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2.2 What is CFD? 

As we have seen in Chap. 1, flows and related phenomena can be described by 
partial differential (or integro-differential) equations, which cannot be solved 
analytically except in special cases. To obtain an approximate solution nu- 
merically, we have to use a discretization method which approximates the 
differential equations by a system of algebraic equations, which can then 
be solved on a computer. The approximations are applied to small domains 
in space and/or time so the numerical solution provides results at discrete 
locations in space and time. Much as the accuracy of experimental data de- 
pends on the quality of the tools used, the accuracy of numerical solutions is 
dependent on the quality of discretizations used. 

Contained within the broad field of computational fluid dynamics are 
activities that cover the range from the automation of well-established engi- 
neering design methods to  the use of detailed solutions of the Navier-Stokes 
equations as substitutes for experimental research into the nature of complex 
flows. At one end, one can purchase design packages for pipe systems that 
solve problems in a few seconds or minutes on personal computers or work- 
stations. On the other, there are codes that may require hundreds of hours 
on the largest super-computers. The range is as large as the field of fluid 
mechanics itself, making it impossible to  cover all of CFD in a single work. 
Also, the field is evolving so rapidly that we run the risk of becoming out of 
date in a short time. 

We shall not deal with automated simple methods in this book. The basis 
for them is covered in elementary textbooks and undergraduate courses and 
the available program packages are relatively easy to understand and to use. 

We shall be concerned with methods designed to solve the equations of 
fluid motion in two or three dimensions. These are the methods used in non- 
standard applications, by which we mean applications for which solutions (or, 
at least, good approximations) cannot be found in textbooks or handbooks. 
While these methods have been used in high-technology engineering (for ex- 
ample, aeronautics and astronautics) from the very beginning, they are being 
used more frequently in fields of engineering where the geometry is compli- 
cated or some important feature (such as the prediction of the concentration 
of a pollutant) cannot be dealt with by standard methods. CFD is finding its 
way into process, chemical, civil, and environmental engineering. Optimiza- 
tion in these areas can produce large savings in equipment and energy costs 
and in reduction of environmental pollution. 

2.3 Possibilities and Limitations of Numerical Methods 

We have already noted some problems associated with experimental work. 
Some of these problems are easily dealt with in CFD. For example, if we want 
to simulate the flow around a moving car in a wind tunnel, we need to fix 
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the car model and blow air a t  it - but the floor has to  move at the air speed, 
which is difficult to do. It is not difficult to do in a numerical simulation. 
Other types of boundary conditions are easily prescribed in computations; 
for example, temperature or opaqueness of the fluid pose no problem. If we 
solve the unsteady three-dimensional Navier-Stokes equations accurately (as 
in direct simulation of turbulence), we obtain a complete data set from which 
any quantity of physical significance can be derived. 

This sounds to  good to be true. Indeed, these advantages of CFD are 
conditional on being able to solve the Navier-Stokes equations accurately, 
which is extremely difficult for most flows of engineering interest. We shall 
see in Chap. 9 why obtaining accurate numerical solutions of the Navier- 
Stokes equations for high Reynolds number flows is so difficult. 

If we are unable to  obtain accurate solutions for all flows, we have to deter- 
mine what we can produce and learn to analyze and judge the results. First 
of all, we have to bear in mind that numerical results are always approximate .  
There are reasons for differences between computed results and 'reality' i.e. 
errors arise from each part of the process used to produce numerical solutions: 

The differential equations may contain approximations or idealizations, as 
discussed in Sect. 1.7; 
Approximations are made in the discretization process; 
In solving the discretized equations, iterative methods are used. Unless 
they are run for a very long time, the exact solution of the discretized 
equations is not produced. 

