
Chemical Engineering Science 63 (2008) 2895 -- 2906

Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.e lsev ier .com/ locate /ces

Optimum reference temperature for reparameterization of the Arrhenius equation.
Part 2: Problems involvingmultiple reparameterizations

Marcio Schwaab, Lívia P. Lemos, José Carlos Pinto∗
Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária - CP: 68502, Rio de Janeiro, RJ 21941-972, Brazil

A R T I C L E I N F O A B S T R A C T

Article history:
Received 27 June 2007
Received in revised form 27 December 2007
Accepted 6 March 2008
Available online 12 March 2008

Keywords:
Arrhenius equation
Parameter correlation
Reparameterization
Parameter estimation
Kinetic models

Existence of high parameter correlations is one of the major problems during parameter estimation. This
is particularly true when the mathematical model presents one or more kinetic constants that depend on
temperature, as defined by the Arrhenius equation. In a recent work, Schwaab and Pinto [2007. Optimum
reference temperature for reparameterization of the Arrhenius equation. Part 1: problems involving one
kinetic constant. Chemical Engineering Science 62, 2750--2764] showed that an optimum reference tem-
perature can be defined for reparameterization of the Arrhenius equation and elimination of parameter
correlation, when the model contains a single kinetic constant. However, when the model contains more
than one kinetic constant, the number of parameter correlations is larger than the number of reference
temperatures that can be defined; consequently, it becomes impossible to eliminate all the parameter
correlations simultaneously. For this reason, in this work different norms are defined for the parameter
correlation matrix and are used to allow for minimization of the parameter correlations through ma-
nipulation of reference temperatures. Three parameter estimation problems are used to illustrate the
use of the proposed two-step parameter estimation procedure and to show that the minimization of
parameter correlations and relative errors are indeed possible through proper manipulation of reference
temperatures in problems involving multiple model parameters.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Attempting to explain and control the universe that surrounds
us, researchers develop models in order to characterize and predict
the evolution of physical phenomena. This way, scientific theories
and analysis of process behavior rely heavily on the availability
of sound mathematical models. Commonly, mathematical models
contain variables that cannot be measured directly. The values of
these variables, called model parameters, can be estimated from
experimental data with the help of parameter estimation proce-
dures, which consist in minimizing some sort of objective function
that takes into account the difference between model responses
and experimental observations. The objective function can be de-
fined as the simple least squares function or, for more involving
computations, as the maximum likelihood function (Bard, 1974).

A common model that is used to describe the temperature de-
pendence of reaction rates in kinetic problems is the well-known
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Arrhenius equation:

k = k0 exp
(

− E

RT

)
(1)

where k is the rate constant (or the specific reaction rate), T is the
absolute temperature, R is the ideal gas constant, k0 is the frequency
(or pre-exponential) factor and E is the activation energy. Both k0 and
E are the parameters of the Arrhenius equation, usually estimated
from available experimental data.

Unfortunately, the intrinsic mathematical structure of this equa-
tion introduces a very strong dependence between the parameters
k0 and E. This dependence, called parameter correlation, makes the
estimation of the correct values of themodel parameters very hard. In
order to overcome this difficulty, several works suggested the repa-
rameterization of the Arrhenius equation by introducing a reference
temperature in the form (Box, 1960; Himmelblau, 1970; Pritchard
and Bacon, 1975):

k = kref exp
[
−E

R

(
1
T

− 1
Tref

)]
(2a)

k = exp
[
A − E

R

(
1
T

− 1
Tref

)]
(2b)
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k = kref exp
[
B

(
T − Tref

T

)]
(2c)

k = exp
[
A + B

(
T − Tref

T

)]
(2d)

where the parameters of the reparameterized equations can be re-
lated to the parameters of the traditional Arrhenius equation as

kref = k0 exp
(

− E

RTref

)
(3a)

A = ln
(
kref

)= ln
(
k0
)− E

RTref
(3b)

B = E

RTref
(3c)

The introduction of the reference temperature into the
Arrhenius equation allows for reduction of the parameter correlation
and, consequently, for reduction of the computational effort required
for estimation of model parameters (Espie andMacchietto, 1988) and
improvement of the elliptic representation of the confidence regions
of parameter estimates (Watts, 1994).

The reference temperature is usually defined as a suitable average
temperature of the analyzed experimental data. For instance, Veglio
et al. (2001) suggested the use of the inverse average:

1
Tref

= 1
NE

NE∑
i=1

1
Ti

(4)

where NE is the number of experimental temperature values and Ti
is the temperature for individual experiments.

In a previous work, Schwaab and Pinto (2007) showed that the
proper definition of the reference temperature can eliminate the pa-
rameter correlation in kinetic models containing a single kinetic con-
stant. It was shown both analytically and numerically that proper
definition of reference temperature allows for elimination of the pa-
rameter correlation and simultaneous improvement of the precision
of the parameter estimates.

When the number of kinetic constants (N) is larger than 1, the
number of parameter correlations is equal to N(2N − 1), which may
be much larger than N (that is, much larger than the number of refer-
ence temperatures). Therefore, the procedure proposed by Schwaab
and Pinto (2007) cannot guarantee the simultaneous elimination of
all parameter correlations in these cases. As a consequence, it be-
comes necessary to define a proper norm for the parameter cor-
relation matrix in order to perform the minimization of parameter
correlations appropriately.

In this work, the two-step parameter estimation procedure
proposed by Schwaab and Pinto (2007) is extended in order to
consider problems where multiple kinetic constant are present.
Different norms are defined for the parameter correlation matrix
and examined during minimization of the parameter correlation.
Despite the fact that simultaneous elimination of all parameter cor-
relations is not possible, it is shown here that the correlations can
be significantly reduced when the numerical procedure is used to
provide the proper definition of the reference temperatures.

2. Parameter estimation

The parameter estimation procedure consists in minimizing an
objective function that takes into account the deviations between
the experimental values and the model predictions through manip-
ulation of model parameters. Assuming that independent variables x
are free of errors, that experiments are performed independently and
that dependent variables y are subject to experimental fluctuations
that follow the normal distribution with known covariance matrix,

then the maximum likelihood estimation consists in minimizing the
following equation:

S(�) =
NE∑
i=1

[ye
i − ym

i (xi, �)]TV−1
i

[ye
i − ym

i (xi, �)] (5)

where S(�) is the objective function to be minimized with respect to
the parameter vector �, ye

i
and ym

i
are the vectors of experimental

observations and model responses at experimental condition i and
NE is the total number of experiments. Vi is the covariance matrix
of experimental observations at experimental condition i. Although
it is possible to derive analytical solutions for linear models, the
minimization of the objective function is usually performed with the
help of appropriate numerical procedures, such as the traditional
Newton methods, direct search methods or the more recent non-
deterministic optimization methods (Edgar and Himmelblau, 1988;
Nocedal and Wright, 1999; Goldberg, 1989; Kennedy and Eberhart,
2001). It is important to emphasize that Eq. (5) does not restrict any
of the conclusions obtained here and that other objective functions
can certainly be used for parameter estimation.

