

IDENTIFICATION AND ILLUMINATION OF POPULAR

MISCONCEPTIONS ABOUT PROJECT SCHEDULING AND TIME

BUFFERING IN A RESOURCE-CONSTRAINED ENVIRONMENT

Willy Herroelen Roel Leus

Revised version January 2004

Department of Applied Economics

Katholieke Universiteit Leuven

Naamsestraat 69, B-3000 Leuven (Belgium)

Phone +32 16 32 69 70 and +32 16 32 69 67

Fax +32 16 32 67 32

e-mail: willy.herroelen@econ.kuleuven.ac.be

roel.leus@econ.kuleuven.ac.be

 2

IDENTIFICATION AND ILLUMINATION OF POPULAR

MISCONCEPTIONS ABOUT PROJECT SCHEDULING AND TIME

BUFFERING IN A RESOURCE-CONSTRAINED ENVIRONMENT

Abstract

The lack of proper project planning is often cited as one of the main reasons why

projects fail to be completed in time and within budget. In this paper we identify and

illuminate several possible misconceptions that go round in project management

periodicals and in the mindset of practicing project managers and that may hamper

successful project planning. The misconceptions relate to the role of the critical path,

the critical sequence (critical chain), active schedules, and the insertion of buffers in

the baseline schedule as a protective mechanism against schedule distortions during

project execution. The possible fallacies are illustrated using example schedules

developed for an illustrative project.

Keywords: project management; scheduling; resource constraints; critical chain;

critical sequence; buffer management

 3

Introduction

Despite the availability of a plethora of project management software tools (De Wit

and Herroelen
1
, Kolisch

2
, Maroto et al.

3
) and extensive research efforts in the area of

resource-constrained project scheduling during the past several years (for recent

overviews, see Brucker et al.
4
, Demeulemeester and Herroelen

5
, Herroelen et al.

6
,

Kolisch and Padman
7
, Özdamar and Ulusoy

8
), it is still often the case that projects do

not come in on time and on budget. Many reasons for this phenomenon have been

described in the literature. The Standish Group surveyed IT executive managers for

their opinions about why projects succeed (Standish Group
9
). The three main reasons

why projects are successful were identified as user involvement, executive

management support, and a clear statement of requirements. Proper planning ranked

as number four. This paper supports the argument that the lack of proper planning is a

main source of project failure. Many of the insights provided by the extensive project

scheduling research output have not found a place in the decision processes of many

practicing project managers, whose scheduling mindset risks being affected by a

number of dangerous scheduling misconceptions that still go round within the project

management practitioners‟ community and project management periodicals.

It is the objective of this paper to identify important potential fallacies and

discuss their implications in both deterministic and stochastic project settings. As a

vehicle of analysis we will rely on the project shown in Figure 1 in activity-on-the-

node format. The project consists of eight real activities, a dummy start activity

(activity 1) and a dummy end activity (activity 10). Both dummy activities have zero

duration. The planned duration of an activity is shown above the corresponding node.

The number shown below each node is the requirement per period (in number of

units) for a single renewable resource type. The renewable resource has a constant

per period availability of 10 units. The arcs in the network denote finish-start

precedence relations with zero time-lag, which allow an activity to start as soon as all

its immediate predecessors are finished.

Insert Figure 1 about here

 4

Critical path versus critical sequence

Hundreds of textbooks and/or textbook chapters have been written on PERT/CPM

emphasizing the computation of the so-called critical path as the longest ordered

sequence of activities through the project network. In general, commercial project

planning software packages allow for a straightforward critical path analysis, which

involves, for each activity, the computation of an earliest possible start and finish time

(computed respectively as the earliest date an activity can begin (finish), given a

project start date and the precedence relations) and a latest allowable start and finish

time (computed as the latest date an activity may start (finish), given a project due

date and the precedence relations). The total slack (total float) of an activity is then

computed as the difference between the activity‟s earliest and latest start times. Each

of the activities on a critical path (obviously, there may be more than one such path) is

said to be „critical‟ or „slackless‟. To delay one of them would delay the planned

completion date of the project. Other activities with positive slack may be delayed up

to the amount of their total slack without such an effect, thus giving the scheduler

some freedom in assigning start times for each of the activities.

 We are now ready to introduce a first and fundamental misconception:

Possible Misconception 1: The critical path determines the project duration.

