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Abstract

Techniques for experimental design of experiments for model discrimination constitute important tools for scientists and engineers, as analyzed
phenomena can very often be described fairly well by different mathematical models. As interpretation and use of available experimental
data depend on the model structure, techniques for design of experiments for selection of the best model are of fundamental importance.
Besides, experiments must often be designed for estimation of model parameters and reduction of variances of model predictions (or parameter
estimates). These two classes of experimental design techniques generally lead to different experimental designs, although model discrimination
and reduction of variances of parameter estimates are closely related to each other. In this work the posterior covariance matrix of difference
between model predictions is taken into account during the design for model discrimination for the first time. The obtained results show that the
model discrimination power becomes much higher when the posterior covariance matrix of difference between model predictions are considered
during the experimental design, increasing the capability of model discrimination and simultaneously leading to improved parameter estimates.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The scientific investigation of physical phenomena and/or
processes follows a well-known iterative procedure, where
available experimental data are interpreted in terms of theories,
which in turn are based on the formulation of hypotheses that
must be confirmed through experiments, which may eventually
lead to new interpretations and new theories. This iterative
behavior is repeated until achievement of the pursued objecti-
ves of the investigation. However, as experimentation is
expensive both in terms of time and money, experiments should
be designed to allow for achievement of the objectives with
fewest possible experiments.

For engineering purposes, theories normally must be trans-
lated into mathematical equations to facilitate its use for design,
control and optimization of the analyzed processes. During the
initial stages of the experimental investigation, the available
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results can usually be explained by several different mech-
anistic interpretations. A typical example is the mechanistic
interpretation of catalytic reactions, which can lead to sev-
eral different rate equations (Froment, 1975). In order to
select the best model among the proposed ones, new experi-
ments must be designed. (The best model can be regarded as
the one that is valid in a broader range of the experimental
range and allows for improved extrapolations of the available
data.)

Several criteria for experimental design for model discrim-
ination have been proposed in literature. Hunter and Reiner
(1965) developed a simple criterion for discrimination between
two rival single response models, where the new experimental
condition must be selected where the difference between model
responses is maximum, according to:

D(x) = (y1 − y2)
2. (1)

In Eq. (1), D is the discriminant value, y1 and y2 are the ex-
pected responses of Models 1 and 2 at experimental condition
x and with model parameters �1 and �2 estimated from the
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available experiments (x, �1 and �2 were omitted for
simplicity). Experimental observations of x and y are subject
to random noise (assumed here to follow a normal distribution,
with zero mean and covariance Vx = 0 and Vy = V, unless
stated otherwise). This criterion can be extended for discrimi-
nation among M rival models as follows (Froment, 1975):

D(x) =
M−1∑
m=1

M∑
n=m+1

(ym − yn)
2. (2)

The major drawback of criteria defined in Eqs. (1) and (2)
is the assumption that the variances of model predictions are
constant throughout the experimental region. In order to take
into account the change of model prediction variances, Box and
Hill (1967) developed a different design criterion by making
use of the Information Theory and of a Bayesian approach,
assigning probabilities for models to concentrate the efforts in
discriminating the most probable models. The Box and Hill’s
criterion can be written as

D(x) =
M−1∑
m=1

M∑
n=m+1

PmPn

[
(�2

m − �2
n)

2

(�2 + �2
m)(�2 + �2

n)

+(ym − yn)
2
(

1

�2 + �2
m

+ 1

�2 + �2
n

) ]
, (3)

where Pm is the probability for model m to be the best model,
�2 and �2

m are, respectively, the experimental variance and
the prediction variance of model m, both dependent of exper-
imental condition x. An interesting feature of this criterion is
that experimental design and model evaluation are performed
simultaneously through model probabilities (Hill, 1978).

Although Box and Hill’s criterion take into account the ex-
perimental and the model prediction variances, Dumez et al.
(1977) and Atkinson (1978) did not observe any systematic dif-
ference between experiments designed with either the Box and
Hill’s or the simpler Hunter and Reiner’s criterion. Atkinson
(1978) also observed that the use of model probabilities might
lead to selection of one model even when all models are bad.
Besides, due to the recursive law that was originally proposed
by Box and Hill (1967) to update model probabilities, the ob-
tained results may depend on the ordering of the experimen-
tal observations, as observed by Buzzi-Ferraris and Forzatti
(1983). They also observed that, due to the structure of Eq. (3),
experiments can be selected where the variances of the differ-
ence between model predictions are large and not where differ-
ences of model responses are large. In order to overcome these
difficulties, alternative design criteria for model discrimination
have been proposed in the literature.

Buzzi-Ferraris and Forzatti (1983) proposed a criterion for
sequential model discrimination where the new experimen-
tal condition should maximize the ratio between the variance
of model deviations and the mean value of model prediction
variances, as follows:

D(x) =
∑M−1

m=1
∑M

n=m+1(ym − yn)
2

(M − 1)(M�2 + ∑M
m=1�

2
m)

. (4)

Eq. (4) takes into account all M models and the selected ex-
perimental condition can be placed in regions where the diver-
gence among all rival models is not very large. For this reason,
it may be preferable to discriminate pairs of rival models in-
stead of all models simultaneously (Buzzi-Ferraris and Forzatti,
1983). Then, for discrimination between two rival models,
Eq. (4) becomes:

Dm,n(x) = (ym − yn)
2

2�2 + �2
m + �2

n

. (5)

One should then maximize the maximum value of Dm,n dur-
ing the design phase and eliminate bad models during the data
analysis phase, in order to avoid the repetitive design of exper-
iments for elimination of bad model candidates. The criterion
defined in Eq. (5) can be extended for models with multiple
responses (Buzzi-Ferraris et al., 1984) as follows:

Dm,n(x) = (ym − yn)
TV−1

m,n(ym − yn), (6)

where ym is a vector of responses of model m and Vm,n is
defined as

Vm,n = 2V + Vm + Vn, (7)

where V is the covariance matrix of experimental deviations
and Vm is the covariance matrix of model prediction deviations
calculated from model m.