After minimization of the objective function, the significance of
parameter estimates can be characterized through the covariance
matrix defined as (Bard, 1974):

V� =
⎡
⎣NE∑

i=1

BTi V
−1
i

Bi

⎤
⎦

−1

(6)

which assumes that the model equations may be linearized at the
optimum parameter estimates. Bi is the sensitivity matrix of model
responses with respect to the model parameters at the experimental
condition i and is defined as

Bi =

⎡
⎢⎢⎢⎢⎣

�y1,i

��1
· · · �y1,i

��1
...

. . .
...

�yNY,i

��1
· · · �yNY,i

��NP

⎤
⎥⎥⎥⎥⎦ (7)

where NP is the number of model parameters and NY is the number
of model responses.

For single response models, when the covariance matrix of ex-
perimental observations is unknown, the parameter estimation is
normally performed through minimization of the least squares func-
tion:

S(�) =
NE∑
i=1

[ye
i − ym

i (xi, �)]2 (8)

If the model is assumed to be perfect, the residuals can be used
to determine the variance of experimental observations s2 (Draper
and Smith, 1998) as follows:

s2 = S(�̂)/
(
NE − NP

)
(9)

where S(�̂) is the minimum value of the least squares function
(Eq. (8)). The covariance matrix of parameter estimates can then be
written as

V� = s2

⎡
⎣NE∑

i=1

BTi Bi

⎤
⎦

−1

(10)

The main diagonal of the covariance matrix contains the vari-
ances of the parameter estimates. These values can be readily used
for evaluation of parameter confidence intervals. For instance, the
relative error of the parameter estimates can be computed as

er�i
= t

(1+�)/2
NE−NP

√
vii

�i
(11)
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where t
(1+�)/2
NE−NP is the t-Student distribution value with a confidence

level of � (always equal to 0.95 in this work) and NE − NP degrees
of freedom, and vii is the diagonal element of the covariance matrix
that represents the variance of the parameter �i.

The off-diagonal elements characterize the covariance between
pairs of parameters, which is a measure of the dependence between
the parameter estimates. In order to normalize the extent of this
dependence, the correlation matrix of parameter estimates should
be calculated from the covariance matrix of parameter estimates as

�ij = vij√
viivjj

(12)

where vij is the element ij of the covariance matrix of parameter
estimates. The values of all �ij are in the range [−1,1]. As the ab-
solute values of �ij get closer to 1, the parameters become more
correlated and the parameter estimation becomes poorer. The high
correlation between parameter estimates can be originated from dif-
ferent reasons, such as the inappropriate model representation and
a bad experimental design.

Based on the covariance matrix of parameter estimates, the
confidence region of the parameter estimates can be defined as a
hyper-ellipsoid in the parameter space. However, due to model non-
linearity, the elliptic approximation can be very poor sometimes,
since the real confidence region can present very complex shapes
(Donaldson and Schnabel, 1987; Schwaab et al., 2008). The use of
reparameterization techniques can improve the elliptical approxi-
mation of the confidence regions (Watts, 1994), making the evalua-
tion of the significance of the parameter estimates much easier.

3. The optimum reference temperature

Although reference temperatures are commonly inserted into the
Arrhenius equation to reduce the correlation between model param-
eters, little attention has been given to definition of the best values
for the reference temperatures for maximum reduction of correla-
tions. Inmost cases, the reference temperature is defined as a suitable
average of temperature values in the analyzed experimental range.

Schwaab and Pinto (2007) showed that it is possible to determine
an optimum reference temperature in order to eliminate parameter
correlation and minimize the relative errors of model parameters
in models containing a single kinetic constant. However, for models
containing more than one kinetic constant, the number of parame-
ter correlations is larger than the reference temperatures that can be
defined and it cannot be guarantee that all correlation can be elim-
inated simultaneously. Besides, the reference temperatures used in
the distinct Arrhenius equation should not necessarily be the same.

In these cases, it may be necessary to define a norm for the pa-
rameter correlation matrix that takes into account the degree of
correlation between each pair of parameters. Definition of reference
temperatures should then minimize the proposed norm in order to
allow for minimization of parameters correlation. Independently of
the selected norm, the procedure consists in searching the reference
temperature values that minimize the correlation measure, accord-
ing with the procedure illustrated in Fig. 1.

Initial guesses must be provided for the reference temperatures
values. For instance, initial guesses may be the average tempera-
ture values in the analyzed experimental range. Then, estimation of
model parameters must be performed with the help of an adequate
numerical procedure (Schwaab et al., 2008). As the model perfor-
mance is not affected by the reparameterization, the optimization of
the reference temperatures can be performed without disturbing the
optimum model predictions. Although parameter values change, no
re-estimation of model parameters is necessary. As the parameter
values are known for certain reference temperatures (for instance,
the initial guesses), the parameter values can be readily calculated

Estimate the model 
parameter estimates

Calculate the 
correlation matrix of 
parameter estimates

Calculate a defined 
norm of the 

correlation matrix

Is the
norm a minimum 

value?

Recalculate the 
parameter
estimates

NO

YES

END

Initial guesses for 
reference temperatures

Update the 
reference 

temperatures

Fig. 1. Schematic representation of the two-step parameter estimation procedure
with optimization of reference temperatures.

at any other reference temperature. For instance, if the parameter
estimates A∗ and B∗ are obtained for an initial guess of the reference
temperature T∗

ref , according to Eq. (2d) the parameter estimates A
and B for a new reference temperature Tref become:

A = A∗ + B − B∗ (13a)

B = B∗T∗
ref

Tref
(13b)

From Eqs. (13a) and (13b) one can write �=g(�∗). The covariance
matrix, V, of the parameter estimates at the new reference temper-
ature values can be calculated as (Rimensberger and Rippin, 1986)

V = GTV∗G (14a)

where V∗ is the covariance matrix of parameter estimates �∗ with
the reference temperature equal to T∗

ref and G is a NP × NP matrix
defined as:

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�g1
��∗

1

�g2
��∗

1
· · · �gNP

��∗
1

�g1
��∗

2

�g2
��∗

2
· · · �gNP

��∗
2

...
...

