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Preface 

The discovery of semiconductors is one of the great scientific and techno-
logical breakthroughs of the 20th century. It has caused major economic 
change, and has perhaps changed civilization itself. Silicon, for example, 
now plays as important a role in our lives as carbon did in the 19th century. 
Most of the information technology depends on the properties of semicon-
ductors. One can only be struck by the contrast between our world and 
one without transistors, computers, rockets, medical image processing and 
heart pacemakers. 

We can see that this development is built on the combination of new and 
old concepts: miniaturization and printing. If we wish to handle information 
by a machine, it is clear that the machine's "moving parts" must be as small 
as possible. Here the parts are the electrons. The invention of the transistor 
at the end of the 1940s, that made use for the first time of the physics of 
semiconductors, was the key to miniaturization. 

Producing such a machine was difficult because of its small size, and 
it was not feasible to produce on a mass scale. The introduction of planar 
technology at the beginning of the 1960s changed that situation. It allowed 
for the use of photogravure techniques that resemble the printing process. 
Instead of having to link components one by one, like the individual letters 
were before Gutenberg, we can now make an entire machine such as a 
microprocessor through a limited number of processes. The very cheap mass 
production of these machines has begun to cause industrial and cultural 
changes that stem from, and are limited by, the physics of semiconductors. 

Why should we teach the physics of semiconductors in a course at the 
Ecole Polytechnique? The main reason is that it applies the most funda-
mental concepts of quantum and statistical mechanics. We hope to show 
that it is possible to use these concepts easily so as to meet the needs of 
the engineer. For this reason, several devices that make use of this physics 
are described. We give a simple explanation of the principle of the most 
common systems based on semiconductors. 



vi 	Preface 

The appendices that we have included serve two distinct functions: they 
may give detailed justifications for results given in the main text or illus-
trate various applications. This book can therefore be used in either an 
elementary or a more advanced manner. In the first form it is at the level 
of the second cycle of the Ecole, while the more advanced form is at the 
third cycle in French universities. 

The contents of this book are more in depth than what is currently 
taught at the Ecole Polytechnique. This follows the tradition of the courses 
at the Ecole that provide the engineer of tomorrow with a scientific basis 
for much of his career. 

This work owes much to the remarks and criticisms of Yves Quéré, 
Henri Alloul, Hervé Arribart, Henri-Jean Drouhin, Guy Fishman, Georges 
Lampel, Gilles de Rosny, Jacques Schmidt and Claude Weisbuch. Some 
of the problems are based on work by Hervé Arribart, Maurice Bernard, 
Jean-Noël Chazalviel and Georges Lampel. Very special thanks are due to 
Jean-Noël Chazalviel and François Ozanam for their numerous comments. 

The French version of this book was produced by the Ecole Polytech-
nique Press and published by Edition Marketing Ellipses (Paris). 
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1. 

Simple Ideas about 
Semiconductors 

1.1 Definition and Importance of Semiconductors 

The solids known as semiconductors have been the subject of very extensive 
research over recent decades, not simply because of their intrinsic interest 
but also because of ever more numerous and powerful applications: recti-
fiers, transistors, photoelectric cells, magnetometers, solar cells, reprogra-
phy, lasers, and so forth. 

A main feature of many of these applications is the possibility of minia-
turization of the devices. Miniaturization is more than a convenience: if we 
are faced with the problem of coding and transmitting messages from a 
satellite, the complete system of computer and transmitter must be made 
small. It must work properly for long periods without maintainance. The 
power available on board the satellite must come from radiation, the only 
source possible in space. Semiconductor devices, transistors, and solar cells 
provide solutions to these problems. Similarly the electronic components of 
a heart pacemaker have to consume little power and be very small. But the 
most spectacular and most important application of semiconductors is the 
development of information technology. These developments have only been 
possible because of the miniaturization of the logic elements allowing the 
construction of compact systems with great computing power or memory. 

Miniaturization has become possible through the perfection of "planar" 
fabrication techniques. These allow "integration" of circuits and thereby the 
production of devices containing thousands of elements on a few mm2  All 
this industrial development has come into existence only because physics 
allows us to understand the specific properties of semiconductors, and then 
use this understanding to create "electron machines" in the form of semi-
conductor devices. 

Semiconductors, as we shall see, are insulators whose "forbidden bands" 
or "gaps" are sufficiently narrow that thermal excitation allows a small 
number of electrons to populate the "conduction band." The working ele-
ment in a semiconductor is this small number of electrons. It is clear that 
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this small number of electrons can be influenced by a small number of 
chemical impurities or even by the surface of the crystal. 

This sensitivity hindered the understanding of the properties of these 
materials for a long time. For several decades the crystals studied were not 
pure enough, so that a number of their properties appeared to be impossible 
to reproduce with other apparently "identical" crystals. Thus the develop-
ment of semiconductor physics has had to await progress in semiconductor 
chemistry, and indeed the chemistry of solids in general. Semiconductors are 
now the purest and most reproducible solids we can make. The techniques 
perfected in their manufacture are frequently applied in other branches of 
chemistry and solid-state physics. There is a very close connection in this 
subject between industrial requirements, control of materials, and the un-
derstanding of the phenomena. 

The definition of semiconductors as "insulators with narrow forbidden 
bands" should be supplemented by a description of the essential physical 
properties of these materials, namely: 

1. their resistivity decreases as the temperature rises, at least for a 
certain temperature range, unlike metals; 

2. semiconductors are sensitive to visible light but transparent in the 
infrared. When irradiated their resistivity decreases. If they are inhomoge-
neous, an induced electric field may appear; 

3. they often give rise to rectifying or non-ohmic contacts; 
4. they exhibit a strong thermoelectric effect, i.e., an electric field in-

duced by a temperature gradient; 
5. their resistivity lies between 10-5  and 106  ohm•m. 
The materials possessing such properties are the elements of column IV 

of the Periodic Table, silicon and germanium; III - V compounds of the 
type GaAs, GaSb, InSb, InP, and so forth; IV - VI compounds such as 
PbS, PbSe, PbTe, and so forth; II - VI compounds such as CdSe, CdTe, 
and Cu2S; ternary compounds such as AlxGai_rAs; and quaternary com-
pounds. 

There are several important dates in the history of semiconductor 
physics. 

1897: Discovery of the Hall effect: When a magnetic field is applied to 
a conductor carrying a current perpendicular to the field, an electric field 
appears in the direction perpendicular to the current and the magnetic 
field. The strength of the electric field allows one to measure the number 
of mobile charge carriers carrying the electric current. Measurements made 
at the beginning of the century show the existence of a small or very small 
number of mobile charges varying from sample to sample in an apparently 
incoherent way. This number is of the order of 10-3  to 10-7  per atom. 
The sign of the Hall electric field also allows one to determine the sign of 
the charge carriers. Surprisingly, in certain crystals this sign was observed 
to be positive, suggesting that these charges were cations. However, the 
observed mobilities were very large, much greater than the mobilities of 
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ions in liquid electrolytes. Indeed, they were comparable to those measured 
in apparently identical crystals but in which the negative sign of the mobile 
charges indicated that the carriers were electrons. This was an unexplained 
paradox. 

1926: Bloch's theorem, with its fundamental consequence: a Bloch wave 
packet can traverse a perfect crystal without colliding with the crystal ions. 
Collisions result only from crystal defects or vibrations in a perfect crystal. 
This idea allowed an understanding of the large mobilities observed for 
electrons. 

1931: Wilson lays the foundations of the modern theory of semiconduc-
tors as insulators with narrow forbidden bands and introduces the idea of 
a hole. 

1948: Discovery of the transistor effect by John Bardeen and William H. 
Brattain, 

1960: Appearance of planar technology. 
1982: World production of 3 x 1013  binary units of active memory in 

the form of 64 kilobyte (512 kilobit) units alone. 
1990: Manufacture of Dynamical Random Access Memories ("DRAM")  

of 4 megabits per chip. 
1991: High Definition Television camera with 2 Megapixel Charge Cou-

pled Device Sensor. 
1992: Semiconductor component sales, worldwide: 860 billion. 
1993: World production of transistors: 2.10 17  
1995: Manufacture of 64-megabit DRAM (estimated). 

1.2 A Chemical Approach to Semiconductors 

Even though some properties of semiconductors were discovered experimen-
tally in the course of the 19th century, an understanding of the origin of 
this behavior had to await the advent of quantum mechanics. 

The first, classical, theory of electrical conductivity in solids, proposed 
by Drude in 1900, assumed the current to be transported by a fixed number 
of electrons that behave like classical particles obeying Maxwell—Boltzmann 
statistics. In the presence of an applied electric field the electrons attain a 
velocity proportional to the field (Ohm's law) as they constantly undergo 
collisions that brake their motion (see Chap. 5). While a number of prop-
erties of metals could be understood, nothing in this model predicted the 
increase in the number of charge carriers with temperature in semiconduc-
tors observed via the Hall effect. One might appeal to thermal ionization 
of the electrons from individual atoms of the solid, but since the ionization 
energies are of order 10 eV, this effect is too weak at room temperature to 
account for the observed concentrations. 

In any case, the Drude model had no explanation at all for the fact that 
in some samples the mobile charges were positive. 
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1.2a The Contribution of Quantum Mechanics 

We know that in a physical system, here a solid, electrons occupy stationary 
energy levels which are the solutions of the Schrödinger  equation 

where the Hamiltonian 

P2 
n = —

27n  +
V(r) 

takes account of both the kinetic energy p2 / 2m of the electrons, and the 
potential V(r) of their interaction with the ions of the solid. Here 0 is the 
wave function and E the energy associated with 0. The mass of a free 
electron is m. 

The electrons have half-integer spin and are thus fermions: at most 
two electrons of opposite spins can occupy each orbital state li, satisfying 
Schreldinger's Eq. (1.1). In a solid in thermal equilibrium at temperature 
T, the energy levels must be populated according to Fermi—Dirac statistics. 
To understand the properties of semiconductors (or solids in general) we 
therefore have to first find the energy levels satisfying Eq. (1.1). The second 
step is to find the state of the system at temperature T by populating these 
levels according to Fermi—Dirac statistics. We can then examine the proper-
ties of this system, which is the aim of this book. This procedure is simple in 
principle, but its implementation encounters considerable difficulties, and 
we have to resort to approximations. 

1.2b Qualitative Description 

One can imagine two main ways of understanding at least qualitatively the 
properties of quantum electron states in solids. We can think of the crystal 
constructed from atoms, which we bring together by introducing a coupling 
between them: this is the "chemical" approach we shall follow initially. Or 
instead we can start with a solid viewed as a "box of electrons," initially 
empty of ions, and progressively impose the attraction of the ions. This is 
the "nearly free electron" method, which we shall develop in Sect. 1.3. 

1.2c The Chemical Approach 

In the chemical approach we first consider two distant atoms each having 
one electron. As the atoms are brought closer together, the electrons around 
each of the nuclei will begin to feel the potential caused by the other nuclei. 
This potential is a perturbation which lifts the degeneracy more and more 
effectively as the distance between the atoms is decreased (Fig. 1.1). This 
holds both for the ground and excited states. 

(1 .2) 
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0 	 separation 

Fig. 1.1. Splitting of an energy level through coupling between two atoms. 

In the ground state, the descending branch of Fig. 1.1 is populated by 
two electrons of opposite spins. This causes a decrease of the system energy 
when the two atoms are brought closer together, and thus gives rise to a 
chemical bond, the covalent bond. If there are three atoms we start with 
triply degenerate levels; and in a crystal, with N-fold degeneracy. When 
the atoms are close, the degeneracy is lifted but several energy levels of the 
same atom are mixed. This is shown schematically in Fig. 1.2 where the 
vertical bars show the allowed energies as a function of the separation R of 
the atoms. The permitted energy bands are separated by forbidden bands. 
This picture corresponds to purely covalent semiconductors such as silicon 
and germanium. When the atoms constituting the crystal are different, for 
example in gallium arsenide GaAs, we start with non-degenerate atomic 
levels. The bond is then partially covalent. We shall return in Chap. 2 to 
the covalent bond. If the relative positions of the bands and their filling by 
the electrons are such that at zero temperature a band is just full and the 
band immediately above is empty, we have an insulator, as in such a system 
a weak electric field cannot increase the electron energies by accelerating 
them. In fact the only available states are very far away in energy because 
of the existence of a forbidden energy band: energies near to the initial 
value are not allowed. Acceleration is thus impossible. The electrons cannot 
respond to a small electric field, and the system is an insulator. The lower, 
full, band is called the valence band, while the upper empty band is the 
conduction band. The forbidden energy region between them is often called 
the band gap. 

The exact determination of the energy bands is difficult; worse, the 
physical behavior of the solid will be determined by the nature and proper-
ties of the levels in small fringes AEc  and AE„ around the forbidden band. 
In fact in thermal equilibrium at finite temperature a number of electrons 
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0 	Ro 	 separation 
Fig. 1.2. Energy levels in a system of N atoms as a function of the separation R between 
the atoms. The equilibrium atomic separation is RO 

populate the conduction band and leave empty states in the valence band. 
It is clear that the most populated states in the conduction band will be 
those at the lowest energies, while the empty places in the valence band 
will correspond to the highest energies allowed in that band. We thus see 
that observable electron properties will depend on the details of the band 
structure around the energy extrema on each side of the gap. We thus need 
to know the band structure very well in the neighborhood of the band gap, 
something which is very difficult in view of the approximations we have to 
adopt. 

The other approach to understanding the properties of quantum states 
of the crystal starts from solution of Eq. (1.1) in the case where the crystal 
potential V(r) is zero, and introduces this potential as a perturbation. We 
thus get solutions which are linear combinations of plane waves. But the 
same difficulty appears: the energy scale of the plane waves we have to 
consider is of the order of atomic energies, i.e., 10 eV. Correct states are 
linear combinations of a large number of states distributed over a wide 
energy range, while we are interested in the detailed behavior of only one 
part of the spectrum. Here too we are faced with approximations which are 
in conflict with the desired accuracy. 
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)1.3 Quantum States of a Perfect One-Dimensional 
Crystalline Solid 

We consider the case of a linear chain of period a, whose total length L 
contains N periods, where N is an integer. We seek the eigenstates of the 
Hamiltonian 

„2 

2m 
V(X) 	 (1.3) 

with a periodic potential 

V(x a) = V(x). 	 (1.4) 

1.3a Nearly Free Electron Model 

One way to proceed is to assume that V(x) is small, and regard this term 
as a perturbation by comparison with the kinetic energy term. For the free 
electron Hamiltonian 

(1.5) 

the eigenfunction of the state 1k> is a plane wave: 

1 
Pk(X) = 77,  exp ikx 

and the corresponding energy is 

h2k2 
E = 	. 

2m 

The dispersion curve E(k) is a parabola. To express the fact that the chain 
of atoms has a finite length L = Na, we use the periodic boundary condi-
tions of Born and von Kitrmé.n, which consist of joining the chain to itself. 
We then have 

IP(x + L) = (x). 	 (1.8) 

From Eq. (1.6) we find that the allowed values of k are quantized: 

k = ls  —27r 
Na 

with lz  an integer. 
In a qualitative approach to bringing out the characteristic properties of 

a crystalline solid, we may confine ourselves to the simplest approximation 
of a periodic potential a sine potential of period a: 

(1.6) 

(1.7) 

(1.9) 



8 	1. Simple Ideas about Semiconductors 

V(x) = 23/4. cos 
21rx 

, 
a 
.27rs 	.2rx 

= [exp (z— 
a 	 a 

(1.10) 

< kl IVIk >= 	

) -1- exp (–i—)} . 

For a macroscopic crystal N is very large, of the order of (1023 ) 1 /3 , and 
the allowed values of k are thus extremely close: the characteristic distance 
in k space, defined starting from the period (1.10) in x, is of the order of 
27r/a, so that the allowed values of k given by Eq. (1.9) are spaced by an 
amount 211-/L and are indeed very close. 

The origin of the abscissa is chosen as one of the ions, and the sign of 
the Coulomb interaction between the ions and the electrons (attractive) 
requires V1  <0. We assume that V1 is small compared with the relevant 
kinetic energies and use perturbation theory to find its effect on a state 
1k >. Let us look for states 1k' > coupled to 1k> by V: the matrix element 
of V between the two states 1k>  and 1k' > is 

1 fL 
exp – 	 x) 

L 0 
V(x) exp (iks) dx 

k' +—a ) x+ exp i (k – – 	-
a

) xidx. 

(1.1 2) 

The two exponentials are periodic functions, and the integral is non-zero 
only for 

k – k
, 
= ±-27r 

a ' 

for which its value is V1. The potential V thus only couples states differing 
in k by ±2ir/a, values of the wave vectors which appear in the Fourier series 
for V and which express the periodicity of the crystal. In particular, the 
first-order correction < k1V1k > to the state lk > vanishes. 

If the energy of the state 1k' > before the introduction of the crystalline 
potential differs from that of lk >, the introduction of the periodic potential 
has essentially no effect. If by contrast the two independent states coupled 
by V have the same unperturbed energy, this simultaneously imposes 

!12 k2 hzk r2  

2m = 2m 

and 

= –k. 

Then Eq. (1.13) requires 

TI 

[exp i(k vi i
o  27r 	 2ir 

(1.13) 

(1.14) 
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k = ±-
7r  
a 

and the presence of V lifts the degeneracy between the states  hr/a>  and 
I –7r/a >. Projected onto this basis the Hamiltonian becomes 

h2  (ir \ 2  
-2711 

(1.16) 

The eigenstates of H are 

12 	ir 
(01 	•Vicc's Tt x ,  

with E_ = 
h2 (

-
7)2 

- 1 1711) 2m a 

1 	 2 	ir = — (01  - Iv ! ) = 
h2 	r  

with E+  = — ()
2  

2m –
a + 

The lowest energy state has an enhanced probability density at the ions 
(Fig. 1.3). 

