LECTURE 3 FIRST ORDER DIFFERENTIAL EQUATIONS

Solution of ordinary differential equations in which time t is the independent variable is usually an important part of solving partial differential equations in atmospheric and oceanic models. In this lecture, we examine finite-difference schemes for first-order ordinary differential equations with t as the independent variable and U(t) as the dependent variable. We consider the equation

$$\frac{dU}{dt} = f(U, t). \tag{1}$$

We divide the time axis into segments of equal interval Δt , and denote by $U^{(n)}$ the approximate solution for $U(n\Delta t)$. We further assume that we know the values $U^{(n)}$, $U^{(n-1)}$, $U^{(n-2)}$, . . ., and wish to construct a scheme for finding $U^{(n+1)}$.

a. Examples of finite-difference scheme

Let $f^{(n)} \equiv f(U^{(n)}, n\Delta t)$. The following are example of finite-difference schemes for (1):

The forward (Euler) scheme,
$$\frac{U^{(n+1)} - U^{(n)}}{\Delta t} = f^{(n)} ; \qquad (2)$$

The backward (implicit) scheme
$$\frac{U^{(n+1)} - U^{(n)}}{\Delta t} = f^{(n+1)}$$
; (3)

The centered (leap-frog) scheme
$$\frac{U^{(n+1)} - U^{(n-1)}}{2\Delta t} = f^{(n)} . \tag{4}$$

The scheme for (3) is called <u>implicit</u>, since the unknown $f^{(n+1)}$ appears on the right hand side, while the schemes for (2) and (4) are <u>explicit</u>. The schemes for (2) and (3) are <u>two-level</u> schemes since two time levels n and n+1 are involved. The scheme for (4), on the other hand, is a <u>three-level</u> scheme since three time levels n-1, n and n+1 are involved.

When more than two time levels are involved, the scheme is <u>not self-starting</u>. In the case of the leapfrog scheme, for example, two initial conditions $U^{(0)}$ and $U^{(1)}$ must be given to determine $U^{(2)}$, and subsequently $U^{(3)}$, $U^{(4)}$, The additional initial condition $U^{(1)}$ is called the computational initial condition. The usual procedure for obtaining the <u>computational initial condition</u> is using one of the two-level schemes, which are self-starting.

The trapezoidal scheme,
$$\frac{U^{(n+1)} - U^{(n)}}{\Delta t} = \frac{1}{2} \left(f^{(n+1)} + f^{(n)} \right) . \tag{5}$$

The Milne corrector,
$$\frac{U^{(n+1)} - U^{(n-1)}}{2\Delta t} = \frac{1}{6} \left(f^{(n+1)} + 4f^{(n)} + f^{(n-1)} \right)$$
 (6)

Note that (6) is a two-level implicit scheme and that (6) is a three-level implicit scheme.

b. Derivation of a family of schemes for (1)

To derive a broader family of schemes, let us integrate (1) with respect to time from $(n-m)\Delta t$ to $(n+1)\Delta t$. Here m is zero or a positive integer. Then

$$U^{(n+1)} - U^{(n-m)} = \int_{(n-m)\Delta t}^{(n+1)\Delta t} f(U,t)dt$$
 (7)

This expression, divided by $(1 + m)\Delta t$, may be approximated by

$$\frac{1}{(1+m)\Delta t} \Big(\mathcal{U}^{(n+1)} - \mathcal{U}^{(n-m)} \Big) = \beta f^{(n+1)} + \alpha_0 f^{(n)} + \alpha_{-1} f^{(n-1)} + \alpha_{-2} f^{(n-2)} + \ldots + \alpha_{-\ell} f^{(n-\ell)} + \varepsilon. \tag{8}$$

Here, ℓ is either zero or a positive integer. When $\beta \neq 0$, the scheme is implicit while when $\beta = 0$ the scheme is explicit.