. . .
...

�g1
��∗

NP

�g2
��∗

NP
· · · �gNP

��∗
NP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14b)

Consequently, the recalculation of the covariance matrix of param-
eter estimates when the reference temperature is changed does not
require any additional model computation, which means that the
additional computational effort is very small.

Unfortunately, due to the existence of high correlations among
model parameters, the parameter estimationmay be sometimes very
hard, so that the numerical procedure used for minimization of the
objective function can be unable to locate the correct optimum pa-
rameter estimates. In this case, the parameter estimation procedure
should be performed iteratively, as indicated by the dashed line of
Fig. 1.
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As discussed above, when the problem involves more than one
Arrhenius equation, it is necessary to define some norm for the cor-
relation matrix of parameter estimates for optimization of refer-
ence temperatures. After estimation of model parameters using the
guesses for all Tref , the second step consists in minimizing the pro-
posed norm of the correlationmatrix of parameter estimates through
manipulation of reference temperatures. The simplest norm that can
be defined is the sum of the squares of all parameter correlations,
computed in accordance with the following equation:

F1 =
NP−1∑
i=1

NP∑
j=i+1

�2ij (15)

The norm defined in Eq. (15) is empirical. Other similar norms can
be proposed, such as the sum of the absolute values of the parameter
correlations. Besides, if one is interested in reducing a particular set
of parameter correlations, Eq. (15) can be readily modified in order to
take into account only the selected set of parameter correlations. The
norm in Eq. (15) can be related to the experimental design criterion
proposed by Pritchard and Bacon (1978), where new experiments
could be designed for reduction of the correlations among model
parameters.

A norm can be developed with the use of the characteristic
values of the parameter correlation matrix. When the shape of the
confidence region is spherical, the characteristic values of the param-
eter correlation matrix are equal and the effects of parameter cor-
relations can be minimized. As the parameter correlation matrix is
positive definite, all the characteristic values are positive. Then, the
optimization of the reference temperatures can be performed in or-
der to make the characteristic values as equal as possible, according
to:

F2 =
NP∑
i=1

(
1 − �i

�max

)
(16)

where �i is the characteristic value and �max is the maximum char-
acteristic value. When the ratios between the characteristic values
�i/�max get close to 1, the function F2 defined in Eq. (16) approaches
0 and F2 is minimized. The norm defined in Eq. (16) is related to
the shape criterion used for experimental design for reduction of
parameter correlation, as proposed by Hosten (1974).

The characteristic vectors of the correlation matrix of parameter
estimates can be used for definition of the norm

F3 =
NP∑
i=1

(1 − �2i,max) (17)

where �i,max is the component of the ith characteristic vector with
largest absolute value. The minimization of the norm defined in
Eq. (17) makes the largest components of the distinct characteristic
vectors close to 1. As a consequence, the characteristic vectors be-
come aligned to the main parameter axis, reducing the correlation
among the parameters.

Although the three norms described in Eqs. (15)--(17) are in-
tended to minimize the correlations among the parameter estimates,
these norms do not lead necessarily to the same solution, which
means that the optimum reference temperatures may be different,
depending on the used norm as illustrated in the next section. It is
also important to emphasize that other norms can be defined and
used for definition of the reference temperatures, in accordance with
the proposed two-step parameter estimation procedure.

4. Examples

In the first example the parameter estimation of a multilinear
model is discussed. It is shown theoretically and numerically in this

simple case that it is not possible to eliminate all correlations with
the proposed reparameterization scheme. The second example deals
with a catalytic rate model, usually found in chemical kinetics. The
third example describes the estimation of parameters in temperature
programmed desorption experiments.

As in the previous work of Schwaab and Pinto (2007), mini-
mization of the objective function during the parameter estimation
procedure is performed with a hybrid method. The search is initi-
ated with the particle swarm optimization method (Kennedy and
Eberhart, 1995, 2001), a non-deterministic method which performs
a global search in order to locate the global minimum and provide
the likelihood confidence region of parameter estimates (Schwaab
et al., 2008). The best point located by the particle swarm optimiza-
tion is then used as the initial guess for a Gauss--Newton based pro-
cedure (Noronha et al., 1993), which assures the precision of the
final point estimate and provides the covariance matrix of parameter
estimates, used for evaluation of the ellipsoidal confidence region
and for calculation of the norm of the correlationmatrix of parameter
estimates. The optimization of the reference temperatures was also
performed with the particle swarm optimization method, due to its
capabilities for solving complex (multiple minima and nonconvex)
problems. Since the recalculation of the covariance matrix of param-
eter estimates is performed with the help of Eqs. (14a) and (14b)
and does not require any model solution, the additional computer
time required for optimization of reference temperature values is
very small. In the examples analyzed here, it never took more than
15 s to perform the reference temperature optimization step. The
algorithms and model implementations were done in FORTRAN, in
a personal desktop computer (Pentium 4 equipped with a 3.0MHz
processor and 1024Mb of RAM memory).

4.1. Example 1---a multilinear model

Let a valid model be described as

y = �0 + �1x1 + · · · + �NXxNX (18)

where xj (j = 1, . . . ,NX) are the independent variables, �j (j =
0, . . . ,NX) are the model parameters and y is the model response (or
the dependent variable). With an available experimental data set
defined as (xe

1,i
, . . . , xe

n,i
, ye

i
), with i = 1, . . . ,NE, the maximum likeli-

hood estimation of the parameters can be defined as the parameters
values that minimize the objective function:

S(�) =
NE∑
i=1

[ye
i − ym

i (xi, �)]TV−1
i

[ye
i − ym

i (xi, �)] (19)

where � is the vector of model parameters, ye = [ye
1, ye

2, . . . , ye
NE]T

is the vector of experimental values and ym = [ym
1 , ym

2 , . . . , ym
NE]T is

the vector of model responses, given by Eq. (18), Vy is the matrix of
experimental variances and S is the objective function to be mini-
mized with respect to the parameters �. This parameter estimation
problem presents an analytical solution, defined as:

� = (XTV−1
y X)−1XTV−1

y ye (20)