Buzzi-Ferraris et al. (1990) presented an improved version of
the design criterion defined in Eq. (6), in order to correctly take
the experimental errors into consideration during the design
phase, given by

Dm,n(x) = (ym − yn)
TV−1

m,n(ym − yn) + trace(2VV−1
m,n). (8)

Differently from Box and Hill’s procedure, the sequences of
designed experiments obtained with the criteria developed by
Buzzi-Ferraris and coworkers (1983, 1984, 1990) do not depend
on the ordering of the experimental observations. Buzzi-Ferraris
and coworkers (1983, 1984, 1990) also suggested the a priori
evaluation of the discrimination power associated with the new
designed experiment. According to them, the optimum value of
discriminant Dm,n (calculated from Eq. (5), (6) or (8)) must be
larger than the number of model responses; otherwise, discrim-
ination is not possible and the experimental procedure must be
halted. The adequacy of model evaluations must be performed
with the classical �2-test for model adequacy (or any other
statistical test developed for analysis of model adequacy).

Detailed surveys on available mathematical (and numerical)
procedures for model discrimination are presented by Hill
(1978) and Forzatti et al. (1986). Interesting applications of
model discrimination procedures in dynamic problems are
presented by Asprey and Macchieto (2000) and Ucinski and
Bogacka (2005). The public literature concerning the optimal
experimental design for model discrimination is huge and one
should refer to Atkinson and Fedorov (1975a, b) and Atkinson
et al. (2007) for detailed description of batch optimum design
procedures (which can be regarded as preliminary experimental
designs in a sequential experimental design strategy).
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Recently, Schwaab et al. (2006) proposed the use of model
probabilities to formulate a design criterion for model discrim-
ination defined in Eq. (6). In order to concentrate the experi-
mental efforts on discriminating the more plausible models, the
discrimination is based on the performance of pairs of models as

Dm,n(x) = (PmPn)
Z(ym − yn)

TV−1
m,n(ym − yn), (9)

where Z resembles the Tsallis’ parameter, used for generaliza-
tion of the entropy and information content (Tsallis, 1988). In
the proposed model discrimination procedure, Z is a parameter
used to modulate the relative importance of the rival models:
if Z is greater than 1, model prediction differences are mag-
nified; if Z is smaller than 1, model prediction differences are
minimized. Pm is the relative probability for model m to be the
best model, calculated from the absolute model probabilities as

Pm = �m∑M
n=1�n

, (10)

where �m is the absolute probability for model m to be the
best model, as defined in Eq. (11). Assuming that model m

is perfect, that experiments are well done and that experi-
mental deviations follow the normal distribution, the objective
function presented in Eq. (12) approximately follows a �2-
distribution with � degrees of freedom (� = NE.NPm, where
NE is the total number of experimental points and NPm is the
number of estimated parameters in model m). Consequently, a
value can be assigned to each model probability in the form:

�m = 1 − p[�2
� �Fm], (11)

where Fm is the minimum value of the objective function
obtained in the parameter estimation of model m, defined as

Fm =
N∑

i=1

(yi,m − ye
i )

TV−1
i (yi,m − ye

i ), (12)

where yi,m is the vector of model responses, ye
i is the vector

of experimental responses and Vi is the covariance matrix
of experimental deviations for experiment i. As the objective
function does not depend on ordering of the experimental ob-
servations, the absolute probabilities calculated from Eq. (11)
do not depend on ordering of experimentation either. Schwaab
et al. (2006) claimed that model analysis and comparison of
model performances become simpler and unambiguous when
a quantitative measure of model adequacy is provided, such as
the model probabilities, which were also used for model dis-
crimination. Besides, the absolute model probabilities, calcu-
lated from the �2-distribution, can be readily used as a classical
�2-test for model adequacy, allowing for evaluation of absolute
model performances and analysis of the relative performances.

After selecting the best model, one may also need to design
additional experiments to increase the precision of model para-
meters and model predictions. This task is closely related with
the posterior covariance matrix of parameter estimates (Bard,
1974); that is, the expected covariance matrix of parameter
estimates after the addition of new k experiments to the set of

available experimental data and re-estimation of model
parameters.

The criteria used for selection of new experiments for
minimization of variances of parameter estimates normally
minimize some norm of the posterior covariance matrix of the
parameter estimates. The first criterion defined in the literature
for minimization of variances of parameter estimates consists
in the minimization of the determinant of the posterior co-
variance matrix of the parameter estimates (Box and Lucas,
1959), since this determinant is proportional to the volume
of the hyper-ellipsoid that defines the parameter confidence
region. Consequently, minimizing the determinant is equivalent
to increasing the confidence in the parameter estimates.

Experiments can also be designed for reduction of the param-
eter correlations (Hosten, 1974; Pritchard and Bacon, 1978),
as parameter correlations make the parameter estimation and
parameter identification much more difficult. (Schwaab and
Pinto (2007) and Schwaab et al. (2008b) have recently proposed
a two-step parameter estimation procedure for minimization
of parameter correlations, based on the reparameterization of
model parameters, which does not require the design of new
experiments.) The design for precise parameter estimation can
also be performed through the minimization of the trace of the
posterior covariance matrix of the parameter estimates (Pinto
et al., 1990), where the sum of the posterior variances of
parameter estimates should be minimized. (Pinto et al. (1991)
developed and proposed the use of the relative posterior co-
variance matrix of parameter estimates for minimization of
relative parameter deviations, since the orders of magnitude
of the absolute parameter values can differ greatly in many
problems).

