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IDENTIFICATION AND ILLUMINATION OF POPULAR 

MISCONCEPTIONS ABOUT PROJECT SCHEDULING AND TIME 

BUFFERING IN A RESOURCE-CONSTRAINED ENVIRONMENT 

 

 

Abstract 

 

The lack of proper project planning is often cited as one of the main reasons why 

projects fail to be completed in time and within budget.  In this paper we identify and 

illuminate several possible misconceptions that go round in project management 

periodicals and in the mindset of practicing project managers and that may hamper 

successful project planning.  The misconceptions relate to the role of the critical path, 

the critical sequence (critical chain), active schedules, and the insertion of buffers in 

the baseline schedule as a protective mechanism against schedule distortions during 

project execution.  The possible fallacies are illustrated using example schedules 

developed for an illustrative project. 

 

 

 

 

Keywords: project management; scheduling; resource constraints; critical chain; 

critical sequence; buffer management 
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Introduction 

 

Despite the availability of a plethora of project management software tools (De Wit 

and Herroelen
1
, Kolisch

2
, Maroto et al.

3
) and extensive research efforts in the area of 

resource-constrained project scheduling during the past several years (for recent 

overviews, see Brucker et al.
4
, Demeulemeester and Herroelen

5
, Herroelen et al.

6
, 

Kolisch and Padman
7
, Özdamar and Ulusoy

8
), it is still often the case that projects do 

not come in on time and on budget.  Many reasons for this phenomenon have been 

described in the literature.  The Standish Group surveyed IT executive managers for 

their opinions about why projects succeed (Standish Group
9
).  The three main reasons 

why projects are successful were identified as user involvement, executive 

management support, and a clear statement of requirements.  Proper planning ranked 

as number four.  This paper supports the argument that the lack of proper planning is a 

main source of project failure.  Many of the insights provided by the extensive project 

scheduling research output have not found a place in the decision processes of many 

practicing project managers, whose scheduling mindset risks being affected by a 

number of dangerous scheduling misconceptions that still go round within the project 

management practitioners‟ community and project management periodicals.   

It is the objective of this paper to identify important potential fallacies and 

discuss their implications in both deterministic and stochastic project settings.  As a 

vehicle of analysis we will rely on the project shown in Figure 1 in activity-on-the-

node format.  The project consists of eight real activities, a dummy start activity 

(activity 1) and a dummy end activity (activity 10).  Both dummy activities have zero 

duration.  The planned duration of an activity is shown above the corresponding node.  

The number shown below each node is the requirement per period (in number of 

units) for a single renewable resource type.  The renewable resource has a constant 

per period availability of 10 units.  The arcs in the network denote finish-start 

precedence relations with zero time-lag, which allow an activity to start as soon as all 

its immediate predecessors are finished. 

 

Insert Figure 1 about here 
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Critical path versus critical sequence 

 

Hundreds of textbooks and/or textbook chapters have been written on PERT/CPM 

emphasizing the computation of the so-called critical path as the longest ordered 

sequence of activities through the project network.  In general, commercial project 

planning software packages allow for a straightforward critical path analysis, which 

involves, for each activity, the computation of an earliest possible start and finish time 

(computed respectively as the earliest date an activity can begin (finish), given a 

project start date and the precedence relations) and a latest allowable start and finish 

time (computed as the latest date an activity may start (finish), given a project due 

date and the precedence relations).  The total slack (total float) of an activity is then 

computed as the difference between the activity‟s earliest and latest start times.  Each 

of the activities on a critical path (obviously, there may be more than one such path) is 

said to be „critical‟ or „slackless‟.  To delay one of them would delay the planned 

completion date of the project.  Other activities with positive slack may be delayed up 

to the amount of their total slack without such an effect, thus giving the scheduler 

some freedom in assigning start times for each of the activities. 

 We are now ready to introduce a first and fundamental misconception: 

 

Possible Misconception 1: The critical path determines the project duration. 