V� = (XTV−1
y X)−1 (21)

where X=[1
... xe

1

... xe
2

... · · ·
... xe

NX ] is a matrix of experimental data
of the independent variables and V� is the covariance matrix of pa-
rameter estimates, defined in Eq. (6) for a general case. Depending
on the nature of the available experimental data, V� can be a full
matrix. In other words, the element ij of V� is not null, indicating
that parameters �i and �j are correlated to some extent.
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If the model described in Eq. (18) is reparameterized in the form

y = �0 + �1(x1 − xr
1) + · · · + �NX(xNX − xr

NX) (22)

where (xr
1, . . . , xr

NX) are arbitrarily defined reference values, then it
is clear that

�0 = �0 + �1xr
1 + · · · + �NXxr

NX (23)

�i = �i, i = 1, . . . ,NX (24)

In this case, the solution of the parameter estimation problem is

� = [(X − Xr )TV−1
y (X − Xr )]−1(X − Xr )TV−1

y ye (25)

V� = [(X − Xr )TV−1
y (X − Xr )]−1 (26)

where Xr = [1
... xr

1

... xr
2

... · · ·
... xr

NX ] is a constant matrix that con-
tains the reference values. If Vy is diagonal (independent experi-
ments) then the elements of V−1

�
can be written in the form

[v�]−1
ij

=
NE∑
n=1

(xin − xr
i
)(xjn − xr

j
)

�2n
(27)

As xr
0 = 0 and x0n = 1, then

[v�]−1
0j

=
NE∑
n=1

(xjn − xr
j
)

�2n
(28)

The elements defined in Eq. (28) can be nullified if

xr
j =

∑NE
n=1 xjn/�2n∑NE
n=1 1/�2n

(29)

Inserting Eq. (29) into Eq. (27), it is possible to write

[v�]−1
ij

=
NE∑
n=1

1

�2n

(
xin −

∑NE
m=1 xim/�2m∑NE
m=1 1/�2m

)

×
⎛
⎝xjn −

∑NE
m=1 xjm/�2m∑NE
m=1 1/�2m

⎞
⎠ (30)

And after some algebraic manipulation

[v�]−1
ij

=
NE∑
n=1

xinxjn

�2n
− xr

i x
r
j

NE∑
n=1

1

�2n
(31)

which cannot be made equal to zero for general arbitrary sets of ex-
perimental data. (This difficulty can certainly be overcome with the
help of experimental design techniques.) For instance, let us assume
that the experimental data are available as presented in Table 1.

Therefore,

X =

⎡
⎢⎢⎣
1 −1 −1
1 −1 1
1 1 −1
1 0 0

⎤
⎥⎥⎦ (32)

Table 1
Experimental data for Example 1

xe
1 xe

2 ye �2
e

−1 −1 −1 1
−1 1 1 2
1 −1 1 3
0 0 1 4

ye = [−1 1 1 1]T (33)

Vy =

⎡
⎢⎢⎣
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⎤
⎥⎥⎦ (34)

Using Eqs. (20) and (21) one can obtain

� = [1 1 1]T (35)

V� =
⎡
⎣0.95 0.57 0.38
0.57 0.89 0.18
0.38 0.18 0.70

⎤
⎦ (36)

The covariance matrix of parameter estimates is a full matrix,
which means that model parameters are correlated to some extent,
as can be easier observed in the correlation matrix of parameter
estimates

R� =
⎡
⎣1.00 0.62 0.47
0.62 1.00 0.23
0.47 0.23 1.00

⎤
⎦ (37)

Eq. (37) shows that the parameters are correlated at some degree.
Using Eq. (29), the reference values for the variable can be calculated
in order to eliminate the parameter correlations and the matrix Xr

can be defined as

Xr =

⎡
⎢⎢⎣
0 −0.56 −0.40
0 −0.56 −0.40
0 −0.56 −0.40
0 −0.56 −0.40

⎤
⎥⎥⎦ (38)

Now, using Eqs. (25) and (26) one can obtain

� = [1/25 1 1]T (39)

V� =
⎡
⎣0.48 0.00 0.00
0.00 0.89 0.18
0.00 0.18 0.70

⎤
⎦ (40)

With the reparameterization of the model equation, the covari-
ance matrix is not completely full and the calculation of the param-
eter correlation matrix gives

R� =
⎡
⎣1.00 0.00 0.00
0.00 1.00 0.23
0.00 0.23 1.00

⎤
⎦ (41)

Eq. (41) shows that the correlations between the parameters �1
and �2 and between the parameters �1 and �3 were eliminated. The
correlation between the parameters �2 and �3 was not affected by
the reparameterization. This clearly shows that it is not possible to
eliminate all parameter correlations when the number of parameter
correlations is larger than the number of reparameterization vari-
ables (the reference values).

In order to minimize the parameter correlation, it is necessary
to manipulate the reference values in order to minimize a suitable
norm of V�. This example shows that all the parameter correlations
cannot be made equal to zero simultaneously without the help of
experimental design techniques even when the model is linear. This
shows that some sort of numerical procedure must be implemented
for minimization of parameter correlations in multi-parameter mod-
els, as proposed in this work.

4.2. Example 2----catalytic kinetic model

In this example the experimental data for o-xylene oxidation
obtained by J.A. Jussola (reported in Bates and Watts, 1988) is
considered (the experimental data are presented in the Appendix).
Available data include the reaction rates (r in mol/(molcat s)) as
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Fig. 2. Model fit to the experimental values in Example 2 (©: 543K; �: 563K; �:
573K).

Table 2
Parameter estimation results with traditional Arrhenius equation in Example 2

Parameter Estimated value Relative error (%)

A1 44.96 7.676
A2 28.67 26.65
B1 (kJ/mol) 153.1 10.61
B2 (kJ/mol) 60.55 59.63

functions of the oxygen and xylene concentrations (CO and CX , both
in mol/L) and temperature. The proposed model is

r = k1k2COCX

k1CO + nk2CX
(42)

where n is the stoichiometric number (equal to 2.2788) and ki is the
kinetic constant defined in accordance with the Arrhenius equation
as

ki = exp
[
Ai + Bi

(
T − Tref ,i

T

)]
(43)

where Tref ,i is the reference temperature of the kinetic constant ki.
For the sake of comparison, the parameter estimation was performed
first without using the reference temperature, writing the traditional
Arrhenius equation as

ki = exp(Ai − Bi/RT) (44)

The quality of the model fit to the experimental data is presented
in Fig. 2. It must be stated that the model fit is independent of the
reparameterization, so that the quality of themodel adjustment is the
same for all parameterizations used in this example. The minimum
value attained for the objective function was equal to 40371.3. The
estimated parameters and respective relative errors (computed in
accordance with Eq. (11)) obtained are presented in Table 2. Table 3
presents the correlation matrix of the parameter estimates.

