. & Namim, A. (2011), An evaluation of mutation and
data-flow testing: A meta analysis, in ‘Fourth International Conference
on Software Testing, Verification and Validation Workshops’, ICSTW,
IEEE Computer Society, Washington, DC, USA, pp. 366–375.

Kalinowski, M., Travassos, G. H. & Card, D. N. (2008), Towards a defect
prevention based process improvement approach, in ‘Proceedings of the
34th Euromicro Conference on Software Engineering and Advanced Ap-
plications’, IEEE Computer Society Press, pp. 199–206.

Kampenes, V. B., Dybå, T., Hannay, J. E. & K. Sjøberg, D. I. (2009), ‘A sys-
tematic review of quasi-experiments in software engineering’, Inf. Softw.
Technol. 51(1), 71–82.

Kampenes, V. B., Dybå, T., Hannay, J. E. & Sjøberg, D. I. K. (2007), ‘System-
atic review: A systematic review of effect size in software engineering ex-
periments’, Information and Software Technology 49(11-12), 1073–1086.
URL: http://dx.doi.org/10.1016/j.infsof.2007.02.015

Kasoju, A., Peterson, K. & Mäntylä, M. (2013), ‘Analyzing an automotive
testing process with evidence-based software engineering’, Information
& Software Technology 55, 1237–1259.

Kearney, M. H. (1998), ‘Ready-to-wear: Discovering grounded formal theory’,
Research in Nursing and Health 21(2), 179–186.

Khan, K. S., Kunz, R., Kleijnen, J. & Antes, G. (2011), Systematic Reviews
to Support Evidence-Based Medicine, 2nd edn, Hodder Arnold.

Kitchenham, B. (2008), ‘The role of replications in empirical software
engineering—a word of warning’, Empirical Software Engineering
13, 219–221.

Kitchenham, B. A., Budgen, D. & Brereton, O. P. (2011), ‘Using mapping
studies as the basis for further research—a participant-observer case
study’, Information & Software Technology 53(6), 638–651. Special sec-
tion from EASE 2010.

http://dx.doi.org/10.1016/j.infsof.2007.02.015

378 Bibliography

Kitchenham, B. A., Fry, J. & Linkman, S. (2003), The case against cross-
over designs in software engineering, in ‘Proceedings of Eleventh Annual
International Workshop on Software Technology & Engineering (STEP
2003)’, IEEE Computer Society Press, pp. 65–67.

Kitchenham, B. A., Li, Z. & Burn, A. (2011), Validating search processes
in systematic literature reviews, in ‘Proceeding of the 1st International
Workshop on Evidential Assessment of Software Technologies’, pp. 3–9.

Kitchenham, B. A. & Pfleeger, S. L. (2002a), ‘Principles of survey research
part 2: Designing a survey’, ACM Software Engineering Notes 21(1), 18–
20. (For Part 1, see under Pfleeger).

Kitchenham, B. A. & Pfleeger, S. L. (2002b), ‘Principles of survey research
part 4: Questionnaire evaluation’, ACM Software Engineering Notes
27(3), 20–23.

Kitchenham, B. A. & Pfleeger, S. L. (2008), Personal opinion surveys, in
F. Shull, J. Singer & D. I. Sjøberg, eds, ‘Guide to Advanced Empirical
Software Engineering’, Springer-Verlag London, chapter 3.

Kitchenham, B. & Brereton, P. (2013), ‘A systematic review of systematic re-
view process research in software engineering’, Information and Software
Technology 55(12), 2049–2075.

Kitchenham, B., Brereton, P. & Budgen, D. (2010), The educational value
of mapping studies of software engineering literature, in ‘Proceedings
ICSE’10’, ACM.

Kitchenham, B., Brereton, P. & Budgen, D. (2012), Mapping study complete-
ness and reliability—a case study, in ‘Proceedings of 16th EASE Confer-
ence’, IET Press, pp. 1–10.

Kitchenham, B., Brereton, P., Budgen, D., Turner, M., Bailey, J. & Linkman,
S. (2009), ‘Systematic literature reviews in software engineering — a sys-
tematic literature review’, Information & Software Technology 51(1), 7–
15.

Kitchenham, B., Burn, A. & Li, Z. (2009), A quality checklist for technology-
centred testing studies, in ‘Proceedings EASE ’09’.