When the governing equations are known accurately (e.g. the Navier- 
Stokes equations for incompressible Newtonian fluids), solutions of any de- 
sired accuracy can be achieved in principle. However, for many phenomena 
(e.g. turbulence, combustion, and multiphase flow) the exact equations are 
either not available or numerical solution is not feasible. This makes intro- 
duction of models a necessity. Even if we solve the equations exactly, the 
solution would not be a correct representation of reality. In order to vali- 
date the models, we have to rely on experimental data. Even when the exact 
treatment is possible, models are often needed to reduce the cost. 

Discretization errors can be reduced by using more accurate interpolation 
or approximations or by applying the approximations to smaller regions but 
this usually increases the time and cost of obtaining the solution. Compromise 
is usually needed. We shall present some schemes in detail but shall also point 
out ways of creating more accurate approximations. 

Compromises are also needed in solving the discretized equations. Direct 
solvers, which obtain accurate solutions, are seldom used, because they are 
too costly. Iterative methods are more common but the errors due to  stopping 
the iteration process too soon need to be taken into account. 

Errors and their estimation will be emphasized throughout this book. We 
shall present error estimates for many examples; the need to analyze and 
estimate numerical errors can not be overemphasized. 
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Visualization of numerical solutions using vector, contour or other kinds 
of plots or movies (videos) of unsteady flows is important for the interpre- 
tation of results. It is far and away the most effective means of interpreting 
the huge amount of data produced by a calculation. However, there is the 
danger that an erroneous solution may look good but may not correspond 
to the actual boundary conditions, fluid properties etc.! The authors have 
encountered incorrect numerically produced flow features that could be and 
have been interpreted as physical phenomena. Industrial users of commer- 
cial CFD codes should especially be careful, as the optimism of salesmen is 
legendary. Wonderful color pictures make a great impression but are of no 
value if they are not quantitatively correct. Results must be examined very 
critically before they are believed. 

2.4 Components of a Numerical Solution Method 

Since this book is meant not only for users of commercial codes but also for 
young researchers developing new codes, we shall present the important in- 
gredients of a numerical solution method here. More details will be presented 
in the following chapters. 

2.4.1 Mathematical Model 

The starting point of any numerical method is the mathematical model, i.e. 
the set of partial differential or integro-differential equations and boundary 
conditions. Some sets of equations used for flow prediction were presented in 
Chap. 1. One chooses an appropriate model for the target application (in- 
compressible, inviscid, turbulent; two- or three-dimensional, etc.). As already 
mentioned, this model may include simplifications of the exact conservation 
laws. A solution method is usually designed for a particular set of equations. 
Trying to produce a general purpose solution method, i.e. one which is appli- 
cable to all flows, is impractical, if not impossible and, as with most general 
purpose tools, they are usually not optimum for any one application. 

2.4.2 Discretization Method 

After selecting the mathematical model, one has to choose a suitable dis- 
cretization method, i.e. a method of approximating the differential equations 
by a system of algebraic equations for the variables at some set of discrete 
locations in space and time. There are many approaches, but the most im- 
portant of which are: finite difference (FD), finite volume (FV) and finite 
element (FE) methods. Important features of these three kinds of discretiza- 
tion methods are described a t  the end of this chapter. Other methods, like 
spectral schemes, boundary element methods, and cellular automata are used 
in CFD but their use is limited to  special classes of problems. 
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Each type of method yields the same solution if the grid is very fine. 
However, some methods are more suitable to some classes of problems than 
others. The preference is often determined by the attitude of the developer. 
We shall discuss the pros and cons of the various methods later. 

2.4.3 Coordinate and Basis Vector Systems 

It was mentioned in Chap. 1 that the conservation equations can be written 
in many different forms, depending on the coordinate system and the basis 
vectors used. For example one can select Cartesian, cylindrical, spherical, 
curvilinear orthogonal or non-orthogonal coordinate systems, which may be 
fixed or moving. The choice depends on the target flow, and may influence 
the discretization method and grid type to be used. 

One also has to  select the basis in which vectors and tensors will be defined 
(fixed or variable, covariant or contravariant, etc.). Depending on this choice, 
the velocity vector and stress tensor can be expressed in terms of e.g. Carte- 
sian, covariant or contravariant, physical or non-physical coordinate-oriented 
components. In this book we shall use Cartesian components exclusively for 
reasons explained in Chap. 8. 

