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Abstract

Parameter estimation procedures are very important in the chemical engineering field for development of mathematical models, since
design, optimization and advanced control of chemical processes depend on model parameter values obtained from experimental data. Model
nonlinearity makes the estimation of parameter and the statistical analysis of parameter estimates more difficult and more challenging. In this
work, it is shown that many of these difficulties can be overcome with the use of heuristic optimization methods, such as the particle swarm
optimization (PSO) method. Parameter estimation problems are solved here with PSO and it is shown that the PSO method is efficient for
both minimization and construction of the confidence region of parameter estimates. Moreover, it is shown that the elliptical approximation of
confidence regions of nonlinear model parameters can be very poor sometimes and that more accurate likelihood confidence regions can be

constructed with PSO, allowing for more reliable statistical analysis of the significance of parameter estimates.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Parameter estimation; Particle swarm optimization; Confidence regions; Nonlinear models

1. Introduction

Mathematical models are commonly used for interpretation
of experimental data, understanding of process behavior, in pro-
cess design, process optimization and process control. Gener-
ally, mathematical models are composed of sets of equations
(algebraic and/or differential) that represent the relationships
among the independent (or controllable) variables and the de-
pendent (or observable) variables. During model development,
some variables that cannot be measured (or whose measure-
ment is very difficult) may be defined in the model equations. In
order to evaluate these variables (called model parameters) and
to improve the model reliability, model parameter values must
be estimated from available experimental data through mini-
mization of some objective function that weighs the distance
between model predictions and available experimental results.

For linear models, the minimization procedure allows for
development of analytical solutions. Assuming that deviations
between predicted and experimental data follow the normal
probability distribution, the confidence region of parameter
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estimates defines a hyper-ellipsoid in the parameters space, with
the point estimate of model parameters placed at the center of
the hyper-ellipsoid (Draper and Smith, 1998).

In the case of nonlinear models, analytical solutions are un-
available and numerical iterative procedures must be used both
for minimization of the objective function and evaluation of
confidence regions of parameter estimates. Besides, model non-
linearity makes the minimization of the objective function more
difficult and some regard must be taken about: (a) the size of
the parameter space, (b) the existence of local minima, (c) the
continuity of the objective function and (d) the sensitivity of the
objective function to each of the model parameters (Hibbert,
1993). The first two points are related to definition of the ini-
tial guesses of parameter values, while the last two points are
related to the definition of the derivatives of the objective func-
tion. These last two points are closely related to the numerical
difficulties experienced by traditional methods of optimization,
such as Newton-like methods, during minimization of the ob-
jective function.

With regard to the confidence region of parameter estimates
in nonlinear models, even when the experimental deviations
are normally distributed, the parameter deviations do not nec-
essarily follow the normal distribution. The assumption of
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the elliptical shape of the confidence region is very often a
poor approximation of the confidence region (Donaldson and
Schnabel, 1987; Bates and Watts, 1988). In spite of that, ellip-
tical approximations of the confidence regions are widely used
due to its simplicity: the parameter estimates are assumed to
follow the normal distribution and only the information about
the point estimate and the covariance matrix are necessary
(Bard, 1974).

In order to obtain more accurate description of confidence
regions, different methods have been proposed in the litera-
ture, such as the likelihood method (Beale, 1960), the lack-
of-fit method (Halperin, 1963; Hartley, 1964; Williams, 1962)
and more recently the profiling #-plots (Bates and Watts, 1988;
Watts, 1994). Profiling ¢-plot methods were designed more
specifically for computation of the confidence intervals of pa-
rameter estimates; confidence regions can then be obtained
through interpolation. The likelihood method is exact only for
linear models, although the shapes of the confidence regions
obtained for nonlinear model parameters are very close to the
exact ones. The lack-of-fit method can be used to produce exact
confidence regions for all model parameters; however, it is more
computationally expensive than likelihood method, as it also re-
quires definition of model derivatives. As the confidence regions
obtained with the likelihood method are usually very similar to
the ones obtained with the lack-of-fit method (Donaldson and
Schnabel, 1987), the use of the likelihood method is normally
preferred.

Despite the previous remarks, it should be clear that the de-
termination of the confidence regions of model parameters with
the likelihood method does not constitute an easy task. Pub-
lished works propose that a large number of model simulations
be performed in order to obtain a large number of objective
function values near the solution. These values are then used to
construct the likelihood confidence region (Vanrolleghem and
Keesman, 1996). Particularly, Klepper and Hendrix (1994) de-
veloped a procedure for obtaining uniform distribution of points
inside the confidence region.