Kitchenham, B. & Charters, S. (2007), Guidelines for performing systematic
literature reviews in software engineering, Technical report, Keele Uni-
versity and Durham University Joint Report.

Kitchenham, B., Dybå, T. & Jørgensen, M. (2004), Evidence-based soft-
ware engineering, in ‘Proceedings of ICSE 2004’, IEEE Computer Society
Press, pp. 273–281.

Bibliography 379

Kitchenham, B., Mendes, E. & Travassos, G. H. (2007), ‘Cross versus within-
company cost estimation studies: A systematic review’, IEEE Transac-
tions on Software Engineering 33(5), 316–329.

Kitchenham, B., Pfleeger, S. L., McColl, B. & Eagan, S. (2002), ‘An empirical
study of maintenance and development estimation accuracy’, Journal of
Systems and Software 64, 57–77.

Kitchenham, B., Pfleeger, S. L., Pickard, L., Jones, P., Hoaglin, D., Emam,
K. E. & J.Rosenberg (2002), ‘Preliminary Guidelines for Empirical Re-
search in Software Engineering’, IEEE Transactions on Software Engi-
neering 28, 721–734.

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam,
K. & Rosenberg, J. (2002), ‘Preliminary guidelines for empirical research
in software engineering’, IEEE Transactions on Software Engineering
28(8), 721–734.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, P., Turner, M., Niazi,
M. & Linkman, S. (2010), ‘Systematic literature reviews in software engi-
neering — a tertiary study’, Information & Software Technology 52, 792–
805.

Kitchenham, B., Sjøberg, D. I., Dybå, T., Brereton, P., Budgen, D., Höst,
M. & Runeson, P. (2013), ‘Trends in the quality of human-intensive soft-
ware engineering experiments–a quasi-experiment’, IEEE Transactions
on Software Engineering 39(7), 1002–1017.

Kocaguneli, E., Menzies, T. & Keung, J. W. (2012), ‘On the value of en-
semble effort estimation’, IEEE Transactions on Software Engineering
38(6), 1403–1416.

Kocaguneli, E., Menzies, T., Keung, J. W., Cok, D. & Madachy, R. (2013),
‘Active learning and effort estimation: Finding the essential content of
software effort estimation data’, IEEE Transactions on Software Engi-
neering 39(8), 1040–1053.

Kollanus, S. & Koskinen, J. (2009), ‘Survey of software inspection research’,
The Open Software Engineering Journal 3, 15–34.

Kothari, A. & Armstrong, R. (2011), ‘Community-based knowledge transla-
tion: unexplored opportunities’, Implementation Science 6(59).

Krippendorff, K. (1978), ‘Reliability of binary attribute data’, Biometrics
34(1), 142–144.

Laitenberger, O., Emam, K. E. & Harbich, T. G. (2001), ‘An internally repli-
cated quasi-experimental comparison of checklist and perspective-based
reading of code documents’, IEEE Transactions on Software Engineering
27(5), 387–421.

380 Bibliography

Li, Z., Zhang, H., O’Brien, L., Cai, R. & Flint, S. (2013), ‘On evaluating
commercial cloud services: A systematic review’, Journal of Systems &
Software 86, 2371–2393.

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioan-
nidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J. & Moher, D.
(2009), ‘The prisma statement for reporting systematic reviews and meta-
analyses of studies that evaluate healthcare interventions: explanation
and elaboration’, BMJ 339.

Lindsay, R. M. & Ehrenberg, A. S. C. (1993), ‘The design of replicated studies’,
The American Statistician 47(3), 217–228.

Lisboa, L. B., Garcia, V. C., Lucrédio, D., de Almeida, E. S., de Lemos Meira,
S. R. & de Mattos Fortes, R. P. (2010), ‘A systematic review of domain
analysis tools’, Information and Software Technology 52(1), 1–13.

López, A., Nicolás, J. & Toval, A. (2009), Risks and safeguards for the require-
ments engineering process in global software development, in ‘Proceedings
of 4th International Conference on Global Software Engineering’, IEEE
Computer Society Press, pp. 394–399.

Lucia, A. D., Gravino, C., Oliveto, R. & Tortara, G. (2010), ‘An experimental
comparison of ER and UML class diagrams for data modelling’, Empirical
Software Engineering 15, 455–492.