With over 100,000 members worldwide, the Project Management Institute (PMI) is

one of the leading non-profit professional associations in the area of project

management. Its PMBOK
®
 Guide

11
 (p. 200) defines the critical path as “the series of

activities that determines the duration of the project”. This „critical path‟ notion

indeed invites project managers to become trapped in the erroneous belief that the

critical path determines the duration of a project, the misconception that the critical

path activities are always the ones that require the most attention during planning and

that effective project control implies that management should invariably concentrate

their control efforts especially on the critical path activities during project execution.

As already shown by Wiest
12

, however, the notion of criticality assumes that

(a) activity durations are fixed, and (b) that unlimited resources are available for

assignment to the project activities. It has been known among project scheduling

 5

scholars for a very long time (e.g. Klingel
13

), that the deterministic critical path – even

in the absence of resource constraints – underestimates the likely project duration

when activity durations are uncertain. PERT gives the semblance of accounting for

realistic project duration variation in that it calls for three time estimates for each

network activity (optimistic, most likely, and pessimistic duration) and by

approximating the probability of completing any network event by any given date.

However, PERT fails to account for time delays resulting from path interactions. It

examines time variances one path at a time and therefore does not account for the

probabilities that merging paths may come in late to the path being analysed. The

way out provided by Monte Carlo simulation (a) seems to be more difficult to

understand and/or apply for project management staff, (b) still neglects the fact that

resources are generally limited in availability, and (c) presents the Parkinson‟s Law

dilemma (if management understands that the simulated project duration is longer

than the deterministic critical path duration, it is tempted to inflate the individual

activity time estimates (Schonberger
14

)).

As for the impact of limited resource availabilities, it is well known within the

project scheduling research community that (a) slack values depend upon the rules or

procedures used for generating and executing the project schedule (see e.g. Bowers
15

,

Raz and Marshall
16

, Tormos and Lova
17

), (b) the notion of a critical path loses all

meaning (Williams
18

), and (c) given certain assumptions about project execution, one

can identify one or more critical sequences (Wiest
12

, Woodworth and Shanahan
19

),

each being a chain of activities with zero schedule dependent total slack and

composed of precedence and/or resource dependent sub-chains, the length of which

determines the deterministic project duration. What the critical chain methodology

(Goldratt
20

) identifies as a critical chain is actually a critical sequence. We can

illustrate the issue on the example project of Figure 1. The results of the critical path

analysis are shown in Table 1. The path <1,4,7,8,9,10> is the longest, hence critical,

path with a length of 11 time periods. From a critical path mindset, management

should concentrate on the critical path and its constituent activities, because the

critical path is assumed to determine the project duration.

Insert Table 1 about here

 6

As shown in Figure 2, scheduling the activities as soon as possible, i.e. at their

planned early start time, however, yields a schedule that violates the resource

availability constraint of 10 resource units per period. Moreover, resource usage is

not levelled over the project horizon. We examine the case in which we want to

generate a precedence and resource feasible schedule with minimum duration. Stated

otherwise, we search for a solution to the well-known resource-constrained project

scheduling problem. Figure 3 shows the resulting minimum duration project

schedule.

Insert Figure 2 about here

Insert Figure 3 about here

By pure luck, the project duration of 11 periods equals the length of the critical path

<1,4,7,8,9,10>. Also, this critical path is actually one of the 16 different critical

sequences that determine the project duration, to wit: <1,5,3,6,2,10>, <1,5,3,6,9,10>,

<1,5,3,8,2,10>, <1,5,3,8,9,10>, <1,5,7,6,2,10>, <1,5,7,6,9,10>, <1,5,7,8,2,10>,

<1,5,7,8,9,10>, <1,4,3,6,2,10>, <1,4,3,6,9,10>, <1,4,3,8,2,10>, <1,4,3,8,9,10>,

<1,4,7,6,2,10>, <1,4,7,6,9,10>, <1,4,7,8,2,10>, and <1,4,7,8,9,10>. Every activity in

the schedule has zero total slack, whichever choices are made for project execution.

The resource profile shown in Figure 3 is perfectly levelled: clearly, the solution is

also optimal with respect to the resource levelling problem (generate a levelled

schedule that meets the precedence constraints and completes the project within the

given deadline of 11 time periods) and allows to identify an optimal solution to the

resource investment problem (determine the smallest resource availability that allows

the project to be finished by its deadline). For a thorough discussion of these

problems and a review of solution methods, we refer to Demeulemeester and

Herroelen
5
.

