LECTURE 3
FIRST ORDER DIFFERENTIAL EQUATIONS

Solution of ordinary differential equations in which time ¢ is the independent
variable is usually an important part of solving partial differential equations in
atmospheric and oceanic models. In this lecture, we examine finite-difference schemes
for first-order ordinary differential equations with t as the independent variable and
U(t) as the dependent variable. We consider the equation
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We divide the time axis into segments of equal interval At, and denote by U™ the
approximate solution for U(nat). We further assume that we know the values U™,
u™v, u™?, .., and wish to construct a scheme for finding U™V,

a. Examples of finite-difference scheme

Let f™ =f(U™, nAt). The following are example of finite-difference schemes

for (1):
uuul)_ufn,‘ '
The forward (Euler) scheme, = ™ (2)
MRl) . u(n) (A1)
The backward (implicit) scheme pheittigirrial BT 8 (3)
(n+1) _ u(n-l)
The centered (leap-frog) scheme ¥ 3 A (4)

The scheme for (3) is called implicit, since the unknown £+ appears on the
right hand side, while the schemes for (2) and (4) are explicit. The schemes for (2) and
(3) are two-level schemes since two time levels n and 7+ 1 are involved. The scheme
for (4), on the other hand, is a three-level scheme since three time levels n-1, n and
n+1 are involved.

When more than two time levels are involved, the scheme is not self-starting. In
the case of the leapfrog scheme, for example, two initial conditions U and U™ must
be given to determine U'*, and subsequently (I N - The additional initial

condition U is called the computational initial condition. The usual procedure for
obtaining the computational initial condition is using one of the two-level schemes,
which are self-starting.
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Note that (6) is a two-level implicit scheme and that (6) is a three-level implicit scheme.
Derivation of a family of schemes for (1)

To derive a broader family of schemes, let us integrate (1) with respect to time
from (n-m)At to (n+1)At. Here m is zero or a positive integer. Then

I'his expression, divided by (1 + m)At, may be approximated by
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Here, ¢ is either zero or a positive integer. When B =0, the scheme is implicit while
when f3 = 0 the scheme is explicit.

Substituting the true solution {J(¢) and corresponding f(U,t) into (8), expanding
into a Taylor series about = rAtr, and denoting d/dt by ( ), we obtain
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Since the finite-difference scheme for (9) only approximates the differential equation,
the true solution () generally does not satisfy (9). Therefore € in (9) is generally non-

zero. The quantity € is the truncation error of the finite-difference scheme given by (9).
Rearranging and using U’ = f we obtain
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- B+ +8a., +27a_3+....+€3a_,} (10)
A finite-difference scheme is consistent ife — 0 as Az — 0. For the scheme given
by (9), the consistency condition can be obtained from (11) as

I=B+ay+a., +O 5+ 0, (11)

The order of accuracy of a consistent finite-difference scheme is the order or the
infinitesimal &(At). The order of accuracy can be made higher than the first by an

appropriate choice of the ¢ + 1 coefficients. Generally, order of accuracy can be made at
least as high as ¢+ 2 for implicit schemes and /+1 for explicit schemes.

(1) m=0

The scheme (8) now takes the form

u(rH-l) _ u(’nu
At

_ 'Bf(rH-l) +a0f(n) +a_1f("—l) +a_2f(n—2) +...+Q’_/f(n_’). (12)
(il) ¢=0

The consistency condition (11) becomes B+op=1. All other a's are zero. Then
(12) becomes

UMH) _ ulnp - .,
———=Bf"V+(1- p)y. (13)
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Since only two time levels are involved, this family of schemes are two-level schemes.
The truncation error (10) becomes AtU”"(1/2- B) + ()[(At)zl.

When f =0, the scheme reduces to the forward or Euler scheme given by (2). It
has first-order accuracy as expected from the general rule (¢+1 for explicit schemes).
When f =1, the scheme reduces to the backward scheme given by (3), which again has
first-order accuracy. The highest order of accuracy can be obtained by choosing
B=1/2. Then the scheme reduces to the trapezoidal scheme given by (5), which has
second-order accuracy as expected from the general rule (7 + 2 for implicit schemes).

This family of schemes use the information on f's at earlier time levels to obtain
higher-order accuracy.

(i.2.a) Explicit schemes (f=0)

With ¢ =1, the consistency condition (11) becomes 0o+ =1. All other a's are
zero. Then the scheme reduces to

u(;."ll“ LI():) . .
T ar =% (1Y, (14)

The right hand side has the form of linear extrapolation when Oy >1. The truncation

error is AtU”(1/2+a_, )+ (?[(Jf’)zJ =AtU""(3/2-a, ) + O[('Atﬂ. Second-order accuracy is

then obtained by choosing &, =3/2. This is the second-order Adams Bashforth scheme.
Similarly, order of accuracy £+ 1 can be obtained with ¢ > 2 if we choose @'s such that

/ ' o [ o, l o, ! o3 ‘ Truncation Error
2 23/12 —4/3 ;/ 12 ()[(Af)s}
3 55/24 -59/24 37/24 -9/24 0[(Ar)4]

These are (higher-order) Adams Bashforth schemes.