Based on the previous paragraphs, one can propose the ex-
ecution of two blocks of experimental design: the first one for
model discrimination and the second one for precise parame-
ter estimation, after selection of the best model. As sometimes
this may lead to long and expensive experimental plans, some
authors suggested the formulation of a single design criterion
for simultaneous model discrimination and precise parameter
estimation. Hill et al. (1968) were the first to suggest a joint
design criterion, defined as

C(x) = w
D(x)

Dmax
+ (1 − w)

M∑
m=1

Pm

Em(x)

Em,max
, (13)

where D represents a model discrimination criterion and Em

represents a criterion for precise parameter estimation for model
m. In order to provide a suitable normalization of the joint
criterion, Dmax and Em,max represent the maximum value of
D and E over the experimental design region, respectively. Pm

is the probability of model m, as defined previously. w is a
relative weight defined as

w =
[
M(1 − Pb)

M − 1

]�

, (14)

where Pb is the probability of the best model, M is the
total number of rival models and � is a positive number that
allows the experimenter to control the relative importance of the
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discrimination procedure and the precise parameter estimation
procedure during the experimental design.

As a matter of fact, Cochran (1973) observed that the best
experimental conditions for model discrimination are not nec-
essarily good for precise parameter estimation, and vice versa.
For this reason, when the criterion defined in Eq. (13) is used
for planning experiments, the selected experimental conditions
are composed of a series of experiments designed for model
discrimination and of a series of experiments designed for pa-
rameter estimation (sometimes, for bad models). As the model
discrimination proceeds, more “estimation conditions” and
fewer “discrimination conditions” are selected (Hill, 1978). As
a consequence, both model discrimination and precise parame-
ter estimation are prejudiced to some extent. This explains why
the literature does not recommend the simultaneous design of
experiments for model discrimination and precise parameter
estimation (Hill, 1978).

In spite of that, it must be clear that good model discrimina-
tion is closely related with the estimation of precise parameters.
The more precise are the model parameters (and, consequently,
the model predictions), the easier is the discrimination between
model responses. When model predictions are very uncertain,
no model discrimination is possible. From Eq. (5) one can see
that discrimination is not possible when model prediction vari-
ances are high, as the ratio between model predictions and the
sum of prediction variances becomes less than 1. Similar com-
ments can be easily extended for problems involving multiple
response models.

Surprisingly, the literature review indicates that the effect of
the new designed experiment on the model prediction variance
has been neglected in all proposed design criteria for model
discrimination. However, when a new experiment is performed
and added to the set of available experimental data, the vari-
ance of model prediction decreases, as the model is adjusted
to this new set of experimental conditions during parameter
estimation. This is well known by those who design experi-
ments for precise parameter estimation. Therefore, according to
Eq. (5), the discrimination power is underestimated when the
decrease of prediction variances is not considered, as the model
performances will be compared after re-estimation of model
parameters, not before.

In order to take into account the decrease of variances of
model predictions during the experimental design, it is proposed
here that the posterior covariance matrix of parameter esti-
mates be used for calculation of the covariance matrix of model
predictions during model discrimination procedures. This
modification may allow for more accurate calculation of the
discrimination power and for improved experimental designs.
As a consequence the next experiment is selected in regions
where the model divergences are high and/or the posterior
variances of model predictions are small. It is expected that
this approach may allow for model discrimination and simul-
taneous reduction of the variances of the parameter estimates,
as reduction of variances of parameter estimates exerts a bene-
ficial effect on model discrimination. It is important to observe
that the use of the posterior covariance matrix of parameter es-
timates for model discrimination does not define a joint design

criterion for simultaneous model discrimination and precise
parameter estimation, since the decrease of the variances of the
parameter estimates are obtained as a secondary effect, because
the primary objective is the increase of discrimination power.

2. Methodology

The traditional procedure used for model discrimination does
not make use of the posterior covariance matrix of parameter
estimates. According to the usual approach, the calculations
begin with the estimation of parameters for M rival models,
using N available experiments. Tests of model adequacy are
then performed for all proposed models. Adequate models are
then used for design of the new experimental condition.

The covariance matrix of parameter estimates, based on the
N available experiments can be calculated as follows (Bard,
1974):

V�,m =
[

N∑
i=1

BT
m(xi )V−1(xi )Bm(xi )

]−1

, (15)

where V�,m is the covariance matrix of parameter estimates for
model m, V is the covariance matrix of experimental deviations
and Bm is the sensitivity matrix that contains the first derivatives
of model m responses with respect to its parameters, as

Bm = [bm]r,s = �yr,m

��s

. (16)

The covariance matrix of model predictions Vm at the new
experimental condition xN+1 can be calculated as follows
(Bard, 1974):

Vm(xN+1) = Bm(xN+1)V�,mBT
m(xN+1). (17)

One should observe that the sensitivity matrix Bm in
Eq. (17) is calculated at the new experimental condition, while
the covariance matrix of parameter estimates V�,m seems to be
independent of the new experimental condition. The procedure
continues with the calculation of the covariance matrix of the
differences between model predictions as

Vm,n(xN+1) = 2V(xN+1) + Vm(xN+1) + Vn(xN+1). (18)

The design criterion developed by Schwaab et al. (2006)
is used here for experimental design (when Z is equal to 0,
Schwaab et al.’s criterion becomes similar to the criterion pro-
posed by Buzzi-Ferraris et al., 1984). Then, the discriminant
can be written as

Dm,n(xN+1) = (PmPn)
Z[ym(xN+1) − yn(xN+1)]T

× V−1
m,n(xN+1)[ym(xN+1) − yn(xN+1)]. (19)

The new experimental condition xN+1 is the one that allows
for maximization of Eq. (19). Maximization can be performed
through extensive search in a proposed experimental grid or
with the help of a proper numerical procedure. However, some
care should be taken during maximization due to the possible
existence of multiple points of maximum, as shown by Schwaab
et al. (2006).
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It is proposed here that the posterior covariance matrix
of parameter estimates be used for model discrimination in
Eqs. (15)–(19). The use of the posterior covariance matrix of
parameter estimates can be justified by the fact that model
performances are compared after execution of the designed
experiment and re-estimation of model parameters for all mod-
els. The posterior covariance matrix of model parameters can
be defined as (Bard, 1974)