The use of heuristic optimization methods, such as the
genetic algorithm (GA), simulated annealing (SA) and par-
ticle swarm optimization (PSO) for parameter estimation is
very promising. (Heuristic optimization methods are general-
purpose methods based on empirical evolutionary rules that
frequently mimic successful optimization strategies found in
nature. They are usually very flexible and can be applied to
many types of objective functions and constraints, which ex-
plains the widespread interest in these techniques. The word
“heuristic” is used to refer to these methods because it is not
possible to guarantee that the exact optimum solution will
be found, although a useful and good approximation of the
searched optimum can frequently be obtained.) These methods
can be used in problems that contain many model parameters,
are not very sensitive to the initial parameter guesses, do not
need derivatives of the objective functions and are able to per-
form global optimization through extensive calculation of the
objective function in the parameter space. Many works have
already reported the use of heuristic methods to perform pa-
rameter estimation and data reconciliation. Park and Froment

(1998), Marseguerra et al. (2003) and Wongrat et al. (2005)
used GA procedures; Costa et al. (2000) and Eftaxias et al.
(2002) used SA procedures; Parsopoulos et al. (2001) used
PSO techniques. Marseguerra et al. (2003) were the only ones
to observe that a large number of solution points are generated
during minimization and that these solution points can reveal
some of the model characteristics, such as the model sensitiv-
ity to parameter estimates and how model sensitivity affects
the convergence of the search procedure. However, only the
final point estimates were considered in the proposed analy-
sis, which is not sufficient to characterize the quality of the
parameter estimates.

Some measure of the parameter uncertainties is necessary for
proper analysis of the estimation results. This can be achieved
by using the solution points generated by any of the heuris-
tic optimization algorithms during function minimization.
Detailed description of the confidence regions of parameter
estimates can be obtained with heuristic procedures, providing
a statistically rigorous analysis of parameter estimates, since
the elliptical approximation is often inadequate for nonlinear
model parameters. Therefore, the high number of function
evaluations, which is traditionally regarded as a disadvantage
of the heuristic methods, can be used for detailed statistical
analysis and can constitute a major benefit of these algorithms.

According to our previous experience (Schwaab, 2005), PSO
methods allow for improved parameter estimation performance
with less computational efforts, when compared to GA and SA
algorithm. For this reason, only PSO will be used in this work,
although the determination of confidence regions of model pa-
rameters can be performed similarly with any other heuristic
optimization method.

In this work, the PSO method is used for estimation of model
parameters in nonlinear models. It is shown that PSO methods
are capable of minimizing the objective function and describ-
ing the likelihood confidence region of model parameters very
successfully.

This paper is organized as follows. In Section 2 the parameter
estimation problem is formulated. Special attention is given to
the definition of the confidence regions of parameter estimates.
The PSO method is described in Section 3 and the obtained
results are presented in Section 4. Linear parameter estimation
is performed first in order to show that the PSO technique can
recover the elliptical confidence region of simpler problems.
Then some nonlinear problems are formulated and solved. It is
shown that the obtained confidence regions may be very dif-
ferent from the elliptical approximations and that disconnected
confidence regions can be found in some simple kinetic prob-
lems. Finally, Section 5 presents some concluding remarks.

2. Parameter estimation

As the experimental data are uncertain due to existence of
experimental errors, the results obtained after the parameter es-
timation are also uncertain to some extent. Characterization of
this uncertainty is of fundamental importance for proper evalu-
ation of the final results. Definition of the maximum likelihood
function may be convenient for interpretation of the parameter
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estimation procedure. The experimental data can be regarded
as random variables, whose joint probability distribution can
be defined as

P(z¢;z",V), (1)

which describes the probability to obtain the experimental val-
ues z¢, given the real unknown values z* and a measure of
the experimental errors V. The maximum likelihood estimation
consists in maximizing Eq. (1), given the model constraints

g(z*, 0) =0, 2)

where 0 is a vector of model parameters and g is a vector of
model functions. Assuming that the model is perfect and that
the experiments are well done, it is reasonable to admit that
the experimental results are the most probable ones. Therefore,
attempts should be made to maximize the probability of ob-
taining these experimental results (Bard, 1974). When the ex-
perimental errors follow the normal distribution, maximization
of the likelihood function is equivalent to minimization of the
function

S0 = (2" — 29"V " - 2%, 3)

where z is a vector that contains the independent x and depen-
dent y variables and V is the covariance matrix of measure-
ments. When the objective function defined in Eq. (3) is used,
the procedure is usually called Data Reconciliation. Assuming
that the independent variables x are known with great preci-
sion, the objective function becomes

SO = —y)'V ' -9 )
and the model equations can be rewritten as
y'=f(*0) &)

that assumes that the dependent variables can be calculated (ex-
plicitly or numerically) as function of the independent variables
and of the model parameters.