It is well known that the three problems for which Figure 3 contains the

optimal solution belong to the class of NP-hard problems, so that in real-life project

planning it is common practice to rely on heuristic solution procedures. Most

commercial project planning software packages do not go for the optimum but use

priority rule based heuristics to generate resource feasible schedules. Some of them

 7

apply a standard built-in procedure (e.g. Microsoft Project) that is often not revealed

to the software user, others (e.g. Suretrak and Primavera) provide the user with an

extensive list of scheduling (levelling) heuristics to choose from. Using, for example,

the earliest start priority rule to generate a feasible schedule for the problem of Figure

1 with constant resource availability of 10 units, in other words applying a serial

schedule generation scheme using the priority list L= (1,2,3,4,5,6,7,8,9,10), would

generate the resource profile shown in Figure 4.

Insert Figure 4 about here

The schedule of Figure 4 clearly illustrates a second misconception:

Possible Misconception 2: Looking for the best procedure for resolving resource

conflicts does not pay off: its impact on the planned project duration is negligible.

As can be seen, the project duration has gone up to 20 time periods, an increase of

almost 100%. Actually, quite a number of different activity lists may be constructed

that yield a 20-period project duration through the application of a serial schedule

generation scheme. The critical path <1,4,7,8,9,10> definitely no longer determines

the project duration. The project length is now determined by two critical sequences:

<1,2,3,5,6,7,8,9,10> (in which case activity 4 could be right-shifted over two periods)

or <1,2,4,5,6,7,8,9,10> (in which case activity 3 could have a two-period right-shift).

As can be seen from our analysis so far, the notion of a critical sequence is schedule

dependent. The precise procedure used to schedule project activities under resource

constraints clearly has an important impact on the resulting project duration and on

the critical sequence(s) that determine this makespan.

The application of the early start priority rule to our problem example led to a

project duration increase of almost 100% above the optimum. Extensive

computational experiments (Kolisch
21

) reveal that the late start time rule and late

finishing time rule rank among the best priority rules, but still may generate project

durations which are more than 5% above the optimum on the average. The problem is

that the manuals for most software packages regard scheduling information as

proprietary information and, as a result, do not offer a detailed description of the rules

 8

in use. Some packages enable the user to select a priority rule from a (sometimes very

extensive) list, while others do not. Anyhow, if management relies on commercial

software for the generation of a baseline schedule, the result may be far from the

optimum (even if only a few activities are involved), especially if resource contention

is rather tricky and the “wrong” priority rule is chosen. Computational experiments

with seven commercial packages on 160 test instances (Kolisch
22

) reveal that the

average performance is variable, with the best package deviating on the average

4.39% and the worst package deviating on the average 9.76% from the optimum

makespan. The mean deviation from the optimum makespan is 5.79%, while the

standard deviation calculates to 7.51% and the range is from 0 to 51.85%.

Scheduling under resource constraints and the critical chain

The majority of popular project management textbooks and project planning chapters

in operations management textbooks do not dwell deeply on the resource scheduling

issue, leaving the impression that it is not that important which method is used to

generate a resource-feasible schedule, and thus inviting their readers to adopt

Misconception 2. The PMBOK
®
Guide

11
 only devotes a 20-line paragraph (p. 76) to

resource levelling heuristics, without even recognizing the essential difference

between resource levelling (levelling resource use over the project horizon for a given

project deadline) and resource-constrained project scheduling (minimizing the project

duration subject to the precedence and resource constraints).

Some authors even go one step further and actually refute the relevance of

project scheduling procedures entirely. In his book describing the critical chain

methodology, Goldratt
20

 (pp. 217-221) argues that project scheduling procedures do

not matter because “in each case the impact on the lead time of the project is less than

even half the project buffer”. His critical chain methodology builds a baseline

schedule using aggressive median or average activity duration estimates. Activity due

dates and project milestones are eliminated and multi-tasking (more than one activity

is performed by the same resource unit at the same time) is to be avoided. In order to

minimize work-in-progress (WIP), a precedence feasible schedule is constructed by

scheduling activities at their latest start times based on critical path calculations. If

resource conflicts occur, they are resolved by “moving activities earlier in time”. The

 9

critical chain is then defined as the chain of precedence and resource dependent

activities that determines the overall duration of a project. If there is more than one

such chain, an arbitrary choice is made. A project buffer (PB), positioned at the end

of the critical chain, should protect the project due date promised to the customer from

variability in the critical chain activities. Feeding buffers (FB) are inserted whenever

a non-critical chain activity joins the critical chain: their aim is to protect the critical

chain from disruptions on the activities feeding it, and to allow critical chain activities

to start early in case things go well. Although more detailed methods can be used for

sizing the buffers (e.g. Newbold
23

), the default procedure is to use the 50% buffer

sizing rule, i.e. to use a project buffer of half the project duration and to set the size of

a feeding buffer to half the duration of the longest non-critical chain path leading into

it. Resource buffers, usually in the form of an advance warning, are placed whenever

a resource has to perform an activity on the critical chain, and the previous critical

chain activity is done by a different resource.