2.4.4 Numerical Grid 

The discrete locations at which the variables are to be calculated are defined 
by the numerical grid which is essentially a discrete representation of the 
geometric domain on which the problem is to be solved. It divides the solution 
domain into a finite number of subdomains (elements, control volumes etc.). 
Some of the options available are the following: 

0 Structured (regular) grid - Regular or structured grids consist of families 
of grid lines with the property that members of a single family do not cross 
each other and cross each member of the other families only once. This 
allows the lines of a given set to be numbered consecutively. The position of 
any grid point (or control volume) within the domain is uniquely identified 
by a set of two (in 2D) or three (in 3D) indices, e.g. (i, j, k). 
This is the simplest grid structure, since it is logically equivalent to a Carte- 
sian grid. Each point has four nearest neighbors in two dimensions and six 
in three dimensions; one of the indices of each neighbor of point P (indices 
i, j, k) differs by f 1 from the corresponding index of P. An example of a 
structured 2D grid is shown in Fig. 2.1. This neighbor connectivity sim- 
plifies programming and the matrix of the algebraic equation system has 
a regular structure, which can be exploited in developing a solution tech- 
nique. Indeed, there is a large number of efficient solvers applicable only to 
structured grids (see Chap. 5) .  The disadvantage of structured grids is that 
they can be used only for geometrically simple solution domains. Another 
disadvantage is that it may be difficult to control the distribution of the 
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grid points: concentration of points in one region for reasons of accuracy 
produces unnecessarily small spacing in other parts of the solution domain 
and a waste of resources. This problem is exaggerated in 3D problems. The 
long thin cells may also affect the convergence adversely. 
Structured grids may be of H-, 0 - ,  or C-type; the names are derived 
from the shapes of the grid lines. Figure 2.1 shows an H-type grid which, 
when mapped onto a rectangle, has distinct east, west, north, and south 
boundaries. Figure 2.3 shows an 0-type structured grid around a cylinder. 
In this type of grid, one set of grid lines is "endless"; if the grid lines 
are treated as coordinate lines and we follow the coordinate around the 
cylinder, it will continuously increase and, to avoid a problem, one must 
introduce an artificial "cut" a t  which the coordinate jumps from a finite 
value to zero. At the cut, the grid can be "unwrapped" but the neighboring 
points must be treated as interior grid points, in contrast to the treatment 
applied at the boundaries of an H-type grid. The outer grid in Fig. 2.3 is 
again of H-type. The block grid around the hydrofoil in Fig. bloknmgr is 
of C-type. In this type of grid, points on portions of one grid line coincide, 
requiring the introduction of a cut similar to the ones found in 0-type 
grids. This type of grid is often used for bodies with sharp edges for which 
they are capable of good grid quality. 

Fig. 2.1. Example of a 2D, structured, non-orthogonal grid, designed for calculation 
of flow in a symmetry segment of a staggered tube bank 

0 Block-structured grid - In a block structured grid, there is a two (or more) 
level subdivision of solution domain. On the coarse level, there are blocks 
which are relatively large segments of the domain; their structure may be 
irregular and they may or may not overlap. On the fine level (within each 
block) a structured grid is defined. Special treatment is necessary a t  block 
interfaces. Some methods of this kind are described in Chap. 8. 
In Fig. 2.2 a block-structured grid with matching at the interfaces is shown; 
it is designed for the calculation of 2D flow around a cylinder in a channel 
and contains three blocks. 
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Fig. 2.2. Example of a 2D block-structured grid which matches at interfaces, used 
to calculate flow around a cylinder in a channel 

In Fig. 2.3 a block-structured grid with non-matching interfaces is shown; 
it was used to calculate the flow around a submerged hydrofoil. It consists 
of five blocks of grids of different fineness. This kind of grid is more flexible 
than the previous ones, as it allows use of finer grids in regions, where 
greater resolution is required. The non-matching interface can be treated 
in a fully conservative manner, as will be discussed in Chap. 8. The pro- 
gramming is more difficult than for grid types described above. Solvers for 
structured grids can be applied block-wise, and complex flow domains can 
be treated with these grids. Local refinement is possible block-wise (i.e., 
the grid may be refined in some blocks). 