If the experimental measurements of the dependent variables
are uncorrelated, the matrix Vy is diagonal and Eq. (4) takes
the form of the known weighted least-squares function

NE NY (i ye )2
_ ij iJ
SO =33~ (©)
i=1 j=1 i,j
where 61»2 . 1s the variance of the experimental fluctuations of

the depeﬁdent variable j in the experiment i. NE and NY are the
number of experiments and the number of dependent variables,
respectively. When all variances are equal (which is usually as-
sumed for models with only one dependent variable), Eq. (6)
can then be simplified to take the form of the well-known
least-squares function

NE

SO0)=Y (3 — )% (7)
i=1

The sum over different dependent variables was removed,

since the use of the least-squares function is usually inappropri-
ate for multi-response models. This is due to differences among

the magnitudes of the responses and due to confusing different
physical units. Matrix V provides the proper normalization and
dimensionalization of each term in the sum.

Care should be taken regarding simplifications of matrix V
and/or Vy, since over simplification of the covariance matrix
may remove the statistical significance of the objective function
and, consequently, leads to meaningless results. Although the
maximum likelihood method may allow for estimation of the
elements of the covariance matrix and of the model parameters
simultaneously, this should not be encouraged as the covariance
matrix may be nearly singular (Bard and Lapidus, 1968) and
meaningless parameter estimates and parameter uncertainties
may be obtained, as pointed out by Santos and Pinto (1998).
Variable correlation should only be considered when it can
be evaluated experimentally, independently from the parameter
estimation procedure. Therefore, experimental determination
of the covariance matrix through replication is encouraged, as
it allows for independent definition of the experimental error
structure. Additionally, the covariance matrix of experimental
deviations may contain significant amount of information about
the process (Cerqueira et al., 1999; Larentis et al., 2003; Rawet
et al., 2001).

After definition of the objective function, several numerical
methods can be used for minimization of the objective function.
The methods used most often are the derivative-based ones. Ac-
cording to these methods, the minimization is performed along
a direction that combines gradient vector (vector of first deriva-
tives with respect to model parameters) and the Hessian matrix
(matrix of second derivatives with respect to model parameters)
of the objective function. A group of methods named direct
search methods perform the minimization of the objective func-
tion based only on evaluation of the objective function, without
the calculation of derivatives. Although the idea of minimiza-
tion without the calculation of derivatives is appealing, Bard
(1974) reports that gradient methods outperform direct search
methods both in reliability and speed of convergence. Both
gradient and direct search methods may be regarded as local
search methods, since the search starts from an initial parame-
ter guess and then evolves to a minimum. A good compilation
of derivative-based and direct search methods can be found in
Bard (1970, 1974) and Edgar and Himmelblau (1988).

Minimization of the objective function in parameter estima-
tion problems, particularly in the field of chemical engineer-
ing, may lead to difficult numerical problems. Difficulties are
related to the large number of model parameters, high correla-
tion between model parameters and multimodal nature of the
objective function. In order to overcome these difficulties, the
use of heuristic optimization method, such as GA (Goldberg,
1989), SA (Kirkpatrick et al., 1983) and PSO (Kennedy and
Eberhart, 1995), may be considered. These algorithms are char-
acterized by the large number of function evaluations and a
random search character, which assures a higher probability
to find the global minima, when compared to derivative-based
and direct search methods. These algorithms do not require ini-
tial guesses for model parameters and do not use derivatives.
According to our previous experience, the PSO methods out-
perform other heuristic algorithms, particularly in parameter
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estimation problems (Schwaab, 2005). For this reason, the PSO
method will be described in detail in Section 3.

After finding a solution, the results have to be analyzed in
statistical terms. Due to existence of experimental errors it is
also necessary to evaluate the uncertainty of the model param-
eters.

The second-order Taylor expansion of the objective function
around the minimum point estimate can be written as

S0) =50 + (0 —0)"VS; + 10— 0)"Hy 0 - 0), )

where " denotes the estimate of the point of minimum, VS
represents the gradient vector and H stands for the Hessian
matrix of the objective function, defined as

(Y o (Y
m,=2(3) v (5): ©)

where Eq. (4) was assumed to be valid. As the Hessian matrix
is also related to the covariance matrix of model parameters
according to (Bard, 1974)

—1
Hy =2V, (10)
Eq. (8)can be rewritten as
SO) — SO =0-0)"v,'O0-0 = (11

Eq. (11) follows a chi-square distribution with p degrees
of freedom y,, where p is the number of parameters. As the
objective function can be seen as a random variable that follows
the chi-square distribution with n— p degrees of freedom, where
n is the total number of data points (NY - NE), the following
expression can be written as

[SO-S@1/p _ [0-0)"V,'©0-0)1/p

S(0)/(n—p) S(0)/(n—p)