 

With over 100,000 members worldwide, the Project Management Institute (PMI) is 

one of the leading non-profit professional associations in the area of project 

management. Its PMBOK
®
 Guide

11
 (p. 200) defines the critical path as “the series of 

activities that determines the duration of the project”.  This „critical path‟ notion 

indeed invites project managers to become trapped in the erroneous belief that the 

critical path determines the duration of a project, the misconception that the critical 

path activities are always the ones that require the most attention during planning and 

that effective project control implies that management should invariably concentrate 

their control efforts especially on the critical path activities during project execution.   

As already shown by Wiest
12

, however, the notion of criticality assumes that 

(a) activity durations are fixed, and (b) that unlimited resources are available for 

assignment to the project activities.  It has been known among project scheduling 
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scholars for a very long time (e.g. Klingel
13

), that the deterministic critical path – even 

in the absence of resource constraints – underestimates the likely project duration 

when activity durations are uncertain.  PERT gives the semblance of accounting for 

realistic project duration variation in that it calls for three time estimates for each 

network activity (optimistic, most likely, and pessimistic duration) and by 

approximating the probability of completing any network event by any given date.  

However, PERT fails to account for time delays resulting from path interactions.  It 

examines time variances one path at a time and therefore does not account for the 

probabilities that merging paths may come in late to the path being analysed.  The 

way out provided by Monte Carlo simulation (a) seems to be more difficult to 

understand and/or apply for project management staff, (b) still neglects the fact that 

resources are generally limited in availability, and (c) presents the Parkinson‟s Law 

dilemma (if management understands that the simulated project duration is longer 

than the deterministic critical path duration, it is tempted to inflate the individual 

activity time estimates (Schonberger
14

)). 

As for the impact of limited resource availabilities, it is well known within the 

project scheduling research community that (a) slack values depend upon the rules or 

procedures used for generating and executing the project schedule (see e.g. Bowers
15

, 

Raz and Marshall
16

, Tormos and Lova
17

), (b) the notion of a critical path loses all 

meaning (Williams
18

), and (c) given certain assumptions about project execution, one 

can identify one or more critical sequences (Wiest
12

, Woodworth and Shanahan
19

), 

each being a chain of activities with zero schedule dependent total slack and 

composed of precedence and/or resource dependent sub-chains, the length of which 

determines the deterministic project duration.  What the critical chain methodology 

(Goldratt
20

) identifies as a critical chain is actually a critical sequence.  We can 

illustrate the issue on the example project of Figure 1.  The results of the critical path 

analysis are shown in Table 1.  The path <1,4,7,8,9,10> is the longest, hence critical, 

path with a length of 11 time periods.  From a critical path mindset, management 

should concentrate on the critical path and its constituent activities, because the 

critical path is assumed to determine the project duration. 

 

Insert Table 1 about here 
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As shown in Figure 2, scheduling the activities as soon as possible, i.e. at their 

planned early start time, however, yields a schedule that violates the resource 

availability constraint of 10 resource units per period.  Moreover, resource usage is 

not levelled over the project horizon.  We examine the case in which we want to 

generate a precedence and resource feasible schedule with minimum duration.  Stated 

otherwise, we search for a solution to the well-known resource-constrained project 

scheduling problem.  Figure 3 shows the resulting minimum duration project 

schedule. 

 

Insert Figure 2 about here 

 

Insert Figure 3 about here 

 

By pure luck, the project duration of 11 periods equals the length of the critical path 

<1,4,7,8,9,10>.  Also, this critical path is actually one of the 16 different critical 

sequences that determine the project duration, to wit: <1,5,3,6,2,10>, <1,5,3,6,9,10>, 

<1,5,3,8,2,10>, <1,5,3,8,9,10>, <1,5,7,6,2,10>, <1,5,7,6,9,10>, <1,5,7,8,2,10>, 

<1,5,7,8,9,10>, <1,4,3,6,2,10>, <1,4,3,6,9,10>, <1,4,3,8,2,10>, <1,4,3,8,9,10>, 

<1,4,7,6,2,10>, <1,4,7,6,9,10>, <1,4,7,8,2,10>, and <1,4,7,8,9,10>.  Every activity in 

the schedule has zero total slack, whichever choices are made for project execution.  