The critical chain methodology has received a lot of attention in the project

management literature and has recently emerged as one of the most popular

approaches to project management (Newbold
23

, Leach
24

). Internet discussion groups

have been set up to discuss the critical chain scheduling issues

(http://www.apics.org/lists/default.htm; http://groups.yahoo.com/group/criticalchain;

http://groups.yahoo.com/group/tocexperts). Real-world applications by companies

such as Lucent Technologies and Harris Semiconductor have been described to

demonstrate the effectiveness of the approach (Leach
24

, Umble and Umble
25

).

Commercial software has been made available on the market (for example ProChain
®

(Prochain Solutions, Inc., http://www.prochain.com/index.asp) and cc-Pulse
®

(Spherical Angle, http://www.sphericalangle.com/). Critical chain concepts are

promoted as a significant breakthrough in project management. “Indeed, the ideas

have been so widely praised and endorsed, and have achieved such impressive results,

that one wonders why they have not become the „mainstream‟ of project

management” (Yourdon
26

).

Figure 5 shows the buffered schedule obtained using the ProChain software,

one of the best known software packages that rely on the critical chain methodology.

The software selects the critical chain <1,4,7,8,9,10>, and using the 50% buffer sizing

rule, generates three so-called feeding buffers: a two-period feeding buffer to protect

http://www.apics.org/lists/default.htm
http://groups.yahoo.com/group/criticalchain
http://www.prochain.com/index.asp

 10

the project buffer from variation in activity 2, a three-period feeding buffer to protect

critical chain activity 9 from variation in the path <3,6>, and a one-period feeding

buffer to protect critical chain activity 8 from variation in activity 5. In addition a six-

period project buffer is inserted that allows to set the project due date to 20 and to

protect it against variation in the critical chain. The resource buffer, inserted in front

of activity 7 to give a warning signal to the extra resource unit needed for the

execution of critical chain activity 7, is not shown in Figure 5.

Insert Figure 5 about here

The buffered schedule in Figure 5 allows us to reveal a misconception that is

widespread among critical chain schedulers:

Possible Misconception 3: During schedule execution, management should closely

manage especially the critical chain activities, since it is the critical chain that

determines the project duration.

The chain of activities <1,4,7,8,9,10> that formed a critical chain in the un-buffered

schedule of Figure 3, no longer determines the project duration in the buffered

schedule of Figure 5: it now has gaps, i.e. it is no longer the longest contiguous chain

of precedence and/or resource-constrained activities whose summed durations

determine the length of the schedule.

Assume now that management holds on to Misconception 2, selects the 20-

period schedule of Figure 4 to be used as input to the buffering process, and selects

the critical chain <1,2,3,5,6,7,8,9,10>. The result will be the buffered schedule shown

in Figure 6.

Insert Figure 6 about here

A one-period feeding buffer protects critical chain activity 7 from variation in activity

4 (that suffers a two-period right-shift) and a ten-period project buffer (using the 50%

buffer sizing rule) inflates the project due date to 30 periods, a 50% increase. Clearly,

 11

steering clear of Misconception 2, in other words relying on a „good‟ scheduling rule

and selecting a „good‟ critical chain for buffering, pays off. Both the procedures used

to generate the un-buffered schedule and to select a critical chain, have a clear impact

on the resulting schedule duration, and hence, on the project due date determined

during the application of the critical chain scheduling methodology.

Buffering and schedule robustness

The project scheduling literature largely concentrates on the generation of a

precedence and resource feasible schedule that „optimises‟ the scheduling objective(s)

(most often the project duration). During project execution, however, project

activities are subject to considerable uncertainty, which may lead to numerous

schedule disruptions. This uncertainty can stem from a number of possible sources:

activities may take more or less time than originally estimated, resources may become

unavailable, material may arrive behind schedule, ready times and due dates may

change, new activities may have to be incorporated or activities may have to be

dropped due to changes in the project scope, weather conditions may cause severe

delays, etc. A disrupted schedule incurs higher costs due to missed due dates and

deadlines, resource idleness, higher work-in-process inventory and increased system

nervousness due to frequent rescheduling.