We see that in the energy interval 

h2 	\ 2 	 h2  /7r \ 2  
) 	IVil <E<  -97 	+11711  2m k a ' 	2n  (1.19) 

there is no stationary energy eigenstate. The presence of the periodic elec-
trostatic potential V = 2V1 cos(27rx/a) leads to the existence of a forbidden 
energy region, or band gap, near k= ±7r/a. Figure 1.4 shows the resulting 
lifting of the degeneracy. 

We note that applying the same reasoning to the periodic potential 

= 2 VI cos —271- V 	 lx, with / an integer 
a 

we obtain coupling between the states 

k = 
a 

producing a forbidden band for energies: 

h2 fir  \ 	 /ir  \ 2  

—2m 7.t) – ' VII  < E  < 

h2 /

+11711' 2m a 

(1.15) 

vi  

h2  (7i \ 2  
2mka) 

(1.17) 

(1.18) 

(1.20) 

(1.21) 

(1.22) 
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V (x) 

a) La-1  

c) 

Fig. 1.3. (a) Variation of the electrostatic potential energy of an electron in the Coulomb 
field of the ions of a linear chain of atoms; (b) and (c) probability densities for the 
electron for the states 0_ and 0+ (Eqs. (1.17) and (1.18)) after the introduction of a 
small periodic potential of the form V(x) = 2V1 cos 27rx/a. In the  lowest-energy  0_ state 
the probability density is maximal at the ions. 

2n/a 

	 k 
It  

a 
0 77 

a 
Fig. 1.4. The lightly drawn parabola is the dispersion curve for free electrons. The 
heavy curve takes account of the effect of the crystalline potential V =  2V1 cos 2.xx/a. 
States coupled by this potential (relation (1.13)) are linked by a dashed arrow: (a) states 
which are non-degenerate in the absence of the periodic potential; (b) states which are 
degenerate in the absence of V(x). 
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More generally, any periodic potential with period a can be written as 

V = E 23/4, cos —
27rrx

, with l an integer. 
a 

The wave vectors 2rP/a appearing in the Fourier decomposition (1.23) of V 
define a periodic set of period 2r/a in the space of wave vectors (reciprocal 
space). The set of points 21W/a constitutes the reciprocal lattice whose 
generalization to three dimensions we will see in Sect. 2.1. The vectors k 
defined by Eq. (1.21), around which a band gap opens, are the basic wave 
vectors of the decomposition (1.23) of V. 

By an approximate method, completely different from the chemical ap-
proach described in Sect. 1.2b, we have just shown the existence of band 
gaps in crystalline solids. We will now show that band gaps are expected 
on general grounds on the basis of Bloch's theorem. 

1.3b Bloch's Theorem 
In the Bloch theory the electrons, assumed independent, feel a periodic 
crystalline potential V(x). According to Bloch's theorem, the eigenfimctions 
of 

[t-rt  + V (x)].0(x) = EV) (x), 	 (1.24a) 

where V(x + a) = V(x) have the form 

Ok(x) = exp (ikx) uk(x). 	 (1.24b) 

The term exp(ikx) describes the variation at large scales, while uk (x), which 
has the periodicity of the crystal, 

uk (x + a) = uk (x) 	 (1.25) 

expresses the variation of the wave function within an elementary cell. The 
wave vector k, which is real, no longer plays the same role as for the plane 
wave (1.6). We note that the plane wave is a solution of the type (1.24) for 
which uk(x) = constant. 

Applying the Hamiltonian to the Bloch function yields the equation 
satisfied by uk(x): 

Rhk — ih-1) 2  V(X)] tik(X) = Ek Uk(X). 	 (1.26) 

In this equation k plays the role of a parameter, and we can limit x to the 
interval [0, a[ since uk(x) is periodic. The equation has a form similar to 
the Schrödinger equation for an atom, and we know that this has discrete 

(1.23) 
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2n II 	 0 	>—( 	k x 
2n

_ 	 _ 
a 	 a 	 _ 	a 

L 
Fig. 1.5. General form of the solutions of the Schriklinger equation (1.24) for a periodic 
crystalline potential. The solutions E(k) are periodic, with period 27r/a. 

eigensolutions, denoted un,k(x), of energy En ,k(X) (n = 1, 2, ...) (Fig. 1.5). 
As k is varied, the energy eigenvalues describe an "energy band" for each 
integer value of n. Whenever there is no overlap in energy between bands 
with different indices n there appear energy ranges with no stationary values 
En ,k. These are the band gaps. 

Their definitions show that the two quantum numbers n and k have quite 
different meanings. The band index n is an integer. The allowed values of 
the wave vector k are fixed by the surface boundary conditions of the solid: 
we could take once again the periodic Born-von Kármán conditions (1.8), 
which impose the saine values (1.9) on k as before; in that case, k varies in 
a quasi-continuous fashion, with jumps of 27r/L. 

The energies En ,k of the Bloch states are periodic functions of k. The 
Bloch function 	can also be written as 

27r 
'On,k (X) = exp i k +1-21r x un,k(x) exp -4/ 71-x , 

a 
(1.27) 

where 1 is an integer, or equivalently, 
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Fig. 1.6. Dispersion curves E(k) in a crystal. The periodicity of the solutions E(k) 
appears in the lighter curves. The heavy curves show the reduced zone scheme, while the 
dashed curves represent the extended zone scheme. 

tk,k (x) = exp i k +1 
2r 

 —
a x • un,k+z2,ria (x). (1.28) . 

AS tin,k+12ir la is periodic, On,k is also a Bloch function for k' = k + 
12r/a. The associated energy En ,k is thus also an eigenvalue for the state 

ik + 2r//a >, and the energies are periodic in the space of wave vectors k, 
with period 2w/a. 

There are thus two equivalent ways of classifying the eigenstates of the 
crystal Hamiltonian. Using the periodicity of the solutions of its eigenvalue 
equation we can arrange to confine ourselves simply to the variation of k 
over the interval [—Irla, w/a1: for each value of k in this interval there exist 
discrete solutions labelled by the integer index n. This situation is described 
by the heavy curves in Fig. 1.6; it is called the reduced zone scheme. By 
contrast we may retain just one branch of the successive curves E(k) for 
each value of k: the lowest for  —ii-la  < Ikl < r la, the second branch for 
r/a < lki < 2r/a, and so on. We thus obtain the dashed curves in Fig. 1.6; 
this is called the extended zone scheme. 
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These two descriptions are strictly equivalent. The extended zone de-
scription is reminiscent of the parabola E(k) of free electrons in a box. The 
reduced zone description  carries  the discrete index n and is reminiscent 
of the quantization of atomic levels: for k = 0, Eq. (1.26) actually gives 
solutions of atomic type. 

We have used quantum mechanics to show that the energy levels of a 
solid group themselves into permitted and forbidden bands. Let us now see 
how Fermi—Dirac statistics dictate the filling of these levels. 

1.3c Level Filling 	 W x Ls, 

The boundary conditions (1.8) on the wave function at the sample surface 
confine k to the values k = ls2rINa, where /z  is an integer. Moreover the 
discussion of crystalline solids in Sect. 1.3b allows us to characterize each 
electron eigenstate by its band index n and its wave vector k. As we have 
seen, restricting k to the interval Fria, rIal gives a full description of the 
properties of the solid. / z  takes exactly N values over this range. For each • 
value of /z  and thus of k there are two independent allowed spin states, 
leading to 2N possible states per band. 

It 
	

0 
	

it 
	

it 
	

0 
a 	 a 	a 	 a 

Fig. 1.7. Filling of crystal energy levels at zero temperature. (a) The electron number z 
per cell is even, and the solid is an insulator; (b) z istclidtrEind the solid is a metal. Filled 
circles represent occupied states and hollow circles empty states. 

For a linear crystal composed of a medium with z electrons per el-
ementary cell, the total number of electrons in the line is Nz. At zero 
temperature, the Pauli principle dictates the filling of the levels, starting 
with the states of lowest energy. If the Nz electrons completely fill one or 
more bands but leave others empty, i.e., if z is even and the bands do not 
overlap (Fig. 1.7(a)), it would require an electric field E of order  E9 /ea, 
where Eg  is the width of the band gap and e the electron charge, to give 
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an electron enough energy to lift it into the first available energy state, at 
the bottom of the first empty band. For a normal medium, where Eg  is of 
the order of 1 eV, this requires an electric field ef...! 3 x 109  V/m, more 
than the breakdown field! In such a medium there is no acceleration in an 
external field, thus no conduction, and the medium is an insulator. 

We denote as a semiconductor an insulator whose band gap between 
the last filled band, called the valence band, and the first empty band, 
called the conduction band, is narrow enough to allow thermal excitation 
of charge carriers at room temperature, i.e., a significant concentration of 
electrons in the conduction band. 

If by contrast z is an odd number (Fig. 1.7(b)), the filling leaves one 
or more bands only partly full at zero temperature. The first excited state 
is very close to the last filled state, and the system can respond to even a 
weak electric field. The medium is therefore metallic, as the electrons can 
be accelerated by an electric field. 

In summary, this discussion of a one-dimensional crystal introduces the 
following basic ideas: 

— an electron state is characterized by two quantum numbers (n, k); 
—the range of variation of k can be restricted to the reduced zone 

—because of the crystalline potential, not all energies are accessible to 
the electrons. Permitted bands are separated by band gaps; 

— the filling of the electron energy levels according to the Pauli principle 
shows that, depending on the medium and the form of the energy bands, 
the solid behaves as an insulator or a metal. If the number of electrons per 
cell is even and the bands do not overlap, the solid is an insulator. It is a 
metal in the opposite case. A semiconductor is an insulator with a "narrow" 
band gap. 

The existence of a band gap thus explains three characteristics of semi-
conductors: 

—The conductivity rises with temperature since thermal excitation gives 
a conduction band population which increases with T. In this band there 
are many empty electron states able to accomodate electrons which can be 
accelerated by even a weak electric field. 

—The existence of a forbidden energy band explains the transparency of 
semiconductors to infrared radiation; photons with energy hv smaller than 
Eg  cannot be absorbed, as the electron cannot reach a final state within 
the forbidden band. 

—In contrast, if hv exceeds Eg , electrons can be excited into the con-
duction band by absorbing photons. This explains the existence of "photo-
conductivity" in semiconductors. 



2. 

Quantum States of a 
Perfect Semiconductor 

We have seen in the case of a one-dimensional periodic solid that quantum 
mechanics provides a basis for understanding the properties of semiconduc-
tors. Here we discuss the physics of electrons in perfect semiconductors, 
i.e., those without defects or impurities. We will see in later chapters that 
certain properties of these materials depend quite directly on the presence 
of such impurities or defects in the crystal lattice. 

The characteristic properties of a solid are determined by the distribu-
tion of energy levels called the band structure. From this band structure 
we can say whether the medium is an insulator, a conductor, or a semicon-
ductor. 

We have to know the band structure for other reasons. In the presence of 
the periodic crystal potential the response of an electron to an external force 
is no longer determined by its mass, but by an "effective mass" imposed by 
the band structure. The effective mass of an electron in a crystal may be 
very different from the electron mass itself: it can even be negative. 

/\2.1 Quantum States of a Three-Dimensional Crystal 

A crystal is made up of the periodic repetition of an elementary basis. 
More precisely, if a particular point of the structure in equilibrium has 
coordinates r, all the points in equilibrium having the same physical and 
chemical "environment" as r are expressible as 

= r + m1a1 + m2a2  + m3a3 , 	 (2.1) 

where the mi  (i = 1, 2, 3) are whole numbers and the ai  are three non-
coplanar vectors specific for the particular crystal. The rhombohedron con-
structed from a l , a2 , a3  makes up the cell. The "smallest" cell, with the 
smallest volume, is called the primitive or unit cell. The vectors ai  which 
generate this primitive cell are the periods of the Bravais lattice, or direct 
lattice, of the crystal. 
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Semiconductors formed from elements of column IV of the Periodic Ta-
ble (Si, Ge), and most semiconductors formed from elements of column III 
and elements from column V (GaAs, InP) crystallize in the face-centered 
cubic system shown in Fig. 2.1. Some semiconductors of type II—VI like 
CdS crystallize in a hexagonal form. 

In the face-centered cubic system the primitive cell is not a cube but the 
rhombohedron shown in Fig. 2.1 (or any equivalent cell, e.g., that formed 
from the basis vectors —a1 , a2 , —a3). For the most usual semiconductors the 
cell consists of two atoms, one at the position (0, 0, 0), and the other one-
quarter of the way along the diagonal of the cube (Fig. 2.2). The primitive 
cell thus contains a basis of two atoms. For simplicity, and to show the 
crystal symmetries, we generate the crystal from a cubic cell which is not 
the primitive cell. The lattice of points generated by the translations (2.1) 
of the primitive cell is called the Bravais lattice. 

Fig. 2.1. Face-centered cubic lattice. The rhombohedron constructed from the vectors 
ai  = (9/2)(i 	a2 = (a/2)(j k), a = (a/2)(i k) forms the primitive cell. 

A macroscopic solid, of characteristic size L contains a very large number 
of elementary cells, of the order of (Lip?, where a is the characteristic size 
of the cell. 

In an infinite crystal, electrons at displacements of 

T = miai m2a2 m3a3 

feel the same crystal potential, implying that the Hamiltonian is invariant 
under translations T of the lattice. 
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Fig. 2.2. Crystalline structure of silicon. The basis consists of two atoms, that at the 
origin and atom b with coordinates (a/4)(1, 1, 1). The Bravais lattice is face-centered 
cubic. 

2.1a Bloch's Theorem 

Solutions of the Schrödinger equation 

[t-n  + 17 (r)] & = E0, 
	 (2.3) 

where the crystal potential V(r) has the periodicity of the crystal, are called 
"Bloch functions," and have the form 

On,k (r) = exp(ik.r) un,k (r), 	 (2.4) 

where the function un,k is periodic in the direct lattice: 

tin* (r + T) = un,k (r). 	 (2.5) 

A state is thus specified by four quantum numbers, n and the three com-
ponents kz , ky , kz  of the vector k. From Eq. (2 . 5 ), 

0n,k + T) = exp(ik.T) 'n ,k  (r). 	 (2.6) 

The points r and r +T thus have the same physical properties, the functions 
differing only by a phase factor independent of r. We note further that 
10n,k (r)1 2  is periodic in space. 

As in Chap. 1, we choose as boundary conditions at the edges of 
the macroscopic solid the periodic boundary conditions of Born and von 
Kármán:  

//) (r + L) = 	(r). 	 (2.7) 
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We assume that the vector L is a vector of the Bravais lattice, corresponding 
to a very large number of periods. For simplicity we choose an elementary 
cell and a solid in the shape of a rectangular parallelepiped. Imposing con-
dition (2.7) on the form (2.4) of the Bloch function requires the values of k 
to be quantized: 

27r 	27r 
kx  = ix -211- ,

ic 
= — kz = 1 z —Lz , 	 (2.8) 

Lx 	y lv  

where (4, li, ,  / z ) are whole numbers or zero. For a macroscopic solid these 
values of k are very close on the scale of 1/a, since L >>> a. The vectors 
k play an essential role in the description of the properties of solids. We 
can regard them as belonging to a space "reciprocal" to the crystal itself: 
the reciprocal space is generated by the basis vectors a derived from the 
basis vectors ai  of the Bravais lattice by 

a: • ai 	27r6ii. 	 (2.9) 

Any vector G of the reciprocal lattice has the form 

G = hat + ka; + /a; 	 (2.10) 

(h, k, 1) being whole numbers. In one dimension we would have G = (27r/a)i. 
The reciprocal lattice of a face-centered cubic lattice with side a is a 

body-centered cubic lattice with side 47r/a (as in Si, GaAs, ...) (Fig. 2.3). 
The reciprocal lattice of a hexagonal lattice is a hexagonal lattice (as in 
CdS, ...). 

From the definition (2.9) it follows that for any translation T of the 
direct lattice defined by Eq. (2.2) and for any vector G of the reciprocal 
lattice given by Eq. (2.10), we have 

exp iG • T 1. 	 (2.11) 

The relation (2.11) shows the symmetrical roles of the direct and reciprocal 
lattices (the reciprocal of the reciprocal lattice is the direct lattice). We 
recall that the real crystal is a lattice of atoms or molecules, or more gen-
erally of bases. The reciprocal lattice is a network of points independent of 
the basis in the real crystal. 

Let us consider a Bloch function relative to a wave vector k, such that 
k = ko + G, where G is a vector of the reciprocal lattice, and show that this 
Bloch function 11)„,k (r) is also a Bloch function for the wave vector ko : 

On,k = exp(ik • r) un,k (r) 

= exp(iko • r) exp(iG • r) un,k (r). 	 (2.12) 

The function exp iG•r un ,k (r) has the property (2.5). In fact by using Eqs. 
(2.5) and (2.11) we deduce 

exp iG- (r + T) un,k (r + T) exp i(G • r) un,k (r) 	 (2.13) 
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Fig. 2.3. Reciprocal lattice of the face-centered cubic lattice of silicon. This is a body-
centered cubic lattice of side 47r/a. We also show the first Brillouin zone. This is bounded 
by the perpendicular bisector planes of the vectors (27r/a)(1, 1, 1) and their equivalents, 
producing the hexagonal faces with center L and also by the perpendicular bisector 
planes of the vectors (47r/a,  0,0)  and their equivalents, corresponding to the square faces 
with center X. The origin r is chosen at the atom of the cubic lattice situated at the 
center of the cube. 

which shows that the latter function is periodic. In consequence the func-
tion (2.12) exp(iko r) exp(iG • r) u„,k (r) is a solution of the Schreidinger 
equation simultaneously for k and for ko = k — G. The reciprocal space is 
thus inconveniently "too large" for classifying the Bloch functions, since it 
contains all the points k and k — G, for any G, whose quantum states are 
identical. 