The resource profile shown in Figure 3 is perfectly levelled: clearly, the solution is 

also optimal with respect to the resource levelling problem (generate a levelled 

schedule that meets the precedence constraints and completes the project within the 

given deadline of 11 time periods) and allows to identify an optimal solution to the 

resource investment problem (determine the smallest resource availability that allows 

the project to be finished by its deadline).  For a thorough discussion of these 

problems and a review of solution methods, we refer to Demeulemeester and 

Herroelen
5
. 

It is well known that the three problems for which Figure 3 contains the 

optimal solution belong to the class of NP-hard problems, so that in real-life project 

planning it is common practice to rely on heuristic solution procedures.  Most 

commercial project planning software packages do not go for the optimum but use 

priority rule based heuristics to generate resource feasible schedules.  Some of them 
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apply a standard built-in procedure (e.g. Microsoft Project) that is often not revealed 

to the software user, others (e.g. Suretrak and Primavera) provide the user with an 

extensive list of scheduling (levelling) heuristics to choose from.  Using, for example, 

the earliest start priority rule to generate a feasible schedule for the problem of Figure 

1 with constant resource availability of 10 units, in other words applying a serial 

schedule generation scheme using the priority list L= (1,2,3,4,5,6,7,8,9,10), would 

generate the resource profile shown in Figure 4. 

 

Insert Figure 4 about here 

 

The schedule of Figure 4 clearly illustrates a second misconception: 

 

Possible Misconception 2: Looking for the best procedure for resolving resource 

conflicts does not pay off: its impact on the planned project duration is negligible. 

 

As can be seen, the project duration has gone up to 20 time periods, an increase of 

almost 100%.  Actually, quite a number of different activity lists may be constructed 

that yield a 20-period project duration through the application of a serial schedule 

generation scheme.  The critical path <1,4,7,8,9,10> definitely no longer determines 

the project duration.  The project length is now determined by two critical sequences: 

<1,2,3,5,6,7,8,9,10> (in which case activity 4 could be right-shifted over two periods) 

or <1,2,4,5,6,7,8,9,10> (in which case activity 3 could have a two-period right-shift).  

As can be seen from our analysis so far, the notion of a critical sequence is schedule 

dependent.  The precise procedure used to schedule project activities under resource 

constraints clearly has an important impact on the resulting project duration and on 

the critical sequence(s) that determine this makespan.   

The application of the early start priority rule to our problem example led to a 

project duration increase of almost 100% above the optimum.  Extensive 

computational experiments (Kolisch
21

) reveal that the late start time rule and late 

finishing time rule rank among the best priority rules, but still may generate project 

durations which are more than 5% above the optimum on the average.  The problem is 

that the manuals for most software packages regard scheduling information as 

proprietary information and, as a result, do not offer a detailed description of the rules 
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in use. Some packages enable the user to select a priority rule from a (sometimes very 

extensive) list, while others do not.  Anyhow, if management relies on commercial 

software for the generation of a baseline schedule, the result may be far from the 

optimum (even if only a few activities are involved), especially if resource contention 

is rather tricky and the “wrong” priority rule is chosen.  Computational experiments 

with seven commercial packages on 160 test instances (Kolisch
22

) reveal that the 

average performance is variable, with the best package deviating on the average 

4.39% and the worst package deviating on the average 9.76% from the optimum 

makespan. The mean deviation from the optimum makespan is 5.79%, while the 

standard deviation calculates to 7.51% and the range is from 0 to 51.85%. 

 

Scheduling under resource constraints and the critical chain 

 

The majority of popular project management textbooks and project planning chapters 

in operations management textbooks do not dwell deeply on the resource scheduling 

issue, leaving the impression that it is not that important which method is used to 

generate a resource-feasible schedule, and thus inviting their readers to adopt 

Misconception 2.  The PMBOK
®
Guide

11
 only devotes a 20-line paragraph (p. 76) to 

resource levelling heuristics, without even recognizing the essential difference 

between resource levelling (levelling resource use over the project horizon for a given 

project deadline) and resource-constrained project scheduling (minimizing the project 

duration subject to the precedence and resource constraints). 