In other words: uncertainty lies at the very heart of project management. A

schedule that is determined to be optimal with regard to some objective function

before its execution may be very vulnerable to minor or serious disruptions. As an

illustration, consider the schedule shown in Figure 3, with a perfectly levelled

resource profile. This schedule, however, is extremely vulnerable to uncertainty. The

slightest delay in the starting time of an activity and/or the slightest increase in the

duration of any activity, for example, will lead to an immediate increase in the project

makespan. The true optimality of the schedule can only be ascertained in conjunction

with its execution in the real world. The proposed schedule, looked upon as „optimal‟

in the project planning phase, clearly has insufficient built-in „slack‟, or flexibility for

dealing with unexpected events. In other words, it is not „robust‟.

A good approach indeed to account for variation during planning is to build in

buffers at strategic points in the project – for instance, increased capacity or budget

 12

reserves (De Meyer et al.
27

). From a scheduling viewpoint, we can cite the common

practice of adding “weather delay” to the end of the schedule (so-called “(weather)

contingency”, see Clough and Sears
28

 and O‟Brien
29

). De Meyer et al. also refer to

Cusumano and Selby
30

 as an example of the fact that time buffers are routinely

applied in software projects.

It has been the merit of the critical chain scheduling method to cast a number

of isolated insights into an integrated project planning and execution approach. There

do remain some pitfalls, however. For instance, careful examination of Figure 6

exposes an important misleading assertion about the role and use of feeding buffers in

critical chain scheduling:

Possible Misconception 4: The feeding buffers act as a pro-active mechanism to

protect the critical chain from distortions in its feeding chains.

The feeding buffer in Figure 6 fails to act as a proactive protective mechanism. A

slight disturbance in the duration of activity 4 does not lead to an immediate

penetration of the feeding buffer, and so – according to the critical chain buffer

management principles – does not generate a buffer penetration alert and hence, does

not call for immediate management action. However, it immediately generates a

resource conflict with critical chain activity 6, and hence, causes a delay in the critical

chain leading to an immediate penetration of the project buffer. More generally, we

can conclude that local time buffers will not always be sufficient to protect the project

makespan from local disruptions, due to various resource interactions between the

project activities.

In practice, a project schedule serves very important functions (see Herroelen

and Leus
31

 Mehta and Uzsoy
32

). The first is to allocate resources to the different

activities to optimise some measure of performance. As mentioned by Bowers
15

, it

may be necessary to make advance bookings of key staff or equipment to guarantee

their availability, especially in a multi-project environment. The second, as also

pointed out by Wu et al.
33

, is to serve as a basis for planning external activities such as

material procurement, preventive maintenance and delivery of orders to external or

internal customers. Project schedules are the starting point for communication and

coordination with external entities in the company‟s inbound and outbound supply

 13

chain. It may for instance be necessary to agree on a time window for work by

subcontractors. Based on the baseline schedule, agreements are made with suppliers

to deliver materials, support activities are planned (set-ups, supporting personnel), due

dates are set for the delivery of project results and when considerable cash outflows or

inflows are associated with intermediate activities, cash flow projections will use the

baseline schedule for budgeting purposes. A number of these planning purposes were

referred to already by Henry Gantt in his writings in the beginning of the twentieth

century (cfr. Wilson
34

).

Robust scheduling constructs a schedule while expressly including protection

against the manifestation of variability during project execution. The term quality

robustness is often used when referring to the insensitivity of the schedule

performance in terms of the primary objective value, usually the makespan. Stability

or solution robustness refers to the insensitivity of the activity start times to changes

in the input data. Willis
35

 and Li and Willis
36

 define a stable schedule as “one that

does not drastically alter activity start and finish times (...) when the project is

rescheduled (...)”. Indeed, only a stable schedule will allow to exploit the

aforementioned planning purposes to their full extent, in that agreements on future

time windows are at all possible.

Willis
35

 makes it seem as if, for initial schedule development, only „poor‟

heuristics (in the sense that they tend to yield higher makespan) should be used, since

with these there will always be sufficient spare capacity under the resource constraints

to allow increases in activity duration without the need to drastically alter the entire

schedule. We reformulate this idea into:

Possible Misconception 5: There is a trade-off between the pre-schedule project

duration and solution robustness: the larger the project duration of the baseline

schedule, the more stable the schedule.