Substituting the <u>true solution</u> U(t) and corresponding f(U,t) into (8), expanding into a Taylor series about $t = n\Delta t$, and denoting d/dt by ()', we obtain

$$\begin{split} \frac{1}{(1+m)\Delta t} & \left[\left\{ U + \Delta t U' + \frac{\Delta t^2}{2!} U'' + \frac{\Delta t^3}{3!} U''' + \frac{\Delta t^4}{4!} U'''' + \dots \right\} \right. \\ & - \left\{ U - m \Delta t U' + \frac{\left(m \Delta t\right)^2}{2!} U'' - \frac{\left(m \Delta t\right)^3}{3!} U''' + \frac{\left(m \Delta t\right)^4}{4!} U'''' + -\dots \right\} \right] \\ & = \beta \left\{ f + \Delta t f' + \frac{\Delta t^2}{2!} f'' + \frac{\Delta t^3}{3!} f''' + \dots \right\} \\ & + \alpha_0 f \\ & + \alpha_{-1} \left\{ f - \Delta t f' + \frac{\Delta t^2}{2!} f'' - \frac{\Delta t^3}{3!} f''' + -\dots \right\} \\ & + \alpha_{-2} \left\{ f - 2 \Delta t f' + \frac{(2 \Delta t)^2}{2!} f'' - \frac{(2 \Delta t)^3}{3!} f''' + -\dots \right\} \\ & + \alpha_{-3} \left\{ f - 3 \Delta t f' + \frac{(3 \Delta t)^2}{2!} f'' - \frac{(3 \Delta t)^3}{3!} f''' + -\dots \right\} \end{split}$$

$$+\alpha_{-\ell} \left\{ f - \ell t \Delta f' + \frac{(\ell \Delta t)^2}{2!} f'' - \frac{(\ell \Delta t)^3}{3!} f''' + - \dots \right\}$$

$$+\varepsilon.$$
(9)

Since the finite-difference scheme for (9) only approximates the differential equation, the true solution U(t) generally does not satisfy (9). Therefore ε in (9) is generally non-zero. The quantity ε is the <u>truncation error of the finite-difference scheme</u> given by (9). Rearranging and using U' = f we obtain

$$\varepsilon = U' \left\{ 1 - \left(\beta + \alpha_{0} + \alpha_{-1} + \ldots + \alpha_{-\ell} \right) \right\}
+ \Delta t U'' \qquad \left\{ \frac{1}{2} \frac{1 - m^{2}}{1 + m} - \beta + \alpha_{-1} + 2\alpha_{-2} + 3\alpha_{-3} + \ldots + \ell \alpha_{-\ell} \right\}
+ \frac{\left(\Delta t \right)^{2}}{2!} U''' \left\{ \frac{1}{3} \frac{1 - m^{3}}{1 + m} - \beta + \alpha_{-1} + 4\alpha_{-2} + 9\alpha_{-3} + \ldots + \ell^{2} \alpha_{-\ell} \right\}
+ \frac{\left(\Delta t \right)^{3}}{3!} U'''' \left\{ \frac{1}{4} \frac{1 - m^{4}}{1 + m} - \beta + \alpha_{-1} + 8\alpha_{-2} + 27\alpha_{-3} + \ldots + \ell^{3} \alpha_{-\ell} \right\}$$
(10)

A finite-difference scheme is consistent if $\varepsilon \to 0$ as $\Delta t \to 0$. For the scheme given by (9), the consistency condition can be obtained from (11) as

$$1 = \beta + \alpha_0 + \alpha_{-1} + \alpha_{-2} + \dots + \alpha_{-\ell}. \tag{11}$$

The order of accuracy of a consistent finite-difference scheme is the order or the infinitesimal $\varepsilon(\Delta t)$. The order of accuracy can be made higher than the first by an appropriate choice of the $\ell+1$ coefficients. Generally, order of accuracy can be made at least as high as $\ell+2$ for implicit schemes and $\ell+1$ for explicit schemes.

(i)
$$m = 0$$

The scheme (8) now takes the form

$$\frac{U^{(n+1)} - U^{(n)}}{\Delta t} = \beta f^{(n+1)} + \alpha_0 f^{(n)} + \alpha_{-1} f^{(n-1)} + \alpha_{-2} f^{(n-2)} + \dots + \alpha_{-\ell} f^{(n-\ell)}.$$
(12)

 $(i.1) \qquad \ell = 0$

The consistency condition (11) becomes $\beta + \alpha_0 = 1$. All other α 's are zero. Then (12) becomes

$$\frac{U^{(n+1)} - U^{(n)}}{\Delta t} = \beta f^{(n+1)} + (1 - \beta) f^{(n)}.$$
(13)

Since only two time levels are involved, this family of schemes are two-level schemes. The truncation error (10) becomes $\Delta t U''(1/2-\beta) + 0[(\Delta t)^2]$.