The ratios in both sides of Eq. (12) follow an F'-distribution
with p and n— p degrees of freedom. According to the right side
of Eq. (12), a confidence region with confidence level (1 — o)
can be defined as

=Fpup. 12)

A Txr—1 A p O l—o
@—-0'V, (9—0)<ES(G)F,;,n—p- (13)
Eq. (13) defines a hyper-ellipsoid in the parameter space that
is the confidence region of the parameter estimates, according
to the traditional procedure employed for parameter analysis.
The confidence interval of model parameters can be defined as

1—o/2

0; £ 1, (svin)' /2, (14)

where v;; is the ith diagonal element of matrix Vg and 52 is
defined as

s> =S@)/(n - p). (15)
tnl:;/ ? is the r-Student variable defined for n — p degrees of

freedom and confidence level of (1 — «/2).

The uncertainty of parameter estimates can be analyzed in
terms of the elliptical confidence regions or in terms of the con-
fidence intervals. The confidence regions should be preferred,

as more detailed information about model parameters can be
obtained, particularly about correlation among the estimated
parameters. Interesting discussions about confidence intervals
and confidence regions of model parameters can be found in
Draper and Guttman (1995) and Draper and Smith (1998).
For nonlinear models, even when experimental deviations are
normally distributed, parameter deviations do not necessarily
follow the normal distribution. Therefore, the elliptical shape
of the confidence region only provides an approximation of
the confidence region (Bates and Watts, 1988; Donaldson and
Schnabel, 1987). According to the left side of Eq. (12), a con-
fidence region with confidence level (1 — o) can be defined as

S0)< S (1 + LF}fi,,). (16)
n—p

Beale (1960) was the first to propose the use of Eq. (16) for
computation of confidence regions. This equation is exact for
linear models, when experimental errors follow the normal dis-
tribution. In a more general case, when nonlinear models are
used and/or when experimental errors fluctuate according to an
arbitrary probability distribution, Eq. (16) should be rewritten
as: S(O)<cS ((Ai); where c is a constant that depends on the re-
quired confidence level and on the defined objective function.
Unfortunately, the exact definition of the probability distribu-
tions of experimental fluctuations (and, consequently, of the
objective function) and of parameter uncertainties (due to the
nonlinear character of the model) may constitute a very diffi-
cult task, making hard the correct definition of the constant c.
However, as Eq. (16) does not require the confidence region to
have the elliptical shape, very good approximations of the true
confidence region can be obtained with this method (Donaldson
and Schnabel, 1987). The constant c is estimated with the help
of Eq. (16), as discussed previously.

The confidence regions obtained with this method (Eq. (16)),
called likelihood confidence regions, can be disjoint and un-
bounded, as shown in the following sections. This is because
the contours of a complex nonlinear function can be disjoint and
unbounded. For two-parameter models, the likelihood region
can be determined with standard contouring methods (Bates
and Watts, 1988). However, obtaining the contours of confi-
dence regions in problems that involve more than two param-
eters may be difficult, requiring the evaluation of a very large
number of points to produce a satisfactory contour.

The difficulties described in the previous paragraph can be
minimized when the PSO method is used for objective function
minimization. As the PSO method performs a high number of
objective function evaluations (as other heuristic search pro-
cedures), the likelihood confidence region can be determined
through proper selection of the points that satisfy Eq. (16) along
the search path. Plotting of these points produce the confidence
regions. Therefore, the only additional computational effort is
the selection of the points that satisfy Eq. (16), since multiple
evaluations of the objective function is naturally performed by
the PSO method (and other related heuristic procedures) during
objective function minimization. As a consequence, the use of
linear approximations of the confidence regions of parameter
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estimates are not necessary when heuristic procedures are used
for parameter estimation.

3. Particle swarm optimization

The PSO technique was originally proposed by Kennedy and
Eberhart (1995), based on the social behavior of collection of
animals. Each individual of the swarm, called particle, remem-
bers the best solution found by itself and by the whole swarm
along the search trajectory. The particles move along the search
space and exchange information with other particles, in accor-
dance with the following equations:

k+1 k ind __k glo_ k

Vo =va’d—l—clrl(x}id—xp,d)+czr2(xd —Xp.4)> 17
k+1 _ _k k+1

X,d —x[,’d—i—vp’d. (18)

In Egs. (17)—(18), p denotes the particle, d is the search di-
rection, k represents the iteration number, v is the velocity (or
pseudo-velocity) of the particle and x is the position of par-
ticle. x™™ and x#'° represent the regions of the search space
where the objective function attains low (optimum) values. x™
is the best position found by the particle itself, while x2'° is the
best position found by whole swarm. r; and r; are two random
numbers with uniform distribution in the range [0, 1]. w, ¢
and c; are search parameters. The parameters ¢ and c; are the
cognition and the social parameters. The parameter w is called
inertial weight and was not present in the original form of the
algorithm. This parameter was inserted into the algorithm by
Shi and Eberhart (1998) in order to assure the convergence of
particles to the best point in the course of the search. Shi and
Eberhart (1998) also proposed the use of a linear decreasing
value of w, in order to increase the exploration of the param-
eter space during the initial search iterations and increase the
exploitation of the parameter space during the final steps of the
search.