MacDonell, S. & Shepperd, M. (2007), Comparing local and global software
effort estimation models – reflections on a systematic review, in ‘Em-
pirical Software Engineering and Measurement, 2007. ESEM 2007. First
International Symposium on’, pp. 401–409.

MacDonell, S., Shepperd, M., Kitchenham, B. & Mendes, E. (2010), ‘How
reliable are systematic reviews in empirical software engineering?’, IEEE
Transactions on Software Engineering 36(5), 676–687.

Madeyski, L. & Kitchenham, B. (2014), How variations in experimental de-
signs impact the construction of comparable effect sizes for meta-analysis.
Available from Barbara Kitchenham.

Magdaleno, A. M., Werner, C. M. L. & de Araujo, R. M. (2012), ‘Reconcil-
ing software development models: a quasi-systematic review’, Journal of
Systems & Software 85, 351–369.

Mair, C., Shepperd, M. & Jørgensen, M. (2005), An analysis of data sets used
to train and validate cost prediction systems, in ‘Proceedings PROMISE
’05’, ACM.

Marques, A., Rodrigues, R. & Conte, T. (2012), Systematic literature reviews
in distributed software development: A tertiary study, in ‘Global Software

Bibliography 381

Engineering (ICGSE), 2012 IEEE Seventh International Conference on’,
Global Software Engineering pp. 134–143.

Marshall, C., Brereton, O. P. & Kitchenham, B. A. (2014), Tools to support
systematic literature reviews in software engineering: A feature analy-
sis, in ‘Proceedings of 18th International Conference on Evaluation and
Assessment in Software Engineering (EASE’14)’, ACM Press, pp. 13:1–
13:10.

Marshall, C. & Brereton, P. (2013), Tools to support systematic litera-
ture reviews in software engineering: A mapping study, in ‘Proceedings
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM)’, IEEE Computer Society Press, pp. 296–
299.

McGarry, F., Burke, S. & Decker, B. (1998), Measuring the impacts individual
process maturity attributes have on software products, in ‘Proceedings
5th Software Metrics Symposium’, pp. 52–60.

Mierzewski, P. (2001), Developing a methodology for drawing up guidelines
on best medical practices, Technical report, Council of Europe.

Miles, M. B., Huberman, A. M. & Saldan̄a, J. (2014), Qualitative Data Anal-
ysis A Methods Sourcebook, 3rd edn, Sage Publications Inc.

Miller, J. (2005), ‘Replicating software engineering experiments: a poisoned
chalice or the holy grail’, Information & Software Technology 47, 233–
244.

Mitchell, S. & Seaman, C. (2009), A comparison of software cost, duration,
and quality for waterfall vs. iterative and incremental development: A
systematic review, in ‘Empirical Software Engineering and Measurement,
2009. ESEM 2009. 3rd International Symposium on’, pp. 511–515.

Moe, N. B., Dingsøyr, T. & Dybå, T. (2010), ‘A teamwork model for under-
standing an agile team: A case study of a Scrum project’, Information &
Software Technology 52, 480–491.

Mohagheghi, P. & Conradi, R. (2007), ‘Quality, productivity and economic
benefits of software reuse: a review of industrial studies’, Empirical Soft-
ware Engineering 12, 471–516.

Mohagheghi, P. & Dehlen, V. (2008), Where is the proof? – a review of expe-
riences from appying MDE in industry, in ‘Model Driven Architectures–
Foundations & Application’, Vol. 5095/2008, Lecture Notes in Computer
Science, Springer, pp. 432–443.

Moher, D., Liberati, A., Tetzlaff, J. & Group, D. G. A. T. P. (2009), ‘Preferred
reporting items for systematic reviews and meta-analyses: The prisma
statement’, PLoS Med 6(7) .

382 Bibliography

Moløkken-Østvold, K., Tanilkan, M. J. S. S., Gallis, H., Lien, A. C. & Hove,
S. E. (2004), A survey on software estimation in the Norwegian indus-
try, in ‘Proceedings of 10th Internation Symposium on Software Metrics
(METRICS’04)’, pp. 1–12.

Morris, S. B. (2000), ‘Distribution of the standardized mean change effect size
for meta-analysis on repeated measures’, British Journal of Mathematical
and Statistical Psychology 53, 17–29.