2.1b The Brillouin Zone 

We can thus reduce the area of study of Bloch states to those values of 
k belonging to the "first Brillouin zone." The first Brillouin zone is the 
volume of the reciprocal space closer to the original node k = 0 than' 
to any other point of the reciprocal lattice. This first Brillouin zone is 
bounded by the perpendicular bisector planes of the shortest vectors G 
of the reciprocal lattice. It has the same volume as the elementary cell 
of the reciprocal lattice. In one dimension it corresponds to the interval 
[-7r/a, r/a[. In three dimensions one of the edges is part of the first zone, 
but not the one opposite to it. 

The first Brillouin zone is shown for a face-centered cubic Bravais lattice 
(Si, Ge, GaAs, ...) in Fig. 2.3. If the side of the cube is a, the coordinates 
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of the points of high symmetry of the reciprocal lattice shown on the figure 
are (r/a)(1, 1, 1) for L and (2a-/a,  0,0)  for X. The coordinates of points 
equivalent under the symmetries of the cube are easily deduced. 

— If we restrict the range of k to the first Brillouin zone we say we are in 
the "restricted zone scheme," in contrast to the "extended zone scheme." 
Similarly, as in one dimension, for a fixed value of k the Schradinger equa-
tion has a discrete set of solutions, which define, as k varies, the permitted 
energy bands, separated by forbidden bands. The index n of the Bloch 
function (2.4) is thus the band index; when k varies the eigenvalue En ,k of 
Eq. (2.3) spans the nth energy band. The accessible values (2.8) of k are 
very close on the scale of the Brillouin zone, so we can regard En,i, as a 
quasi-continuous function En (k). 

We assume without proof that the functions 1/44 (r) form a complete 
orthonormal basis: 

< n, kin', 	>= bn,n, 6k ,k i  

E ink < nkl = 1. 	 (2.14) 
nk 

The matrix elements of a periodic operator between states In, k > and 
In', > of Bloch function form vanish unless k = k'. This is shown in 
Appendix 2.1. 

2.1c Inversion Symmetry of Constant Energy Surfaces in 
k-space 

If On,k (r) satisfies 

	

± V (I')] On* (r) =. En,  4yn,k kA 

	 (2.15) 

we see on taking the complex conjugate of this equation 

[ p2 
— V(r)] 0:4  (r) =  E,1 	(r) 2m 

that 0*(r) is an eigenstate with the same eigenvalue. But On* *  (r) = 
un* *  (r) exp(–ik • r) is a Bloch function for the point –k of the Brillouin 
zone, and thus orthogonal to On* (r), with the corresponding eigenvalue 
En , _k . We deduce that 

En,k = En , _k 
	

(2.17) 

We can thus confine ourselves to studying the dispersion relations En (k) 
in one-half of the zone. This property is a consequence of the reality of the 
Hamiltonian, which arises from the invariance under time reversal of the 
laws of microscopic mechanics. We deduce that at the point k = 0 the 

(2.16) 
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relations En (k) have the forms 1, 2, or 3, the set of curves En (k) being 
even (Fig. 2.4). 

E a 

k 
0 

Fig. 2.9. Behavior of dispersion relations in the neighborhood of k = O. 

2.1d Symmetries of Constant Energy Surfaces 

Besides translation symmetry, crystals possess point symmetries, i.e., they 
are invariant under certain symmetry transformations: rotations through 
711 2, 27r/3, ..., symmetries with respect to a point, an axis, or a plane. Use 
of the symmetry properties of the Hamiltonian is fundamental in simpifying 
the study of the system eigenstates, but it requires the use of group theory, 
which is beyond the scope of this book. Appendix 2.2 gives a proof of 
the following fundamental result: the surfaces of constant energy have the 
symmetries of the crystal. 

Because of these crystal symmetries and the inversion symmetry of the 
constant energy surfaces we need only study a volume of k space equal to 
the volume of the Brillouin zone divided by twice (because of the inversion 
symmetry) the number of symmetries of the crystal. 
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N2.2 Dynamics of a Bloch Electron. 
The Crystal Momentum 

We begin by noting that the wave vector k introduced by the Bloch function 
(2.4) is a quantum number with three components which is not related in 
a simple way to the momentum operator p .-ihV, unlike in the case of 
plane waves. In fact, if the potential V(r) were constant, the solution of the 
Schradinger equation would be a pure plane wave: 

= C exp(ik • r), 	 (2.18) 

the constant C ensuring the normalization of the wave function over the 
macroscopic solid. In this case the mean value of the operator p would be 
h,k: 

p 	= 	exp ik • r) = rlk tpk  . 	 (2.19) 

By contrast, for a Bloch function, 

<P  >n,k =< n,k  II  n,k >, 	 (2.20) 

= f 1/41,k (r) (—ihV)0„,k(r) d3r, 

= f u(r)[hk — ihqun,k(r) d3r 

= hk — ih un* ,k (r)Vu n,k(r)d 3r 

hic. 
	 (2.21) 

In a crystal there is no simple relation between the mean value of the 
momentum in a Bloch state and the wave vector k which defines the state. 
However the vector hk plays a very special role, as we shall see. We call this 
vector the crystal momentum. 

)(2.2a True Momentum, Group Velocity, 

We show here that the mean value of the momentum is related in a simple 
manner to the behavior of the dispersion relations En  (k). Using a first-order 
Taylor series we write the energy at the point k 

Enlk 	= E(k) + q 	En (k) ± • 	 (2.22) 

Now the second term can be easily calculated by perturbation theory. Triv-
ially generalizing Eq. (1.26) to three dimensions we write the Hamiltonian 
Ilk satisfied by the periodic part un,k (r) of the Bloch function: 

1 
flk = Tm-(hk — ihN7)2  + V(r). (2.23) 
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Similarly, at the point (k + q) we can write 
h2 	 h2 q2 

744-q q • (k — iV) + 	. 	 (2.24) 
2rn 

We see that for small 1111 the second term is small and the third is negligible. 
We can thus obtain En (k + q) from En (k) by using first-order perturbation 
theory, which gives 

h2 
En (k + q) =  E (k) +  J 4,1 q • (--iV + k) un,k d3r + • • • 	(2.25) 

or equivalently: 
h2 

(k + q) =  E (k) + f 	— —
m

iV) p„,k  d3r + • • • . 	(2.26) 

Equating the coefficients of q in Eqs. (2.22) and (2.26) we obtain the relation 

h 
Vk En (k) = 	p >, 	 (2.27) 

where the mean is taken over tPn,k• Ehrenfest's theorem gives the group 
velocity as 

d<r> n  k 1 
V — 	

dt 	< P > n,k 	 (2.28) 

from which we deduce the velocity of an electron in the Bloch state On* : 

1 
y = Vk En  (k). 	 (2.29) 

In fact the motion of an electron regarded as a particle should be described 
by a wave packet. For an electron in a crystal this is a packet of Bloch waves 
centered on k = ko, which is constructed by introducing other neighboring 
states k belonging to the same band n. 

We note that, as the Bloch states are eigenstates of 14  the velocity of 
an electron in a Bloch state is constant: an electron in such a state suffers 
no collisions in the crystalline potential included in N. This is a funda-
mental discovery: a periodic potential does not scatter Bloch electrons; it 
determines their constant velocity through Eq. (2.29). 

In a perfectly periodic crystal electrons suffering no collisions would 
thus have infinite conductivity. The deviations from periodicity determine 
the finite value of the conductivity. The defects that are most effective in 
producing scattering are the presence of impurities and the fact that at a 
finite temperature the crystal undergoes thermal vibrations which deform 
the perfect crystalline lattice. The latter excitations, called phonons, are not 
studied in this book, but play an important role in limiting the mobility of 
electrons and holes in semiconductors. 
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2.2b Acceleration Theorem in the Reciprocal Space 

Under the effect of an external electric field C the energy of an electron 
is modified. Let us assume that C varies little over the scale of the cell, 
and only slowly with time at the scale of the transition frequencies between 
permitted energy bands. The work dW done on an electron of speed v and 
charge –e over the time interval dt changes its energy En (k) by modifying 
the value of k and thus the crystal momentum. Hence we have the relation 

n  
dW = –ee • vdt = dE(k)  dt. 	 (2.30) 

dt 

Using expression (2.29) for v we deduce 

1 
dk –et • —

h 
Vk E(k) = Vk En (k) — 	 (2.31) 

dt 

so that 

h—dk = –eS = F, 
dt 

where F is the applied force. This is the acceleration theorem in the recip-
rocal space. The essential result is that the response to an external force 
varying slowly in space and time is equal to the derivative of the crystal 
momentum and not the derivative of the electron momentum. In the pres-
ence of an electric field and a magnetic field B it is possible to generalize 
Eq. (2.32) to 

hdk 
=–e(e-FvxB)=F. 

dt 

In fact, Eqs. (2.32) or (2.33) describe the behavior of a packet of Bloch 
waves, localized to about Ar in real space, and to about Ak 1/ (hr) 
in the reciprocal space. If the force F varies in time at the scale of the 
transition frequencies between bands the evolution of the system can no 
longer be described by the motion of the point k within a given band, 
but by transitions between bands. This is true of the effect of light on a 
semiconductor, studied in Chaps. 6 and 7: optical frequencies are of the 
order of 10" Hz. 

X2.2c Effective Mass and Acceleration in Real Space 

Differentiating the velocity v given by Eq. (2.29) with respect to time, and 
using the acceleration theorem (2.33), we obtain 

dv 	dk 1 Tit  = (Vk v ) • 	= —
h2

V1 [V1 En (k)] • F 	 (2.34) 

(2.32) 

(2.33) 

Or 
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Fo 
dt 	m* 

0 	"0  

with 

( 1 \. 1 02E(k)  
m* ) cti3 h2  Oka°lcs 

which defines the effective mass tensor at a point k of a given band T.. 
Expressions (2.35) and (2.36) constitute the acceleration theorem in real 
space, which is subject to the same restrictions of slow variations in space 
and time on the force F as Eq. (2.33) from which it results. From its defi-
nition we see that the effective mass tensor is symmetric. 

The notion of effective mass is of most interest in the vicinity of an 
extremum of the band, where, to lowest order, 

Ea  (k) – E(k0) '-- E —h2  AkaAko . 	 (2.37) 
a,f3 ma# 

Here ko is the wave vector of the extremum, and k = ko  + Ak. 
At the zone center of a cubic crystal, if the energy is not degenerate, 

the constant energy surfaces are spheres; the effective mass is thus isotropic 
and has a value m*. It is positive near a band minimum and negative near a 
band maximum. A negative effective mass implies, from Eq. (2.35), that the 
velocity resulting from the action of Fr3 is in the opposite direction from that 
acquired by an electron in vacuum acted on by Fr) (cf. the definition of a 
hole in Chap. 3). This apparently paradoxical behavior should be compared 
with Hall effect experiments which in certain materials imply the existence 
of positive charge carriers. It shows that in a solid the response of an electron 
to an applied force is strongly influenced by the reaction to the crystal 
potential. Even when the effective mass has the same sign as m, the mass 
of a free electron, we can have values of  m*  /m very different from unity. 
While in metals m*/m --, 1, this is not always true of semiconductors: the 
effective mass of the conduction band is +0.067m in GaAs, and +0.014m 
in InSb. 

We note that the momentum formula for the simplest case can be writ- 
ten 

. dv 
F 	 (2.38) 

so that it is not the derivative of the ordinary momentum mdv/dt which 
is equal to the external force. In this special case, the velocity (2.29) and 
crystal momentum are related by 

rik 
v = —. 	 (2.39) 

m* 

(2.35) 

(2.36) 
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)(2.3 Metal, Insulator, Semiconductor  

The results we have obtained for the Bloch states have the following fun-
damental consequence: a full band cannot carry a current. In fact from the 
definition of the current density?  

j = —e E v(k), 	 (2.40) 
kE full band 

= — 	En (k) = 0, 	 (2.41) 
kEfull band 

as the functions E(k) are even in k (2.17): from Eq. (2.29), 

v(—k) = —v(k) 	 (2.42) 

and the total current is zero. Let us now apply an electric field C. Using 
the acceleration theorem in the reciprocal space, each vector k is modified 
by dk = —egdt in time dt, the shift being the same for all the vectors. 
From the definition of the first Brillouin zone, states leaving this zone are 
equivalent up to a vector G of the reciprocal lattice to those which become 
empty, and the band remains full. A full band does not react to an applied 
electric field and does not participate in the current. If the occupied bands 
of a solid are completely full, the solid is an insulator. 

To find the filling factor of the band states of a three-dimensional solid 
we will use reasoning similar to that used for a one-dimensional system in 
Sect. 1.3c; the situation is slightly complicated by the fact that we have to 
consider all directions of the wave vector k. 

)(2.3a Density of States in the Reciprocal Space 

The Born—von Kármán  boundary  conditions (2.8) result in a uniform den-
sity of states in the space of wave vectors k: we consider again the example of 
a crystal of macroscopic dimensions The accessible wave vectors 
have components: 

= T 
2ir 

with i = x, y, z. 	 (2.43) 

Two spin states correspond to each wave vector. The number of accessible 
states in a volume d3k of the reciprocal space, assumed large compared to 
the volume (2703/L1LyL5  per orbital state, is thus: 

LiL 
2 	X 	Y 	

L 
3 z  d3k = n (k) d3k. 	 (2.44) 

(2/r) 
spin 	number of orbital states 
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The number of orbital states contained in a band is equal to the number 
of elementary cells contained by the crystal, independent of the number of 
atoms per elementary cell. 

Let us show this for the face-centered cubic lattice, corresponding to the 
most common semiconductors. If a is the side of the cube, the volume of 
the primitive cell of Fig. 2.1 is a3 /4, since in each cube we have (8 x 1/8) + 
(6 x 1/2) = 4 nodes of the Bravais lattice. A macroscopic parallelepiped 
Lx , Ly , Lz  of the crystal thus contains N = 4Lx Ly L z /a3  primitive cells. The 
reciprocal lattice is a body-centered cubic of side 4r/a, with (8x 1/8)+1 = 2 
nodes, so the volume of the primitive cell, which is also that of the first 
Brillouin zone, is (1/ 2)(47/a) 3  = 3273 /a3 . The density of orbital states in 
the reciprocal space is, by Eq. (2.44), L x L I,L z  /871-3 . The number of states in 
a primitive cell of the reciprocal lattice is thus (32r3 /a3 ) x (L x 4L4 1,13 ) = 
4Lx Lv L z Ia3  = N, the number of primitive cells in the crystal. frence each 
band of index n contains N orbital states, or 2N states taking account of 
spin, where N is the number of primitive cells of the crystal. 

To find the state of the whole crystal we fill up the states at zero tem-
perature in accordance with the Pauli principle, starting with the states of 
lowest energy. The number of electrons per elementary cell, and also the 
position of the bands in the various directions of the reciprocal space and 
any overlaps, will fix the behavior, conducting or insulating, of the mate-
rial. Diamond, silicon, germanium, and grey tin have four valence electrons, 
and crystallize in a face-centered cubic lattice, with two atoms per elemen-
tary cell. We thus have eight electrons for eachierementary cell. Among the 
bands constructed from the valence states for C, Si, Ge, the four lowest 
bands have no energy overlap with the higher bands. We can thus fill them 
with the 8N elmtrons with two electrons per orbital. These materials are 
insulators at zero  temperature. - 

The band gap E9  of diamond is 5.4 eV, that of silicon 1.1 eV, and that 
of germanium 0.67 eV. As we shall see in Chap. 4 the thermal excitation 
probability of conduction electrons at temperature T is proportional to 
exp(-E9l2kT) where k is the Boltzmann constant. At room temperature 
(for T = 300 K, i.e., kT = 25 meV) this probability is 1 x 10-47  for 
diamond, 3 x 10-10  for silicon, 1.5 x 10-8  for germanium, while the number 
of electrons per m3  in a solid is of order 1028 . Diamond is thus a very good 
insulator, silicon and germanium are semiconductors. By contrast in grey 
tin the valence band overlaps a higher partially filled band. This makes 
it a metallic conductor. The conduction properties of semiconductors are 
determined by the states with energies close to the extrema of the bands 
since these are the states most easily populated by thermal excitation. We 
therefore have to count these states. 
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2.3b Density of States in Energy 

Starting from the dispersion relation for a given band En (k), we deduce he 
number dN of states in the band n whose energy is between E and E+ dE: 

dN =14E) dE = 	n(k) d3k = 
L.LLz 

6 	
d3k. 	(2.45) 

bv(E) 	 ,(E) 

This relation defines the density of states in energy n(E); 6v(E) is the vol-
ume of the reciprocal space contained between the constant energy surfaces 
S(E) and S(E + dE). We can easily find the density of states in energy 
n(E) for a free electron: from the dispersion relation 

( k) = h2k2  
2m 

we deduce 

h2 
dE = —

m
k dk. 

If the electron moves in three dimensions, the volume 6v(E)  between two 
constant energy spheres is 4irk2dk. Relation (2.44) is then 

2 
 (--

L  4irk2dk = n(E) dE 	 (2.48) 
2r 

and we get 

n(E)= 4r (-
)

3  (2M) 3/2 . 	 (2.49) 

For an electron in a periodic solid the dispersion relation does not in 
general have a simple analytic form. The density of states of silicon is shown 
in Fig. 2.5. The volume element 6v(E) of Eq. (2.45) can be decomposed 
into d 2 S, the elementary area on S(E), multiplied by the distance along 
the normal to the surface 

d3k = d2 S • dk dE 
dE 

1 
= d2  S 

I VILE I 
dE 	 (2.50) 

so that, taking account of the spin, 

n(E) = L
sLy L z 	d 2  S 

4r3  is(E)  IN7kEl 

If we can define an isotropic effective mass m e  in the vicinity of the minimum 
E, of the conduction band, the density of states there can be found directly 

(2.46) 

(2.47) 

(2.51) 
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from expression (2.49) applying for the free electron, by substituting me  for 
m: 

n(E) = 47 ( —
L)3 

(2Me ) 312  EN/Ec . 
h 

(2.52) 

—14 —12 —10 —8 —6 —4 —2 
	

0 
	

2 
	

4 

energy (eV) 
Fig. 2.5. Density of states of the valence and conduction bands of silicon, calculated by 
J.R. Chelikowslcy and M.L. Cohen, Physical Review B 14, 556 (1976). The energy origin 
is at the maximum E,, of the valence band. In the neighborhood of Ev , the maximum 
of the valence band, and Ec , the minimum of the conduction band, the density of states 
varies parabolically with energy. 