When $\beta = 0$, the scheme reduces to the forward or <u>Euler scheme</u> given by (2). It has first-order accuracy as expected from the general rule ($\ell + 1$ for explicit schemes). When $\beta = 1$, the scheme reduces to the <u>backward scheme</u> given by (3), which again has first-order accuracy. The highest order of accuracy can be obtained by choosing $\beta = 1/2$. Then the scheme reduces to the <u>trapezoidal scheme</u> given by (5), which has second-order accuracy as expected from the general rule ($\ell + 2$ for implicit schemes).

(i.2) $\ell \ge 1$

This family of schemes use the information on f's at earlier time levels to obtain higher-order accuracy.

(i.2.a) Explicit schemes ($\beta = 0$)

With $\ell=1$, the consistency condition (11) becomes $\alpha_0+\alpha_{-1}=1$. All other α 's are zero. Then the scheme reduces to

$$\frac{U^{(n+1)} - U^{(n)}}{\Delta t} = \alpha_0 f^{(n)} + (1 - \alpha_0) f^{(n-1)}.$$
 (14)

The right hand side has the form of linear extrapolation when $\alpha_0 > 1$. The truncation error is $\Delta t U''(1/2 + \alpha_{-1}) + 0[(\Delta t)^2] = \Delta t U''(3/2 - \alpha_o) + 0[(\Delta t)^2]$. Second-order accuracy is then obtained by choosing $\alpha_0 = 3/2$. This is the <u>second-order Adams Bashforth scheme</u>. Similarly, order of accuracy $\ell + 1$ can be obtained with $\ell \ge 2$ if we choose α 's such that

l.	α_0	α_{-1}	α_2	α_{-3}	Truncation Error
2	23/12	-4/3	5/12	3-3	Truncation Error
3	55/24	-59/24	37/24	-9/24	$0[(\Delta t)^3]$
1		,	37/24	-9/24	$O\left(\Delta t\right)^4$

These are (higher-order) Adams Bashforth schemes.

(i.2.b) Implicit schemes ($\beta \neq 0$)

Then the order of accuracy $\ell + 2$ can be obtained if we choose

·l	β	α_0	α_{-1}	α_{-2}	α_{-3}	Truncation Error
1	5/12	8/12	-1/12			$O[(\Delta t)^3]$
2	9/24	19/24	-5/24	1/24	ar rain i	$O[(\Delta t)^4]$
3	251/720	646/720	-246/720	-19/720	-19/720	$O[(\Delta t)^5]$

These are Adams-Moulton schemes.

(ii) m=1

The scheme (8) now takes the form

$$\frac{U^{(n+1)} - U^{(n-1)}}{2\Delta t} = \beta f^{(n+1)} + \alpha_o f^{(n)} + \alpha_{-1} f^{(n-1)} + \alpha_{-2} f^{(n-2)} + \dots + \alpha_{-\ell} f^{(n-\ell)}.$$
(15)

(ii.1) $\ell = 0$

The consistency condition is $\beta + \alpha_0 = 1$. The scheme reduces to

$$\frac{U^{(n+1)} - U^{(n-1)}}{2\Delta t} = \beta f^{(n+1)} + (1 - \beta) f^{(n)}.$$
 (16)

The truncation error (10) becomes $\Delta t U''(-\beta) + 0[(\Delta t)^2]$.

When $\beta=0$, the scheme reduces to the <u>leapfrog scheme</u> given by (4). It has second-order accuracy, which is higher than expected from the general rule $\ell+1$ for explicit schemes). Even when we allow the possibility of $\beta \neq 0$, second-order accuracy expected from the general rule ($\ell+2$ for implicit schemes) is obtained with $\beta=0$ (again the <u>leapfrog scheme</u>).

(ii.2) $\ell \ge 1$

As in the case of (i.2), we can increase order of accuracy by properly choosing α 's.

First let $\beta = 0$. Even formally with $\ell = 1$, the highest order of accuracy (second order) is obtained with $\alpha_{-1} = 0$ (once again the <u>leapfrog scheme</u>). Higher-order schemes obtained with $\ell \ge 2$ are the <u>Nyström schemes</u>.