Fig. 2.3. Example of a 2D block-structured grid which does not match at interfaces, 
designed for calculation of flow around a hydrofoil under a water surface 

Block-structured grids with overlapping blocks are sometimes called com- 
posite or Chimera grids. One such grid is shown in Fig. 2.4. In the overlap 
region, boundary conditions for one block are obtained by interpolating 
the solution from the other (overlapped) block. The disadvantage of these 
grids is that conservation is not easily enforced at block boundaries. The 
advantages of this approach are that complex domains are dealt with more 
easily and it can be used to follow moving bodies: one block is attached to 
the body and moves with it ,  while a stagnant grid covers the surroundings. 
This type of grid is not very often used, although it has strong supporters 
(Tu and Fuchs, 1992; Perng and Street, 1991; Hinatsu and Ferziger, 1991; 
Zang and Street, 1995; Hubbard and Chen, 1994, 1995). 
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Fig. 2.4. A composite 2D grid, used to calculate flow around a cylinder in a channel 

Unstructured grids - For very complex geometries, the most flexible type 
of grid is one which can fit an arbitrary solution domain boundary. In prin- 
ciple, such grids could be used with any discretization scheme, but they 
are best adapted to the finite volume and finite element approaches. The 
elements or control volumes may have any shape; nor is there a restriction 
on the number of neighbor elements or nodes. In practice, grids made of 
triangles or quadrilaterals in 2D, and tetrahedra or hexahedra in 3D are 
most often used. Such grids can be generated automatically by existing 
algorithms. If desired, the grid can be made orthogonal, the aspect ratio 
is easily controlled, and the grid may be easily locally refined. The advan- 
tage of flexibility is offset by the disadvantage of the irregularity of the 
data structure. Node locations and neighbor connections need be specified 
explicitly. The matrix of the algebraic equation system no longer has regu- 
lar, diagonal structure; the band width needs to be reduced by reordering 
of the points. The solvers for the algebraic equation systems are usually 
slower than those for regular grids. 
Unstructured grids are usually used with finite element methods and, in- 
creasingly, with finite volume methods. Computer codes for unstructured 
grids are more flexible. They need not be changed when the grid is locally 
refined, or when elements or control volumes of different shapes are used. 
However, grid generation and pre-processing are usually much more dif- 
ficult. The finite volume method presented in this book is applicable to 
unstructured grids. An example of an unstructured grid is shown in Fig. 
2.5. 

Methods of grid generation will not be covered in detail in this book. Grid 
properties and some basic grid generation methods are discussed briefly in 
Chap. 8; there is a vast literature devoted to grid generation and interested 
reader is referred to books by Thompson et al. (1985) and Arcilla et al. (1991). 
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Fig. 2.5. Example of a 2D unstructured grid 

2.4.5 Finite Approximations 

Following the choice of grid type, one has to select the approximations to 
be used in the discretization process. In a finite difference method, approxi- 
mations for the derivatives a t  the grid points have to be selected. In a finite 
volume method, one has to select the methods of approximating surface and 
volume integrals. In a finite element method, one has to choose the shape 
functions (elements) and weighting functions. 

There are many possibilities to choose from; some of those most often used 
are presented in this book, some are simply mentioned and many more can be 
created. The choice influences the accuracy of the approximation. It also af- 
fects the difficulty of developing the solution method, coding it, debugging it, 
and the speed of the code. More accurate approximations involve more nodes 
and give fuller coefficient matrices. The increased memory requirement may 
require using coarser grids, partially offsetting the advantage of higher ac- 
curacy. A compromise between simplicity, ease of implementation, accuracy 
and computational efficiency has to  be made. The second-order methods pre- 
sented in this book were selected with this compromise in mind. 