Some authors even go one step further and actually refute the relevance of 

project scheduling procedures entirely.  In his book describing the critical chain 

methodology, Goldratt
20

 (pp. 217-221) argues that project scheduling procedures do 

not matter because “in each case the impact on the lead time of the project is less than 

even half the project buffer”.  His critical chain methodology builds a baseline 

schedule using aggressive median or average activity duration estimates.  Activity due 

dates and project milestones are eliminated and multi-tasking (more than one activity 

is performed by the same resource unit at the same time) is to be avoided.  In order to 

minimize work-in-progress (WIP), a precedence feasible schedule is constructed by 

scheduling activities at their latest start times based on critical path calculations.  If 

resource conflicts occur, they are resolved by “moving activities earlier in time”.  The 
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critical chain is then defined as the chain of precedence and resource dependent 

activities that determines the overall duration of a project.  If there is more than one 

such chain, an arbitrary choice is made.  A project buffer (PB), positioned at the end 

of the critical chain, should protect the project due date promised to the customer from 

variability in the critical chain activities.  Feeding buffers (FB) are inserted whenever 

a non-critical chain activity joins the critical chain: their aim is to protect the critical 

chain from disruptions on the activities feeding it, and to allow critical chain activities 

to start early in case things go well.  Although more detailed methods can be used for 

sizing the buffers (e.g. Newbold
23

), the default procedure is to use the 50% buffer 

sizing rule, i.e. to use a project buffer of half the project duration and to set the size of 

a feeding buffer to half the duration of the longest non-critical chain path leading into 

it.  Resource buffers, usually in the form of an advance warning, are placed whenever 

a resource has to perform an activity on the critical chain, and the previous critical 

chain activity is done by a different resource.   

The critical chain methodology has received a lot of attention in the project 

management literature and has recently emerged as one of the most popular 

approaches to project management (Newbold
23

, Leach
24

). Internet discussion groups 

have been set up to discuss the critical chain scheduling issues 

(http://www.apics.org/lists/default.htm; http://groups.yahoo.com/group/criticalchain; 

http://groups.yahoo.com/group/tocexperts).  Real-world applications by companies 

such as Lucent Technologies and Harris Semiconductor have been described to 

demonstrate the effectiveness of the approach (Leach
24

, Umble and Umble
25

).  

Commercial software has been made available on the market (for example ProChain
®

 

(Prochain Solutions, Inc., http://www.prochain.com/index.asp) and cc-Pulse
®

 

(Spherical Angle, http://www.sphericalangle.com/).  Critical chain concepts are 

promoted as a significant breakthrough in project management. “Indeed, the ideas 

have been so widely praised and endorsed, and have achieved such impressive results, 

that one wonders why they have not become the „mainstream‟ of project 

management” (Yourdon
26

). 

Figure 5 shows the buffered schedule obtained using the ProChain software, 

one of the best known software packages that rely on the critical chain methodology.  

The software selects the critical chain <1,4,7,8,9,10>, and using the 50% buffer sizing 

rule, generates three so-called feeding buffers: a two-period feeding buffer to protect 

http://www.apics.org/lists/default.htm
http://groups.yahoo.com/group/criticalchain
http://www.prochain.com/index.asp
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the project buffer from variation in activity 2, a three-period feeding buffer to protect 

critical chain activity 9 from variation in the path <3,6>, and a one-period feeding 

buffer to protect critical chain activity 8 from variation in activity 5.  In addition a six-

period project buffer is inserted that allows to set the project due date to 20 and to 

protect it against variation in the critical chain.  The resource buffer, inserted in front 

of activity 7 to give a warning signal to the extra resource unit needed for the 

execution of critical chain activity 7, is not shown in Figure 5. 

 

Insert Figure 5 about here 

 

The buffered schedule in Figure 5 allows us to reveal a misconception that is 

widespread among critical chain schedulers: 

 

Possible Misconception 3: During schedule execution, management should closely 

manage especially the critical chain activities, since it is the critical chain that 

determines the project duration. 

 

The chain of activities <1,4,7,8,9,10> that formed a critical chain in the un-buffered 

schedule of Figure 3, no longer determines the project duration in the buffered 

schedule of Figure 5: it now has gaps, i.e. it is no longer the longest contiguous chain 

of precedence and/or resource-constrained activities whose summed durations 

determine the length of the schedule. 