2.4 Theoretical Determination of Band Structure 

We have seen that one can deduce the dynamical properties of the elec-
trons and the density of states from the relations En (k). To understand the 
properties of semiconductors, we therefore have to determine their band 
structure. This is a complex task, simultaneously involving first principles, 
semi-empirical calculations, and experimental data. 

We sketch below several methods used to calculate the band structure 
of semiconductors. These can be skipped in a first reading. 
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2.4a The Tight Binding Approximation 

This is also called the LCAO ("linear combination of atomic orbitals") 
method. It corresponds to a "chemical" point of view, i.e., to deducing the 
crystal properties from the already known eigenstates of the constituent 
atoms and their chemical bonds, which are calculated now. 

Simple Cubic Crystal with One Atom per Cell 

We consider first the hypothetical case of a simple cubic crystal having 
one monovalent atom per cell, and assume that the Hamiltonian Hat  of an 
isolated atom only has one eigenvalue E0 , associated with a non-degenerate 
eigenstate Or): 

Nat Or) = 	V(r)] Or) = E0  Or). 
2 

(2.53) 

The crystal potential is the sum of the atomic potentials centered at the 
various sites j of the lattice: 

„2 
= 	+ 	V(r — Ri ) 	 (2.54) 

2m 

and we seek a solution of the Schrödinger equation for the crystal of the 
form 

Ok(r) = E Ak 	— Ri ). 	 (2.55) 

For simplicity, we will sometimes write 

— Ri ) = 	 (2.56) 

Bloch's theorem fixes the form of the Ak,3: VA must be a Bloch function, so 
that for each translation T of the direct lattice we have 

Ok(r + T) = exp (ik • T) 	(r) 

= E Ak 	— Ri  + T). 	 (2.57) 

Replacing th (r) by expression (2.55) and setting Ri , = R3  — T we obtain 

Ak,j+T = eXP (ik • T) Aka  • 	 (2.58) 

For this relation to hold for all T we require 

Ak ,1 = C exp (ik Ri ), 	 (2.59) 

where C is a constant. The normalization of the function 	can thus be 
written as 
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<1h,  k1>  = C2  E exp(-ik • R,i,) exp(ik • R2 ) x 
1,1' 

	

f (r - 11,1,) (t)(r - R.1) d3r, 	 (2.60) 

= e2E exp ik • (1t1 - It1, ) < 	> . 	(2.61) 
1,3' 

If we make the hypothesis that states centered on different atoms overlap 
very little, then 

<4)j4)'  > = 
	

(2.62) 

and 

<t  Ith > = c2  E < 	> = Ne2 = 1, 	 (2.63) 

hence 

(r) = N -1/2  E exp(ik • it1) 	(r - R1). 	 (2.64) 

The matrix representing the Hamiltonian (2.54) on the basis of Bloch states 
is diagonal since the Hamiltonian is a periodic operator (cf. Appendix 2.1). 
Its eigenvalues are therefore directly given by 

E(k) = <kiflik> = N-1  E exp ik • (R1 - R1 ,  ) < IN% > . 
/, /' 

(2.65) 

To evaluate the terms of Eq. (2.65) we decompose the crystal Hamiltonian: 

„2 

'H = + V(r - R1) + E V(r - 
1"01 

so that 

E(k) = E0 + N-1  E exp ik • (R1 - 	< I V(r - 	)10/ >. 
1,1',1#1 

(2.67) 

The summation (2.67) contains terms of two types: integrals involving 
three different centers j j' j", and terms where j" = j'. The terms 
with three different centers are small as the functions 4) and the potential 
V decrease with distance, so we neglect them. There remain either diagonal 
terms: 

(2.66) 

= -a < 0 	 (2.68) 
1'01 
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or non-diagonal terms 

<Of IV (r - Rii)kbi  >. 

f 0*(r - 	V(r - 	0(r - Ri)d3r = /ii,. 	 (2.69) 

Here again, as the atomic functions decrease rapidly with distance, the 
only non-negligible terms come from the nearest neighbors, for which we 
set /ii, = -7. We thus write E(k) as 

E(k) = E0 - a + N -1  E exp ik • (Ri - ) (--y). 	(2.70) 
next to j 

The quantities a and 'y are the fundamental parameters of the chemical 
bond. 

We can calculate 7 for the  is states of hydrogen. We find 

7= 2 E1 (1 + (±) exP 	, 
al 	ai 
	 (2.71) 

where E1 is the binding energy of the  is level, al the Bohr radius for this 
level (E1 = 13.6 eV, al = 0.53 angstrom) and a the distance between 
nearest neighbors. 

The order of magnitude of the energy spread of the band E(k) is about 
2-y. For deep electron states this spread is extremely small as a >> al. Let 
us take the case of silicon: a l  = (0.53/Z) angstrom with Z = 14, a = 2.53 
angstrom (distance between nearest neighbors). We find 1,  = 6 x 10-24  eV, 
showing that there is only an infinitesimal overlap between orbitals: the  is  
level remains essentially an atomic level within the solid, without energy 
dispersion. The valence band of silicon is formed by 3s and 3p states, but 
because of the screening of the nuclear charge by electrons in levels n = 1 
and n = 2, we can regard the effective charge as Z' = 4. For a 3s state, 
a3 = (3 x 0.53/Z') A 0.4 A. We thus obtain a broadening or bandwidth 
of the order of one electron volt. 

For the case of a simple cubic lattice where 	takes the six values 
±a along the three axes 

E(k) = 4 - 2-y [cos ka  + cos ka + cos  ka} 	 (2.72) 

with 

= Eo  - a. 

Exercise: Show that the constant energy surfaces given by Eq. (2.72) are 
orthogonal to the faces of the Brillouin zone. 
The width of the band is 12-y. For small lk 1, 

E(k) 4 - 6-y + 7a2 (k! + ky2  + k!)• 
	 (2.73) 
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- irla  

- 1 a 
Fig. 2.6. Representation of the constant energy curves for a square lattice in two dimen-
sions. We see that for small k these are circles (spheres in three dimensions). 

The constant energy surfaces are therefore spheres. The effective mass 
(2.36) is isotropic and takes the simple form 

h2 
m* = 

2-ya2.  
(2.74) 

For larger values of the energy the form of the constant energy surfaces is 
shown schematically in Figs. 2.6 and 2.7. 

Exercise: Using the above formulas and appropriate formulas from quantum 
mechanics, find the effective mass at the bottom of the lowest band formed 
from the lowest hydrogen-like orbital (principal quantum number n = 1) for 
an atom of atomic number Z: 

Result:  m * /m  = 2-1 (ail Za)2 [1+ (ai/Za)] -1  exp(aZ/ai). 	(2.75) 

Applying the result to silicon, assuming a simple cubic lattice as above, 
gives for the  is level an enormous value m*/m ,--, 1.9 x 1021  ! This expresses 
the fact that the energy is effectively independent of k. 

In this calculation, each atomic level of energy E0 has a corresponding 
permitted energy band centered around E0 — a. Permitted bands and for-
bidden gaps appear only if we couple systems with several atomic levels 
(cf. Fig. 1.1). This is the case when several orbitals are taken into account. 
It is also true for crystals built from dissimilar atoms, or for crystals built 
from the same kind of atom, but with an asymmetric cell. 
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k, 

ky  

"111411 
1.1  

o
e 

Fig. 2.7. Constant energy surface in the tight binding approximation for a cubic lattice, 
for the energy value E(k) = 	(Eq. (2.72)). 

One-Dimensional AB Crystal 

We will bring out some basic ideas for the example of a one-dimensional AB 
crystal by following step-by-step the above reasoning for the cubic crystal 
(Eqs. (2.53) to (2.72)). 

The crystal is shown schematically in Fig. 2.8. The elementary cell has 
period 2d. We take as the quantum state of the valence electron of an 
isolated atom A (respectively B) the non-degenerate orbital OA of energy 
EA (respectively OB of energy Es): 

NA 	=[
P2 

, Tr  f 
-2m 

 2 

-I-  VA  kr — RA)] OA(r — RA) = EA 0A(r -RA), 

P, yr 
NB  OB ={-- vB (r — Rs)] OB(r — Rs) = EB OB(r — Rs).  2m 

(2.76) 

The Hamiltonian H of the crystal is 

7,2 	N 

= 2m 
E VA + E VB. 
j=1 	j=1 

We seek an eigenstate lOk > as a linear combination of the atomic orbitals 

0A3 and Osi , centered on the atoms Ai  and 

(2.77) 

10k >= E k j I j > nkj IOBj > • 	 (2.78) 

j=1 
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A 1 	B, 	A2 

o 	• 
d 	d 

B2 	B 	k 	/3, 	AN 	BN 
o 	• 	C)* 

Fig. 2.8. Schematic view of a linear crystal formed by the repetition of atoms A and B 
at distances d. 

The use of Bloch's theorem allows us to write 

	

= ak exp(ik2jd) and 7iki = bk exp(ik2jd). 	 (2.79) 

We assume again that the wave functions of neighboring sites overlap only 
weakly, i.e., 

< (1)Ai 10.4j > = 6ij) < 0.13ikklij > = 
	

< 	>  = 0. 	(2.80) 

The normalized wave function is therefore 

kbk > = N-112 	exp(ik2jd) (ak 10Ai > 	> ) 
	

(2.81) 
.J=1 

with 

l ak 1 2  + I bk1 2  = 1. 	 (2.82) 

The coefficients ak and bk express the weights of the atomic states A and B 
in 114, i.e., the degree of hybridization. We seek solutions of the eigenvalue 
equation 

E(k)110k > = o. 	 (2.83) 

It is convenient, as in Eq. (2.66), to write the Hamiltonian 7-1 by separating 
out one atomic Hamiltonian 7-tAi: 

VAj" E VBj • 	 (2.84) 

Acting with < (/)Ai I on the left of Eq. (2.83) and using Eqs. (2.78) and 
(2.84) we write 

[EA — E(k)]ak exp(2ikj d) + < OA) E VA,» E VB 
	> o. 

3"03 
(2.85) 
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The most important terms in the summations involve only the nearest 
neighbors if we neglect the integrals with three centers and the overlap of 
distant states. The remaining matrix elements are of four types: 

< 	Vn I 	> 	7 < 	I VA I 	> ±C1B3 

< 	I VA I 013 > = 	< 	IVB I 	> = 
	

(2.86) 

where the four quantities aA, an, 7A, and 7B are positive. Moreover we 
note that 'TA = -yB = 7 since 

P
2 

, TT 	17 

2m 
7-- —7A 

< I > < 0A VA I > 

	

= 	B• 	 (2.87) 

Replacing the wave function 11/.)k > by its expression (2.81) in Eq. (2.85), 
and limiting ourselves to coupling between nearest neighbors, we get 

ak exp(ik2jd) [EA — E(k) > + < ç&4j  IVBj-1 VBj+110Aj >] ± 

bk [exp(ik2jd) < Odki I 17.4j I OBj > 

eXp[ik2(j —1 )(1] < b Aj I VAj 	>1 -= 0 	 (2.88) 

Or 

[EA — 2ct it — E(k)] ak — [1 + exp (-2ikd)Ibk = 0. 	 (2.89) 

Similarly the projection of Eq. (2.83) on to < d)Bil gives 

—7 [1+ exp(2ikd)]ak + [EB — 2aB — E(k)]bk = 0. 	 (2.90) 

Equations (2.89) and (2.90)  are two homogeneous equations for two un-
knowns ak and bk. For them to be compatible requires their eigenvalues 
E(k) to be solutions of the quadratic equation: 

[EA — 2aA — E(k)1[EB — 2aB — E(k)] - 
72  [1 + exp(-2ikd)} [1 + exp(2ikd)] = 0. 	 (2.91) 

This equation has two solutions; there are therefore two energy bands for 
k in the first Brillouin zone, namely, 

E(k) = 
EA — 2aA E —  2ÛB  

2 
1 / 	  
—
2 

V (EA — 2aA — EB 2aB) 2  + 1672  cos2  kd. (2.92) 

At k = 0 the state of lowest energy E_ is a binding orbital, the state 
E+  an antibonding orbital. At the edge of the Brillouin zone, the energies 
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-n/2d 	 nI2d 

AA 

Fig. 2.9. Band structure of the one-dimensional compound AB. We have assumed 
EA <E5.  

EA— 2aA and Eg — 2aB differ little from those of isolated atoms. The band 
gap, situated at the edge of the zone, has a width of IEB— EA —2(an 

By this simple example we have shown that if the elementary cell of 
a crystal has two different atoms, a band gap appears. Depending on how 
the bands are filled, i.e., on the number z of electrons per elementary cell, 
we have a metal (z odd) or an insulator (z even). These two bands are 
symmetrical, as shown in Fig. 2.9. 

Distorted Linear Chain 

Let us now take the example of the crystal shown in Fig. 2.10. It consists 
of just one type of atom A but is distorted. 

The period is still 2d, and we now have EA =  EA',  but the values of the 
matrix elements must be reconsidered: we set 

A', A2 	A' 2 	 A, 	A' 1 _ 

• 	-•—•---0- 
A N 

d-d 1  d+d i  
2d  

Fig. 2.10. Linear chain made up of one type of atom, but distorted. 
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<0.4j1VA' j VA' j-110Aj > = —20 .41 

<OA' jIVAj VAj-1-110.4' j > = 
	 (2.93) 

<OAAVAikkivi > 	e) = < 

<0AilVA110Aii-1 > = —7(1. +6) = < OAjIVA' j-110A' j-1 > • 
	(2.94) 

The equations analogous to Eqs. (2.89) and (2.90) that yield ak and a'k  , the 
coefficients of th, have one non-vanishing solution: we obtain from it the 
equation giving the eigenvalues E(k): 

E(k) = EA — («A + «A, ) 
OctA  _ aA, )2 ± 	 472 [cosz kd _ e2) 0]. 	 (2.95) 

A band gap opens between the two solutions at k = 7r/2d which exists only 
if (aA differs from aA,  and/or e is non-zero (Fig. 2.11). 

Fig. 2.11. Band structure of the distorted compound of Fig. 2.9. The first Brillouin zone 
is the segment [—s./2d,ir/2d[.  kA  — cr iA  I is assumed to be small with respect to 2171. 

In the absence of distortion the period of the lattice is d and the first 
Brillouin zone consists of the segment [—ir d,ir I d[. The distortion doubles 
the spatial period, which becomes 2d, and reduces the first zone to the 
segment [-7r/2d, 7r/2d[. The band structure of the compound can be re-
garded as a folding of the band: the upper branch denoted + then arises 
from the regions lki > 7r/2d of the dispersion curve E(k) of the undistorted 
compound. 

If the periodic chain has one electron per cell, the electron states are 
filled up to k = ir/2d. In the absence of distortion the chain is a conductor. 
The distortion opens a band gap at precisely this value of k, and the system 
becomes an insulator. This is the "Peierls transition." 
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2.4b Plane Wave Expansion 
We are interested in states close to the band gap and seek a solution of the 
Schrödinger  equation of the form 

(2.96) 

where lk > is any plane wave of the form  Il-1/2  exp ik • r, where S/ the 
volume of the crystal. Substituting this into the crystal Hamiltonian and 
multiplying by <k' we get a set of homogeneous linear equations in ai: 

h2 

m
Oak' + E vivik > ai = E  ai' . 

(2.97) 

Expanding V in a Fourier series, 

V = 	VG exp i G • r, 	 (2.98) 
G 

where G is a vector of the reciprocal lattice (cf. Appendix 2.1), and regard-
ing the crystal as a parallelepiped of sides Lx , Lv , L z , we can write 

1 
< IV* > = E VG exp [i(k — + G) • r] d3  r 

G 

E VG 11 2 sin — k'z  + Gx )Lx 12  
(kx  — + Gx )L x  

G 	x,y,z 

E VG 8 	-1-c • 	 (2.99) 
G 

The matrix element < kW* > is then zero unless k' — k is a vector 
of the reciprocal lattice. In Eq. (2.97) we can limit ourselves to summing 
over those k which differ from k' by a vector of the reciprocal lattice. This 
divides the number of terms by the number of cells in the crystal and is an 
enormous simplification. But the remaining sum is still in principle infinite 
In practice, however, the Fourier components VG of the potential decrease 
for large vectors G, and we can truncate the summation at a few hundred 
terms. There thus remain for each zone point several hundred equations 
giving several hundred energy eigenvalues and the first few hundred bands. 
Even with modern computers this method remains relatively inaccurate. 

We can greatly improve the convergence by looking for states as linear 
combinations of orthogonalized plane waves 41, defined as 

= exp(i k.r) +  >b c k (r), 	 (2.100) 

where tPC k (r) is a Bloch state corresponding to the core of the ions (hence 
with very negative energy). We require sh to be orthogonal to the states 
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f d3r 	(r) = 0 

Or 

be  = — f d3r Of,* (r) exp(i k.r). 	 (2.101) 

The Ok functions are known precisely if we know the tPc k accurately. 
This is true if we use the tight binding method for calculating the deep 
Bloch states, as the overlap of atomic functions of very negative energies is 
small. The tight binding approximation is excellent in this case. 

The 4`k functions have, by construction, the properties we seek: They 
are orthogonal to the deep states. They have a very localized part which 
oscillates rapidly, like the wave functions of the atomic core, and between 
atoms they appear like plane waves. The method then consists of seeking a 
solution to the Schrödinger  equation for the crystal of the form 

ti) = E Ck AL. 	 (2.102) 

Again, the qPi, are only coupled by the periodic potential to functions 

Ok-I-O so that this method is analogous to the plane wave method described 
above. But we obtain excellent results using expansions of .1,/, in a few tens 
of orthogonalized plane waves. This is at present the most powerful method 
of calculating the band structure. 