The PSO presents interesting characteristics along the itera-
tions. In the initial iterations, the random character of the search
is high and the particles conduct a global search over the search
region. As the iterations evolve, the particles concentrate around
the more promising regions, found during the exploration stage.
This local search is called exploitation and leads to improve-
ment of the solution. Proper balancing between exploration
and exploitation is of fundamental importance for successful
searches, assuring simultaneously global search characteristic
and good precision of the final results. When exploration is em-
phasized, convergence may not be attained. When exploitation
is emphasized, premature convergence can occur in some re-
gion that is far from the global minimum. The proper selection
of the search parameters is the key for proper balancing be-
tween exploration and exploitation. Complete theoretical anal-
ysis of the particle trajectories, particle convergence and search
parameters effects can be found in Clerc and Kennedy (2002),
Van den Berg and Engelbrecht (2006) and Trelea (2003). The
PSO method has been used in several fields, for optimization
of the operations of styrene polymerization process (Costa Jr.,
et al., 2003), for multi-objective optimizations (Parsopoulos and
Vrahatis, 2002), for nonlinear dynamic analysis of chemical

processes (Ourique et al., 2002) and for parameter estimation
in error-in-variables problems (Parsopoulos et al., 2001).

The greatest disadvantage of the PSO method (and also of
other heuristic algorithms) is the high number of objective func-
tion evaluations, which requires longer computation times when
compared to the traditional methods. However, as already dis-
cussed in Section 2, this high number of objective functions
can be used for rigorous statistical analysis of the final results,
so that this disadvantage becomes a gain over traditional meth-
ods for determination of confidence regions of parameter esti-
mates. Besides, PSO methods are not very sensitive to initial
guesses of model parameters, which makes its use appealing
when large number of unknown parameters are present in the
model. The PSO algorithm is presented in detail in Scheme 1.

Scheme 1: The PSO algorithm
1. Initialize the search parameters:
Niter: number of iterations;
Npt: number of particles;
Nd: number of searched dimensions;
xMIN and xMAX: vectors of length Nd with searching
limits;
1, €2, Wo, wy: PSO searching parameters;
set k = 0 (iteration counter).
2. Calculate the maximum particle velocities along each
direction d:

US/IAX — (xg/[AX _ X(IIVHN)/Z.

3. Calculate initial particle positions and velocities:

Kk _ _MIN
Xp.d =*Xd

MAX MIN
p d — X7 ),

+r(x

v g =X @r— 1.

4. Evaluate the objective function for each particle.

5. Write the particle positions and particle objective functions
in a file to be used for construction of the confidence region.

6. Update x4 vector with dimension Nd that contains the
best position found by the whole particle swarm.

7. When the maximum number of iterations is achieved
(k = Niter), the search is terminated.

8. Update xg‘d, Npt vectors with dimension Nd that contain
the best position found by each particle of the swarm.

9. Calculate the inertial weight value:

w=w,+ (wr — w”)Niter'

10. Update the particle velocities for p=1...Npt; d=1...Nd:

k+1 _ .k ind k glo k
Vg =WV + clrl(xpyd — xp’d) +car(x; — xp’d).

11. If the absolute particle velocity is higher than the maximum
permitted value then:

k+1 MAX

k+1
V,d =4 ).

sign(vp’d
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12. Update the particle positions:

k1 k k
Xpd =%patVpa

13.If the particle position is not inside the searching limits,
the particle is placed at the violated searching limit.

14. Add an iteration to the iteration counter (k =k + 1) and
return to step 4.

Due to the simplicity of the PSO algorithm, the implemen-
tation of the algorithm is very easy. It is important to say that
the computer time required for PSO computations is very small
when compared to the time required for computation of model
predictions and evaluation of objective function values for all
particles. Consequently, the total time required for optimization
is basically the time required for model evaluations.

4. Results

Three parameter estimation problems are used to illustrate
the procedure proposed here. These problems show that the
PSO is capable of minimizing the objective function and
describing the confidence regions of model parameters suc-
cessfully. The PSO algorithm and the analyzed mathematical
models were implemented in FORTRAN, as part of ESTIMA
(a software package for parameter estimation and design of
experiments). A desktop computer (Pentium 4 3.0 MHz pro-
cessor and 1024 Mb of RAM memory) was used to perform
the computations presented here.