Morris, S. B. & DeShon, R. P. (2002), ‘Combining effect size estimates in
meta-analysis with repeated measures and independent-groups designs’,
Psychological Methods 7(1), 105–125.

Munir, H., Moayyed, M. & Peterson, K. (2014), ‘Considering rigor and rel-
evance when evaluating test driven development: A systematic review’,
Information & Software Technology 56, 375–394.

Myrtveit, I. & Stensrud, E. (2012), ‘Validity and reliability of evaluation pro-
cedures in comparative studies of effort prediction models’, Empirical
Software Engineering 17, 23–33.

Myrtveit, I., Stensrud, E. & Shepperd, M. (2005), ‘Reliability and validity in
comparative studies of software prediction models’, IEEE Transactions
on Software Engineering 31(5), 380–391.

Nascimento, D., Cox, K., Almeida, T., Sampaio, W., Almeida Bittencourt,
R., Souza, R. & Chavez, C. (2013), Using open source projects in soft-
ware engineering education: A systematic mapping study, in ‘Frontiers
in Education Conference, 2013 IEEE’, pp. 1837–1843.

NICE (2009), The Guidelines Manual, National Institute for Clinical Excel-
lence (NICE).

Nicolás, J. & Toval, A. (2009), ‘On the generation of requirements specifica-
tions from software engineering models: A systematic literature review’,
Information and Software Technology 51(9), 1291–1307.

Noblit, G. & Hare, R. (1988), Meta Ethnography: Synthesizing Qualitative
Studies, Sage Publications Ltd.

Noyes, J. & Lewin, S. (2011), Chapter 6: Supplemental guidance on select-
ing a method of qualitative evidence synthesis, and integrating qualita-
tive evidence with cochrane intervention reviews, in J. Noyes, A. Booth,
K. Hannes, A.Harden, J. Harris, S. Lewin & C. Lockwood, eds, ‘Sup-
plementary Guidance for Inclusion of Qualitative Research in Cochrane
Systematic Reviews of Interventions.’, version 1 (updated august 2011)
edn, Cochrane Collaboration Qualitative Methods Group.

Oates, B. (2006), Researching Information Systems and Computing, SAGE.

Bibliography 383

Oza, N. V., Hall, T., Rainer, A. & Grey, S. (2006), ‘Trust in software outsourc-
ing relationships: An empirical investigation of Indian software compa-
nies’, Information and Software Technology 48, 345–354.

Pacheco, C. & Garcia, I. (2012), ‘A systematic literature review of stakeholder
identification methods in requirements elicitation’, Journal of Systems &
Software 85, 2171–2181.

Paternoster, N., Giardino, C., Unterkalmsteiner, M. & Gorschek, T. (2014),
‘Software development in startup companies: A systematic mapping
study’, Information & Software Technology 56, 1200–1218.

Penzenstadler, B., Raturi, A., Richardson, D., Calero, C., Femmer, H. &
Franch, X. (2014), Systematic mapping study on software engineering
for sustainability (SE4S) — protocol and results, ISR Technical Report
UCI-ISR-14-1, Institute for Software Research, University of California,
Irvine.

Persson, J. S., Mathiassen, L., Boeg, J., Madsen, T. S. & Steinson, F. (2009),
‘Managing risks in distributed software projects: An integrative frame-
work’, IEEE Transactions on Engineering Management 56(3), 508–532.

Petersen, K., Feldt, R., Mujtaba, S. & Mattsson, M. (2008), Systematic map-
ping studies in software engineering, in ‘Proceedings of the 12th Interna-
tional Conference on Evaluation and Assessment in Software Engineer-
ing’, EASE’08, British Computer Society, Swinton, UK, pp. 68–77.

Peterson, K. (2011), ‘Measuring and predicting software productivity: A sys-
tematic map and review’, Information & Software Technology 53, 317–
343.

Petersson, H., Thelin, T., Runeson, P. & Wohlin, C. (2004), ‘Capture-
recapture in software inspections after 10 years research—theory, eval-
uation and application’, Journal of Systems and Software 72, 249–264.

Petre, M. (2013), UML in practice, in ‘Proceedings of the 2013 International
Conference on Software Engineering (ICSE)’, IEEE Computer Society
Press, pp. 722–731.