Assume now that management holds on to Misconception 2, selects the 20-

period schedule of Figure 4 to be used as input to the buffering process, and selects 

the critical chain <1,2,3,5,6,7,8,9,10>.  The result will be the buffered schedule shown 

in Figure 6. 

 

Insert Figure 6 about here 

 

A one-period feeding buffer protects critical chain activity 7 from variation in activity 

4 (that suffers a two-period right-shift) and a ten-period project buffer (using the 50% 

buffer sizing rule) inflates the project due date to 30 periods, a 50% increase.  Clearly, 
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steering clear of Misconception 2, in other words relying on a „good‟ scheduling rule 

and selecting a „good‟ critical chain for buffering, pays off.  Both the procedures used 

to generate the un-buffered schedule and to select a critical chain, have a clear impact 

on the resulting schedule duration, and hence, on the project due date determined 

during the application of the critical chain scheduling methodology. 

 

Buffering and schedule robustness 

 

The project scheduling literature largely concentrates on the generation of a 

precedence and resource feasible schedule that „optimises‟ the scheduling objective(s) 

(most often the project duration).  During project execution, however, project 

activities are subject to considerable uncertainty, which may lead to numerous 

schedule disruptions.  This uncertainty can stem from a number of possible sources: 

activities may take more or less time than originally estimated, resources may become 

unavailable, material may arrive behind schedule, ready times and due dates may 

change, new activities may have to be incorporated or activities may have to be 

dropped due to changes in the project scope, weather conditions may cause severe 

delays, etc.  A disrupted schedule incurs higher costs due to missed due dates and 

deadlines, resource idleness, higher work-in-process inventory and increased system 

nervousness due to frequent rescheduling. 

In other words: uncertainty lies at the very heart of project management.  A 

schedule that is determined to be optimal with regard to some objective function 

before its execution may be very vulnerable to minor or serious disruptions.  As an 

illustration, consider the schedule shown in Figure 3, with a perfectly levelled 

resource profile.  This schedule, however, is extremely vulnerable to uncertainty.  The 

slightest delay in the starting time of an activity and/or the slightest increase in the 

duration of any activity, for example, will lead to an immediate increase in the project 

makespan.  The true optimality of the schedule can only be ascertained in conjunction 

with its execution in the real world.  The proposed schedule, looked upon as „optimal‟ 

in the project planning phase, clearly has insufficient built-in „slack‟, or flexibility for 

dealing with unexpected events.  In other words, it is not „robust‟. 

A good approach indeed to account for variation during planning is to build in 

buffers at strategic points in the project – for instance, increased capacity or budget 
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reserves (De Meyer et al.
27

).  From a scheduling viewpoint, we can cite the common 

practice of adding “weather delay” to the end of the schedule (so-called “(weather) 

contingency”, see Clough and Sears
28

 and O‟Brien
29

).  De Meyer et al. also refer to 

Cusumano and Selby
30

 as an example of the fact that time buffers are routinely 

applied in software projects.  

It has been the merit of the critical chain scheduling method to cast a number 

of isolated insights into an integrated project planning and execution approach.  There 

do remain some pitfalls, however.  For instance, careful examination of Figure 6 

exposes an important misleading assertion about the role and use of feeding buffers in 

critical chain scheduling: 

 

Possible Misconception 4: The feeding buffers act as a pro-active mechanism to 

protect the critical chain from distortions in its feeding chains. 

 

The feeding buffer in Figure 6 fails to act as a proactive protective mechanism.  A 

slight disturbance in the duration of activity 4 does not lead to an immediate 

penetration of the feeding buffer, and so – according to the critical chain buffer 

management principles – does not generate a buffer penetration alert and hence, does 

not call for immediate management action.  However, it immediately generates a 

resource conflict with critical chain activity 6, and hence, causes a delay in the critical 

chain leading to an immediate penetration of the project buffer.  More generally, we 

can conclude that local time buffers will not always be sufficient to protect the project 

makespan from local disruptions, due to various resource interactions between the 

project activities. 