Problem 1. Linear parameter estimation

The first problem consists of a very simple linear parameter
estimation problem. Since the confidence region of parameter
estimates is elliptical, the shape of the confidence region is
known a priori. Thus, one can observe where the PSO is able
to describe the confidence region of the parameter estimates as
obtained rigorously through theoretical analysis.

The linear model is shown in the following equation and has
two parameters, 0 and 0, which were estimated using the data
presented in Table 1:

y=01x+ 0,. (19)
Table 1

Data for linear parameter estimation

X y

1.0 9.92
2.0 16.89
3.0 17.12
4.0 26.03
5.0 30.71
6.0 33.28
7.0 39.83
8.0 42.44
9.0 50.44
10.0 53.63

60

50

40

0.0 2.0 4.0 6.0 8.0 10.0
X

Fig. 1. Linear model adjust to data in Problem 1.

10.0

8.0

6.0

[

4.0

2.0

6

Fig. 2. Elliptical confidence region (dashed line) and likelihood confidence
region obtained through particle swarm optimization (points) in Problem 1.

The search parameters ¢; and ¢ were made equal to 2.0
and w was made equal to 0.9. Twenty particles were used
and 100 iterations were performed. These parameter values
are used quite often in most publications regarding the PSO.
The search space was defined as the interval [0, 10] for both
parameters. The minimum objective function value was 20.8
with parameter estimates equal to 4.85 and 5.28 for 01 and 0,,
respectively. These numbers are the same ones obtained with
the usual least-squares analytical solution. The typical computer
time required to solve this simple problem was about 1s. As
model calculations are very simple in this case, the number
of particles and iterations required to provide good numerical
results are very small, as presented previously.

Fig. 1 illustrates the obtained linear fit and Fig. 2 shows
the elliptical (Eq. (13)) and likelihood (Eq. (16)) confidence
regions. The likelihood confidence region of Fig. 2 was con-
structed with 305 points that had been used previously by the
PSO procedure during the search. The selected points were the
ones that led to objective functions smaller than 43.8, as calcu-
lated from Eq. (16). As it can be seen in Fig. 2, the likelihood
confidence region is similar to the elliptical one, showing that
points used by the PSO during the minimization can be used
effectively for definition of the parameter confidence region.
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Table 2
Biochemical oxygen demand along the time
x (days) y (mg/L)
1.0 8.3
2.0 10.3
3.0 19.0
4.0 16.0
5.0 15.6
7.0 19.8
20 .
L ]
16 s .
12
= *
8
4
0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

X

Fig. 3. Model adjusts to data in Problem 2.

Example 2. First-order kinetics

This problem consists of a nonlinear model that describes
a first-order irreversible reaction (A — B) in a batch stirred
tank. The equation that describes how product B concentration
varies with the time can be described as

y=0,(1—e ), (20)

This problem was taken from Bates and Watts (1988). The
model was used to describe the variation of the biochemical
oxygen demand (defined as y) along the time (defined as x).
There are two parameters to be estimated which are related to
unknown initial conditions (6;) and to the kinetic rate constant
(62). The available experimental data are presented in Table 2.

The search parameters c¢; and ¢; were made equal to 2.0,
while w was made equal to 0.9. One thousand iterations were
performed and 40 particles were used. Compared to the previ-
ous example, these numbers were increased to provide better
representation of the confidence region of parameter estimates,
as analytical solutions are not available in this case. Parameter
search space was restricted to the interval [0, 100] to both pa-
rameters. Search regions were enlarged on purpose, to allow for
larger exploration of the parameter space. The minimum found
was equal to 26.0 for parameter values of 19.15 and 0.5273,
respectively. The typical computer time required to solve
Example 2 was about 1s, as in the previous example.

Fig. 3 shows the model fit to the experimental data. Fig. 4
shows both the likelihood and the elliptical confidence regions
of parameter estimates.
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Fig. 4. Elliptical confidence region (dashed line) and likelihood confidence
region obtained through particle swarm optimization (points) in Problem 2.

Different from Problem 1, where both confidence regions
were equal, Fig. 4 shows that the likelihood confidence re-
gion is very different from the elliptical one. As the model is
nonlinear, the elliptical confidence region provides only a very
poor approximation of the confidence region of the parameter
estimates. Fig. 4 shows that the likelihood confidence region
is non-convex and is unbounded, since parameter 0, does not
posses an upper limit. The occurrence of this type of confidence
region is due to model structure. As the exponential term ap-
proaches zero when 0, increases, the model provides a constant
output response that is equal to parameter 0, as discussed by
Bates and Watts (1988). This means that the model is unable
to discriminate high values of 0,, as high values of 0, lead to
similar model fits.