Now let $\beta \neq 0$. With $\ell = 1$, the consistency condition is $\beta + \alpha_0 + \alpha_{-1} = 1$ and the truncation error is

$$\Delta t \ U''(-\beta + \alpha_{-1}) + (\Delta t)^2 / 2! \ U'''(1/3 - \beta - \alpha_{-1}) + (\Delta t)^3 / 3! \ U''''(-\beta + \alpha_{-1}) + 0(\Delta t)^4$$

From this we can see that $\beta = \alpha_{-1} = 1/6$ and $\alpha_0 = 4/6$ give fourth-order accuracy. This is higher than what we expect from the general rule ($\ell + 2$ for the implicit schemes). The scheme reduces to the Milne corrector* given by (7). With $\ell = 2$, there is no gain in accuracy since the highest order of accuracy is obtained for $\alpha_{-2} = 0$.

These schemes with highest-order accuracy for various combinations of m and \bullet are shown in the Table 1.

	Steel ship Mo	$\ell = 0$	$\ell = 1$	$\ell = 2$	$\ell > 2$
Explicit	m = 0	Euler (1st)	Adams-Bashforth ($\ell+1$ th)		
	m = 1	Leap (2r	frog nd)	Nyström $(\ell+1 \text{ th})$	
Implicit	m = 0	Trapezoidal (2nd)	Adams-Moulton (ℓ + 2 th)		
	m = 1	Leapfrog (2nd)	Milr	ne-Corrector (4th)	

Table 1. Schemes with Highest-Order Accuracy

c. Predictor-Corrector and Runge-Kutta Methods

The schemes with a non-zero β given in section b are implicit since they involve $f^{(n+1)}$, which depends on the unknown $U^{(n+1)}$. The predictor-corrector method uses $f^{(n+1)^*} \equiv f(U^{(n+1)^*}, (n+1)\Delta t)$ in place of $f^{(n+1)}$. Here $U^{(n+1)^*}$ is an approximation to $U^{(n+1)}$.

Let us consider the trapezoidal scheme for (5), for example. A predictor-corrector scheme corresponding to (5) is

$$\frac{U^{(n+1)^*} - U^{(n)}}{\Delta t} = f^{(n)} \qquad : \text{ predictor}$$

$$\frac{U^{(n+1)} - U^{(n)}}{\Delta t} = \frac{1}{2} \left(f^{(n+1)^*} + f^{(n)} \right) \quad : \text{ corrector,}$$
 (18)

^{*} The Milne predictor: An explicit scheme with m=3 and $\bullet=3$ with $\alpha_0=2/3$ $\alpha_{-1}=-1/3$ and $\alpha_{-2}=2/3$ and $\alpha_{-3}=0$.

where the Euler scheme is used as predictor. This scheme may be called the Euler-trapezoidal scheme, but is usually known as the improved Euler scheme (Collatz, 1960) or the Heun scheme (Heun, 1900). It can be shown that this scheme has second-order accuracy.

When the backward scheme is preferred to the trapezoidal scheme, corresponding predictor-corrector schemes are obtained by replacing the corrector (18) by

 $\frac{U^{(n+1)} - U^{(n)}}{\Delta t} = f^{(n+1)^*} \tag{19}$

where $f^{(n+1/2)^*} \equiv f(U^{(n+1/2)^*}, (n+1/2)\Delta t)$. Note that $U^{(n+1/2)^*}$ is an approximation to U at $t = (n+1/2)\Delta t$ obtained by applying the Euler scheme over the time interval $\Delta t/2$. This scheme is called the Modified Euler scheme (Collatz, 1960) or the simplified Runge-Kutta scheme. It has second-order accuracy and is equivalent to the Heun scheme when f is a linear function of U only.

When (18) is used as the predictor, we have the Euler-backward scheme, usually known as the <u>Matsuno scheme</u> (Matsuno, 1966).

The Milne <u>predictor-corrector</u> scheme combines the Milne predictor and Milne corrector given earlier. As in the Milne corrector, the Milne predictor-corrector scheme has fourth-order accuracy.

The fourth-order Runge-Kutta scheme is given by

$$k_{1} = \Delta t \quad f(U^{(n)}, n\Delta t),$$

$$k_{2} = \Delta t f(U^{(n)} + k_{1}/2, (n+1/2)\Delta t)$$

$$k_{3} = \Delta t f(U^{(n)} + k_{2}/2, (n+1/2)\Delta t)$$

$$k_{4} = \Delta t f[U^{(n)} + k_{3}, (n+1)\Delta t]$$

$$U^{(n+1)} = U^{(n)} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}).$$
(20)

This is a very good scheme although it is expensive when f is a complicated function.

Introducción a la Modelación Numérica de la Atmosfere.

764. Dr. Conlos Roberto Mechaso (Meyo 2000)

de Educación Permatiente de la Universidad de la República.