As Table 3 shows, some parameter correlations are very high. For
the pairs of parameters A1.E1 and A2.E2 the correlation values are
practically equal to 1 (given the number of decimal digits).

Table 3
Parameter correlation matrix with traditional Arrhenius equation in Example 2

A1 A2 B1 B2

A1 1.00 −0.80 1.00 −0.79
A2 −0.80 1.00 −0.80 1.00
B1 1.00 −0.80 1.00 −0.79
B2 −0.79 1.00 −0.79 1.00

Table 4
Parameter estimation results in Example 2 with the reference temperatures equal
to: Tref1 = Tref2 = 558K

Parameter Estimated value Relative error (%)

A1 11.95 0.672
A2 15.62 1.145
B1 33.00 10.61
B2 13.05 59.63

Table 5
Parameter correlation matrix in Example 2 with the reference temperatures equal
to: Tref1 = Tref2 = 558K

A1 A2 B1 B2

A1 1.00 −0.79 −0.69 0.58
A2 −0.79 1.00 0.54 −0.79
B1 −0.69 0.54 1.00 −0.79
B2 0.58 −0.79 −0.79 1.00

Table 6
Parameter estimation results in Example 2 with the optimized reference tempera-
tures using Eq. (15): Tref1 = 565.6K; Tref2 = 568.2K

Parameter Estimated value Relative error (%)

A1 12.39 0.452
A2 15.85 0.695
B1 32.56 10.61
B2 12.82 59.63

In order to minimize the parameter correlations, the procedure
described in Fig. 1 was used. The initial values of the reference tem-
peratures were set equal to 558K (the average temperature value
of the experimental range). The model fit to the experimental data
is presented in Fig. 2 and the parameter estimation results obtained
with these reference temperatures are shown in Tables 4 and 5.

Table 4 shows that the use of reference temperatures of 558K
reduces significantly the relative error for parameters A1 and A2.
However, the relative errors of parameters B1 and B2 (related to the
parameters E1 and E2) are not affected by the reparameterization.
Similar results were observed by Schwaab and Pinto (2007) when
models with only one kinetic constant were considered. The param-
eter correlations presented in Table 5 are also smaller than the ones
presented in Table 3.

Starting from the results obtained with the references temper-
atures of 558K, minimizations of the norms of the parameter cor-
relation matrix were performed. After minimization of the norm
defined in Eq. (15), the optimum references temperatures were equal
to Tref1=565.6K and Tref2=568.2K. These values are slightly higher
than the average temperature value of the experimental range. The
results obtained after parameter estimation with these optimized
reference temperatures are presented in Tables 6 and 7. In Fig. 3 the
shape of the Norm 1 (Eq. (15)) as a function of the reference tem-
peratures is presented as a contour plot.

Table 6 shows that the relative errors of parameters A1 and A2 are
smaller than the ones presented in Table 4. Again, the relative errors
of parameters B1 and B2 were not affected by reparameterization,
as observed by Schwaab and Pinto (2007). Table 7 shows that the
optimization of the references temperatures with the norm defined
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Table 7
Parameter correlation matrix in Example 2 with the optimized reference tempera-
tures using Eq. (15): Tref1 = 565.6K; Tref2 = 568.2K

A1 A2 B1 B2

A1 1.00 −0.87 −0.10 0.13
A2 −0.87 1.00 −0.14 −0.01
B1 −0.10 −0.14 1.00 −0.79
B2 0.13 −0.01 −0.79 1.00

Fig. 3. Norm 1 as a function of Tref1 and Tref2 in Example 2.

Table 8
Parameter estimation results in Example 2 with the optimized reference tempera-
tures using Eq. (16): Tref1 = 565.3K; Tref2 = 569.0K

Parameter Estimated value Relative error (%)

A1 12.38 0.455
A2 15.87 0.697
B1 32.58 10.61
B2 12.80 59.63

in Eq. (15) can reduce the parameter correlation for very low values.
The exceptions were the correlations between the parameters B1
and B2 and between the parameters A1 and A2. Fig. 3 shows that
Norm 1 leads to formation of two valleys, with a minimum located
at the point where the two valleys cross each other.

The second minimized norm is the one defined in Eq. (16). After
minimization of this norm, the optimum references temperatures
were equal to Tref1 = 565.3K and Tref2 = 569.0K. These values are
almost the same ones obtained with the first norm (Eq. (15)). The
results obtained after parameter estimation using these reference
temperatures are shown in Tables 8 and 9. The contour plot of the
Norm 2 (Eq. (16)) as a function of the reference temperatures is
presented in Fig. 4.

The relative errors and the parameter correlations are slightly
worse than the results presented in Tables 6 and 7, despite the cor-
relation between the parameters A1 and A2 and the correlation be-
tween the parameters B1 and B2. It can be seen in Fig. 4 that the
shape of the contours of Norm 2 are very similar to the contours of
Norm 1 (Fig. 3). Therefore, Norms 1 and 2 lead to very similar results
in Example 2.

Table 9
Parameter correlation matrix in Example 2 with the optimized reference tempera-
tures using Eq. (16): Tref1 = 565.3K; Tref2 = 569.0K

A1 A2 B1 B2

A1 1.00 −0.84 −0.14 0.16
A2 −0.84 1.00 −0.21 0.08
B1 −0.14 −0.21 1.00 −0.79
B2 0.16 0.08 −0.79 1.00

Fig. 4. Norm 2 as a function of Tref1 and Tref2 in Example 2.

Table 10
Parameter estimation results in Example 2 with the optimized reference tempera-
tures using Eq. (17): Tref1 = 566.6K; Tref2 = 673.0K

Parameter Value Error (%)

A1 12.47 0.447
A2 16.65 6.691
B1 32.48 10.61
B2 12.02 59.63

Table 11
Parameter correlation matrix in Example 2 with the optimized reference tempera-
tures using Eq. (17): Tref1 = 566.6K; Tref2 = 673.0K

A1 A2 B1 B2

A1 1.00 −0.04 0.01 0.04
A2 −0.04 1.00 −0.80 1.00
B1 0.01 −0.80 1.00 −0.79
B2 0.04 1.00 −0.79 1.00

When the third norm defined in Eq. (17) is used for optimization
of the reference temperatures, the optimum values obtained were
equal to Tref1 = 566.6K and Tref2 = 673.0K. The value of Tref1 was
practically the same one obtained for the two previous norms, but
the value of Tref2 was much higher than the other ones. The results
obtained after parameter estimation with these reference tempera-
tures are shown in Tables 10 and 11. Fig. 5 shows the contour plot
of Norm 3 (Eq. (17)) as a function of the reference temperatures.