2.4.6 Solution Method 

Discretization yields a large system of non-linear algebraic equations. The 
method of solution depends on the problem. For unsteady flows, methods 
based on those used for initial value problems for ordinary differential equa- 
tions (marching in time) are used. At each time step an elliptic problem has 
to be solved. Steady flow problems are usually solved by pseudo-time march- 
ing or an equivalent iteration scheme. Since the equations are non-linear, 
an iteration scheme is used to solve them. These methods use successive lin- 
earization of the equations and the resulting linear systems are almost always 
solved by iterative techniques. The choice of solver depends on the grid type 
and the number of nodes involved in each algebraic equation. Some solvers 
will be presented in Chap. 5. 
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2.4.7 Convergence Criteria 

Finally, one needs to set the convergence criteria for the iterative method. 
Usually, there are two levels of iterations: inner iterations, within which the 
linear equation are solved, and outer iterations, that deal with the non- 
linearity and coupling of the equations. Deciding when to stop the iterative 
process on each level is important, from both the accuracy and efficiency 
points of view. These issues are dealt with in Chaps. 5 and 11. 

2.5 Properties of Numerical Solution Methods 

The solution method should have certain properties. In most cases, it is not 
possible to analyze the complete solution method. One analyzes the compo- 
nents of the method; if the components do not possess the desired properties, 
neither will the complete method but the reverse is not necessarily true. The 
most important properties are summarized below. 

2.5.1 Consistency 

The discretization should become exact as the grid spacing tends to zero. The 
difference between the discretized equation and the exact one is called the 
truncation error. It is usually estimated by replacing all the nodal values in 
the discrete approximation by a Taylor series expansion about a single point. 
As a result one recovers the original differential equation plus a remainder, 
which represents the truncation error. For a method to be consistent, the 
truncation error must become zero when the mesh spacing At + 0 and/or 
Axi + 0. Truncation error is usually proportional to a power of the grid 
spacing Axi and/or the time step At. If the most important term is propor- 
tional to   AX)^ or (At)n we call the method an nth-order approximation; 
n > 0 is required for consistency. Ideally, all terms should be discretized with 
approximations of the same order of accuracy; however, some terms (e.g. 
convective terms in high Reynolds number flows or diffusive terms in low 
Reynolds number flows) may be dominant in a particular flow and it may be 
reasonable to treat them with more accuracy than the others. 

Some discretization methods lead to truncation errors which are functions 
of the ratio of Axi to At or vice versa. In such a case the consistency require- 
ment is only conditionally fulfilled: Axi and At must be reduced in a way 
that allows the appropriate ratio to go to zero. In the next two chapters we 
shall demonstrate consistency for several discretization schemes. 

Even if the approximations are consistent, it does not necessarily mean 
that the solution of the discretized equation system will become the exact 
solution of the differential equation in the limit of small step size. For this to 
happen, the solution method has to be stable; this is defined below. 
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2.5.2 Stability 

A numerical solution method is said to be stable if it does not magnify the 
errors that appear in the course of numerical solution process. For temporal 
problems, stability guarantees that the method produces a bounded solution 
whenever the solution of the exact equation is bounded. For iterative meth- 
ods, a stable method is one that does not diverge. Stability can be difficult 
to investigate, especially when boundary conditions and non-linearities are 
present. For this reason, it is common to investigate the stability of a method 
for linear problems with constant coefficients without boundary conditions. 
Experience shows that the results obtained in this way can often be applied 
to more complex problems but there are notable exceptions. 