(i.2.b) Implicit schemes B#0)

Then the order of accuracy £+2 can be obtained if we choose
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/ B o, o o, 0y Truncation Error
1 5/12 8/12 -1/12 of(ar)’]
2 9/24 19/24 ~5/24 1/24 of(an)*]
3 | 251/720 | 646/720 | -246/720 | -19/720 |-19/720 ol (At )5]
L

These are Adams—-Moulton schemes.

(11) m =1
The scheme (8) now takes the form

LI(H-H _LI[N 1)

__._E__,A
/j.f"”‘l‘} (Z(,_/“/”} + (IA;f(”_'” +(X_:./V(HAZ) -+...+(XA,f(”"”- (-15)
(i.1l) £=0

The consistency condition is f+ &, =1. The scheme reduces to

L]('H-'. L uu:r 1)
2At

= Bf"Y +(1- B)F™. (16)

The truncation error (10) becomes AtU”'(- )+ O[(At)z].

When f=0, the scheme reduces to the leapfrog scheme given by (4). It has
second-order accuracy, which is higher than expected from the general rule /+1 for
explicit schemes). Even when we allow the possibility of f # 0, second-order accuracy
expected from the general rule (7 +2 for implicit schemes) is obtained with =0 (again
the leapfrog scheme).

As in the case of (i.2), we can increase order of accuracy by properly choosing
a’'s.

First let f=0. Even formally with /=1, the highest order of accuracy (second
order) is obtained with «_; =0 (once again the leapfrog scheme). Higher-order
schemes obtained with /> 2 are the Nystrém schemes.

Now let f#0. With ¢=1, the consistency conditon is f+ay+a_; =1 and the
truncation error is



AU (=B + )+ (88 /21U (Y3 - B-ay) +(4t) /31U (-B+ay) +0(at)",

From this we can see that B=a_, =1/6 and o, =4/6 give fourth-order accuracy.

This is higher than what we expect from the general rule (£+2 for the implicit
schemes). The scheme reduces to the Milne corrector” given by (7). With £=2, there is
no gain in accuracy since the highest order of accuracy is obtained for a_, = 0.

These schemes with highest-order accuracy for various combinations of m and
are shown in the Table 1.

Table 1. Schemes with Highest-Order Accuracy

=0 =1 =2 £>2
m=0 Euler Adams-Bashforth
Explicit (1st) (£+1 th)
m=1 Leapfrog Nystrom
(2nd) (Z+1 th)
m=0 Trapezoidal Adams-Moulton
Implicit (2nd) (£+2 th)
m=1 Leapfrog Milne-Corrector
(2nd) (4th)

c. Predictor-Corrector and Runge-Kutta Methods

The schemes with a non-zero f8 given in section b are implicit since they involve
£*) which depends on the unknown U™*". The predictor-corrector method uses
F = U™V, (n+1)At) in place of f"*!. Here U™V is an approximation to U™*".

Let us consider the trapezoidal scheme for (5), for example. A predictor-
corrector scheme corresponding to (5) is

(n+1)" (n)
ur’ -u- _dm

yr ) : predictor (17)
u(nH) - u“ﬂ 1 L e
At—__=§(f( D" 4 A J) . corrector, (18)

* The Milne predictor: An explicit scheme with m =3 and * =3withop=2/30.1=-1/3and o.2
=2/3and a.3 = 0.
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where the Euler scheme is used as predictor. This scheme may be called the Euler-
trapezoidal scheme, but is usually known as the improved Euler scheme (Collatz, 1960)
or the Heun scheme (Heun, 1900). It can be shown that this scheme has second-order
accuracy.

When the backward scheme is preferred to the trapezoidal scheme,
corresponding predictor-corrector schemes are obtained by replacing the corrector (18)
by
:f'(n-*]]'

(19)

where f"V¥" = (U™ (n+1/2)At). Note that U™V?" is an approximation to U at
t=(n+1/2)Ar obtained by applying the Euler scheme over the time interval Ar/2. This
scheme is called the Modified Euler scheme (Collatz, 1960) or the simplified Runge-
Kutta scheme. It has second-order accuracy and is equivalent to the Heun scheme
when f is a linear function of U only.

When (18) is used as the predictor, we have the Euler-backward scheme, usually
known as the Matsuno scheme (Matsuno, 1966).

The Milne predictor-corrector scheme combines the Milne predictor and Milne
corrector given earlier. As in the Milne corrector, the Milne predictor-corrector scheme
has fourth-order accuracy.

The fourth-order Runge-Kutta scheme is given by

k, = At f(U™, nAt),

i

ky = At f(U™ +k, /2, (n+1/2)At)
ky = At f(U™ +k,/2,(n+1/2)At)
k, = Atf[t.""’ +ky, (n+ 1)At]

sl 4l
(nH): (1) (k. +2F a A
u u'" + 2 (ky + 2k, + 2k, +k,). (20)

This is a very good scheme although it is expensive when f is a complicated function.
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