Appendix 2.4 describes another semiempirical method of determining 
the band structure, the so-called k • p method. 

2.5 The True Band Structure 

Before describing real band structure for silicon we note that Appendix 2.3 
shows, using the tight binding method, that crystals of the face-centered 
cubic form like silicon have triply degenerate bands at k = 0 (levels x2 and 
x6). This occurs at the top of the valence band. We also know from the k • p 
method (Appendix 2.4) that for k = 0 the states resemble atomic states, 
and are thus possibly degenerate. In fact, we have up to now neglected the 
role of spin in the electron Hamiltonian by taking account of its influence 
only via the Pauli principle. It can be shown that in its motion in the electric 
potential, the spin sees a magnetic field which results in a Hamiltonian of 
the form 

1 
n8.0. = 4 m2  c2 

cr x grad V(r) • P, 	 (2.103) 

where a = (crs , cry  , c r z ) are the Pauli matrices. 
This so-called "spin-orbit" interaction has the effect of partially lifting 

the degeneracy mentioned above. This is seen in Fig. 2.12 which shows the 
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band structure of silicon around the band gap of width Eg . We note that 

the maximum of the valence band is doubly degenerate (the point F25'). 
The spin-orbit interaction has split one of the valence bands by an amount 

Fig. 2.12. Band structure of silicon: the letters L,1" denote particular points of high 
symmetry in the zone. is the center of the zone. L is the point at the edge of the 
zone in the direction (111). The distance Li /13  is experimentally determined, while the 
absolute energies of the L'3  and L1 levels are found by a calculation by the method of 
orthogonalized plane waves (D. Brust, J.C. Phillips, and F. Bassani, Physical Review 
Letters 9, 94, 1962). 

Some of the energy values given in the figure are found from experiment 
and others from calculations based on the method of orthogonalized plane 
waves. The form of the constant energy surfaces near the top of the valence 
band is complex (to describe it we need a k p theory for a degenerate level). 
We assume that it consists of two spheres, one called "heavy holes" and the 
other "light holes" (the concept of a hole will be introduced in Chap. 3). 

We note that the minimum of the conduction band is not at k =  0, 
in contrast to the maximum of the valence band. In such a case the gap 
is called indirect. The value of Eg  is 1.12 eV for silicon. The mass of the 
heavy holes is mhh = 0.49m and the mass of the light holes is mih -= 0.16m. 
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Fig. 2.13. Constant energy surfaces near the bottom of the conduction band of Si. 

The minimum of the conduction band is in the direction [100], and by 
symmetry on the equivalent directions <  100>. There are thus six minima 
of the conduction band around lk I 0.8 x (27r /a). 

By symmetry each ellipsoid of constant energy in the conduction band 
must have two equal axes. These are prolate ellipses as shown in Fig. 2.13. 
The dispersion relation near a minimum of the conduction band has the 
form 

h2 ( k.2 k2 A k2) 
E (k) = 	+ --s 

h MT 	ML 
(2.104) 

for the ellipsoids [001] and [004 Here we have set  Like  = kz  — k zo, with 
kzo = (0, 0, 1.67r/a). There appears a longitudinal effective mass mL = 
0.98m and a transverse mass 777.2,  = 0.19m. 

This shows the complexity of the real situation. However to understand 
many properties it is often enough to consider a band structure with a 
direct gap as shown below, using appropriate effective masses. We will call 
this representation "standard band structure" in the remainder of this book 
(Fig. 2.14). 

2.6 Experimental Study of Band Structure 

We confine ourselves to indicating two important methods. 
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Fig. 2.14. Standard band structure: the maximum of the valence band (V B) and the 
minimum of the conduction band  (CB)  are at k = O. 

2.6a Optical Methods: Energy Level Determinations 

In the sanie way that atomic spectroscopy helps to determine atomic energy 
levels, spectroscopy of semiconductors allows us to fix the energy levels of 
the crystal. Consider first the effect of a light beam of wavelength A incident 
on the surface of a semiconductor. If the frequency of the light is such that 
hi.'  < Eg  the light beam will traverse the crystal without attenuation. If by 
contrast hv > Eg  the photons can be absorbed by excitation of valence-
band electrons into the conduction band. In addition a part of the incident 
beam is reflected. 

The intensity of the light beam I varies with distance as 

I = /0  exp(-ax), 	 (2.105) 

where a is the absorption coefficient (Fig. 2.15). One can show (e.g., 
Wooten: Optical Properties of Solids, Academic Press, New York, 1972) 
that the absorption coefficient can be expressed as 

a -., (h v - E9 ) 7 , 	 (2.106) 

where ^y is a constant which depends on the nature of the transitions. A 
calculation of the absorption coefficient is presented in Sect. 6.1. 

Figure 2.16 shows the various possible transitions: (a) vertical permitted 
transitions between extrema, called direct transitions (see Chap. 4): -y = 
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0 
Fig. 2.15. Absorption of a light beam by a solid. 

Fig. 2.16. Optical transitions between the valence and conduction bands. 

1/2; (b) vertical forbidden transitions: -y = 3/2; (c) indirect transitions 
between extrema situated at different points in the zone: 7 = 2. 

The latter transitions can only occur if accompanied by the emission or 
absorption within the crystal of sound waves known as phonons. 

When hv is much larger than the fundamental absorption these effects 
overlap for the various gaps E91, E92 which occur in the band structure. 

Absorption curves for various semiconductors are shown in Fig. 2.17. 
We see that absorption rises very rapidly with energy. We reach absorption 
coefficients of order 105  to 106  cm', i.e., the beam decreases in intensity 
by a factor 1/e over a distance of 100 or 1000 angstroms. It is then difficult 
to measure the absorption, which requires a very thin sample, and it is 
preferable to study the reflectivity of the crystal surface. Each time the 
photon energy reaches a critical value for the band structure (the distance 
between band extrema) a structure is observed in the reflectivity. Figure 
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Fig. 2.17. Absorption coefficients for common semiconductors. 

2.18 shows a schematic view of a reflectivity experiment, which may use a 
light source with a non-constant wavelength intensity. 

An elliptical mirror with foci A and B is mounted on a rotating axis. 
The monochromator supplies at A a beam of wavelength A but whose in-
tensity may vary with A. As the elliptical mirror rotates, the beam from A 
alternately falls on the sample under study, when the detector only receives 
light reflected from the sample, or directly on the detector after a rotation 
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Fig. 2.18. Principle of a reflectivity experiment. 
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of the mirror through w. The rotation thus produces a sequence of reflected 
and incident signals at the detector, allowing one to measure their ratio as 
a function of wavelength. 

2.6b The Cyclotron Resonance: Measuring the Effective Mass 

Let us consider for example a carrier of charge q placed in a constant mag-
netic field 8 and an alternating electric field orthogonal to 8 with frequency 
w. Let us assume that its effective mass ins is isotropic. The equation of 
motion (2.38) is 

dv 
m* —

dt 
= q (E + v x13). (2.107) 

In the absence of the electric field the motion is circular in the plane per-
pendicular to 8 or helical around 8 with frequency wc : 

q B 
we  = 	. 	 (2.108) 

m* 

We call these orbits "cyclotron orbits." The orbits are helices around the 
magnetic field. In the presence of an electric field we have to take account 
of collisions, which we can do by introducing an average frictional force; in 
the Drude model (Sect. 5.2) this is –m*v/T. 

The equation of motion is then 

m* 

 (

—
d v 

+1')  
dt T 

(2. 109) 

— 
Setting B. = By  =  O;  Bz  =  B;  Ey  = Ez =  0;  ex  = eo exp iwt ; vx = 
A1 exp jut; yv  = A2 exp  jut,  substitution in Eq. (2.109) gives 

, . 	1 ) 
= — +

q eo  A  

ii. 1  (2, w + -
/- 	m5 	ii2 4) 1 C 

A2 (i Le +!) —) = —A1 coc, 
T 

and the conductivity for this carrier 

ix 
 = = 	= 

4 vx Vil 
= 
e r 	1 -1- iur 

Crxx — — —
o 	

(2.110) 
ex Ex 	 m5 1 ± T 2  (4 – w 2  E 	 ) -I- 2 i w T . 

A resonance appears for cv = we , in the form of a conductivity increase. 
This corresponds to a resonant absorption of energy by the carriers, which 
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occurs when the charge rotates at exactly the same frequency as the elec-
tric field. Measurement of the resonant frequency gives  a determination of 
the effective mass (in practice one works at fixed frequency and scans the 
magnetic field). For this phenomenon to be important requires CV c T > 1, 
i.e., we have to work with strong magnetic fields and at low temperatures 
where collisions are rarer. Appendix 3.1 describes the results of a cyclotron 
resonance experiment for silicon. 



Appendix 2.1 

Matrix Element of a Periodic Operator 
between Two Bloch States 

Periodicity in Three Dimensions and Fourier Expansion 

We show first that the Fourier expansion of a function 1(r)  which is periodic 
on a crystal picks out the vectors G of the reciprocal lattice and no others. 

The Fourier expansion of  1(r),  for any r, can be written 

f (r) = E nK exp iK • r. 	 (2.111) 

The periodicity of  1 (r),  for any translation T of the direct lattice given by 
Eq. (2.2), can be written as 

f (r + T) -= f (r) 	 (2.112) 

Or 

E flic  exp(iK - r) exp(iK • T) = E itIc exp(iK - r). 	 (2.113) 

K 	 K 

The relation (2.113) will hold for all r and T only for those vectors K such 
that 

exp iK • T = 1. 	 (2.114) 

This is precisely the property (2.11) of the reciprocal lattice, and K can be 
identified with the vector G defined by Eq. (2.10). Hence the crystal po-
tential has a Fourier expansion involving only the reciprocal lattice vectors. 
Similarly the periodic part of a Bloch function has the expansion 

un,,k(r) = E Un,k ,G exp iG - r. 	 (2.115) 
G 
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Action of a Periodic Operator on a Bloch Function 

A periodic operator A(p,r) is an operator for which 

A(p, r + T) = A(p,r). 

If we write it in the form 

A(p,r) = E fi (r) Ai (p), 

(2.116) 

(2.117) 

the definition (2.116) requires that the fi(r) should be periodic functions. 
Expanding these functions in a Fourier series, we can always write a periodic 
operator in the form 

A(p, r) = E exp(iG•r) A(P). 	 (2.118) 
G 

The action of such an operator on a Bloch function exp(ik • r) un,k(r) 
will produce a periodic function multiplied by exp(ik • r). In fact AG (p) is 
a combination of derivative operators which transform a periodic function 
into a periodic function, while retaining a factor exp(ik • r). In general, we 
will have 

A(p,r)exp(ik - r) u n,k (r) = exp(ik • r) /4,,,k(r), 	 (2.119) 

where Un,k(r) is a periodic function which can be expanded in a Fourier 
series: 

/1„,k(r) = E Un,k exp(iG • r). 	 (2.120) 
G 

Matrix Elements of a Periodic Operator 

We wish to calculate 

< 	k>  = 
 n 	

(r) 14„,k(r) exp[—i(k' — k) • r] d3r 
 ' 

E un";,k, ,G, Un,k,GX 
G ,G ' 

Jo d3r exp i(k — k' + G — G') • r. 	(2.121) 

We assume a cubic lattice with lattice constant a, and let S1 = Lz L y L z  be 
the volume of the crystal, taken to be a parallelepiped of edges Lx ,  L, L. 
We calculate the integral 
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1 f expi(k — k' + G — G') • r d3r 

x,y,z 

Using the fact that (G — G') is a reciprocal lattice vector, Gs  — G'. = 
mx  x 21r /a.  Further, Lz  =  Na  and the components Icx  and k. have the 
forms nx 27r/Lx  and n'x2r/Lx  respectively, with 	n, n'  whole num- 
bers; the expression (2.122) then becomes 

H
y,z 

12 5  r (nx  — nix ± mx Nx)1 (2.123) 
x, 

[ 27r(nz  — .74 + inx  Nx)  j'  

so that the argument of the sine is always an integer multiple of r. We have 
factors of the form sin X/X, which are 1 for X = 0, and identically zero 
for X O. We calculate the argument of the sine. If k and k' are in the 
first Brillouin zone, either they are equal and the above expression becomes 

sin(rnzrN.)/(msr-Nx) = 17.,v ,z 6,,z , or they differ but are within the 
zone so that Inx  — n'x  I <N  and the expression vanishes. It follows that 

1 
F2  f exp i(k — k '+ G — G')r d3r = 6k ,k' 6G (2.124) 

and the expression (2.121) , after replacement of the integral by Eq. (2.124) 
and carrying out the summation over G', becomes 

< n' ki lilln k > = SI E uz,„„G  , Un,k ,G (1,k' 
	 . (2.125) 

G 

which shows that a periodic operator bas zero matrix elements between 
Bloch functions of different k. 

1 	+LxI2 
=

I 1. 
— 	f 	dxexpi(k s  — ex  + Gx  — G's )x 
S 

TT 
A x,y,z -Lx/2 

= 
ri  2 sin  1 (kz  — k's  +  Gs  — G's )Lx  . (2.122) 

(kx  — k's  -I- Gs — gsgx 
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Symmetries of the Band Structure 

Transformation of the Wave Function under Symmetry 
Operations of the Direct Space 

Consider a symmetry operation R. and a state 0„,k corresponding to a point 
k in the first Brillouin zone. We will show that the application of R. to the 
wave function rotates the wave vector in the reciprocal space in the same 
way that the point r is rotated by the operator R in the real space: 

R. 7,bn,k (r) = 7,bn,nk (r). 	 (2.126) 

To demonstrate this result we have to define the effect of a symmetry op-
eration on a quantum state in general. Consider for example a rotation in 
ordinary space (here in two dimensions) taking the point A to the point 
B (Fig. 2.19(a)). Let R be the geometrical transformation B = R(A) and 
a physical system, for example an electron, be in the state 01(r) localized 
around A. In Fig. 2.19(b) the hatched region represents the space where 
the probability density (r) (r) is not negligible. Rotating the system 
amounts to bringing it into the state /P2 that we seek, and which is repre-
sented in Fig. 2.19(c). It is clear from the figure that 

02(B) =  1(A) = 1/4 (R-1 B). 	 (2.127) 

This holds for any point r, whence 

R 	= 0(1?-1r). 	 (2.128) 

This relation allows us to associate with a symmetry operation R in the 
ordinary space a (unitary) operation R. in the state space. Applying this 
relation to On* (r) we obtain 

R.  On,k (r) = exp ik • (R-Ir) u„,k (R-ir) 

= exp i(R k)-r u,,,k (R -1 r) 	 (2.129) 

which demonstrates Eq. (2.126). The symmetry operation has given us a 
new state which is to be associated with the vector Rk. 
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Fig. 2.19. (a) B is the transformation of A under the rotation R. The hatched region (c) 
is deduced from that of (b) by the same operation. 

Symmetry of Constant Energy Surfaces 

We show that RIP,k (r) is an eigenstate of the crystal Hamiltonian H: let 
us apply the operator R to each side of the Schrödinger equation: 

11 On* (r) = Enk On,k (r), 	 (2.130) 
R n on,k  (r) = Enk R 	(r). 	 (2.131) 

As H is invariant under the symmetry operation R, it commutes with R, 
so that 

7-1 R 	(r) = Enk R On,k (r) = E„k tp„,Rk  (r). 	 (2.132) 

The state RO„,k deduced from Onk by the symmetry operation corresponds 
to the same energy and is orthogonal to On* since it corresponds to a 
different point of the zone. We can thus find for each symmetry operation a 
state degenerate with the original state and situated at Rk. This shows that 
the constant energy surfaces have the symmetries of the crystal, making it 
sufficient to study only a fraction of the Brillouin zone. 
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Band Structure of Column IV Elements 
Calculated by the LCAO Method 

We give here a first idea of the band structure of column IV elements, 
calculated by the tight binding method, for energies close to the band gap, 
and thus obtain a theory of the covalent bond in semiconductors. This 
calculation formally holds for the sequence diamond, silicon, germanium, 
and grey tin. (See G. Leman, Annales de Physique, Paris, 7 1962  P.  505.) 

The crystal is face-centered cubic with two atoms per cell, one at the 
origin, the other translated in the direction [1 1 1] of the quarter b of the 
principal diagonal of the cube (see Figs. 2.1 and 2.2). Each atom is at the 
center of a regular tetrahedron. The primitive cell, shown in Fig. 2.1, is 
rhombohedral with basis vectors: 

al  = (a/2)(i + j), 

a2  = (a/2)(i + k), 

a3 = (a/2)(j + k). 	 (2.133) 

The electron configuration of column IV atoms is ns2np2  with the 
atomic Hamiltonian 

,2 	 ,2 
Hat = ;.--7-- ± V(r), 	or Wm, = z-  - + V(r - b), rt   

2m 

and eigenstates Os , Op of energies E., E.  We consider 

01 = (08 - ckx - 1Sy + 4)z)/ 2 , 

03 = (Os + (15x — (ky — Oz )/ 2. 

(2134) 

(2.135) 

These functions, called hybrid orbitals sp3, are not atomic eigenfunc-
tions but form a basis for the tensor product s 0 p. They have the essen-
tial property of "pointing," respectively, in the directions [1 1 1], [-1,-1,1], 
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[-1,1,- 1], [1,-1,-1], i.e., toward the vertices of a tetrahedron in the observed 
direction of the covalent bond. The matrix elements of Nat in this basis are 

+ 3Ep  
< 950tat 101 > = 4 

E, — Ep 
< Oilnatkh > = 	4 	

(2.136) 

where 1 denotes an orbital other than i localized at the same atom. 
Similarly we consider hybrid orbitals pointing in the opposite directions: 

(Y0 = (0. — 	— çby — 	pointing toward [-1, 

44  = (O. +  42,  + çby  — oz )/2 	pointing toward [+1, 

012 = (08+0. — Oy 	q5z)/2 	pointing toward [+1, 

4/3 = (Os 	tby ± 40/2 	pointing toward [-1, 

—1, 
+1, 
—1, 
+1, 

—1], 
—1], 
+1], 
+1]. (2.137) 

We seek a Bloch function solution for the crystal of the form 

On,k= CE exp(i k • Ri) E [Ai oi(r — Iti)+11"i (//i (r —11; — b)], 
i=0,1,2,3 

(2.138) 

where the index j denotes the particular site in the lattice, the index i one 
of the four orbitals Eq. (2.135), and C is a normalization coefficient. 