V̂�,m(xN+1) = [BT
m(xN+1)V−1(xN+1)Bm(xN+1) + V−1

�,m
]−1,

(20)

where ˆ is used to differentiate the posterior covariance ma-
trix from the current covariance matrix of parameter estimates.
Comparing Eqs. (15) and (20), the difference is the inclusion
of the next experiment for computation of the posterior covari-
ance matrix of parameter estimates. Therefore, the calculation
of the posterior covariance matrix of model predictions should
be performed as

V̂m(xN+1) = Bm(xN+1)V̂�,m(xN+1)BT
m(xN+1). (21)

In Eq. (21) all terms are calculated as functions of the new se-
lected experimental condition xN+1, differently from Eq. (17),
where the covariance matrix of parameter estimates is not a
function of xN+1. Finally, the posterior covariance matrix of
the differences between model predictions becomes

V̂m,n(xN+1) = 2V(xN+1) + V̂m(xN+1) + V̂n(xN+1) (22)

and the discriminant becomes

D̂m,n(xN+1) = (PmPn)
Z[ym(xN+1) − yn(xN+1)]T

× V̂−1
m,n(xN+1)[ym(xN+1) − yn(xN+1)]. (23)

In Eqs. (21), (22) and (23), ˆ was used to indicate that
the posterior covariance matrix of parameter estimates was
used during calculations. One must observe that the design
criteria depend on the values of the parameter estimates,
which has been omitted from the equations for the sake of
simplicity.

The main advantage of using the posterior covariance ma-
trix of the differences between model predictions for model
discrimination is that the discriminant values becomes higher
(that is, the discriminant calculated with Eq. (23) is higher than
the discriminant calculated with Eq. (17)), indicating easier
discrimination of rival models. Besides, the use of Eq. (23)
is much more realistic, since after execution and use of the
new experimental condition for parameter estimation, pre-
diction variances become usually lower than calculated with
Eq. (17). (Obviously, the covariance matrix calculated with
Eq. (21) will not be equal to the one obtained after execution
and re-estimation, although it can certainly be regarded as a
better approximation of the true covariance matrix of model
predictions after re-estimation of model parameters.)

The sequential procedure used in this work is illustrated in
Fig. 1. It is assumed that a set of preliminary experiments is
available, as usual. (The preliminary set of experiments may be
designed with the help of batch optimum experimental design
procedures.) The model discrimination procedure is required

Preliminary
experiments

Parameter
estimation

Evaluation of
model adequancy

Is only
one model
adequate?

End

YES

YES

NO

NO

Design new
experimental

condition

Is
discrimination

possible?
Stop

Run designed
experiment

Fig. 1. Sequential experimental procedure for model discrimination.

when more than one model is able to describe the available
experimental data appropriately, in accordance with standard
statistical analysis. In this case, additional experiments must
be designed in order to allow for determination of the best
model.

The first step consists in estimating model parameters for all
rival models. Minimum objective function values (Eq. (12)),
the optimum parameter estimates and the covariance matrixes
of parameter estimates (Eq. (15)) can then be obtained for each
model. Afterwards, model adequacy can be evaluated for each
model with the help of Eq. (10). When only one model can be
regarded as adequate, the desired objective is attained; other-
wise, a new experimental condition must be designed.

The design step consists in searching for the experimental
conditions that allow for maximization of the selected design
criterion (Eq. (19) or (23)). One must observe that it is neces-
sary to know the optimum parameter estimates and the covari-
ance matrix of parameter estimates in order to perform this step.
The search can be performed with the help of standard numer-
ical optimization procedures (or, as performed here, through
exhaustive grid search).

After maximization of the design criterion, it is necessary
to analyze whether model discrimination is indeed possible;
otherwise, the procedure must be halted and the problem must
be reviewed. If it is concluded that model discrimination is
possible, the designed experiment is performed and the exper-
imental results are added to the set of available experiments.
Then, the whole procedure is repeated again. The sequential
design procedure must be performed until achievement of one
of the two stopping criteria: successful model discrimination
or conclusion that model discrimination is not possible within
the proposed experimental grid.



M. Schwaab et al. / Chemical Engineering Science 63 (2008) 2408–2419 2413

3. Results and discussion

In the first example the model discrimination procedure is
studied for discrimination between two linear models, in order
to illustrate the effect of the inclusion of the posterior covariance
matrix of parameter estimates in the design criterion used for
model discrimination.

The following two examples regard real model discrimi-
nation problems. In these examples, the minimization of the
objective function during the parameter estimation procedure is
performed with a hybrid method. The search is initiated with the
Particle Swarm Optimization method (Kennedy and Eberhart,
1995), which performs a global search in order to locate the
global minimum and provide the likelihood confidence region
of parameter estimates (Schwaab et al., 2008a). The best point
located by the Particle Swarm Optimization is then used as the
initial guess for a Gauss–Newton based procedure (Noronha
et al., 1993), which assures the precision of the final point
estimate and provides the covariance matrix of parameter
estimates, used for confidence evaluation of the parameter esti-
mates and for calculation of the posterior covariance matrix of
parameter estimates.

3.1. Example 1: linear models discrimination

The proposed model discrimination procedure is initially
applied for discrimination of two rival linear models, defined as

Model 1: y1 = �1,1x, (24a)

Model 2: y2 = �2,1x + �2,2, (24b)

where �m,p is the parameter p of model m, x is the independent
variable and y is the dependent variable. The main objective
here is providing a simple example where analytical solutions
are available, in order to illustrate how important the use of the
posterior covariance matrix of parameter estimates can be for
proper model discrimination.