Petticrew, M. & Roberts, H. (2006), Systematic Reviews in the Social Sciences
A Practical Guide, Blackwell Publishing.

Pfleeger, S. L. (1999), ‘Understanding and improving technology transfer in
software engineering’, Journal of Systems & Software 47, 111–124.

Phalp, K., Vincent, J. & Cox, K. (2007), ‘Improving the quality of use case
descriptions: empirical assessment of writing guidelines’, Software Quality
Journal 15(4), 383–399.

384 Bibliography

Pino, F. J., Garcia, F. & Piattini, M. (2008), ‘Software process improvement
in small and medium software enterprises: a systematic review’, Software
Quality Journal 16, 237–261.

Popay, J., Roberts, H., Sowden, A., Petticrew, M., Arai, L., Rodgers, M.,
Britten, N., Roen, K. & Duffy, S. (2006), Guidance on the conduct of
narrative synthesis in systematic reviews, Technical report, Lancaster
University, UK, Available from j.popay@lancaster.ac.uk.

Publication Manual of the American Psychological Association (2001), 5th
edn, American Psychological Association, Washington, DC, USA.

Radjenović, D., Heričko, M., Torkar, R. & Živkovič, A. (2013), ‘Software fault
prediction metrics: A systematic literature review’, Information & Soft-
ware Technology 55, 1397–1418.

Rafique, Y. & Misic, V. (2013), ‘The effects of test-driven development on
external quality and productivity: A meta-analysis’, IEEE Transactions
on Software Engineering 39(6).

Ragin, C. C. (1989), The Comparative Method, University of California Press.

Remenyi, D. (2014), Grounded Theory. A reader for Researchers, Studentts,
Faculty and Others, 2nd edn, Academic Conferences and Publishing In-
ternational Ltd, Reading, UK.

Renger, M., Kolfschoten, G. L. & de Vreede, G.-J. (2008), Challenges in col-
laborative modelling: A literature review, in ‘Proceedings of CIAO! 2008
and EOMAS 2008’, Vol. LNBIP 10, Springer-Verlag Berlin, pp. 61–77.

Riaz, M., Mendes, E. & Tempero, E. (2009), A systematic review of software
maintainability prediction and metrics, in ‘Proceedings of Third Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM 2009)’, pp. 367–377.

Robinson, H., Segal, J. & Sharp, H. (2007), ‘Ethnographically-informed empir-
ical studies of software practicel studies of software practice’, Information
and Software Technology 49(540-551).

Robson, C. (2002), Real World Research, 2nd edn, Blackwell Publishing,
Malden.

Rogers, E. M. (2003), Diffusion of Innovations, 5th edn, Free Press, New York.

Ropponen, J. & Lyytinen, K. (2000), ‘Components of software development
risk: How to address them. A project manager survey’, IEEE Transac-
tions on Software Engineering 26(2), 98–111.

Rosenthal, R. & DiMatteo, M. (2001), ‘Meta-analysis: Recent developments
in quantitative methods for literature reviews’, Annual Review of Psy-
chology 52, 59–82.

mailto:j.popay@lancaster.ac.uk

Bibliography 385

Rosenthal, R. & Rubin, D. B. (2003), ‘r(equivalent): A simple effect size indi-
cator’, Psychological Methods 8(4), 492–496.

Rosnow, R. L. & Rosenthal, R. (1997), People Studying People Artifacts and
Ethics in Behavioural Research, W.H. Freeman & Co., New York.

Rovegard, P., Angelis, L. & Wohlin, C. (2008), ‘An empirical study on views
of importance of change impact analysis issues’, IEEE Transactions on
Software Engineering 34(4), 516–530.

Runeson, P., Andersson, C., Thelin, T., Andrews, A. & Berling, T. (2006),
‘What do we know about defect detection methods?’, IEEE Software
23(3), 82–86.

Runeson, P. & Höst, M. (2009), ‘Guidelines for conducting and reporting case
study research in software engineering’, Empirical Software Engineering
14(2), 131–164.

Runeson, P., Höst, M., Rainer, A. & Regnell, B. (2012), Case Study Research
in Software Engineering: Guidelines and Examples, Wiley.

Sackett, D., Straus, S., Richardson, W., Rosenberg, W. & Haynes, R. (2000),
Evidence-based medicine: how to practice and teach EBM, second edn,
Churchill Livingstone.