The crystal Hamiltonian is 

fi  = --A + E V(r — + V(r —  R — b), 	 (2.139) 
2m 

whence the eigenstate problem: 

fi  1Pn,k (r) = En,k On* (r). 
	 (2.140) 

Consider the functions oi  and (://i  centered, respectively, at the origin and 
at (1/4, 1/4, 1/4), and let us take their product with Eq. (2.140). We get 

< Ozinin,k > = En,k < 401,k >, 	 (2.141) 

= En,k < 0:In, k > . 	 (2.142) 

We can rewrite Eq. (2.139) in the form 

n =  flat  + E V(r — Ri) + E V(r —  R  — b), 	 (2.143) 
j00 

where Hat  is the electron Hamiltonian for the atom at the origin. One can 
thus see that the only contributions on the left in Eqs. (2.141) and (2.142) 
come either from the atomic terms or from the interaction term coupling 
cki  or ¢/i  to the only orbital from the nearest neighbor which points toward 
it (neglecting terms of the form < Vfrt > and interactions between 
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orbitals centered on two neighboring atoms but not pointing to each other). 
The interaction or "transfer" integrals are all equal and negative since the 
potential is attractive and the functions 4, and 0' have the saine  sign in the 
region where they overlap. We set 

< 66 1 v10' > = 	 (2.144) 

Let us consider the site at the origin: Oo points toward the site b = 
(a/4)(1, 1, 1) and is thus only coupled to the orbital 0,13  centered at b, with 
the coupling coefficient exp ik • ao = 1. 01, being directed along [-1,-1,1] 
is coupled to the orbital centered at the site (a/4)(-1,-1,1) = b — al , or 

— (—a1 )] with the coefficient exp ik • Ri  = exp(—ik •  ai),  etc. Finally 
Eqs. (2.141) 

—A 

and (2.142) can be written 

[ER +  3 Ep E„—  Ep 
d + 	E  

(2.145) 

(2.146) 

exp i k • & A + 

loi 
A exp(—i • k • ai)A'i  = 0, 

[E„+  3 Ep 	En,d 
4 

E.—  Ep  
O. 

	

4 	
EA; = 
10 i 

This system of homogeneous equations gives the eight coefficients Ai and 
241i  which specify the wave function Eq. (2.138), provided the determinant 
of the coefficients vanishes. One thus obtains the following secular equation, 
with 

x 	En,k — Ep ,  6=  
Ep E

8 and an  = exp(—i k • an), (2.147) 
' 

x+6 6 6 6 A cro 0 0 0 
x+6 6 6 0 A al 0 0 

6 6 x+6 6 0 0 Àa2 0 
6 
a'6` 

6 
0 

6 
0 

x+6 
0 

0 
x+6 

0 
6  

0 
5 

A a3 
6 

=0. (2.148) 

0 A at 0 0 6 x+6 6 6 
0 0 A a; 0 6 6 x+45 
0 0 0 A a; 6 6  6 x+6 

Setting 0 = 1 I ET", I, a careful calculation shows that Eq. (2.148) can be 
written as 

(x2  A2 ) 2 (2:2  + 4 6x A2  + 4 6 A 0), 
(x2  + 4 6x—A 2  — 4  6 A 0) = 0, 	 (2.149) 

with 
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1kz  a 	ky  a 
0(k) =-

2 
[1 + 	cos 	cos 2  

1/2 

	

ks  a 	k a 	ky  a 	ka  l + cos 	cos 
2 

— + cos --- cos — 

	

2 	 2 	2 

Equation (2.149) gives x(0), i.e., the dispersion relation En (k). 

(2.150) 

Resulting Band Structure 

We obtain four flat bands (for which En  does not depend on k) which 
correspond to the doubly degenerate solutions x1 = A and to the similarly 
doubly degenerate solutions x2 = -A. 

The broad bands are associated with the other solutions of Eq. (2.149), 
i.e., 

x3 = -2 b + 	62  + A2  + 4 6 A 0, 

X4  = -2 6 - 	62  + A2  + 4 A 0, 

X5  =  -2 8+  V4 62  +A 2  - 4 6 A 0, 

x6 =  -26 - 	62  + A 2  - 4 6 A 0. 	 (2.151) 

The band structure has a different shape for A > 26 or A < 26. It is 
shown in Fig. 2.20(a) for two directions of the vector k in the zone and in 
the special case A = 6. There are 8N electrons to be placed in these levels 
since the primitive cell contains two atoms each possessing four valence 
electrons. Taking account of the spin degeneracy of each atomic level we 
see that at zero temperature the bands x4, x6, and x2 are filled. We are 
thus dealing here with a metal, as the band x5  is empty and very near in 
energy to the filled levels. 

By contrast if A > 26 we have a semiconductor. This is shown in Fig. 
2.20(b) for the special case A = 36. The 8N electrons fill the x4, x6, and x2 
bands, and the material is an insulator at zero temperature. The width of 
the band gap is 

Eg  = X5,k=0 — X2  = 2 A - 4 6. 	 (2.152) 
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a) 	
x/b 
	 b) 

Fig. 2.20. Band structure of an element of column IV of the Periodic Table, calculated 
by the LCAO method. The transfer integral is —A, and the distance between the atomic 
s and p levels is 46. The bands  X4, x6, and x2 are full. (a) A = 5; the material is a 
conductor; (b) A = 36; the material is an insulator. 

Application: Binding Energy of 
Semiconductors of Column IV 

This very simplified picture of band structure already gives an approxi-
mate understanding of several properties of these solids, for example the 
relation between binding energy  and band gap width. The following values 
are measured for the binding energy Ec and the width of the band gap Ep , 
expressed in eV (P. Manca, Journal of Physics and Chemistry of Solids 20, 
268, 1961). 

C Si Ge Sn 
Ec 14.7 7.55 6.52 5.5 
Ep  5.2 1.12 0.66 ,- 0 

These values are plotted in Fig. 2.21. The experimental points fall ap-
proximately on a line with the equation 

Ec(eV) = 1.85 Ep  + 5.36. 	 (2.153) 

In our model the binding energy is the difference between the energy 
2E, ± 2E1, of an atom (2 s and 2 p electrons) and the energy per atom of 
the crystal. This energy Ex is, taking account of Eqs. (2.147) and (2-151), 

Ex = 4 Ep  + 2 x2 + (zone average of s6  +54). 	 (2.154) 
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Fig. 2.21. The relation between cohesive energy and band gap width obtained by the 
LCAO method for the sequence of crystals of elements of column IV of the Periodic 
Table. 

As a first approximation for the average we can take the value (x6,k=0 + 
x4,k=o). We then find 

Ex = 4 Ep  — 4 6 — 4 A, 	 (2.155) 

and using Eqs. (2.152) and (2.155) the binding energy can be written as 

Ec = 2(E8  + Ep) — Ex, 
Ec = 2 Ep  + 4 6. 	 (2.156) 

This relation should be compared with the experimental relation Eq. 
(2.153). The energy 45 = 4 - E. is the excitation energy for an atomic 
electron from level s to level p. This quantity, provided by atomic physics, 
is almost constant over column IV and is about 5 eV. The agreement with 
the experiment is very good. This description of the binding energy neglects 
the effect of the repulsive term that must exist if the crystal structure is 
not to collapse. If the repulsive interactions vary very rapidly with distance 
then the above description holds; this is for example true of the hard-sphere 
repulsive potential. 

We can understand also, at least qualitatively, the influence of the tem-
perature or pressure on E9 . When the temperature decreases or the pressure 
increases, the mean distance between atoms decreases, raising the value of 
the integral A, and simultaneously the band gap. 
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However, the above calculation does not allow us to get more than the 
order of magnitude of these variations. The fundamental reason is that by 
limiting ourselves to combinations of a small number of atomic orbitals and 
only considering nearest neighbors we are working in a Hilbert space of too 
small a dimension. Nonetheless, this method gives an excellent approxima-
tion for the deep levels in solids. 

Remark: for tin (the allotropic form called "grey tin") the gap is actually 
negative. This means that there is an overlap in energy between the top of 
the valence bands and the bottom of the conduction band. In this situation 
the highest energy electrons in the valence band populate the lowest energy 
states of the conduction band. There can thus exist a metallic-type conduc-
tivity due simultaneously to conduction-band electrons and to "holes" or 
empty places in the valence band, with equal numbers (see Chap. 3). We 
say that we are dealing with a "semimetal." 
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The k•p Method 

The k • p method is a semi-empirical method which uses quantities found 
from experiment in the theoretical calculation of the band structure. We 
start from the equation 

[ p2 
+ V(r)] On,k (r) =  E,1 On* (r). 	 (2.157) 

Replacing On,k by un,k(r) exp(ik • r) we note that 

P On* = exP(ik-r) (p+ h k) un,k (r), 

P2  tP„,k = exp(ik-r) (p + h k) 2  un,k (r), 	 (2.158) 

and thus 

1 (p  + h k) 2  
L 	2m 	

+ V(r)] un,k (r) = E
L 

	un,k (r). 	 (2.159) 

The periodic part of the Bloch function obeys an equation resembling 
the original equation apart from the vector h.k. We can rewrite Eq. (2.159) 
in the form 

[ p2 	h  k • p h2  k2  
(r)] V 	 (r) = En tk Un,k (r)• 	(2.160) 

2m m 	2m 

For a free electron in a box V(r) = 0 an obvious solution is u = con-
stant or Ek -= h2 k2 /2m and V) = ç 1 /2  expik • r. Equation (2.160) takes a 
particularly simple form for k = 0: 

[
P

2 

—
2m 

+ VW] un,o(r) = E,0 un,o(r). (2.161) 

We note that when the atoms are very far apart, the  E,0  are the atomic 
levels and the un,o(r) atomic eigenfunctions. We note also that the equation 
giving un,o(r) has the symmetries of the crystal potential V(r). 
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The k - p method assumes that we know the values  E,0 either from 
theory or experiment. We then consider small values of k close to k = 0 
and treat the operator (h/m)k • p as a perturbation in the Hamiltonian. 

Although the k - p method is more general, we shall assume for simplicity 
that the crystal has a center of symmetry (in the diamond structure this 
center is halfway between two atoms) and we confine ourselves to the study 
of a given non-degenerate level n. 

We first use the symmetry of Eq. (2.161). The Hamiltonian is invariant 
under inversion, the symmetry operation sending r to —r. Then if un,o(r) 
is an eigenfimction of energy E,0,  un,o(—r)  is also an eigenfunction of the 
same energy, hence also [u n,o(r) + un,o (—r)] and Eun,o(r) — un,o(—r)]. The 
eigenfimctions can thus be classified into even and odd functions. 

In perturbation theory one starts by considering the first-order diagonal 
matrix elements of the perturbation Hamiltonian Hp . If we consider a non-
degenerate level In, 0>  the first-order term < n, 01k • pin, 0> vanishes: 

f u 	
a 

n* ,0(r) yun,o(r) d3r =-- o (2.162) 

because un,0 is either odd or even. We note that un,o(r) is an eigenfunction 
of Eq. (2.160) with the eigenvalue  E,0 + h2 k2 /2m. There remains only the 
second-order correction. To this order the energies are given by 

h2  k2  
En, = En,0 + ----+ 2m 

h
2 E  < n',  01k  • p/mln, 0 ><  n,  01k  - p/min', 0>, 

, 	(2.163) 
En ,0 — n'On 

and thus 

hz / m  \ 
En,k = En w o + E - --) ka kb 2m m* orfl 

a,0 

with 

( 771 

rie ap —) = 60  ± "N
--.< it',  Olpa ln,  0 ><  n,01po1n',  0 > 

m L-4 	E,0 — n' 

(2.164) 

(2.165) 

This so-called k - p method allows us to find the effective masses directly 
either from the energy spectrum at k = 0 (the values of  E,0)  and from 
the parameters 1 < n', Olp„1n, 0 > 1 2 . This is the most useful theoretical 
procedure for predicting and analyzing details of the band structure of 
semiconductors near the band extrema, and thus in the region of interest. 

We note that if we know the un,o(r) we can calculate the parameters 
directly. Generally these matrix elements are deduced from experiment. The 
energy differences which appear in the denominator are most usually found 
from optical absorption or reflectivity. 
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k 
0 

Fig. 2.22. The curvatures at k = 0 of the bands E1 and E2 are principally determined 
by their mutual interaction: the other bands are clearly further away, and the energy 
denominators make their interactions negligible (cf. Eq. (2.166)). In consequence the 
curvatures, and thus the effective masses of the bands E1 (conduction) and E2 (light 
holes) are practically opposite. 

The order of magnitude of me is given by 

m 	p2  1 
1+2< >--. 

me 	m Es, 
(2.166) 

Here 14/m is of the order of the ionization energy of an atom, for example 
5 eV, thus for Eg  = 0.5 eV, m/m* will be of order 20. 

If we are interested in two bands 1 and 2 close in energy with their 
extrema at k = 0, we can confine ourselves to including just their interaction 
in the expression (2.165), the corresponding term being much bigger than 
all the others (Fig. 2.22). 

Example: for a cubic crystal the constant energy surfaces are spheres 
around k = 0, and we have 

1 	1 	2 1 < lIpx 12 >1 2  
, m; = —m  ± m2 E1 - E2 

1 	1 	2 1 < 117)4 > 1 2  
, m; = 7-7-1 ± m2 E2 - E1 

(2.167) 

Or 
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1 	1 	2 
(2.168) 

m; 	m2  * m 

For germanium at k = 0 the "light hole" band (see Chap. 3) has an 
effective mass rr4 = —0.042m, while the conduction band has an effective 
mass ml` (at k = 0) of 0.036m, in good agreement with the preceding 
expression: we sometimes say that in the region of small k, these two bands 
are "mirror images" of each other, since m; =_-• —m;. 

For the perturbation theory to provide a good approximation the matrix 
elements of the perturbation (h1m)k • p between the functions u,,,0 and un, ,o 
must be such that 

l< n, 0 ih  k • p/ml  ni , 0 >1 <  1,  
En  — En, 

or, for two close bands, from Eqs. (2.167) and (2.169): 

1 	2 I < 111)4 > i 2  
mt m2 Ei  _ E2  ' 

h k. 	El — E2  < 
M 	i < llps 12 > I .  

Combining these two relations we get 

h2 k2 
	 < Ei. — E2- 2m; 

The quantity h2k2/2m; is the kinetic energy in the Ei band. For per-
turbation theory to give a good approximation, we require the energy in 
the band to be small compared with the band gap. 

Example: E1 — E2 = Eg  = 1 eV. For typical values of the electron 
energy in the band, of order the thermal energy kT = 25 meV at room 
temperature, the approximation easily holds. 

(2.169) 

(2.170) 
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Excited States of a 
Pure Semiconductor and 
Quantum States of Impure 
Semiconductors 

A semiconductor at zero temperature is an insulator. At room temperature 
we know that the system is not in its ground state. We thus have to con-
sider the first excited states of a semiconductor. In these excited states a 
few electrons occupy the conduction band rather than the valence band, 
where they leave empty states. These empty states, called "holes," play a 
fundamental role in the conduction process. 

Experiments show that the purity of semiconductors most often deter-
mines their behavior. The understanding of quantum states resulting from 
the presence of impurities is thus essential. Control of the concentration 
of selected impurities, "doping," is the main engineering tool for practical 
applications of semiconductors. 

3.1 The Hole Concept 

Up to now we have considered the ground state of a semiconductor at zero 
temperature. In this state the valence band is full and the conduction band 
empty. We are now interested in the first states accessible at non-zero tem-
perature. The simplest excited state has one electron in the conduction 
band and one empty place in the valence band. Such a state can be ob-
tained at low temperature by illuminating the crystal with electromagnetic 
radiation of energy greater than the width of the band gap. A photon can 
then be absorbed and excite an electron from the valence band into the 
conduction band. 

Consider a solid in which we have created such a pair (electron in the 
conduction band + empty place in the valence band). The electron unbound 
from a covalent bond and placed in the conduction band (Fig. 3.1(a)) can 
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then Carry a current in the presence of an electric field because there exist 
nearby empty energy levels. If we put this electron into a (non-stationary) 
state formed by a wave packet we can consider that there is a, Si -  ion in 
the crystal and that this charge can move in the crystal by displacing the 
extra electron from one atom to another (Fig. 3.1(b)). 

--""- Now consider the valence band. There are normally four electrons per 
atom, the bond being shown schematically in Fig. 3.1(a). If we have formed 
a Si-  ion somewhere in the crystal, there remains the equivalent of a  Si+ 
ion at the place where the bond was broken. This represents the lark of 
an electron in a valence bond. It is clear that in the presence of an electric 
field the empty place can be filled by an electron from another bond which 
moves under the effect of the field. We then have the equivalent of the 
displacement of  Si + in the direction of the electric field, hence the motion 
of a positive charge (Fig. 3.1(b)). We see that we can speak of the motion 
of the lack of an electron as the displacement of a positive charge which 
we call a hole. 

We now describe the notion of a positive hole more precisely. We have 
seen in Sect. 2.3, Eqs. (2.42) and (2.43), that the total current of the electron 
states of a given band is zero. Let us consider a valence band with a single 
empty place at the state k = ke . The current jtoud corresponding to the 
sum of the states of this band can be decomposed as 

total = -eEoccupied  kV(k) - e v(ke ) = O. 	 (3.1) 

In the present case where kempty  = ke, the current j transported by the 
occupied valence states is then (using the definition of v(ke )) 

j = e v(ke ) 

= -h Vk Ee(ke). 	 (3.2) 

Ee (ke ) is the dispersion relation of the valence electrons at the point ke. 
We define a quasi-particle, the hole, by 

hole = [valence band full except for one empty state].  