Let us assume that N experimental data points are available.
Then, the objective function for parameter estimation can be
written as

Fm =
N∑

i=1

(ym,i − ye
i )

2

�2
, (25)

where �2 is the experimental variance, assumed to be constant
along the experimental region for the sake of simplicity. The
covariance matrixes of parameter estimates for each of the rival
linear models are (Eq. (15))

V�1 = �2

[
N∑

i=1

x2
i

]−1

, (26a)

V�2 = �2

⎡
⎢⎢⎣

N∑
i=1

x2
i

N∑
i=1

xi

N∑
i=1

xi N

⎤
⎥⎥⎦

−1

. (26b)

The variances of model predictions at the new experimental
condition xN+1 are then equal to (Eq. (17))

V1(xN+1) = �2 x2
N+1∑N
i=1x

2
i

, (27a)

V2(xN+1) = �2 Nx2
N+1 − 2xN+1

∑N
i=1xi + ∑N

i=1x
2
i

N
∑N

i=1x
2
i − (

∑N
i=1xi)

2
. (27b)

One can observe that the variances of model predictions for both
models increase as a quadratic function of the new experimental
condition xN+1. It is possible to calculate the covariance matrix
of the differences between predictions of models m and n, in
accordance with Eq. (18), as

V1,2(xN+1) = �2

[
2 + x2

N+1∑N
i=1x

2
i

+Nx2
N+1 − 2xN+1

∑N
i=1xi + ∑N

i=1x
2
i

N
∑N

i=1x
2
i − (

∑N
i=1xi)

2

]
. (28)

Again, the variances of the differences between predictions of
the linear models increase as a quadratic function of the new
experimental condition xN+1. The discriminant can be written
as (Eq. (5))

D1,2(xN+1)

= [(�1,1−�2,1)xN+1−�2,2]2

�2

[
2+ x2

N+1∑N
i=1x

2
i

+Nx2
N+1−2xN+1

∑N
i=1xi+∑N

i=1x
2
i

N
∑N

i=1x
2
i −(

∑N
i=1xi)

2

] .

(29)

As the value of xN+1 increases, the discriminant tends to a
constant, since both numerator and denominator are second-
order polynomials. This indicates that model discrimination
cannot be improved when xN+1 is increased arbitrarily, be-
cause the variances of model predictions increase with x2

N+1.
However, this is indeed a very strange result, because the per-
formances of distinct linear models tend to infinity when xN+1
is increased arbitrarily.

Considering now the posterior covariance matrix of
parameter estimates, then

V̂�1(xN+1) = �2

[
x2
N+1 +

N∑
i=1

x2
i

]−1

, (30a)

V̂�2 = �2

⎡
⎢⎢⎣

x2
N+1 +

N∑
i=1

x2
i xN+1 +

N∑
i=1

xi

xN+1 +
N∑

i=1
xi N + 1

⎤
⎥⎥⎦

−1

. (30b)

Taking into account the posterior covariance matrix of param-
eter estimates after inclusion of a new experimental condition
xN+1, the model prediction errors become (Eq. (21))

V̂1(xN+1) = �2 x2
N+1

x2
N+1 + ∑N

i=1x
2
i

, (31a)



2414 M. Schwaab et al. / Chemical Engineering Science 63 (2008) 2408–2419

V̂2(xN+1)

= �2 Nx2
N+1−2xN+1

∑N
i=1xi+∑N

i=1x
2
i

Nx2
N+1−2xN+1

∑N
i=1xi+(N+1)

∑N
i=1x

2
i −(

∑N
i=1xi)

2
.

(31b)

One can observe now that the model prediction variances of
both linear models present an asymptotic behavior as xN+1
increases. In both cases, the prediction variances become equal
to the experimental variance �2. This means that prediction
variances do not increase arbitrarily as xN+1 increases, when
the models are updated with the new experimental data. This
makes a lot of sense, as variances of model predictions are
high before execution of the experiment, but are significantly
smaller after obtainment of the new experimental point. Similar
behavior is found for the variances of the differences between
model predictions

V̂1,2(xN+1) = �2

[
2 + x2

N+1

x2
N+1 + ∑N

i=1x
2
i

+ Nx2
N+1 − 2xN+1

∑N
i=1xi + ∑N

i=1x
2
i

Nx2
N+1 − 2xN+1

∑N
i=1xi + (N + 1)

∑N
i=1x

2
i − (

∑N
i=1xi)

2

]
. (32)

Finally, the discriminant becomes

D̂1,2(xN+1) = [(�1,1 − �2,1)xN+1 − �2,2]2

�2

[
2 + x2

N+1

x2
N+1 + ∑N

i=1x
2
i

+ Nx2
N+1 − 2xN+1

∑N
i=1xi + ∑N

i=1x
2
i

Nx2
N+1 − 2xN+1

∑N
i=1xi + (N + 1)

∑N
i=1x

2
i − (

∑N
i=1xi)

2

] . (33)

When the posterior covariance matrix of parameter estimates
is taken into account for calculation of the model prediction
variances, the value of the discriminant increases arbitrarily
as the value of xN+1 increases. This happens because the nu-
merator increases with x2

N+1, while the denominator tends to
a constant as xN+1 increases. Therefore, Eq. (33) indicates
very clearly that xN+1 must be large for model discrimination,
as one might already expect. Besides, as clearly indicated in
Eq. (30), model parameters are improved very significantly
when xN+1 is allowed to increase. Therefore, selection of large
xN+1 values contributes simultaneously with model discrimi-
nation and improved parameter estimation. This very simple
example shows that posterior covariance matrix of parameter
estimates should not be neglected during model discrimination.

3.2. Example 2: discrimination of rival adsorption models

This second example consists in discriminating between two
single response models. The problem regards the adsorption of
a gaseous component on a solid matrix and one is interested in
describing the equilibrium adsorbate concentration as a func-
tion of the gas pressure. Model 1 is the Langmuir adsorption
isotherm and Model 2 is the Freundlich adsorption isotherm,
as described below:

Model 1: y1 = �1,1
�1,2x

1 + �1,2x
, (34a)

Model 2: y2 = �2,1x
�2,2 , (34b)

where �m,p is the parameter p of model m, x is the pressure in
bar and y is the concentration of adsorbate on a solid material
in mol kg−1.

