Calentamiento para la semana 2

Ejercicio 1. Tenemos dos matrices, A y B, ambas de dimensión $n \times n$, y queremos calcular la matriz $C = A \times B$. Denotamos con $A[i, \cdot]$ y $B[\cdot, j]$ la fila i de A y la columna j de B, respectivamente. Para resolver el problema contamos con el algoritmo de la figura 1.1.

```
1 for i=1 to n do

2 for j=1 to n do

3 Calcular el producto escalar < A[i,\cdot], B[\cdot,j] >

4 Guardar el resultado en C[i,j]

5 end

6 end
```

Figura 1.1: Algoritmo para multiplicar dos matrices.

Dé explícitamente una función f tal que el tiempo de ejecución de este algoritmo es $\Theta(f(n))$; justifique su respuesta demostrando el resultado.

Ejercicio 2. Tenemos un arreglo A, de tamaño n, de listas no vacías de enteros. El algoritmo de la figura 2.1 imprime el contenido de todas las listas.

```
1 for i = 1 to n do
2 Imprimir la lista A[i]
3 end
```

Figura 2.1: Algoritmo para imprimir el contenido de A.

- (a) Sea m la cantidad total de enteros contenidos en las n listas de A. Demuestre que el tiempo de ejecución del algoritmo es O(m).
- (b) Si removemos la hipótesis de que las listas son no vacías el resultado anterior no es cierto. ¿Por qué?