Table 10 shows that the relative error of parameter A2 was
much higher than the values obtained with the two previous norms,
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Fig. 5. Norm 3 as a function of Tref1 and Tref2 in Example 2.

although the relative error of parameter A1 was slightly smaller.
Observing the parameter correlations in Table 11, it becomes clear
that this third norm reduces the correlations of parameter A1, since
all correlations between parameter A1 with the other parameters
were very small. However, the correlations between the parameters
A2.B1 and A2.B2 become equal to −0.80 and 1.00 (given the num-
ber of decimal digits). Therefore, the optimization of the Norm 3 led
to one characteristic vector aligned almost perfectly with one of the
parameter axes, although the remaining characteristic vectors were
still rotated in respect to the parameter axes.

The complex shape shown in Fig. 5 explains the different results
obtained with the Norm 3. For the first two norms, the minimum
was placed at the crossing of two valleys. For Norm 3, the equivalent
point is a local maximum, as shown in Fig. 5. The global and local
minima are placed in the four valleys that are connected by the
central point of maximum.

In general, all three norms lead to development of complex
shapes. For this reason, difficulties may arise during the optimiza-
tion of the norms, making the definition of the optimum reference
temperatures a hard task. The use of the particle swam optimiza-
tion method for minimization of the norms can overcome these
difficulties due its global character and because derivatives are not
necessary.

In order to understand the behavior of the relative errors and
the correlations of the parameters, these values were calculated as
functions of Tref1 and Tref2 values. It was observed that the rela-
tive errors of parameters B1 and B2 do not depend on the references
temperatures, as shown by Schwaab and Pinto (2007). Besides, the
relative error of parameter A1 depends only on Tref1, while the rel-
ative error of parameter A2 depends only on Tref2. This is shown in
Fig. 6, where it is also shown that the relative errors attain minimum
values around specific values of Tref . The relative error of parame-
ter A1 attains a minimum value of 0.447% at Tref1 equal to 567.0K,
while the minimum relative error for A2 is equal to 0.695% at Tref2
equal to 568.5K.

With respect to the parameter correlations, it was observed that
the correlation between the parameters B1 and B2 is independent
of the adopted reference temperatures. The correlation between the
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Fig. 6. Relative errors of parameters A1 (full line) and A2 (dashed line) as a function
of Tref1 and Tref2, respectively, in Example 2.
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Fig. 7. Correlation between parameters A1.B1 (full line) and A1.B2 (dashed line) as
a function of Tref1 in Example 2.
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Fig. 8. Correlation between parameters A2.B1 (full line) and A2.B2 (dashed line) as
a function of Tref2 in Example 2.

parameters A1.B1 and A1.B2 depend only on Tref1, while correla-
tions between parameters A2.B1 and A2.B2 depends on Tref2, as
shown in Figs. 7 and 8. It can also be observed that these correla-
tions can be made equal to 0: correlation A1 and B1 is null for Tref1
equal to 566.8K; correlation A1.B2 is null for Tref1 equal to 568.3K;
correlation A2.B1 is null for Tref2 equal to 566.5K; correlation A2.B2
is null for Tref2 equal to 567.0K. Fortunately, the reference values
that lead to null correlations are similar in all cases.
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Fig. 9. Correlation between parameters A1.A2 as a function of Tref1 and Tref2 in
Example 2.

The correlation between the parameters A1 and A2 depends on
both Tref1 and Tref2 in a complexmanner, as shown in Fig. 9. It can be
seen that the reference temperatures that minimize Norms 1 and 2
(Eqs. (14) and (15)) lead to high correlation between the parameters
A1 and A2. Besides, the values of the reference temperatures that lead
to null A1.A2 correlation form a discontinuous curved line, which
corresponds to the region in Fig. 9 defined by � = [−0.10, +0.10].
The correlation between parameters A1 and A2 becomes very high
at the center of Fig. 9, where temperature reference values allow
for elimination of the other parameter correlations, as shown in
Figs. 7 and 8. This explains why it is not possible to minimize all the
parameter correlations simultaneously and why minimization of the
different norms leads to different reference temperatures.

In this example, minimization of Norms 1 and 2 led to similar
results, allowing for reduction of all the parameter correlations, de-
spite the high residual correlation between parameters A1.A2 and
B1.B2 (the last one is insensitive to modification of the reference
temperature values). Besides, minimization of Norms 1 and 2 also
led to parameter estimates with smaller relative errors, improving
the confidence and quality of the obtained results. Minimization of
Norm 3 did not lead to efficient reduction of correlations, because it
was observed that one of the parameters dominated the final value
of the norm (in the analyzed case, parameter A1), while the other
correlations remained very high.

4.3. Example 3---TPD model

TPD (temperature-programmed desorption) is an experimental
method used to characterize solid surfaces, commonly used for
characterization of catalyst active sites in solid catalysis (Kanervo
et al., 2006; Resende et al., 2006). According to the TPD procedure,
a gaseous component is first adsorbed by the solid at controlled
temperature until saturation in a vessel that contains the catalyst.
Subsequently, an inert gas stream is passed through the vessel
while the temperature is increased linearly. As a consequence, the
adsorbed gas is desorbed. The shape of the obtained desorption
profile depends on the existence of distinct adsorption sites with
distinct adsorptions energies, frequently presenting multiple peaks.
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Fig. 10. Model fit (line) to the experimental values (points) in Example 3.

A mathematical model is proposed here to describe a TPD ex-
periment. It is assumed that the number of adsorption sites is con-
stant during the experiment, that desorption enthalpy does not vary
significantly along the test, that readsorption and surface diffusion
of the adsorbate are negligible and that desorption rates follow a
first-order kinetics. Under these assumptions, the mass balance of
adsorbed molecules in the catalyst site i can be expressed as

dNi

dt
= −kiNi, Ni(0) = Ni0 (45)

where Ni is the normalized number of active sites of type i containing
an adsorbed molecule (Ni0 is its initial value) and ki is the desorption
rate constant. Temperature dependence of ki is assumed to follow
the Arrhenius equation (Eq. (43)). The total rate of desorption (R)

can then be written as

R =
NS∑
i=1

kiNi (46)

where NS is the number of distinct site types. The obtained experi-
mental measurement is an electric signal that is proportional to the
adsorbate concentration in the gas stream. For this reason, this sig-
nal is considered to obey the following relation:

Signal = a1(R − Rref ) + a0 (47)

where a1 and a0 are parameters to be estimated and Rref is a
reference rate value used to minimize the correlation between
the parameters a1 and a0. The estimation of a1 and a0 from the
TPD data is equivalent to the in-situ calibration of the detector
setup.