Insert Figure 7 about here

In terms of solution robustness, the schedule of Figure 7 outperforms the buffered

schedules shown in Figures 5 and 6 for disruption scenarios with small (e.g. one

period) extensions in the activity durations, in spite of its makespan of only 14 time

 14

units. In the schedule of Figure 7, a one-period extension of the duration of any of the

activities has no impact at all on the planned starting times of the other activities. In

the schedule of Figure 6, an extension of the duration of any activity affects the

starting times of its successors in the schedule, while in the schedule of Figure 5, only

a one-period increase in the duration of activities 2, 6 or 9, does not lead to a

disruption in the start times of the other activities (taking into account the resource

usages).

In fact, the schedule shown in Figure 7 can be used to illustrate most of the

misconceptions that we have discussed so far. The schedule has been generated by

means of a „naive‟ protection strategy applied to the minimum makespan schedule of

Figure 3, simply by introducing a one period slack between the activity pairs (4,5),

(3,7), (6,8), and (2,9). The planned project duration equals 14 time periods, the same

duration as obtained for the buffered Prochain schedule of Figure 5 (without the

project buffer).

The critical path <1,4,7,8,9,10> in the project network does not determine the

project duration in the schedule of Figure 7 as it contains three one-period gaps. We

notice again that an effective procedure for project scheduling under resource

constraints clearly pays off. Indeed, the project duration of 14 periods is much

smaller than the makespan obtained using, for example, the early start heuristic used

to derive the schedule shown in Figure 4. It makes no sense to ask management to

concentrate on some “critical chain” during the execution of the project schedule,

since the schedule contains three one-period gaps, and so there is no critical chain.

Nevertheless, very importantly, in terms of quality robustness the schedule shown in

Figure 7 outperforms the schedule of Figure 6 and displays performance comparative

with that of Figure 5. With respect to solution robustness, the schedule shown in

Figure 7 is better than both schedules shown in Figure 5 and 6. In comparison to the

buffered schedule of Figure 6, and keeping the same project due date of 30, the

schedule now offers a total protective slack of 16 periods (significantly higher than

the length of the project buffer in Figure 6). At the same time, using the same ten-

period protection as offered by the project buffer in the critical chain solution of

Figure 6, management can afford to use a much tighter project due date. The due date

can now be safely set to 24, a 6-period gain.

 15

In generating baseline schedules, one is tempted to use scheduling procedures

that generate active or semi-active schedules, because it is well known that for the

resource-constrained project scheduling problem there is always an optimal solution

that is active (Sprecher et al.
37

). A schedule is called active if it does not allow for a

global left shift of activities; a schedule is called semi-active if it does not allow for

activities to be locally left-shifted. The set of active schedules is a subset of the set of

semi-active schedules. The schedule shown in Figure 3 is active: no activity can be

locally or globally left-shifted. The schedule of Figure 7 is not semi-active, as it

allows for local left-shifts. The schedule shown in Figure 8 has been generated by

applying a serial schedule scheme using the activity list L=(1,2,3,4,6,5,7,8,9,10). The

figure also shows the feeding buffer FB4-7, that would be inserted by the critical

chain scheduling procedure, assuming that the chain <1,2,3,6,5,7,8,9,10> would be

selected as the critical chain, as well as the ten-period project buffer that would be

inserted if the 50% buffer sizing rule were used.

Insert Figure 8 about here

The schedule depicted in Figure 8 is clearly active in that it does not allow for local

nor global left-shifts. It can immediately be seen that despite its greater makespan,

the schedule is not stable: any distortion in the start times or durations of activities

leads to a distortion in the start times of all the successor activities in the schedule.

This example allows us to elaborate on Possible Misconception 5: there is only a

trade-off between pre-schedule project duration and stability if we admit also other

than only active schedules. The reason is that in an active schedule, each activity is

immediately „dependent‟ on at least one of his predecessor activities in the schedule,

because otherwise a left shift would still be possible. As a result, almost by

definition, active schedules tend to exhibit low solution robustness.

Summary and conclusions

The objective of this paper was to identify and illustrate possible misconceptions that

may hamper successful project planning. We have demonstrated that in the presence

of resource constraints:

 16

 the notion of the critical path, defined as the longest path in the project

network, loses all meaning;

 the procedure chosen to resolve resource conflicts may have an important

impact on the planned project duration;

 the critical chain identified by applying the critical chain scheduling

methodology may not determine the project duration;

 time buffers are not always sufficient to isolate local disruptions due to

resource interactions;

 there is only a trade-off between pre-schedule project duration and stability if

we allow for other than active schedules;

 active schedules are not necessarily the shortest in duration, nor the most

stable.