Despite its simplicity, this problem shows very clearly that
the use of elliptical confidence regions in nonlinear parameter
estimation can lead to very wrong conclusions. This can be
avoided with the use of likelihood confidence regions described
by function evaluations performed by the PSO procedure along
the search.

Problem 3. Polymerization kinetics

This problem consists in the estimation of kinetic param-
eters for the ethylene polymerization carried out with nickel
complexes. Variation of reaction rates along the reaction course
and the characteristics of the final polymer products suggest
that the active species change along the time. Details about
the reaction procedures and apparatus can be found in Silva
(2003) and Crossetti et al. (2004). The model that describes
the rates of ethylene consumption along the reaction time takes
into account the modification of the active species and can be
defined as

m
Rp= Z
i=0

Rp is the rate of ethylene consumption along the time ¢. Kp,
is the polymerization rate constant for active specie n. k; is the
rate constant for transformation of active species i into active
species (i + 1). m is the maximum number of active species

m
> "Kp, A} | exp(—kit) | Q1)

n=i



M. Schwaab et al. / Chemical Engineering Science 63 (2008) 1542—1552 1549

in the reaction medium of catalyst. A are coefficients defined
recursively as

AY =1, (22)
kn—
—1 1
Al = Al kn”j i=1...n—1, n>0, (23)
n—1
Ap==> Al 24)
i=0

The model contains 2m kinetic parameters to be estimated:
m transformation rate constants (ko, ..., k;,—1) and m poly-
merization rate constants (Kpy, ..., Kp,,). ky, is assumed to be
equal to zero, as the last species is stable. Kp is assumed to
be equal to zero, as the initial catalyst species is not active for
polymerization. The detailed description of model development
will be reported elsewhere.

In order to overcome the high correlation among model
parameters, which is typical of exponential models, and to guar-
antee the obtainment of precise parameter estimates, 15 000 it-
erations were used with 25 particles. Both ¢1 and ¢, were made
equal to 1.5 and w was made equal to 0.8. Additionally, the
search was reinitiated whenever convergence of particles was
detected, which was assumed to occur when the difference be-
tween the average value of the objective function of a particular
iteration and the best value found for the objective function was
smaller than 10™>. Compared to the previous examples, the use
of smaller values for ¢y, ¢y and w accelerates the convergence
of particles to assure a good precision of the parameter, while
reinitiation of the PSO after detection of convergence assures
the good exploration of the parameter space, which is neces-
sary to provide good description of the confidence regions.

The experimental data used in this problem were obtained
by Silva (2003). Initially, the occurrence of two active species
(m = 2) was assumed, meaning that four parameters had to
be estimated. Some preliminary searches were performed to
determine the appropriate search intervals for each parameter:
for ko [0, 100]; for &y [0, 50]; for Kp; [0, 1000]; and for Kp,
[0, 10]. Intervals were obtained by assuming that all search in-
tervals were equal to [0, 1000] and performing some PSO itera-
tions. The objective function decreases very fast in the proposed
search intervals. The minimum obtained value for the objective
function was equal to 1000.53. The estimated parameters were:
ko =6.3810min~!; k; = 6.381 min~'; Kp; = 150.6 mol/ min;
and Kp, =6.278 mol/ min. The typical computer time required
to solve Example 3 was about 10 min, which was much larger
than in the previous cases because of the larger number ofpar-
ticles, iterations and experimental data.

Fig. 5 shows the quality of the model fit for a particular ex-
periment. It can be observed that the initial moments of the re-
action are well adjusted by the model, although the model is un-
able to describe the observed long-term activity modifications.

The likelihood confidence region for each pair of model
parameters is shown in Fig. 6. Except for parameter Kp,,
all confidence intervals are large, since most of the observed
transformation occurs during the first minute of reaction and no
precision can be obtained for the model parameters. Kp, is the
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Fig. 5. Experimental data (points) and model predictions when two active
species (line) are used in Problem 3.

only well-estimated parameter because it represents the con-
stant rate value of Fig. 5. It must be noticed that the confidence
regions are non-convex and open. Some model parameters do
not present upper limits, as discussed in Problem 2.

It becomes clear once more that elliptical approximations
of the confidence regions may be completely inadequate and
should not be used in many problems, as this may lead to erro-
neous conclusions about the confidence on model parameters.

One might wonder whether the complex shapes of the confi-
dence regions were related to the poor performance of the model
responses. In order to improve the model performance, an ad-
ditional active species was assumed, leading to three sequential
active species transformations and six kinetic parameters. Ten
thousand iterations were performed and 50 particles were used.
c1 and ¢y were made equal to 1.5 and w was made equal to
0.8, as in the previous case. The search intervals were defined
after some preliminary searches as previously. Search inter-
vals were: for kg [0, 100]; for k1 [0, 50]; for k2 [0, 1]; for Kp;
[0, 1000]; for Kp, [0, 1]; and for Kp; [0, 10]. The minimum
value achieved for the objective function was equal 106.39.