Table 1
Initial experimental data set for Example 2

Run x (bar) y (mol kg−1)

1 0.50 1.40
2 1.00 1.99
3 2.00 2.41

Table 2
Initial parameter estimates in Example 2

Model Fm Pm �m,1 ± ��m,1 �m,2 ± ��m,2

1 0.135 76.1 3.175 ± 0.283 1.613 ± 0.402
2 1.478 23.9 1.892 ± 0.060 0.372 ± 0.055

Model 1 is assumed to be the correct one and is used to
generate the experimental data, which are corrupted by a ran-
dom normal deviation with zero mean and variance of 0.01.
Parameters used to generate the “experimental” data were �1,1
equal to 3 mol kg−1 and �1,2 equal to 2 bar−1. Table 1 presents
the three initial experiments. Using these experimental points,
the parameters of both models were estimated, as presented in
Table 2. Fm and Pm in Table 2 are, respectively, the minimum
value of the objective function and the relative probability of
model m, as defined in Eq. (10). ��m,p is the standard devia-
tion of the parameter �m,p.

Despite the higher relative probability of Model 1, when
compared with Model 2, both models are statistically significant
and new experiments must be designed in order to discriminate
between them. In order to design a new experimental condition,
two design criteria were used. The first one is the criterion
defined in Eq. (6) (Buzzi-Ferraris et al., 1984), while the second
is the new proposed criterion, as defined in Eq. (23). Since only
two models are considered, the use of the model probabilities
(and definition of Z) does not affect the design of experiments.
Therefore, the only difference between Eqs. (6) and (23) is
the use of the posterior covariance matrix of the parameter
estimates for calculation of the prediction variances in Eq. (23).

The selection of the best experimental condition was per-
formed through a direct search in the range 0.05�x�5.00,
with steps of 0.05 bar. Using the criterion defined in Eq. (6) the
new selected experimental condition was x equal to 0.05 bar;
that is, the lowest available pressure. When the criterion
defined in Eq. (23) was used, the selected experimental con-
dition was x equal to 5.00 bar; that is, the highest allowed
pressure. The difference is amazing and the use of the posterior
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Table 3
Designed experiment in Example 2 with Eq. (6) (Run 4-Eq6) and Eq. (23)
(Run 4-Eq23)

Run x (bar) y (mol kg−1) D

4-Eq6 0.05 0.26 4.365
4-Eq23 5.00 2.60 10.05

0.0

x [bar]

0

2

4

6

8

10

D

1.0 2.0 3.0 4.0 5.0

Fig. 2. Discriminant values calculated with (full line) and without (dashed
line) the posterior covariance matrix of parameter estimates in Example 2.

covariance matrix of parameter estimates for model discrim-
ination changes completely the notion about the best exper-
imental condition. In Table 3 one can see the new selected
experimental condition, the generated experimental response
and the value of the discriminant at the selected experimental
condition. One can observe that the discriminant value D ob-
tained when the posterior covariance matrix is used is much
higher, showing its higher discrimination power.

Fig. 2 shows both discriminant values as functions of the ex-
perimental condition. Fig. 2 shows that the maximum discrimi-
nant values are placed at different experimental conditions and
that discriminant values calculated with the posterior covari-
ance matrix of parameter estimates are always higher, due to
the smaller prediction variances after execution of the new ex-
perimental condition. This effect is illustrated in Figs. 3 and 4.

By comparing Figs. 3 and 4, one can observe the decrease of
the variances of model predictions for both models when the
posterior covariance matrix of parameters is considered. Ac-
cording to Fig. 3, the variances of model predictions are high
and it is possible to observe differences between model re-
sponses only when x values are close to 0. When the posterior
covariance matrix of model parameters is considered, a differ-
ent scenario is unveiled, as shown in Fig. 4. The prediction er-
rors become smaller and significant differences appear at high
x-values. Therefore, it becomes possible to discriminate be-
tween the models in this region. As a matter of fact, even in the
region of small x-values, the prediction errors become smaller
and the discriminant is higher, as also shown in Fig. 2.

After “execution” of the new experimental condition, se-
lected in accordance to each criterion, the parameter estimates
are obtained as presented in Table 4. Although, the discrimina-
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Fig. 3. Predictions and confidence intervals for Model 1 (full line) and Model
2 (dashed line) in Example 2, without considering the posterior covariance
matrix.
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Fig. 4. Predictions and confidence intervals for Model 1 (full line) and Model
2 (dashed line) in Example 2, considering the posterior covariance matrix.

Table 4
Parameter estimation results after one designed experiment in Example 2,
using Eqs. (6) and (23)

Model Fm Pm �m,1 ± ��m,1 �m,2 ± ��m,2

1-Eq6 0.182 98.2 3.157 ± 0.268 1.642 ± 0.387
1-Eq23 1.294 99.2 2.935 ± 0.131 1.978 ± 0.339
2-Eq6 8.165 1.8 1.832 ± 0.056 0.464 ± 0.044
2-E23 10.84 0.8 1.880 ± 0.058 0.232 ± 0.028

tion between the two rival models was attained in both cases,
since Model 1 reaches relative probabilities that are higher than
97.5 % in both cases, the parameter errors are smaller when the
posterior covariance matrix of parameter is used in the design.
It is interesting to observe that model discrimination is better
and that model parameters are better for both models when the
covariance matrix of parameter estimates is considered. There-
fore, the use of Eq. (23) allows for simultaneous improvement
of model discrimination and parameter estimation, as pursued
by many researches in the field.

Fig. 5 shows the determinants of the posterior covariance
matrixes of the parameter estimates for both models as func-
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Fig. 5. Value of the determinant of the posterior covariance matrix of param-
eters for Model 1 (full line) and Model 2 (dashed line) in Example 2.