Acknowledgement

This research has been supported by project OT/O3/14 of the Research Fund

K.U.Leuven.

 17

References

1 De Wit J and Herroelen W (1990). An evaluation of microcomputer-based software

packages for project management. Eur J Opl Res 49: 102-139.

2 Kolisch R (1999). Resource allocation capabilities of commercial project

management software packages. Interfaces 29: 19-31.

3 Maroto C, Tormos P and Lova A (1998). The evolution of software quality in

project scheduling, In Weglarz J (ed.), Project Scheduling – Recent Models,

Algorithms and Applications, Chapter 11. Kluwer Academic Publishers: Boston,

pp 239-259.

4 Brucker P, Drexl A, Möhring, R, Neumann, K and Pesch, E (1999). Resource-

constrained project scheduling: Notation, classification, models and methods. Eur J

Opl Res 112: 3-41.

5 Demeulemeester E and Herroelen W (2002). Project Scheduling – A Research

Handbook. International Series in Operations Research and Management Science

Vol. 49. Kluwer Academic Publishers: Boston.

6 Herroelen W, De Reyck B. and Demeulemeester E. (1998). Resource-constrained

project scheduling – A survey of recent developments. Comp and Opns Res 25:

279-302.

7 Kolisch R and Padman R (2001). An integrated survey of deterministic project

scheduling. Omega 49: 249-272.

8 Özdamar L and Ulusoy G (1995). A survey on the resource-constrained project

scheduling problem. IIE Trans 27: 574-586.

9 Standish Group (1994). The Chaos Report. The Standish Group International, Inc.

(available at http://www.pm2go.com/sample_research/chaos_1994_1.asp accessed

25 September 2003)

10 Wiest JD and Levy FK (1977). A Management Guide to PERT/CPM: with

GERT/PDM/CPM and Other Networks. Prentice-Hall, Inc.: Englewood Cliffs

11 Project Management Institute (2000). A Guide to the Project Management Body of

Knowledge (PMBOK
®

Guide). Newton Square.

12 Wiest JD (1964). Some properties of schedules for large projects with limited

resources. Ops Res 12: 395-418.

13 Klingel ARJr (1966). Bias in PERT project completion time calculations for a real

network. Mgmt Sci 13: B194-B201.

14 Schonberger R (1981). Why projects are always late: a rationale based on manual

simulation of a PERT/CPM network. Interfaces 11: 66-70.

http://www.pm2go.com/sample_research/chaos_1994_1.asp%20accessed%2025
http://www.pm2go.com/sample_research/chaos_1994_1.asp%20accessed%2025

 18

15 Bowers JA (1995). Criticality in resource constrained networks. J Opl Res Soc 46:

80-91.

16 Raz T and Marshall B (1996). Effect of resource constraints on float calculations in

project networks. Int J Proj Mgmt 14: 241-248.

17 Tormos P and Lova (2001). Tools for resource-constrained project scheduling and

control: forward and backward slack analysis. J Opl Res Soc 52: 779-788.

18 Williams TM (1992). Criticality in stochastic networks. J Opl Res Soc 43: 353-

357.

19 Woodworth BM and Shanahan S (1988). Identifying the critical sequence in a

resource-constrained project. Int J Proj Mgm 6: 89-96.

20 Goldratt E (1997). Critical Chain. The North River Press Publishing Corporation:

Great Barrington.

21 Kolisch R (1995). Project Scheduling under Resource Constraints. Physica-

Verlag: Heidelberg.

22 Kolisch R (1999). Resource allocation capabilities of commercial project

management software packages. Interfaces 29: 19-31.

23 Newbold RC (1998). Project Management in the Fast Lane – Applying the Theory

of Constraints. The St. Lucie Press: Cambridge.

24 Leach, LP (2000). Critical Chain Project Management. Artech House Professional

Development Library: Boston.

25 Umble M and Umble E (2000). Manage your projects for success: An application

of the theory of constraints. Prod Inv Mgmnt J 41: 27-32.

26 Yourdon E (2003). Death March, 2
nd

 edition. Prentice Hall, Inc: New Jersey.

27 De Meyer A, Loch CH and Pich MT (2002). Managing project uncertainty: from

variation to chaos. MIT Sloan Mgmt Rev Winter: 60-67.