In practice, a project schedule serves very important functions (see Herroelen 

and Leus
31

 Mehta and Uzsoy
32

).  The first is to allocate resources to the different 

activities to optimise some measure of performance.  As mentioned by Bowers
15

, it 

may be necessary to make advance bookings of key staff or equipment to guarantee 

their availability, especially in a multi-project environment.  The second, as also 

pointed out by Wu et al.
33

, is to serve as a basis for planning external activities such as 

material procurement, preventive maintenance and delivery of orders to external or 

internal customers.  Project schedules are the starting point for communication and 

coordination with external entities in the company‟s inbound and outbound supply 
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chain.  It may for instance be necessary to agree on a time window for work by 

subcontractors.  Based on the baseline schedule, agreements are made with suppliers 

to deliver materials, support activities are planned (set-ups, supporting personnel), due 

dates are set for the delivery of project results and when considerable cash outflows or 

inflows are associated with intermediate activities, cash flow projections will use the 

baseline schedule for budgeting purposes.  A number of these planning purposes were 

referred to already by Henry Gantt in his writings in the beginning of the twentieth 

century (cfr. Wilson
34

). 

Robust scheduling constructs a schedule while expressly including protection 

against the manifestation of variability during project execution.  The term quality 

robustness is often used when referring to the insensitivity of the schedule 

performance in terms of the primary objective value, usually the makespan.  Stability 

or solution robustness refers to the insensitivity of the activity start times to changes 

in the input data.  Willis
35

 and Li and Willis
36

 define a stable schedule as “one that 

does not drastically alter activity start and finish times (...) when the project is 

rescheduled (...)”.  Indeed, only a stable schedule will allow to exploit the 

aforementioned planning purposes to their full extent, in that agreements on future 

time windows are at all possible. 

Willis
35

 makes it seem as if, for initial schedule development, only „poor‟ 

heuristics (in the sense that they tend to yield higher makespan) should be used, since 

with these there will always be sufficient spare capacity under the resource constraints 

to allow increases in activity duration without the need to drastically alter the entire 

schedule.  We reformulate this idea into: 

 

Possible Misconception 5: There is a trade-off between the pre-schedule project 

duration and solution robustness: the larger the project duration of the baseline 

schedule, the more stable the schedule. 

 

Insert Figure 7 about here 

 

In terms of solution robustness, the schedule of Figure 7 outperforms the buffered 

schedules shown in Figures 5 and 6 for disruption scenarios with small (e.g. one 

period) extensions in the activity durations, in spite of its makespan of only 14 time 
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units.  In the schedule of Figure 7, a one-period extension of the duration of any of the 

activities has no impact at all on the planned starting times of the other activities.  In 

the schedule of Figure 6, an extension of the duration of any activity affects the 

starting times of its successors in the schedule, while in the schedule of Figure 5, only 

a one-period increase in the duration of activities 2, 6 or 9, does not lead to a 

disruption in the start times of the other activities (taking into account the resource 

usages).  

In fact, the schedule shown in Figure 7 can be used to illustrate most of the 

misconceptions that we have discussed so far.  The schedule has been generated by 

means of a „naive‟ protection strategy applied to the minimum makespan schedule of 

Figure 3, simply by introducing a one period slack between the activity pairs (4,5), 

(3,7), (6,8), and (2,9).  The planned project duration equals 14 time periods, the same 

duration as obtained for the buffered Prochain schedule of Figure 5 (without the 

project buffer).   

The critical path <1,4,7,8,9,10> in the project network does not determine the 

project duration in the schedule of Figure 7 as it contains three one-period gaps.  We 

notice again that an effective procedure for project scheduling under resource 

constraints clearly pays off.  Indeed, the project duration of 14 periods is much 

smaller than the makespan obtained using, for example, the early start heuristic used 

to derive the schedule shown in Figure 4.  It makes no sense to ask management to 

concentrate on some “critical chain” during the execution of the project schedule, 

since the schedule contains three one-period gaps, and so there is no critical chain.  