The current carried by the hole is given by Eq. (3.2) above. If E is the 
total energy of the full valence band, the energy of the system iftillkand 
except for ozes  kmpty state at the point ke] is E - Ee (k e ). The de8PW the 
empty state-tain the valence band the larger the energy of the system (as 
Ee(4) is smaller). The energy E of the quasi-particle we call the hole can 
thus be defined as 

Eh = -E (electron missing in the state ke) constant. 	(3.3) 

We wish to attribute a positive charge to the hole. For the hole current to 
have the form (3.2), the wave vector kh must be equal to -ke , i.e., opposite 
to that of the missing electron. Then we can write 
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Fig. 3.1. (a) Formation of an electron-hole pair in silicon by absorption of a photon. 
A thick bar symbolizes a homopolar chemical bond, in which an electron pair with 
antiparallel spins is shared between two atoms; (b) displacement of these charges under 
the action of an applied electric field e. 
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Fig. 3.2. Definition (a) in "electron language"; (b) in "hole language" of the wave vector, 
energy, and current of a hole in the valence band. 

j = Vj e  Ee(ke) = Vkh Eh(kh)• 
	 (3.4) 
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Figure 3.2 illustrates these definitions. The hole velocity is 

1 T7  
V h = - v . 14ikah J• 

h 

This is the velocity of the electron missing at ke . The dynamical equa-
tion, i.e., the evolution of kh and vh in the presence of electric and magnetic 
fields, can be found from Eq. (2.33) with a change of sign, since kh = 

	

h
d kh 	d k 

= –h
e 

= e (C + vh x 73). 

	

dt 	dt 

This is the equation of motion of a positive charge of wave vector kh, moving 
with velocity Vh, under fields C and B. 

The dynamical equation in the real space results from Eq. (3.5) and the 
preceding equation. This allows us to define the effective mass of the hole: 

dvha 	 1 
dt = 	

(1 

m.) F ,3 with (—) = 
h2 
1  a2 Eh  

h ap 	 mh*  	akh. akho .  
(3.7) 

The effective mass of the hole is positive in the region of the Brillouin 
zone where the function E, (k) has a negative second derivative, i.e., near 
maxima. This holds in particular for the top of the valence band of semi-
conductors. 

(3.5) 

(3.6) 
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In summary, the electron-hole correspondence is as follows: 

Eh = –E of the missing electron, 
kh = –k of the missing electron, 
hole velocity = velocity of missing electron, 
hole charge = +e, 
effective hole mass = – effective mass of missing electron. 

The effective mass of the hole is thus positive for a negative curvature 
of E(k), which holds near a maximum of E(k), i.e., at a band maximum. 
We then have 

1 
vh = 	V1  Eih(Lh), 	 (3.8) 

j = e Vh7 	 (3.9) 

kh 
= e(E + vh, x 13), 	 (3.10) 

vh,. 	 ) 

e(E + vh x 13)0. 	 (3.11) 
dt 	Mh 

An experimental determination of the effective masses of electrons and 
holes in silicon by means of cyclotron resonance is described in Appendix 
3.1 (cf Sect. 2.6d). 

We can qualitatively illustrate these notions by the example of photo-
conductivity: optical excitation by direct transition of an electron in a state 
ke  of the valence band into a state of the same wave vector of the conduc-
tion band leaves a hole in the valence band of wave vector kh = –ke . Let 
us apply an electric field C to this system; we show that the currents from 
the electron and hole add together. For a standard band scheme like that 
of Fig. 3.3 the effective masses me  of the electrons and mh of the holes are 
positive and isotropic. 

Using the acceleration theorem in the real space [in the present case Eq. 
(3.38) ] , the electron motion in the presence of E is given by 

me—
d

dt 
ye 

= –e E, 	 (3.12) 

giving the velocity and current after time At: 

A ve =
e

e, 	 (3.13) 
me  

e2  
(3.14) 

me  

For the hole, 

dvh 
mh-- = e C, 

dt 
(3.15) 
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Fig. 3.3. Excitation of an electron-hole pair by direct optical transition. 

e A t 
A Vh = -G, 	 (3.16) 

mh 

e2 At 
A ih = 	C. 	 (3.17) 

mh 

The electric drift currents for the electron and the hole have the same sign 
and add together. Figure 3.4 shows this result schematically. Transport 
problems, such as the calculation of conductivity, will be treated in detail 
in Chap. 5. 

We return now to the real band structure of semiconductors (Sect. 2.4d). 
The valence band of Si or GaAs is actually degenerate in the neighborhood 
of its extremum at k = 0 (see Fig. 2.12). There are then two hole systems, 
and hence two effective hole masses. We distinguish heavy holes of mass mhh 
and light holes of mass mih. In silicon, 

0+ 

	- 	ih 

Fig. 3.4. Electric drift currents deriving for the electron (A je ) and hole (ZIÀ Jh) in the 
presence of an applied electric field  C.  

rnhh = 0.49m and mih = 0.16m. 
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3.2 Impurities in Semiconductors 

Until now we have only considered perfect crystalline solids, without de-
fects or impurities. What can we say about imperfect crystals? There is no 
general answer to this question: it all depends on the nature of the defects 
or impurities. First, they act as scattering centers, scattering electrons be-
cause they break the periodicity of the crystal potential. Second, and even 
more important, impurities play the essential role of modifying the elec-
tron content in semiconductors: a pure silicon crystal at room temperature 
would "naturally" (i.e., in thermal equilibrium) contain of 10-12  free elec- 

. trons per atom. In real crystals the majority of the free electrons will m 
fact come from impurities. 

Fig. 3.5. Phosphorus atom substituted in a silicon lattice. Each black dot denotes an 
electron. At low temperature the extra electron is bound to the phosphorus nucleus. 
The radius of the orbit is in reality much larger than the interatomic distance. At high 
temperature the electron is released into the conduction band: phosphorus is a donor. 

Consider for example a phosphorus atom replacing a silicon atom in a 
crystal (Fig. 3.5). This replacement can occur easily since the atoms have 
approximately the same size. We call this a substitutional impurity. The 
phosphorus atom has five valence electrons. We can to first approximation 
assume that four of these electrons, which fill states fairly similar to those 
of silicon, will participate in four covalent bonds with the four neighboring 
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atoms. The P-Si bonds differ little from the Si-Si bond. These four electrons 
thus form part of the valence band by re'll=irtlie four silicon electrons 
which have disappeared. But there remains an electron, normally bound to 
the phosphorus atom which has an additional nuclear charge +e (Fig. 3.5). 

The "internal" ionization of this system consists of the removal of the 
electron from its state bound to the phosphorus nucleus into the conduction 
band (Fig. 3.5). Atoms which can give an extra electron to the crystal on 
ionization are called donors. There is a "pseudo-atom" of hydrogen in th  
medium. Its internal "ionization" energy will at most be equal to the widtli 
of the band gap. 

This result is important as it shows that impurities in a semiconductor 
will self-ionize at temperatures lower than those required for intrinsic ion-
ization between the valence and conduction bands. The very reason for this 
is that the energy necessary for this process is not the ionization energy 
of a phosphorus atom in vacuum (about 10 eV) but the energy to ionize 
(i.e., unbind an electron from the positive charge) within the semiconduc-
tor. This requires at most an energy of order Eg , the width of the band 
gap, about one electron volt. The ionization energy for a hydrogen-like sys-
tem is of the order of e2 /8/reoa, where a is the orbital radius. If the energy 
is reduced by a factor of 10, the size of the bound orbit should be of the 
order of 10a1, where al is the radius of the first Bohr orbit of the hydrogen 
atom. As ai = 0.53 angstrom the size of the orbit is about 5 angstroms. 
But the reasoning above is no longer valid as the attracting force seen by 

an electron is no longer -e2/4rf or' but -e2 /4reofrr2 , where Er  is the rel-
ative dielectric constant of the medium. Here er  is of the order of 10, and 
the potential is reduced by a factor of 10. Because of this the orbit is still 
bigger. Moreover the electron is then bound by a potential varying slowly 
over interatomic distances. We know that the response to a force of this 
type involves not the free electron mass but the effective electron mass in 
the crystal. 

We may then regard this system as a pseudo-hydrogen atom, with the 
Hamiltonian 

2 	 2 

	

- 	 (3.18) 2 m*  4 ir co Er  r 

The energy eigenvalues are given by quantum mechanics as 

	

e4 	 m* 
= 	 x — 	 (3.19) 

2 (4 r e0 ) 2  n2  n2  7.  

The Bohr radius of the orbit of quantum number n = 1 is 

* 	4ire0e,.h2  

	

a l  = 	
e2  m* 	

(3.20) 

Or 
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=) al , with al = 0.53A. 	 (3.21) 
m* 

For a state with n>  1 

m* 1 ElH where Eu/ = — 	 = -13.6 eV. 	 (3.22) m fr2 n2 

and the wave function extension is of order n2aT. 
We see that the binding energy E1  of the ground state is greatly re-

duced since Er  = 16 for germanium and 11.7 for silicon; m*/m 0.2 for 
germanium and 0.4 for silicon. We thus predict from this simple theory an 
ionization energy independent of the nature of the donor, of 0.01 eV for 
elements of column V (P, As, Pb, Bi) in germanium and an energy of 0.04 
eV in silicon (see the excerpt from the Periodic Table). This is the energy 
that must be supplied to the electron to ionize the atom in the crystal. 
The donor occupies a level at a distance from the conduction band small 
compared with the gap; we call this a "shallow donor." 

Excerpt from the Periodic Table 
columns. IIb III IV V VI 

B C N 0 
Al Si P S 

Zn Ga Ge As Se 

Cd In Sn Sb Te 

The following table shows the very good agreement of the experimental 
values of E1 in germanium and silicon, given in meV, with this theory: 

P As Sb Bi 
Ge 12 12.7 9.6 
Si 44 49 39 69 

The radius of the ground state orbit is increased by the factor erm/m*, 
which is about 50. This justifies the above approximations. 

We can argue in a similar fashion for the substitutional impurities of 
group III of the Periodic Table (boron, aluminium, gallium, thallium). 
Group III atoms have only three valence electrons. Thus to fill all the va-
lence states and realize for example four B-Si bonds, an electron has to be 
taken from a nearby Si-Si bond. For this reason a substitutional element of 
column III in a semiconductor of column IV is an acceptor. The electron 
taken from the Si-Si bond belongs to the valence band, and leaves a hole in 
its place. The binding energy of the captured electron is large, since this is 
the energy of the chemical valence bond. After the capture of this electron 
the ensemble (boron atom -I- captured electron) is negatively charged and 
attracts the free hole. This is shown in Fig. 3.6. The resulting bound state 
is the lowest energy state of the system. The acceptor is therefore neutral, 
since the electron captured to satisfy the bond and the hole localized near 
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Fig. 3.6. Boron atom in a substitutional position in a silicon lattice. At low temperature 
the hole is bound to the boron nucleus in an orbit which covers many atomic sites. At 
high temperature the hole is released into the valence band; boron is an acceptor. 

the boron atom form a system of zero net charge. To dissociate this neutral 
acceptor requires energy, but for the same reasons as for the donors the 
binding energy of the hole to the charged center of the impurity is weak. It 
is given by expression (3.22), where we have to replace the effective mass 
of the electron by the effective mass of the hole. 

At very low temperature the hole will remain fixed in a hydrogen-like 
orbit and the crystal will not be a conductor, but at room temperature the 
system will be ionized and the crystal will have a free hole in the valence 
band for each element of column III present in the crystal. Then the center 
B will be negatively charged because of the captured electron. 

The table below gives the experimental values in meV of the ionization 
energies of acceptors in germanium and silicon. 

B Al Ga In Ti  
Ge 10.4 10.2 10.8 11.2 10 
Si 46 57 65 160 260 

The energy levels due to the presence of donors or acceptors are illus-
trated in Fig. 3.7. 

The level Ed is below the minimum Ec  of the conduction band (Fig. 
3.7(a)). The fundamental level E. of the hole should have a negative energy 
relative to the top of the valence band (in hole language), thus a positive 
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Fig. 3.7. Density of states curve in the vicinity of the band gap in the presence of (a) 
donors, (b) acceptors. 

energy in electron language. This corresponds to the fact that we have to 
supply energy Ea  — Et, to an electron of the valence band to compensate 
the hole bound to the acceptor, thus ionizing the acceptor and creating a 
free hole (Fig. 3.7(b)). 

The following remark is important for the statistics of semiconductors 
which we shall study in the next chapter. In the presence of N crystal sites 
of which Na  are acceptors, the Na  acceptors each capture an electron and 
create a hole, which at zero temperature_ remains trapped by the charged 
nucleus of the acceptor. The crystal is an insulator and its valence band is 
therefore full. Now, the number of electrons in the valence band is 4N — 
Then in the presence of Na  acceptor sites out of a total of N atomic sites 
the number of places in the valence band is 4N — Na . 

The above discussion of donor and acceptor ionization energies does not 
amount to a proof. In particular we have not shown under what conditions 
we can pass from the exact  Schrödinger  equation of the problem 

[

2 
r -i + Vp(r) + Iri(r)]t,b= E (3.23) 

where m is the mass of the free electron, V the potential of the crystal, 
and  V1 (r)  the potential of the impurity, to the equisTibE 

[ 21:2-71. +17/(r)] qS = (E — Ee )q5, 	 (3.24) 
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where m* is the effective mass, Ec  the energy of the bottom of the conduc-
tion band, and 0 a pseudo-wave function. It can be shown that the real wave 
function .0 can be written in the form  t1(r) = 0(r)tto (r), where 0 plays the 
role of an envelope function (u0 (r) is the periodic part of the Bloch function 
for k = 0 in the case of a standard band). The theory taking us from Eq. 
(3.23) to Eq. (3.24) is called effective mass theory. A recent application of 
this theory to the study of "quantum wells" and "superlattices" is given in 
Appendix 3.2. 

The fact that the experimental values of the ionization energies of the 
donors or acceptors vary from one impurity to another shows that some of 
our assumptions do not rigorously hold: 

1 — The donor—Si bond differs from the Si—Si bond. 
2 — The size of the atoms is not the same. 
3 — The relative dielectric constant is not constant over all space. It 

varies from one very close to the impurity to fr  over a few atomic layers. 
Further, we should take into account the fact that the conduction band 

of Si or Ge has several minima (see W. Kohn, in Solid State Physics, Volume 
5, Academic Press, New York, 1957). 

If we consider impurities of column II or VI the simple picture of shallow 
levels no longer holds for several reasons. The internal levels are very differ-
ent from those of column IV elements. The nuclear charge is stronger, the 
radius of the orbit is smaller, and the dielectric constant effect is reduced. 
This leads to "deep level" states, i.e., levels far from the band edges. These 
impurities, which exist in all semiconductors, are very important in the re-
combination of electron-hole pairs but they are relatively difficult to ionize 
thermally, as their energy distance from a band is much greater than the 
thermal energy kT. The case of amorphous semiconductors is more subtle, 
as geometrical defects play the role of chemical impurities. A qualitative 
description is given in Appendix 3.3. 

3.3 Impurity Bands 

Up to now we have discussed the effect of substitutional impurities, donors, 
or acceptors, diluted within the semiconductor lattice. They eitreigettV"L" 

 discrete energy levels within the band gap. We can imagine that if the con-
centration, e.g., of donors becomes large enough in real space for the orbits 

to interact the electrons from the donors will be delocalized within the 
crystal, even at low temperature. This happens for a donor concentration 
Ndo  such that (47r/3)a 3  • Ndo  •-_• 1. The crystal is then a conductor at any 
temperature. An insulator—metal transition is thus observed as a function 

of concentration: for example, for Nd < Ndo = 3.7 x 1024  m-3  silicon is an 
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n(E) 
Fig. 3.8. Density of states in the presence of a strong donor concentration. An impurity 

band forms, shown hatched in the figure. 

insulator at low temperature, while above it is a conductor. The presence of 
many donors leads to a broadening of the level Ed, which is then no longer 
separated from the conduction band (Fig. 3.8). An "impurity band" has 
formed. 
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Problems on Cyclotron Resonance in Silicon 

To study cyclotron resonance in a semiconductor one irradiates a single 
crystal with electromagnetic waves of frequency v = 427r from a wave-
guide. The crystal is placed between the poles of an electromagnet (Fig. 
3.9). When the magnetic field is such that ce = = eB/me , where me  
is an effective mass, the crystal conductivity increases rapidly, leading to 
partial absorption of the waves, which can be observed by the power meter. 

The experiment is performed at very low temperatures using a very pure 
single crystal, and the crystal is illuminated with light of energy greater than 
the band gap width. With a silicon crystal oriented with the B field in the 
bisecting plane of the cube (fil)  at an angle of 300  with the direction [001 ]  
(see Fig. 3.10), one observes the signal indicated in Fig. 3.11 as a function 
of magnetic field. 

1. Why do we illuminate the sample to observe a signal? 

2. Assume that in silicon there exists a minimum of the conduction 
band inside the first Brillouin zone at kz  = kz , o ;  k  -= ky  = 0. Are there any 
others? If so, why and how many? (x, y, z are the axes of the cubic cell of 
diamond.) 

Show that the constant energy ellipsoids are ellipsoids of revolution and 
specify their axis of symmetry. 

3. Consider first the ellipsoid of constant energy E centered at ice ,0 > 0 
described by the equation 

h2 [14 	ki2, 	(kz  – kz,o) 2 1 E 7.7  — + + 
2 MT MT 	mL 

(3.25) 

where mT and  mL  are the transverse and longitudinal masses. We call 0 
the angle between the magnetic field B and the axis of symmetry. We study 
the electron cyclotron resonance of electrons from this ellipsoid. 

Show that the equation of motion of the electrons 



semiconductor crystal 

Problems on Cyclotron Resonance in Silicon 	 79 

Fig. 3.9. Schematic view of a cyclotron resonance experiment. 