The experimental data presented in this example represent the
desorption of ammonia from a hydroxyapatite catalyst (Resende
et al., 2006). (Experimental details are omitted because they are not
relevant for the purposes of the presented paper). The rate of tem-
perature increase was equal to 15K/min and the initial temperature
was equal to 343K. The number of distinct active sites in the cata-
lyst was assumed to be equal to two, meaning that, the number of
parameters to be estimated was equal to 7: A1, B1, A2, B2, a0, a1
and N10 (observe that the initial number of the second type of active
sites can be calculated as N20 = 1 − N10).

The experimental data and the quality of the model fit are pre-
sented in Fig. 10. The minimum value for the objective function was
equal to 0.496, independently of the adopted reparameterization.
Fig. 10 indicates that improvement can be obtained with inclu-
sion of an additional catalyst site and/or modification of the rate
expressions. This is not pursued here because improvement of the
model fit is unimportant for the purposes of the present manuscript.
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Table 12
Used reference values in Example 3

Traditional
Arrhenius

Initial guess Norm 1 Norm 2 Norm 3

Tref1 [K] ∞ 900.0 717.51 718.75 772.97
Tref2 [K] ∞ 900.0 1093.1 1058.5 1094.6
Rref × 104 0.0000 0.0000 2.9128 2.9144 2.9214

Table 13
Estimated parameter values in Example 3

Parameter Traditional
Arrhenius

Initial guess Norm 1 Norm 2 Norm 3

A1 0.2582 −5.473 −6.930 −6.917 −6.414
B1 42.88 5.727 7.186 7.174 6.671
A2 20.30 −11.55 −5.924 −6.781 −5.887
B2 238.3 31.84 26.23 27.09 26.182
a1 1246 1246 1246 1245 1246
a0 −0.5038 −0.5040 −0.1410 −0.1408 −0.1400
N10 0.4141 0.4143 0.4142 0.4142 0.4142

Table 14
Relative parameter errors (%) in Example 3

Parameter Traditional
Arrhenius

Initial guess Norm 1 Norm 2 Norm 3

A1 590.4 6.0 2.1 2.1 2.7
B1 21.3 21.3 21.3 21.3 21.3
A2 10.0 3.8 1.1 1.4 1.1
B2 7.7 7.7 7.7 7.7 7.7
a1 11.4 11.4 11.3 11.3 11.4
a0 9.2 9.2 15.0 15.1 15.1
N10 10.9 10.9 10.9 10.9 10.9

In this example five different reparameterizations were used for
the kinetic constant. The first one was the traditional Arrhenius
equation (Eq. (43); that is, without reparameterization). The sec-
ond one was the reparameterized Arrhenius equation (Eq. (43)) with
the temperature reference values fixed at 900K (approximately the
mid-point temperature, as shown in Fig. 10) and the reference rate
value set equal to 0.0. These values were also used as initial guesses
for the optimization of the reference values in the second step of
the proposed two-step estimation algorithm. The other three repa-
rameterizations correspond to the optimized values obtained after
minimization of Norms 1--3 (Eqs. (15)--(17)). These optimum refer-
ence values are shown in Table 12. The estimated parameter values
and the relative parameter errors are presented in Tables 13 and 14,
respectively.

As shown in Table 14, the relative errors of parameters B1, B2, a1
and N10 are independent of the adopted reference values. The rel-
ative errors of parameters A1 and A2 are reduced very significantly
after the reparameterization. However, the relative error of param-
eter a0 increased when a reference rate value Rref different from
0 were used, due to the reduction of the parameter estimate (from
−0.50 to −0.14).

As observed previously, the parameter correlations decreased
very significantly after the reparameterization, as shown in
Tables 15--19. Once more, the parameter correlations between pairs
of parameters B1, B2, a1 and N10 are independent of the adopted
reference values. When the traditional Arrhenius equation was
used (Table 15), the parameter correlations were generically high,
especially for parameters A1.B1 and A2.B2. This means that the ki-
netics of desorption cannot be analyzed properly with the proposed
model. As shown in Table 16, the situation cannot be improved
through definition of the reference values based solely on the range
of analyzed temperatures.

When the reference values were optimized, very small values for
the correlations were obtained (although some of the correlations

Table 15
Parameter correlation matrix in Example 3 with traditional Arrhenius equation

A1 B1 A2 B2 a1 a0 N10

A1 1.00 1.00 −0.03 −0.04 −0.63 0.56 −0.74
B1 1.00 1.00 −0.01 −0.02 −0.63 0.56 −0.72
A2 −0.03 −0.01 1.00 1.00 −0.39 0.34 0.08
B2 −0.04 −0.02 1.00 1.00 −0.38 0.34 0.08
a1 −0.63 −0.63 −0.39 −0.38 1.00 −0.89 0.76
a0 0.56 0.56 0.34 0.34 −0.89 1.00 −0.67
N10 −0.74 −0.72 0.08 0.08 0.76 −0.67 1.00

Table 16
Parameter correlation matrix in Example 3 with initial guess for reference values

A1 B1 A2 B2 a1 a0 N10

A1 1.00 0.90 0.13 −0.10 −0.58 0.51 −0.72
B1 0.90 1.00 0.04 −0.02 −0.63 0.56 −0.72
A2 0.13 0.04 1.00 −0.99 0.36 −0.32 −0.11
B2 −0.10 −0.02 −0.99 1.00 −0.39 0.34 0.08
a1 −0.58 −0.63 0.36 −0.39 1.00 −0.89 0.76
a0 0.51 0.56 −0.32 0.34 −0.89 1.00 −0.67
N10 −0.72 −0.72 −0.11 0.08 0.76 −0.67 1.00

Table 17
Parameter correlation matrix in Example 3 with the reference values optimized
with Norm 1

A1 B1 A2 B2 a1 a0 N10

A1 1.00 −0.09 0.09 −0.20 0.02 0.00 −0.10
B1 −0.09 1.00 0.19 −0.02 −0.63 −0.01 −0.72
A2 0.09 0.19 1.00 −0.04 −0.15 0.00 −0.17
B2 −0.20 −0.02 −0.04 1.00 −0.38 0.01 0.08
a1 0.02 −0.63 −0.15 −0.38 1.00 −0.01 0.76
a0 0.00 −0.01 0.00 0.01 −0.01 1.00 0.00
N10 −0.10 −0.72 −0.17 0.08 0.76 0.00 1.00