28 Clough RH and Sears GA (1991). Construction project management. John Wiley

& Sons Inc.: New York.

29 O‟Brien JJ (1965). CPM in Construction Management: Scheduling by the Critical

Path Method. McGraw-Hill.

30 Cusumano MA and Selby MW (1995). Microsoft Secrets. Free Press: New York.

31 Herroelen W and Leus R (2003). Project scheduling under uncertainty – survey

and research potentials. Eur J Opl Res: to appear.

 19

32 Mehta SV and Uzsoy RM (1998). Predictable scheduling of a job shop subject to

breakdowns. IEEE Trans Rob Autom 14: 365-378.

33 Wu SD, Storer HS and Chang P-C (1993). One-machine rescheduling heuristics

with efficiency and stability as criteria. Comp and Opns Res 20: 1-14.

34 Wilson JM (2003). Gantt charts: a centenary appreciation. Eur J Opl Res 149:

430-437.

35 Willis RJ (1985). Critical path analysis and resource constrained project

scheduling – theory and practice. Eur J Opl Res 21: 149-155.

36 Li RK-Y. and Willis RJ (1993). Resource constrained project scheduling within

fixed project durations. J Opl Res Soc 44: 71-80.

37 Sprecher A, Kolisch R and Drexl A (1995). Semi-active, active and non-delay

schedules for the resource-constrained project scheduling problem. Eur J Opl Res

80, 94-102.

 20

0

4

3

4

1

5

0

2

7

6

8 9 10

9
2

3
2

6
2

4

3

8
2

7

3

2

4

1

0

0

Figure 1

 21

10 11 0 1 2 3 4 5 6 7 8 9

2

3

4

time

5 6

7

8 9

resource

units

10

6

10 11 0 1 2 3 4 5 6 7 8 9

2

3

4

time

5 6

7

8 9

resource

units

10

6

0 1 2 3 4 5 6 7 8 9

2

33

44

time

55 66

77

88 9

resource

units

resource

units

10

66

Figure 2

 22

0 1 2 3 4 5 6 7 8 9 10 11

2

3

4

time

5

6

7

8 9

resource

units

10

Figure 3

 23

10 11 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7 8 9

2

3

4

time

5

6 7

8 9

resource

units
10

10 11 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7 8 9

2

3

4

time

5

6 7

8 9

resource

units
10

0 1 2 3 4 5 6 7 8 9

2

33

44

time

55

66 77

88 99

resource

units

resource

units
10

Figure 4

 24

1

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 time

2

3

4

5

6

7 8 9 PB

FB

FB

FB

Figure 5

 25

10

resource

units

2

3 5

4

7
6

8 9 PB

FB

0 5 10 15 20 30

10

resource

units

time

10

resource

units

2

3 5

4

7
6

8 9 PB

FB

0 5 10 15 20 30

10

resource

units

time

Figure 6

 26

2

3
5

4 7

6

8
9

0 5 10 15

10

resource

units

2

3
5

4 7

6

8
9

20 30

10

resource

units

time

2

3
5

4 7

6

8
9

0 5 10 15

10

resource

units

2

3
5

4 7

6

8
9

20 30

10

resource

units

time

Figure 7

 27

10

resource

units

2

3 5

4

7
6

8
9 PB

FB
4-7

0 5 10 15 20 30

10

resource

units

time

10

resource

units

2

3 5

4

7
6

8
9 PB

FB
4-7

0 5 10 15 20 30

10

resource

units

time

Figure 8

 28

Activity Duration Earliest

start

Earliest

finish

Latest

start

Latest

finish

Total

slack

1 0 0 0 0 0 0

2 4 0 4 7 11 7

3 2 0 2 2 4 2

4 2 0 2 0 2 0

5 2 0 2 2 4 2

6 3 2 5 4 7 2

7 2 2 4 2 4 0

8 3 4 7 4 7 0

9 4 7 11 7 11 0

10 0 11 11 11 11 0

Table 1

 29

FIGURE CAPTIONS

Figure 1. Project network example (Wiest and Levy
10

)

Figure 2. Earliest start schedule

Figure 3. Minimum duration schedule

Figure 4. Schedule generated by the earliest start heuristic

Figure 5. Buffered schedule generated using Prochain

Figure 6. Buffered schedule obtained from the schedule of Figure 4

Figure 7. Naively protected baseline schedule

Figure 8. Buffered active schedule

 30

TABLE CAPTIONS

Table 1. Critical path analysis