Table 5
Designed experiments with two criteria (Eqs. (6) and (23)) in Example 2 and
determinant of the covariance matrix of parameter estimates of Model 1

Exp. Eq. (6) Eq. (23)

x (bar) det(V�) x (bar) det(V�)

3 – 1.39 – 1.39
4 0.05 1.26 5.00 0.54
5 5.00 0.36 0.05 0.51
6 0.05 0.34 0.05 0.42
7 0.05 0.32 0.05 0.36
8 1.20 0.25 1.15 0.29
9 0.05 0.23 5.00 0.16

10 5.00 0.15 1.30 0.13

tions of experimental condition. Since this determinant is
proportional to the volume of the confidence region of model
parameters (Bard, 1974), a smaller determinant is equivalent to
a smaller confidence region of the model parameters. As Fig. 5
shows, the minimum value of the determinant for both models
is achieved when x is equal to 5.0 bar, the same experimental
condition selected when the posterior covariance matrix of
parameter estimates is used during the model discrimination
procedures, as proposed in this work.

It was shown in this simple example that the use of the pos-
terior covariance matrix of the parameter estimates for calcula-
tion of the prediction variances used for model discrimination
increases the discriminant power and simultaneously leads to
more precise model parameters.

In order to illustrate the sequence of designed experiments
obtained with the analyzed criteria, seven additional experi-
ments are designed and performed, as given in Table 5. It must
be clear, though, that model discrimination is attained after ex-
ecution of a single additional experiment, which means that the
additional six experiments are not really needed for selection
of the best model.

After execution of two additional experiments, both exper-
imental designs lead to essentially the same results (although
the proposed criterion selects the best model first). This shows

that, when the variances of parameter estimates attain low
levels, model discrimination depends only on the differences
between model responses, as the variance of model predictions
is not changed significantly with the additional experiments.
Consequently, the proposed example shows that the new pro-
posed design criterion allows for simultaneous model discrim-
ination and minimization of the variances of the parameter es-
timate, as precise parameter estimates allow for more effective
model discrimination.

3.3. Example 3: discrimination of kinetic models for the
water-gas shift reaction

This example comprises the discrimination among kinetic
models for the water-gas shift reaction (WGSR). Several
kinetic models for the WGSR can be found in the literature and
Schwaab et al. (2006) studied the discrimination among 13
different models. In order to show results obtained with the
new discrimination procedure proposed here, five kinetic mod-
els were selected and are shown in the following equations:

Model 1:

r = kpCOpH2O(1 − �)

(1+KCOpCO+KH2OpH2O+KCO2pCO2+KH2pH2)
2

,

(35a)

Model 2:

r = kpCOpH2O(1 − �)

1 + KCOpCO + KH2OpH2O + KCO2pCO2 + KH2pH2

,

(35b)

Model 3:

r = kpCO
√

pH2O(1 − �)

1 + KCOpCO + KH2OpH2O + KCO2pCO2 + KH2pH2

,

(35c)

Model 4: r = k1k2pCOpH2O(1 − �)

k1pCO + k2pH2O + k3pCO2

, (35d)

Model 5: r = k1k2pCOpH2O(1 − �)

k1pCO + k2pH2O + k3pCO2 + k4pH2

, (35e)

where r is the reaction rate in mol g−1 s−1, pi is the partial
pressure of component i in atm, k’s and K’s are the model para-
meters and � is a measure of the equilibrium state, defined as

� = pCO2pH2

pCOpH2OKeq
(36)

and the equilibrium constant Keq is defined as:

Keq = exp(4577.8/T − 4.33). (37)

This example regards the discriminations of multiple models,
which depend on multiple inputs and multiple parameters.

Model 1 was assumed to be the true model and the
parameter values were k = 0.352 mol g−1 s−1 atm−2, KCO =
2.726 atm−1, KH2O = 0.559 atm−1, KCO2 = 1.532 atm−1 and
KH2 =1.459 atm−1 (Amadeo and Laborde, 1995). The reaction
rates calculated with Model 1 were corrupted with a random
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Table 6
Preliminary experiments in Example 3

Run pCO pH2O pCO2 pH2 r (103)

1 0.25 0.25 0.25 0.25 3.6908
2 0.25 0.25 0.50 0.50 1.8486
3 0.25 0.50 0.25 0.50 4.9220
4 0.25 0.50 0.50 0.25 4.3712
5 0.50 0.25 0.25 0.50 2.9268
6 0.50 0.25 0.50 0.25 4.3868
7 0.50 0.50 0.25 0.25 6.3938
8 0.50 0.50 0.50 0.50 4.2412

Table 7
Designed experiments in Example 3 with Eq. (19)

Exp. pCO pH2O pCO2 pH2 r (103) D(m, n)

9 1.00 1.00 0.85 1.00 6.527 6.908 (1,4)
10 0.10 0.25 0.05 0.05 3.347 5.285 (1,2)
11 1.00 0.15 1.00 0.90 1.739 0.534 (1,3)
12 0.05 1.00 0.05 0.05 4.240 0.598 (1,3)
13 0.35 0.95 0.20 0.25 11.40 1.677 (1,3)
14 1.00 0.15 0.25 0.40 3.171 3.055 (1,3)
15 1.00 1.00 0.75 0.55 10.31 4.498 (1,5)
16 0.15 1.00 0.05 1.00 5.919 9.955 (1,4)
17 0.35 0.90 0.25 0.05 14.34 2.672 (1,3)

normal deviation with a variance of 1 × 10−6. Preliminary
experiments were defined as given in Table 6 and follow a
fractional 2{4−1} factorial design.

The sequentially designed experiments were selected from
a discrete experimental grid, where each variable (pCO, pH2O,
pCO2 and pH2 ) was allowed to vary from 0.05 to 1.00, in steps
of 0.05. The specific design criterion was evaluated at every
point within the discrete experimental grid and for every pair of
models. The new selected experimental condition was the one
where the analyzed design criterion achieved its highest value
for a particular pair of models.

Initially, the experiments were designed with the criterion
that does not take into account the posterior covariance matrix
of parameter estimates, defined in Eq. (19), using a Z value
of 1. The designed experiments and the simulated experimental
values for the reaction rate are presented in Table 7 where the
value of D(m, n) is also shown. (D(m, n) is the discriminant
value between models m and n without the use of model prob-
abilities, calculated in accordance with Eq. (6).) According to
Buzzi-Ferraris and coworkers (1983, 1984, 1990), D(m, n) can
be used as an indication of the discrimination feasibility after
execution of the new selected experimental condition.