Nevertheless, very importantly, in terms of quality robustness the schedule shown in 

Figure 7 outperforms the schedule of Figure 6 and displays performance comparative 

with that of Figure 5.  With respect to solution robustness, the schedule shown in 

Figure 7 is better than both schedules shown in Figure 5 and 6. In comparison to the 

buffered schedule of Figure 6, and keeping the same project due date of 30, the 

schedule now offers a total protective slack of 16 periods (significantly higher than 

the length of the project buffer in Figure 6).  At the same time, using the same ten-

period protection as offered by the project buffer in the critical chain solution of 

Figure 6, management can afford to use a much tighter project due date.  The due date 

can now be safely set to 24, a 6-period gain.   
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In generating baseline schedules, one is tempted to use scheduling procedures 

that generate active or semi-active schedules, because it is well known that for the 

resource-constrained project scheduling problem there is always an optimal solution 

that is active (Sprecher et al.
37

).  A schedule is called active if it does not allow for a 

global left shift of activities; a schedule is called semi-active if it does not allow for 

activities to be locally left-shifted.  The set of active schedules is a subset of the set of 

semi-active schedules.  The schedule shown in Figure 3 is active: no activity can be 

locally or globally left-shifted.  The schedule of Figure 7 is not semi-active, as it 

allows for local left-shifts.  The schedule shown in Figure 8 has been generated by 

applying a serial schedule scheme using the activity list L=(1,2,3,4,6,5,7,8,9,10).  The 

figure also shows the feeding buffer FB4-7, that would be inserted by the critical 

chain scheduling procedure, assuming that the chain <1,2,3,6,5,7,8,9,10> would be 

selected as the critical chain, as well as the ten-period project buffer that would be 

inserted if the 50% buffer sizing rule were used. 

 

Insert Figure 8 about here 

 

The schedule depicted in Figure 8 is clearly active in that it does not allow for local 

nor global left-shifts.  It can immediately be seen that despite its greater makespan, 

the schedule is not stable: any distortion in the start times or durations of activities 

leads to a distortion in the start times of all the successor activities in the schedule.  

This example allows us to elaborate on Possible Misconception 5: there is only a 

trade-off between pre-schedule project duration and stability if we admit also other 

than only active schedules. The reason is that in an active schedule, each activity is 

immediately „dependent‟ on at least one of his predecessor activities in the schedule, 

because otherwise a left shift would still be possible.  As a result, almost by 

definition, active schedules tend to exhibit low solution robustness. 

 

Summary and conclusions 

 

The objective of this paper was to identify and illustrate possible misconceptions that 

may hamper successful project planning.  We have demonstrated that in the presence 

of resource constraints: 
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 the notion of the critical path, defined as the longest path in the project 

network, loses all meaning;  

 the procedure chosen to resolve resource conflicts may have an important 

impact on the planned project duration; 

 the critical chain identified by applying the critical chain scheduling 

methodology may not determine the project duration; 

 time buffers are not always sufficient to isolate local disruptions due to 

resource interactions; 

 there is only a trade-off between pre-schedule project duration and stability if 

we allow for other than active schedules; 

 active schedules are not necessarily the shortest in duration, nor the most 

stable. 
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Activity Duration Earliest 

start 

Earliest 

finish 

Latest 

start 

Latest 

finish 

Total 

slack 

1 0 0 0 0 0 0 

2 4 0 4 7 11 7 

3 2 0 2 2 4 2 

4 2 0 2 0 2 0 

5 2 0 2 2 4 2 

6 3 2 5 4 7 2 

7 2 2 4 2 4 0 

8 3 4 7 4 7 0 

9 4 7 11 7 11 0 

10 0 11 11 11 11 0 

 

 

 

 

 

Table 1 
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FIGURE CAPTIONS 

 

 

Figure 1. Project network example (Wiest and Levy
10

) 

Figure 2. Earliest start schedule 

Figure 3. Minimum duration schedule 

Figure 4. Schedule generated by the earliest start heuristic 

Figure 5. Buffered schedule generated using Prochain 

Figure 6. Buffered schedule obtained from the schedule of Figure 4 

Figure 7. Naively protected baseline schedule 

Figure 8. Buffered active schedule 
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TABLE CAPTIONS 

 

 

Table 1. Critical path analysis 

 

 