The most widely used approach to studying stability of numerical schemes 
is the von Neumann's method. We shall describe it briefly for one scheme in 
Chap. 6. Most of the schemes to be described in this book have been ana- 
lyzed for stability and we shall state the important result when describing 
each scheme. However, when solving complicated, non-linear and coupled 
equations with complicated boundary conditions, there are few stability re- 
sults so we may have to rely on experience and intuition. Many solution 
schemes require that the time step be smaller than a certain limit or that 
under-relaxation be used. We shall discuss these issues and give guidelines for 
selecting time step size and values of under-relaxation parameters in Chaps. 
6 and 7. 

2.5.3 Convergence 

A numerical method is said to be convergent if the solution of the discretized 
equations tends to the exact solution of the differential equation as the grid 
spacing tends to zero. For linear initial value problems, the L a x  equivalence 
theorem (Richtmyer and Morton, 1967) states that "given a properly posed 
linear initial value problem and a finite difference approximation to it that 
satisfies the consistency condition, stability is the necessary and sufficient 
condition for convergence". Obviously, a consistent scheme is useless unless 
the solution method converges. 

For non-linear problems which are strongly influenced by boundary condi- 
tions, the stability and convergence of a method are difficult to demonstrate. 
Therefore convergence is usually checked using numerical experiments, i.e. re- 
peating the calculation on a series of successively refined grids. If the method 
is stable and if all approximations used in the discretization process are con- 
sistent, we usually find that the solution does converge to a grid-independent 
solution. For sufficiently small grid sizes, the rate of convergence is governed 
by the order of principal truncation error component. This allows us to es- 
timate the error in the solution. We shall describe this in detail in Chaps. 3 
and 5. 
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2.5.4 Conservation 

Since the equations to be solved are conservation laws, the numerical scheme 
should also - on both a local and a global basis - respect these laws. This 
means that, a t  steady state and in the absence of sources, the amount of a 
conserved quantity leaving a closed volume is equal to the amount entering 
that volume. If the strong conservation form of equations and a finite volume 
method are used, this is guaranteed for each individual control volume and 
for the solution domain as a whole. Other discretization methods can be made 
conservative if care is taken in the choice of approximations. The treatment 
of sources or sink terms should be consistent so that the total source or sink 
in the domain is equal to the net flux of the conserved quantity through the 
boundaries. 

This is an important property of the solution method, since it imposes a 
constraint on the solution error. If the conservation of mass, momentum and 
energy are insured, the error can only improperly distribute these quantities 
over the solution domain. Non-conservative schemes can produce artificial 
sources and sinks, changing the balance both locally and globally. However, 
non-conservative schemes can be consistent and stable and therefore lead 
to correct solutions in the limit of very fine grids. The errors due to non- 
conservation are in most cases appreciable only on relatively coarse grids. 
The problem is that it is difficult to know on which grid are these errors 
small enough. Conservative schemes are therefore preferred. 

2.5.5 Boundedness 

Numerical solutions should lie within proper bounds. Physically non-negative 
quantities (like density, kinetic energy of turbulence) must always be positive; 
other quantities, such as concentration, must lie between 0% and 100%. In 
the absence of sources, some equations (e.g. the heat equation for the tem- 
perature when no heat sources are present) require that the minimum and 
maximum values of the variable be found on the boundaries of the domain. 
These conditions should be inherited by the numerical approximation. 

Boundedness is difficult to guarantee. We shall show later on that only 
some first order schemes guarantee this property. All higher-order schemes 
can produce unbounded solutions; fortunately, this usually happens only on 
grids that are too coarse, so a solution with undershoots and overshoots 
is usually an indication that the errors in the solution are large and the 
grid needs some refinement (at least locally). The problem is that schemes 
prone to producing unbounded solutions may have stability and convergence 
problems. These methods should be avoided, if possible. 

2.5.6 Realizability 

Models of phenomena which are too complex to treat directly (for example, 
turbulence, combustion, or multiphase flow) should be designed to guarantee 
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physically realistic solutions. This is not a numerical issue per se but models 
that are not realizable may result in unphysical solutions or cause numerical 
methods to diverge. We shall not deal with these issues in this book, but if 
one wants to implement a model in a CFD code, one has to  be careful about 
this property. 