Salleh, N., Mendes, E. & Grundy, J. (2009), ‘Empirical studies of pair pro-
gramming for CS/SE teaching in higher education: A systematic litera-
ture review’, IEEE Transactions on Software Engineering 37(4), 509–525.

Sandelowski, M. & Barroso, J. (2003), ‘Creating metasummaries of qualitative
findings’, Nursing Research 52(4), 226–233.

Sandelowski, M., Barroso, J. & Voils, C. I. (2007), ‘Using qualitative meta-
summary to synthesize qualitative and quantitative descriptive findings’,
Research in Nursing and Health 30(1), 99–111.

Sandelowski, M., Docherty, S. & Emden, C. (1997), ‘Focus on qualitative
methods qualitative metasynthesis: issues and techniques’, Research in
Nursing and Health 20, 365–372.

Santos, R. E. S. & da Silva, F. Q. (2013), Motivation to perform systematic
reviews and their impact on software engineering practice, in ‘Proceedings
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM)’, IEEE Computer Society Press, pp. 292–
295.

Schünemann, H. J., Fretheim, A. & Oxman, A. D. (2006), ‘Improving the use
of research evidence in guideline development: 1. guidelines for guide-
lines’, Health Research Policy and Systems 4(13).

386 Bibliography

Seaman, C. B. (1999), ‘Qualitative methods in empirical studies of software
engineering’, IEEE Transactions on Software Engineering 25(4), 557–
572.

Seaman, C. B. & Basili, V. R. (1998), ‘Communication and organization: An
empirical study of discussion in inspection meetings’, IEEE Transactions
on Software Engineering 24(6), 559–572.

Shadish, W., Cook, T. & Campbell, D. (2002), Experimental and Quasi-
Experimental Design for Generalized Causal Inference, Houghton Mifflin
Co.

Shahin, M., Liang, P. & Babar, M. A. (2014), ‘A systematic review of soft-
ware architecture visualization techniques’, Journal of Systems & Soft-
ware 94, 161–185.

Shang, A., Huwiler-Müntener, K., Nartey, L., Jüni, P., Dörig, S., Sterne, J.
A. C., Pewsner, D. & Egger, M. (2005), ‘Are the clinical effects of ho-
moeopathy placebo effects? comparative study of placebo-controlled tri-
als of homoeopathy and allopathy’, The Lancet 366(9487), 726–732.

Sharp, H., Baddoo, N., Beecham, S., Hall, T. & Robinson, H. (2009), ‘Models
of motivation in software engineering’, Information and Software Tech-
nology 51, 219–233.

Sharp, H. & Robinson, H. (2008), ‘Collaboration and co-ordination in ma-
ture extreme programming teams’, International Journal of Human-
Computer Studies 66, 506–518.

Shaw, M. (2003), Writing good software engineering research papers (mini-
tutorial), in ‘Proceedings of 25th International Conference on Software
Engineering (ICSE 2003)’, IEEE Computer Society Press, p. 726.

Shepperd, M., Bowes, D. & Hall, T. (2014), ‘Researcher bias: The use of
machine learning in software defect prediction’, IEEE Transactions on
Software Engineering 40(6), 603–616.

Shepperd, M. J. & MacDonell, S. G. (2012), ‘Evaluating prediction systems
in software project estimation’, Information and Software Technology
54(8), 820–827.

Shepperd, M., Song, Q., Sun, Z. & Mair, C. (2013), ‘Data quality: Some
comments on the NASA software defect datasets’, IEEE Transactions
on Software Engineering 39(9), 1208–1215.

Sigweni, B., Shepperd, M. & Jørgensen, M. (2014), ‘An extended mapping
study of software development cost estimation studies’, IEEE Transac-
tions on Software Engineering. Under review.

Bibliography 387

Sjøberg, D., Hannay, J., Hansen, O., Kampenes, V., Karahasanović, A., Li-
borg, N.-K. & Rekdal, A. (2005), ‘A survey of controlled experiments
in software engineering’, IEEE Transactions on Software Engineering
31(9), 733–753.

Sjøberg, D. I. K., Dybå, T. & Jørgensen, M. (2007), The future of empirical
methods in software engineering research, in ‘Future of Software Engi-
neering (FOSE’07)’, Future of Software Engineering.