Table 18
Parameter correlation matrix in Example 3 with the reference values optimized
with Norm 2

A1 B1 A2 B2 a1 a0 N10

A1 1.00 −0.07 0.20 −0.20 0.01 0.01 −0.12
B1 −0.07 1.00 0.14 −0.02 −0.63 −0.01 −0.72
A2 0.20 0.14 1.00 −0.73 0.16 0.00 −0.18
B2 −0.20 −0.02 −0.73 1.00 −0.38 0.00 0.09
a1 0.01 −0.63 0.16 −0.38 1.00 0.00 0.76
a0 0.01 −0.01 0.00 0.00 0.00 1.00 0.00
N10 −0.12 −0.72 −0.18 0.09 0.76 0.00 1.00

Table 19
Parameter correlation matrix in Example 3 with the reference values optimized
with Norm 3

A1 B1 A2 B2 a1 a0 N10

A1 1.00 0.55 0.18 −0.18 −0.38 0.00 −0.54
B1 0.55 1.00 0.19 −0.02 −0.63 −0.01 −0.72
A2 0.18 0.19 1.00 0.02 −0.18 0.00 −0.17
B2 −0.18 −0.02 0.02 1.00 −0.39 0.00 0.08
a1 −0.38 −0.63 −0.18 −0.39 1.00 0.00 0.76
a0 0.00 −0.01 0.00 0.00 0.00 1.00 0.00
N10 −0.54 −0.72 −0.17 0.08 0.76 0.00 1.00

are independent of the adopted reference values). When minimiza-
tion of Norm 1 (Table 17) was performed, the parameter correlations
were very small and comparable to the values obtained through
minimization of Norm 2 (Table 18). The only significant difference
was observed for parameter correlation between A2 and B2: the
correlation was equal to −0.04 in the first case and equal to −0.73
in the second case. The optimized reference values obtained after
minimization of Norm 3 (Table 19) also led to low parameter
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correlations, but not so small as the ones obtained after minimiza-
tion of Norms 1 and 2. The obtained results seem to indicate that
minimization of the empirical Norm 1 can be very effective for ob-
tainment of low parameter correlations after reparameterization of
the model equations.

5. Conclusions

In this work the two-step parameter estimation procedure
proposed in a previous work by Schwaab and Pinto (2007) was
extended to a more general scenario, where more than one Arrhe-
nius equation is present. Although it is not possible to eliminate all
the parameter correlations simultaneously, it was shown through
numerical examples that a proper choice of the reference val-
ues can reduce the final parameter correlations very significantly.
The proposed procedure comprises two steps: in the first step the
parameter estimation is performed with an initial guess for the
reference values; in the second step some norm of the parameter
correlation matrix is minimized through manipulation of reference
values.

Three different norms were considered in the present work and
the best results were obtained with Norm 1, where the sum of
the squares of individual parameter correlations is minimized. Be-
sides, the computation of Norms 2 and 3 involves the calculation of
characteristic values and characteristic vectors, leading to more ex-
pensive computer calculations. One must observe, though, that the

Appendix

Experimental data used in Example 2 (Bates and Watts, 1988)

CO × 103

(mol/L)
CX × 104

(mol/L)
T (K) r (mol/

(molcat s))
CO × 103

(mol/L)
CX × 104

(mol/L)
T (K) r (mol/

(molcat s))

5.02 2.00 543.0 116.0 2.49 1.98 563.0 224.0
4.99 1.90 543.0 120.0 5.71 0.49 563.0 198.0
5.04 2.00 543.0 114.0 5.55 3.47 563.0 463.0
5.05 2.00 543.0 117.0 5.49 2.74 563.0 370.0

10.00 3.51 543.0 245.0 5.54 0.95 563.0 258.0
10.10 3.51 543.0 230.0 5.07 1.91 573.0 543.0
10.30 0.50 543.0 106.0 5.02 1.87 573.0 561.0
10.40 3.61 543.0 230.0 5.05 1.92 573.0 560.0
10.10 0.49 543.0 121.0 5.06 1.88 573.0 578.0
10.10 0.50 543.0 115.0 5.00 2.01 573.0 542.0
10.10 0.50 543.0 127.0 1.00 3.50 573.0 197.0
5.70 2.01 563.0 408.0 5.05 2.02 573.0 559.0
5.52 2.01 563.0 380.0 3.06 3.49 573.0 414.0
5.51 2.02 563.0 320.0 5.02 1.98 573.0 467.0
5.51 1.86 563.0 399.0 5.04 2.01 573.0 468.0
5.54 2.02 563.0 371.0 10.17 2.45 573.0 933.0
5.53 1.99 563.0 368.0 4.99 1.87 573.0 509.0
1.08 0.51 563.0 63.0 10.00 2.53 573.0 955.0
7.07 0.99 563.0 333.0 4.96 3.46 573.0 650.0
5.54 1.97 563.0 322.0 10.00 2.53 573.0 902.0
6.05 3.51 563.0 413.0 5.02 1.99 573.0 532.0
5.52 2.02 563.0 344.0 3.99 3.57 573.0 552.0

10.16 1.89 563.0 543.0 1.07 1.96 573.0 184.0
5.52 2.00 563.0 372.0 4.99 3.53 573.0 663.0
6.03 0.49 563.0 229.0 5.03 1.00 573.0 409.0

10.00 2.01 563.0 563.0 2.51 1.99 573.0 326.0
10.10 1.51 563.0 490.0 4.99 2.77 573.0 580.0
8.05 3.54 563.0 595.0 9.06 2.05 573.0 831.0
5.52 1.99 563.0 352.0

recalculation of the covariance matrix of parameter estimates (and,
therefore, of the correlation norm) when the reference tempera-
tures change does not involves any significant increase in the com-
puter costs, since the new covariance matrix can be readily obtained
through Eq. (14). Therefore, the larger computer costs of calculating
Norms 2 and 3 will only become significant when one is interested in
estimating a very large number (tens) of model parameters simulta-
neously. Consequently, the use of the PSO method for optimization
of temperature reference values should be encouraged, due to its in-
herent capabilities for solving complex problems (with nonconvex
behavior and/or multiple minima).

Besides the optimization of the reference temperature value in
Arrhenius models, the proposed procedure can also be used for op-
timum reparameterization of other equations, as shown in Example
3 after definition of a reference rate value for the linear calibration
model. With the proposed procedure, the convergence difficulties
found during parameter estimation of kinetic models and related to
existence of high parameter correlation can be minimized, allowing
simultaneously for obtainment of parameters with lower error con-
tents.
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