2.5.7 Accuracy 

Numerical solutions of fluid flow and heat transfer problems are only ap- 
proximate solutions. In addition to the errors that might be introduced in 
the course of the development of the solution algorithm, in programming or 
setting up the boundary conditions, numerical solutions always include three 
kinds of systematic errors: 

0 Modeling errors, which are defined as the difference between the actual 
flow and the exact solution of the mathematical model; 

0 Discretization errors, defined as the difference between the exact solution 
of the conservation equations and the exact solution of the algebraic system 
of equations obtained by discretizing these equations, and 
Iteration errors, defined as the difference between the iterative and exact 
solutions of the algebraic equations systems. 

Iteration errors are often called convergence errors (which was the case in 
the earlier editions of this book). However, the term convergence is used 
not only in conjunction with error reduction in iterative solution methods, 
but is also (quite appropriately) often associated with the convergence of 
numerical solutions towards a grid-independent solution, in which case it is 
closely linked to  discretization error. To avoid confusion, we shall adhere to  
the above definition of errors and, when discussing issues of convergence, 
always indicate which type of convergence we are talking about. 

I t  is important to be aware of the existence of these errors, and even more 
to try to  distinguish one from another. Various errors may cancel each other, 
so that sometimes a solution obtained on a coarse grid may agree better with 
the experiment than a solution on a finer grid - which, by definition, should 
be more accurate. 

Modeling errors depend on the assumptions made in deriving the trans- 
port equations for the variables. They may be considered negligible when 
laminar flows are investigated, since the Navier-Stokes equations represent 
a sufficiently accurate model of the flow. However, for turbulent flows, two- 
phase flows, combustion etc., the modeling errors may be very large - the 
exact solution of the model equations may be qualitatively wrong. Modeling 
errors are also introduced by simplifying the geometry of the solution do- 
main, by simplifying boundary conditions etc. These errors are not known a 
priori; they can only be evaluated by comparing solutions in which the dis- 
cretization and convergence errors are negligible with accurate experimental 
data or with data obtained by more accurate models ( e g  data from direct 
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simulation of turbulence, etc.). It is essential to control and estimate the con- 
vergence and discretization errors before the models of physical phenomena 
(like turbulence models) can be judged. 

We mentioned above that discretization approximations introduce errors 
which decrease as the grid is refined, and that the order of the approximation 
is a measure of accuracy. However, on a given grid, methods of the same order 
may produce solution errors which differ by as much as an order of magnitude. 
This is because the order only tells us the rate at which the error decreases 
as the mesh spacing is reduced - it gives no information about the error on a 
single grid. We shall show how discretization errors can be estimated in the 
next chapter. 

Errors due to iterative solution and round-off are easier to control; we 
shall see how this can be done in Chap. 5 ,  where iterative solution methods 
are introduced. 

There are many solution schemes and the developer of a CFD code may 
have a difficult time deciding which one to adopt. The ultimate goal is to 
obtain desired accuracy with least effort, or the maximum accuracy with the 
available resources. Each time we describe a particular scheme we shall point 
out its advantages or disadvantages with respect to these criteria. 

2.6 Discretization Approaches 

2.6.1 Finite Difference Method 

This is the oldest method for numerical solution of PDE's, believed to have 
been introduced by Euler in the 18th century. It is also the easiest method 
to use for simple geometries. 

The starting point is the conservation equation in differential form. The 
solution domain is covered by a grid. At each grid point, the differential equa- 
tion is approximated by replacing the partial derivatives by approximations 
in terms of the nodal values of the functions. The result is one algebraic equa- 
tion per grid node, in which the variable value a t  that and a certain number 
of neighbor nodes appear as unknowns. 

In principle, the FD method can be applied to any grid type. However, in 
all applications of the FD method known to the authors, it has been applied 
to structured grids. The grid lines serve as local coordinate lines. 