The evolution of model probabilities along the experimen-
tal design is shown in Fig. 6. One can see that after execu-
tion of eight preliminary experiments, all rival models have
similar probabilities (that is, similar performances). However,
after design of nine additional experiments Model 1 is selected
as the best one. It is also given in Table 7 that the value of
D(m, n) becomes smaller than 1 after the design of experiments
11 and 12. According to Buzzi-Ferraris and coworkers (1983,
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Fig. 6. Evolution of model probabilities along the experimental design in
Example 3 with Eq. (14).

Table 8
Designed experiments in Example 3 with Eq. (23)

Exp. pCO pH2O pCO2 pH2 r (103) D(m, n)

9 0.20 0.65 0.05 0.10 9.564 2.649 × 108 (1,3)
10 0.05 0.45 0.10 0.10 2.846 1.559 × 107 (1,2)
11 0.05 0.95 0.20 0.05 4.789 1.022 × 106 (1,3)
12 0.05 1.00 0.05 0.05 5.822 36.24 (1,3)
13 0.25 1.00 0.05 1.00 6.172 33.79 (3,4)
14 1.00 1.00 0.05 0.05 16.15 12.50 (1,5)
15 1.00 1.00 1.00 1.00 5.589 6.639 (1,5)
16 0.05 0.10 0.05 0.10 0.357 1836 (1,2)
17 0.30 1.00 0.25 0.05 14.22 6.512 (1,3)

1984, 1990), the discrimination procedure should be halted at
this point, because model discrimination would not be possi-
ble. However, the procedure was continued and the model dis-
crimination was achieved. Actually, model discrimination was
achieved because the D(m, n) values presented in Table 7 are
too pessimistic and do not consider that model parameters are
improved after execution of the new designed experiment.

Fig. 6 shows that the probabilities of Models 1 and 3 become
much higher than the remaining ones after the 10th experiment.
For this reason, Table 7 implies that the following designed
experiments were selected almost always for discrimination
between Models 1 and 3, the most probable ones.

Starting from the preliminary experiments, Table 8 presents
the sequence of designed experiments when the posterior co-
variance matrix of parameter estimates is taken into account,
as defined in Eq. (23), with the parameter Z set to 1. The
designed experiments, the simulated experimental values for
the reaction rate and the values of D(m, n) are also given in
Table 8. Fig. 7 shows the evolution of model probabilities along
the experimental design.

Using the new criterion, the discrimination was achieved
after design of nine additional experiments, as shown previ-
ously for the traditional criterion (Fig. 6). However, as given in
Table 8, the values of D(m, n) are much higher than the values
given in Table 7. Besides, D(m, n) never becomes lower than
1, indicating unequivocally that model discrimination is indeed
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Fig. 7. Evolution of model probabilities along the experimental design in
Example 3 with Eq. (23).

possible. It is interesting to observe in Fig. 7 that the model
probabilities remain comparable until execution of experiment
14, with the exception of Model 4 that assumes a probability of
0 after experiment 13 (one should observe in Table 8 that ex-
periment 13 was designed for discrimination between Models 3
and 4). After execution of experiments 15 and 16, Models 2
and 5 were eliminated. With one more experiment, Model 3
was eliminated and Model 1 was selected as the best one, as it
might already be expected.

It is important to observe that Eqs. (19) and (23) lead to com-
pletely different experimental designs. Only experiment 12 of
Table 7 and experiment 12 of Table 8 are present in both de-
signs; the remaining ones are different. This clearly indicates
that the proposed procedures are not similar and lead to differ-
ent designs. Figs. 6 and 7 also show that the evolution of model
probabilities can also be very different in both cases. One may
be tempted to consider Fig. 6 to be better than Fig. 7, as model
probabilities vary faster in Fig. 6. However, one should ob-
serve that discrimination would be halted unsuccessfully after
experiment 9 in Fig. 6, because of the unrealistic low values
of the discriminant after selection of experiment 10. Besides,
one should consider that Fig. 7 reflects the fact that models can
be improved after inclusion of new experimental data, which
is the reason why the new procedure is being proposed here.

Besides the increase of the discrimination power, it is also
important to analyze the confidence in the model parameters
and the effect of taking into consideration the posterior covari-
ance matrix of parameter estimates along the experimental de-
sign. The values of the determinant of the covariance matrix of
parameter estimates are plotted as a function of the number of
experiments in Fig. 8 for both criteria. One must observe that the
determinant of the covariance matrix of parameter estimates is
proportional to the volume of the confidence region of the para-
meter estimates and can also be used as a criterion for experi-
mental design to obtain precise parameter estimates (Box and
Lucas, 1959; Bard, 1974). As shown in Fig. 8, when the pos-
terior covariance matrix of parameter estimates is considered
for model discrimination, after 17 experiments the confidence
in the model parameters is about 1 order of magnitude better
than obtained with the traditional design. As one can observe in
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Fig. 8. Determinant of the covariance matrix of parameter estimates for Model
1 along the experimental design in Example 3 with Eq. (19) (dashed line)
and Eq. (23) (full line).

Fig. 8, parameters obtained with the new proposed procedure
are better along most of the experimental trajectory. This re-
sult shows the capability for model discrimination and precise
parameter estimation of the design proposed in this work.

4. Conclusion

Design criteria used to formulate experimental design for dis-
crimination among rival models normally neglect the fact that
the variances of model parameters decrease when additional
experiments are included in the experimental data set. For this
reason, the variances of model predictions are overestimated
and the discriminant power is underestimated. It was shown
here through simple examples that the posterior covariance ma-
trix of parameter estimates should be taken into consideration
during the design of experiments for model discrimination.
Besides leading to more realistic estimation of model predic-
tion errors and of the discrimination power, the new procedure
leads to simultaneous improvement of the variances of the pa-
rameter estimates along the experimental design, as reduction
of the variances of the parameter estimates also contribute to
the increase of the model discrimination power.
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