Skoglund, M. & Runeson, P. (2009), Reference-based search strategies in sys-
tematic reviews, in ‘13th International Conference on Evaluation and
Assessment in Software Engineering (EASE)’.

Smite, D., Wohlin, C., Gorschek, T. & Feldt, R. (2010), ‘Empirical evidence
in global software engineering: a systematic review’, Empirical Software
Engineering 15, 91–118.

Spencer, L., Ritchie, J., Lewis, J. & Dillon, L. (2003), Quality in Qualitative
Evaluation: A framework for assessing research evidence, Cabinet Office.

Staples, M. & Niazi, M. (2008), ‘Systematic review of organizational motiva-
tions for adopting CMM-based SPI’, Information and Software Technol-
ogy 50, 605–620.

Steinmacher, I., Chaves, A. & Gerosa, M. (2013), ‘Awareness support in dis-
tributed software development: A systematic review and mapping of
the literature’, Computer Supported Cooperative Work (CSCW) 22(2-
3), 113–158.

Straus, S. E., Tetroe, J. & Graham, I. (2009), ‘Defining knowledge translation’,
Canadian Medical Association Journal 181(3-4), 165–168.

Sun, Y., Yang, Y., Zhang, H., Zhang, W. & Wang, Q. (2012), Towards
evidence-based ontology for supporting systematic literature review, in
‘Proceedings of 16th International Conference on Evaluation and Assess-
ment in Software Engineering (EASE 2012)’, pp. 171–175.

Tahir, A., Tosi, D. & Morasca, S. (2013), ‘A systematic review on the func-
tional testing of semantic web services’, Journal of Systems & Software
86, 2877–2889.

Thomas, J. & Harden, A. (2008), ‘Methods for the thematic synthesis of qual-
itative research in systematic reviews’, BMC Medical Research Method-
ology 8(45).

Thorne, S., Jensen, L., Kearney, M. H., Noblit, G. & Sandelowski, M. (2004),
‘Qualitative metasynthesis: Reflections on methodological orientation
and ideological agenda’, Qualitative Health Research 14(10), 1342–1365.

388 Bibliography

Tichy, W. F. (1998), ‘Should Computer Scientists Experiment More?’, IEEE
Computer 31(5), 32–40.

Tomassetti, F., Rizzo, G., Vetro, A., Ardito, L., Torchiano, M. & Morisio, M.
(2011), Linked data approach for selection process automation in system-
atic reviews, in ‘Proceedings of 15th International Conference on Evalua-
tion and Assessment in Software Engineering (EASE 2011)’, pp. 31–35.

Torres, J., Cruzes, D. S. & do Nascimento Salvador, L. (2012), Automatic
results identification in software engineering papers, is it possible?, in
‘Proceedings of 12th International Conference on Computational Science
and Its Applications (ICCSA 2012)’, pp. 108–112.

Toye, F., Seers, K., Allcock, N., Briggs, M., Carr, E., Andrews, J. & Barker, K.
(2013), ‘Trying to pin down jelly - exploring intuitive processes in quality
assessment for meta-ethnography’, BMC Medical Research Methodology
13(46).

Trendowicz, A. & Münch, J. (2009), Factors influencing software development
productivitity—state-of-the-art and industrial experiences, in ‘Advances
in Computers’, Vol. 77, Elsevier, pp. 185–241.

Truex, D., Baskerville, R. & Klein, H. (1999), ‘Growing systems in emergent
organisations’, Communications of the ACM 42(8), 117–123.

Tsafnat, G., Glasziou, P., Choong, M., Dunn, A., Galgani, F. & Coiera, E.
(2014), ‘Systematic review automation technologies’, Systematic Reviews
3(1), 74.

Turner, M., Kitchenham, B., Brereton, P., Charters, S. & Budgen, D. (2010),
‘Does the technology acceptance model predict actual use? A systematic
literature review’, Information and Software Technology 52(5), 463–479.

Verner, J., Brereton, O., Kitchenham, B., Turner, M. & Niazi, M. (2012),
Systematic literature reviews in global software development: A tertiary
study, in ‘Evaluation Assessment in Software Engineering (EASE 2012),
16th International Conference on’, pp. 2–11.