Taylor series expansion or polynomial fitting is used to obtain approxima- 
tions to the first and second derivatives of the variables with respect to the 
coordinates. When necessary, these methods are also used to obtain variable 
values a t  locations other than grid nodes (interpolation). The most widely 
used methods of approximating derivatives by finite differences are described 
in Chap. 3. 

On structured grids, the FD method is very simple and effective. It is 
especially easy to obtain higher-order schemes on regular grids; some will be 
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mentioned in Chap. 3. The disadvantage of FD methods is that the conser- 
vation is not enforced unless special care is taken. Also, the restriction to 
simple geometries is a significant disadvantage in complex flows. 

2.6.2 Finite Volume Method 

The FV method uses the integral form of the conservation equations as its 
starting point. The solution domain is subdivided into a finite number of 
contiguous control volumes (CVs), and the conservation equations are applied 
to each CV. At the centroid of each CV lies a computational node at which the 
variable values are to be calculated. Interpolation is used to express variable 
values at the CV surface in terms of the nodal (CV-center) values. Surface 
and volume integrals are approximated using suitable quadrature formulae. 
As a result, one obtains an algebraic equation for each CV, in which a number 
of neighbor nodal values appear. 

The FV method can accommodate any type of grid, so it is suitable for 
complex geometries. The grid defines only the control volume boundaries 
and need not be related to a coordinate system. The method is conservative 
by construction, so long as surface integrals (which represent convective and 
diffusive fluxes) are the same for the CVs sharing the boundary. 

The FV approach is perhaps the simplest to understand and to program. 
All terms that need be approximated have physical meaning which is why it 
is popular with engineers. 

The disadvantage of FV methods compared to FD schemes is that meth- 
ods of order higher than second are more difficult to develop in 3D. This is 
due to the fact that the FV approach requires three levels of approximation: 
interpolation, differentiation, and integration. We shall give a detailed de- 
scription of the FV method in Chap. 4; it is the most used method in this 
book. 

2.6.3 Finite Element Method 

The FE method is similar to the FV method in many ways. The domain is 
broken into a set of discrete volumes or finite elements that are generally 
unstructured; in 2D, they are usually triangles or quadrilaterals, while in 3D 
tetrahedra or hexahedra are most often used. The distinguishing feature of 
FE methods is that the equations are multiplied by a weight function before 
they are integrated over the entire domain. In the simplest FE methods, the 
solution is approximated by a linear shape function within each element in 
a way that guarantees continuity of the solution across element boundaries. 
Such a function can be constructed from its values at the corners of the 
elements. The weight function is usually of the same form. 

This approximation is then substituted into the weighted integral of the 
conservation law and the equations to be solved are derived by requiring the 
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derivative of the integral with respect to  each nodal value to be zero; this 
corresponds to  selecting the best solution within the set of allowed functions 
(the one with minimum residual). The result is a set of non-linear algebraic 
equations. 

An important advantage of finite element methods is the ability to  deal 
with arbitrary geometries; there is an extensive literature devoted to  the 
construction of grids for finite element methods. The grids are easily refined; 
each element is simply subdivided. Finite element methods are relatively easy 
to analyze mathematically and can be shown to have optimality properties 
for certain types of equations. The principal drawback, which is shared by any 
method that uses unstructured grids, is that the matrices of the linearized 
equations are not as well structured as those for regular grids making it more 
difficult to  find efficient solution methods. For more details on finite element 
methods and their application to the Navier-Stokes equations, see books by 
Oden (1972), Zinkiewicz (1977), Chung (1978), Baker (1983), Girault and 
Raviart (1986) or Fletcher (1991). 

A hybrid method called control-volume-based finite element method (CV- 
F E M )  should also be mentioned. In it, shape functions are used to describe 
the variation of the variables over an element. Control volumes are formed 
around each node by joining the centroids of the elements. The conservation 
equations in integral form are applied to  these CVs in the same way as in 
the finite volume method. The fluxes through CV boundaries and the source 
terms are calculated element-wise. We shall give a short description of this 
approach in Chap. 8. 