Surprisingly, this minimum value was achieved for two dis-
tinct sets of parameters, which means that there are two global
minima for the proposed objective function. The estimated
model parameters are presented in Table 3. The quality of the
model fit to experimental data is illustrated in Fig. 7 and is very
good in this case.

As shown in Table 3, the parameters k2, Kp, and Kp; are the
same for two observed minima. Parameters kg and k, however,
interchange their values from one minimum to the other. Pa-
rameter Kp; assumes very different values in each minimum.
According to the model results, the second species is inactive
for polymerization. If species 1 decays too fast into species 2,
then propagation rates must be high to explain the results. If
species 1 is transformed into species 2 slowly, then the rate
constants should be smaller. This allows for similar fits when
parameters change.

Fig. 8 shows the likelihood confidence regions for some se-
lected pairs of parameters (as the minima for parameters Kp,
and Kp; are the same, the confidence regions for these param-
eters were omitted for the sake of conciseness). The different
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Fig. 6. Likelihood confidence regions for each pair of parameters of model with two active species in Problem 3.

Table 3

Estimated model parameters for Problem 3 with m =3

Parameter Minimum A Minimum B
ko (min~1) 10.31 2313

ki (min~") 2313 10.30

ko (min~h) 0.232 0.232
Kp; (mol/min) 55.98 249.6

Kp, (mol/min) 0.000 0.000
Kp3 (mol/min) 7.587 7.587

minima lead to disjoint confidence regions. The confidence re-
gion presents disconnected parts for the parameters that assume
different values at the distinct minima. For minimum A, pa-
rameter ko does not present an upper bound. For minimum B,
the parameter Kp; does not present an upper bound. It is also
interesting to observe that the correlation between parameters
Kp; and k; for minimum A is very low; however for mini-
mum B this correlation is practically 1. This poses a very dif-
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Fig. 7. Experimental data (points) and model predictions with active species
(line) in Problem 3 with m =3.

ficult numerical problem for minimization, since the point of
minimum is located in a very narrow region of the parameter
space. In spite of that, the PSO method is able to find the op-
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Fig. 8. Likelihood confidence regions for some selected pairs of model parameters in Problem 3 with m = 3.

tima. It must be noticed that derivative-based and direct search
methods failed repeatedly to find parameter estimates, for the
already described reasons.

Based on the obtained results, it is not possible to determine
which minimum is the correct one, since both minima lead
to similar model performances. This can only be performed
through detailed analysis of the parameter values, of their phys-
ical meanings and comparison with other experiments. How-
ever, this is beyond the scope of this text.

Based on the previous results, it can be said once more that
the elliptical approximation of the confidence region of the
parameter estimates may be inappropriate and that the PSO
is able to characterize both the parameter estimates and their
confidence regions appropriately.

5. Conclusions

Combination of the particle swarm optimization (PSO) pro-
cedure and the likelihood confidence region method allowed

for proper analysis of parameter estimates without introduction
of unnecessary simplifications that may lead to erroneous con-
clusions when nonlinear models are considered. It was shown
that the elliptical confidence region method may lead to inap-
propriate approximations of the confidence region and should
be used with care. It was shown that the shape of the confi-
dence regions of parameter estimates can assume shapes that
may be very different from the elliptical shape. Besides, con-
fidence regions can be unbounded, non-convex and composed
of unconnected parts.

Elliptical approximations of confidence regions of param-
eter estimates are simpler to use, since only the point esti-
mate and the covariance matrix are necessary to describe all
the statistics of the estimated model parameters. However, in
general, the confidence regions are not elliptical, the point es-
timates are not placed at the center of the confidence region
and the probability distribution of model parameters is not
normal. The likelihood confidence region obtained with the
PSO procedure may reveal how the elliptical approximation
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is not adequate to describe the confidence region of model
parameters.

When the PSO method is used for estimation of model pa-
rameters, the approach presented here does not require any ad-
ditional calculations to be performed. It is only necessary to
select the points evaluated by the PSO that satisfy the likeli-
hood confidence region constraint. Also, the computation time
required is not a strong limitation, especially nowadays when
the computer speed is constantly increasing. It is important to
emphasize that this approach can be successfully applied with
any other heuristic optimization method, such as the genetic
algorithm and the simulated annealing.

Finally, since the PSO procedure requires neither derivatives
nor initial parameter guesses, it can solve problems where pa-
rameter correlations are high, sensitivity of the objective func-
tion to model parameters is low and the objective function
is discontinuous. As shown in this work, it can also provide
likelihood confidence regions of model parameters very eas-
ily. Therefore, the use of PSO method in parameter estimation
problems should be encouraged.
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