Verner, J., Brereton, O., Kitchenham, B., Turner, M. & Niazi, M. (2014),
‘Risks and risk mitigation in global software development: A tertiary
study’, Information and Software Technology 56(1), 54–78. Special sec-
tions on International Conference on Global Software Engineering – Au-
gust 2011 and Evaluation and Assessment in Software Engineering – April
2012.

Viechtbauer, W. (2007), ‘Accounting for heterogeneity via random-effects
models and moderator analyses in meta-analyses’, Journal of Psychol-
ogy 215(2), 104–121.

Bibliography 389

Viechtbauer, W. (2010), ‘Conducting meta-analyses in r with the metafor
package’, Journal of Statistical Software 36(3).

Walia, G. S. & Carver, J. C. (2009), ‘A systematic literature review to iden-
tify and classify software requirement errors’, Information and Software
Technology 51(7), 1087–1109.

WHO (2005), Bridging the “know-do” gap: Meeting on knowledge translation
in global health, Technical report, World Health Organisation.

Wieringa, R., Maiden, N., Mead, N. & Rolland, C. (2006), ‘Requirements
engineering paper classification and evaluation criteria: A proposal and
a discussion’, Requirements Engineering 11(1), 102–107.

Williams, B. J. & Carver, J. C. (2010), ‘Characterizing software architec-
ture changes: A systematic review’, Information & Software Technology
52(1), 31–51.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. & Wesslen, A.
(2012), Experimentation in Software Engineering, 2nd edn, Springer.

Yin, R. K. (2014), Case Study Research: Design & Methods, 5th edn, Sage
Publications Ltd.

Yin, R. K. & Heald, K. A. (1975), ‘Using the case survey method to analyze
policy studies’, Administrative Science Quarterly 20, 371–381.

Zelkowitz, M. V. & Wallace, D. R. (1998), ‘Experimental models for validating
technology’, IEEE Computer 31, 23–31.

Zhang, C. & Budgen, D. (2012), ‘What do we know about the effectiveness of
software design patterns?’, IEEE Transactions on Software Engineering
38(5), 1213–1231.

Zhang, C. & Budgen, D. (2013), ‘A survey of experienced user perceptions
about design patterns’, Information & Software Technology 55(5), 822–
835.

Zhang, H. & Babar, M. A. (2013), ‘Systematic reviews in software engineer-
ing: An empirical investigation’, Information and Software Technology
55(7), 1341–1354.

Zhang, H., Babar, M. A. & Tell, P. (2011), ‘Identifying relevant studies in
software engineering’, Information and Software Technology 53(6), 625 –
637.

Zwarenstein, M. & Reeves, S. (2006), ‘Knowledge translation and interprofes-
sional collaboration: Where the rubber of evidence-based care hits the
road of teamwork’, Journal of Continuing Education in the Health Pro-
fessions 26, 46–54.

This page intentionally left blankThis page intentionally left blank

	Cover
	Contents
	List of Figures
	List of Tables
	Preface
	Glossary
	Part I: Evidence-Based Practices in Software Engineering
	Chapter 1: The Evidence-Based Paradigm
	Chapter 2: Evidence-Based Software Engineering (EBSE)
	Chapter 3: Using Systematic Reviews in Software Engineering
	Chapter 4: Planning a Systematic Review
	Chapter 5: Searching for Primary Studies
	Chapter 6: Study Selection
	Chapter 7: Assessing Study Quality
	Chapter 8: Extracting Study Data
	Chapter 9: Mapping Study Analysis
	Chapter 10: Qualitative Synthesis
	Chapter 11: Meta-Analysis
	Chapter 12: Reporting a Systematic Review
	Chapter 13: Tool Support for Systematic Reviews
	Chapter 14: Evidence to Practice: Knowledge Translation and Diffusion
	Further Reading for Part I

	Part II: The Systematic Reviewer’s Perspective of Primary Studies
	Chapter 15: Primary Studies and Their Role in EBSE
	Chapter 16: Controlled Experiments and Quasi-Experiments
	Chapter 17: Surveys
	Chapter 18: Case Studies
	Chapter 19: Qualitative Studies
	Chapter 20: Data Mining Studies
	Chapter 21: Replicated and Distributed Studies

	Part III: Guidelines for Systematic Reviews
	Chapter 22: Systematic Review and Mapping Study Procedures

	Appendix: Catalogue of Systematic Reviews Relevant to Education and Practice
	Bibliography
	Back Cover