0 
Fig. 3.10. Orientation of the magnetic field B the crystal axes of Si. 

ddvt 	11L-11(ev A B) 

has an oscillating solution: 

V  = vo  exp iwt 
with w = w, = eB/m e  and 

(3.26) 

(3.27) 
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0 	
magnetic field (tesla) 

0.5 

Fig. 3.11. Experimentally measured absorption. 

2 
me  = 

nz 	
MT ML  \/ (3.28) 

T sin2  0 + mi, co52  O •   

(The calculation is simplest if, for this question, the ellipsoid of revolu-
tion is referred to axes Ice and ky , such that B is in the plane ke , 0, kz .) 

4. Taking account of the conduction band structure found in the second 
question, how many electron cyclotron resonance lines should one observe 
for an arbitrary orientation of the magnetic field? Answer the same question 
for the particular direction described for the experiment. 

5. When the magnetic field is rotated from the direction described for 
the experiment we observe that peaks 1 and 4 do not change while peaks 
2 and 3 do move, the first sometimes splitting into two. What is the cause 
of resonances 2 and 3? What is the cause of resonances 1 and 4 which are 
independent of the field orientation? 

6. Deduce from the experimental figure the effective masses of the elec-
trons and holes in silicon. We recall that the field of the cyclotron resonance 
for a free electron is about 0.86 T for the frequency y = 2.4 x 10 10  Hz. 

7. What is the effect of collisions on this experiment? Why is it necessary 
to work at low temperature? 
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Solutions 

1. At low temperature the electrons and holes are trapped and there are 
no free carriers. To observe the resonance requires free electrons or holes, 
which are created by photoexcitation. 

2. The crystal is cubic and the constant energy surfaces must have the 
same symmetries as the cube. By symmetry with respect to the center of 
the zone we pass from +kz,o to —kz,o. By rotating through 7/2 we pass 
to  ±k,0 and ±ky ,o, with iks,o1 = lky ,o1 = ikz,01. Each ellipsoid must be 
rotationally symmetric around the axis of the cube on which it is centered 
(this is a result of the invariance under rotations through r/2 around this 
axis). The set of all ellipsoids has indeed the symmetry of the crystal (see 
Sect. 2.4 and Fig. 2.13). 

3. Using the expression for the effective mass tensor deduced from Eq. 
(3.25) and replacing Eq. (3.27) in Eq. (3.26) we get 

[

ibino,s,  

itanio,y1 

iWt70,z 

= 

1 
0 	0  B cos 0 

ev,,, x , B cos 0 — evo,z B sin 0 [

evo,y,B sin 0 

mT 
1 

0 	0 
mT 

1 
0 	0 

mi, 

We have three homogeneous equations 

..= e2 B2 (  sin2  0 	cos2  0  ) cv2 
± 2 MLMT MT 

whose determinant vanishes if 

(3.29) 

or 

eB 
w = — 

Me  

with 

  

(3.30) 

2 
MT ML  

Me  = 11/ 
MT sin2  9+ m L c052  0 •  

(3.31) 

4. As the only relevant angle is between the magnetic field and the 
principal axis, and there are three principal axes, each common to two 
ellipsoids, we ought in general to observe three electron peaks. For the 
particular orientation of the experiment with B in a bisecting plane, the 
angle of B to the ellipsoids centered on ±kso and ±kyo  is the same and we 
expect two electron peaks. 
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Fig. 3.12. Orientation of B relative to the ellipsoids of constant energy of the conduction 
band. 

5. Peaks 1 and 4 are unmodified as they arise from holes, whose two 
bands are degenerate at k = 0 and are spherical. Thus mi, = mT and the 
resonance does not move when the magnetic field is rotated. Peaks 2 and 3 
which move with the orientation are therefore the electron peaks. 

6. For the ellipsoids 1 and 2 centered on Oz: 13 = 300  and 

\ 	 L,  
mie  = 

1/4MT ± 3/477IL 

for the electron resonance of ellipsoids 1 and 2. 
The vector B has components B(0/4, 0/4, 0/2). The cosine of the 

angle between B and Ox is 0/4; similarly for the four ellipsoids in the 
plane and 

\/ 	7713,  mL, m35  = 7/8mT  + immi, 
for the electrons populating the ellipsoids 3, 4, 5, and 6. 

We observe peaks 2 and 3 at about 0.18 T and 0.29 T. The strongest 
peak 3 must correspond to the four ellipsoids in the plane x0y. Comparing 
with the resonance field for a free electron of mass m at the same frequency 
we then have 

m 8 4 mi, mr,  r4 r, 	(0.29)2 	 y 0.18 
and 	  

(7  niT + mr,)m2  = 0.86 	(mT ± 3 mr,)m2  = t (:1.86) 
(3.34) 

from which we obtain main'',  = 4.75 and mT L-. 0.19 m; mi, = 0.9 m. 
Peak 1 appears at 0.13 T. It corresponds to an effective mass of 

(0.13/0.86)m, or about 0.15m, and thus to light holes. Peak 4 at 0.44 T 
corresponds to heavy holes of mass (0.44/0.86)m'-_- 0.5m. 

I 	mi,  in (3.32) 

(3.33) 
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7. To observe the resonance, collisions must be rare enough that a cir-
cular or elliptical orbit can be completed between collisions. The effect of 
collisions is to broaden the resonance. One works at low temperature so 
that the time T between collisions is long enough that cdcT > 1. 



Appendix 3.2 

Quantum Wells and Semiconducting Superlattic 

The effective mass theory mentioned in Sect. 3.2 allows us to  stE 
cussion of the physics of quantum wells and superlattices. These 
stacks of alternating crystalline layers, possibly as small as a few 
monolayera, of semiconductors of differing chemical compositions. I 
perlattice the stacking is periodic, as shown in Fig. 3.13, which rep 
a GaAs—Al. Gai_ x  As superlattice. We can only obtain such system: 
foxy, the crystalline growth of one semiconductor on another, is pi 
This requires semiconductors of different chemical composition tl 
very close geometrically: the same type of crystalline lattice, and th 
size of elementary cell. The thickness of the layers may be of the o 
50 angstroms, but this can be varied. 

Such structures have a paradoxical physical property: we would 
the optical absorption threshold to be that of the material with the m 
band gap, or in other words that a quantum well would be less tram 
than any of its constituents. Experiment shows that this is not th 
and we shall see below that effective mass theory allows us to de 
paradox. 

As the two material constituents are different they do not have ti 
value of band gap. For example in GaAs, Eg  is 1.42 eV while in A10.4( 
the gap Eg  is 2 eV. These objects are made by a technique called mc 
beam epitaxy (MBE), which gave its first promising results in the 1f. 
this process the crystal grows in an ultra-high vacuum chamber ir 
are placed crucibles containing gallium, aluminium, and arsenic (Fig 
The temperature of each crucible is controlled independently, so ti 
can control the speed of evaporation of each atomic species and thus 
of atoms of each species. In the ultra-high vacuum chamber the atom 
a GaAs substrate and one observes crystallization occurring atomic 1 
atomic layer. It is possible to control the deposition to rates for exa 
one atomic layer per second. One can thus create tailored semicoo 
structures on demand, in what is called "band gap engineering." 
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GaAs 	Al xGai_,As 

Fig. 3.13. Structure of a superlattice of period a + b of GaAs/AlxGai_zAs. 

Why do we have to work in ultra-high vacuum? We can determine from 
the kinetic theory of gases the rate at which a surface becomes polluted by 
an atomic monolayer by assuming that every atom which hits the surface 
sticks to it. For a pressure of 10-13  bar the pollution time of the order of 
an hour. To avoid reaching such low pressures, we could think of increasing 
the flux of the atoms making up the semiconductor layers, but we have to 
allow time for the atoms to reach their equilibrium positions on the surface. 

The crystalline potentials acting on the electrons are different in the two 
materials, so we expect that the band structure itself, and particularly the 

single crystal substrate 

p = 10-13  bar 

1  

/1/ \A/ \\\I 
TA,I As I TG, I  Ga I TM I  Al I 

Fig. 3.14. Principle of molecular beam epitaxy. 
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X  

Ec (AlGaAs) — E(GaAs) 

X  

Fig. 3.15. Individual quantum well of GaAs in AlzGai,As. We show (a) the electron 
energy, and (b) the effective potential seen by the electrons, as functions of the distance 
perpendicular to the layers. 

bottom of the conduction band and the top of the valence band would be 
at different energies. This is shown in Fig. 3.15(a) for the case of an isolated 
quantum well. Effective mass theory allows us to calculate the energy levels 
in this structure. We replace the real  Schrödinger  equation by an effective 
equation involving the effective Hamiltonian: 

[ 27±724  ± Vef,e (s)] Oe(r) = (Ee — Ee) Oe(r). 	 (3.35) 

Here me  is the electron effective mass and Vef ,e the effective potential seen 
by the electrons, which takes account of the different nature of the two 
materials. This potential is represented in Fig. 3.15(b). The functions 0 are 
the "envelope" wave functions, which take the form 

Oe(r) = Oe(x)exP(ikvy) • exp(ik.z), 	 (3.36) 

where 4, e (s) is the solution of a one-dimensional Schr6dinger equation in the 
potential of Fig. 3.15(b). We are led back to a problem in elementary quan- 
ttun mechanics, that of a rectangular potential well in which one finds both 
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delocalized levels extending above the barrier and localized levels E: , g 
with a, = 1, 2, ... inside the well. 

In a structure with a periodic stacking of layers, like that of Fig. 3.13, two 
situations can occur. If the material with the large gap is much thicker than 
the material with the small gap (b >> a), then the eigenstates are bound 
states in each individual quantum well (1), (2), ..., of energy 
(See also Appendix 6.3.) On the other hand if b is small enough we have to 
take account of the overlap between functions localized in neighboring wells 
and thus make a theory of "superbands" in the "superperiodic" potential 
of Fig. 3.16. This is what we call a "superlattice." The levels E',  Ee widen 
into bands 	, 	,... called "minibands." 

Similarly we can find the hole states by using the hole effective potential 
and the effective mass of the hole in an equation analogous to Eq. (3.35): 

{ 

P

2 

Vef,h(X)] Oh(r) = (Eh — 

Fig. 3.18. Band profile of a superlattice GaAs/Al.Gai_ zAs, of period a + b. 

We obtain in this way hole states Er... or bands Et'....  Placing all these 
electron energy levels in Fig. 3.15(a) or 3.16, we see that the new absorption 
threshold is E1  or g above the band gap of GaAs. For energies less than 
E1 the structure is transparent and our paradox is resolved. The physical 
effect at the basis of this phenomenon is the increase of energy of a quantum 
state when it is confined, a general consequence of the Heisenberg principle. 

Note that the price of an MBE machine is about one million dollars. 
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Amorphous Semiconductors 

An amorphous solid is one without the property of periodicity in space. 
Most of the properties of solids mentioned up to now were based on in-
variance under translations, which gives rise to Bloch's theorem. Should 
we conclude that a solid of given composition would change all its proper-
ties depending on the existence or not of long-range order? To answer this 
question it is useful to return to the chemical approach (cf. Sect. 1.2). In an 
amorphous as well as in a crystalline solid, there will be a "chemical bond" 
formed by the hybridization of the orbitals. This bond is a short-range 
property, while periodicity is a long-range one. 

Let us talce the example of amorphous silicon. The nearest neighbors of 
a silicon atom will still be at the vertices of a tetrahedron, but there will 
be distortions of the bond angles at the second, third neighbors and so on. 
This is shown in Fig. 3.17. We will arrive at a distribution of th'  1 atoms 
where some of the chemical bonds cannot be established for geometrical 
reasons. We say that we have "dangling bonds." 

The energy levels corresponding to the dangling bonds are in the band 
gap of the crystal, as it is precisely the hybridization which creates the 
band gap. This is shown schematically in Figs. 3.18(a) and 18(b), where we 
compare the density of states in two semiconductors of the same chemical 
composition, one crystalline and the other amorphous. 

An amorphous semiconductor, even though chemically pure, is thus 
"electronically" impure, since it has many states in the band gap. How-
ever, if we can replace the broken bonds with a strong chemical bond, each 
dangling bond we suppress will remove a state from the gap, the corre-
sponding energy state now lying inside the valence band. This occurs for 
example when amorphous silicon is exposed to hydrogen at high tempera-
tures. The hydrogen reacts and gives Si—H bonds, the corresponding states 
disappearing from the band gap (Fig. 3.19). Paradoxically, hydrogenated 
amorphous silicon is then more "electronically" pure than pure amorphous 
silicon. The density of states approaches that of crystalline silicon. 
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Fig. 3.17. Schematic representation of a disordered lattice of amorphous silicon. Most 
of the atoms establish four bonds, but because of the deformations situations exist in 
which atoms A and B are too far apart to establish a bond. 

a) 

E 

b) 

0 	 n(E) 	0 
	

n(E) 

Fig. 3.18. Density of states in semiconductors (a) crystalline, and (b) amorphous, of the 
same chemical composition. 

In practice hydrogenated amorphous silicon is made directly by decom-
posing silane (SiH4) in a radiofrequency plasma. This is a very cheap semi-
conductor which is used particularly in the manufacture of pocket calculator 
photocells. 
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(E) 
Fig. 3.19. Reduction of the density of states in the band gap by hydrogenation of amor-
phous silicon. It is reduced from about 1020  eV-1  cm-3  to about 1015  eV  -1  cm-3 . 

The present price for amorphous silicon cells is between one-tenth and 
one-hundredth of the current crystalline panels. 
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Statistics of Homogeneous 
Semiconductors 

Y• 4.1 Occupation of the Electron Levels 

Knowing the band structure, at least in the region close to the band gap, as 
well as the localized quantum states caused by the presence of shallow im-
purities, calculation of the electrical conductivity of the semiconductor now 
requires to find the number of mobile charges and their nature, electrons or 
holes, at thermal equilibrium. For this we musto,lculate_at temperature T 
the occupation probabilities of the accessible energy levels.  

The electrons have half-integer  spin and are fermions, so the system 
state only contains one electron per single-particle quantum state. For a 
given value of k there are two quantum states with different spins which 
can be simultaneously occupied. We recall that in such non-interacting 
Fermi-Dirac gases we define the Fermi factor Las the  mean _value _oLthe 
_operator _measuring the occupation number of an electron state of energy 
E. If the chemical potential is EF,  hereafter called the Fermi level, we can 
show (see Appendix 4.1) that 

f 	=  1 + exp(E - EF.)1kT' 	
(4.1) 

where k is the Boltzmann constant. 
We note that if (E - EF) is large compared with kT, i.e., if E exceeds 

EF by several times the thermal energy, the Fermi factor of the electron 
can be approximated by a Maxwell-Boltzmann expression: 

EF 
f exp -k-  exp (- —

kT 

This means that if f is small compared with 1 the effect of exclusion is 
negligible: then from a statistical point of view the electron behaves like a 
classical  pticle.  

— In semiconductors if we consider the mean occupation rate of donor 
levels which are localized states, Eq. (4.1) does not apply. In fact there are 

1 

(4.2) 
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two degenerate spin states corresponding to each donor, but the two states 
cannot be occupied simultaneously because of the Coulomb repulsion be-
tween localized electrons (the corresponding state has a very high energy). 
In this case we can show (Appendix 4.1) that the Fermi function must be 
replaced, if we limit ourselves to the ground state of the donor, by 

I  = 1+ (1/2) exp(E — EFIkT) •  

1 	
(4.3) 

4.2 Hole Occupation 

If the occupation probability of a level is given by Eq. (4.1), the probability 
that this level will not be occupied by an electron, i.e., the probability of 
occupation by a hole, is 

1 
exp(EF — E IkT) +1 .  

If we measure the energy of a hole in the opposite sense from the electron 
energy (cf. Sect. 3.1) we have 

fh(Eh ) --= 1 + exp(Eh — EFh/kT) 

which behaves similarly to the Fermi function Eq. (4.1). 
As for an electron, these expressions can be approximated once the 

Fermi level is at few kT from the hole energy (Eh — EFh >> kT): 

Eh — EFh) 	EF h 	Eh 

kT 	
exp (Tcr, exp (--

kT) 
fh exp 	

• 	
(4.6) 

We recover the exponential law of classical particles: the exclusion effect 
is negligible, as the average occupancy is much smaller than 1. 

'44.3 Determination of the Chemical Potential 

Because a semiconductor is by definition an insulator at zero temperature 
we know that the Fermi level must be within the band gap at T = O. How-
ever if we consider a real, and therefore impure, crystal, its properties, 
including the electron chemical potential, will be determined by its nature 
and impurity content. We will regard the electron gas occupying various en-
ergy states (valence band, impurity levels, conduction band) as a statistical 
canonical ensemble and determine its chemical potential. A given crystal 
will in general simultaneously contain "donor" and "acceptor" impurities. 

fh (E ) = 1 — f (E) (4.4) 

1 
(4.5) 
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Consider a crystal of silicon. Let N be the number of sites of the crystal, 
Nd the number of substitutional sites occupied by donors, e.g., phosphorus 
P, and Na  the number of substitutional sites occupied by acceptors, e.g., 
boron B. Leaving aside the electrons in deep atomic levels, the total number 
NT of electrons present  in the crystal is - 

NT = 4N — 4Nd + 5Nd — 4N. + 3N. 
= 4N + Nd — Na. 

At finite temperature the electrons can be in states of four types: in 
the valence band forming Si—Si bonds, in acceptor levels to form the four 
bonds of B—Si type (the acceptor is assumed ionized), in donor levels which 
are then neutral, or in the conduction band (cf. Sect. 3.2). We call p the. 
concentration of holes, n2 the concentration of neutral acceptors, nc7 the' 
concentration of ionized acceptors, ncd)  the concentration of neutral donors,' 
n‘t the concentration of ionized donors, and n the concentration of electrons. 

Let us think in "electron language." We know (see Sect. 3.2) that when 
the valence band is full it contains 4N — Na  electrons. Writing NT as the 
sum of the number of electrons in the valence band 4N — Na  — p, the 
number of ionized acceptors n;, the number of neutral donors 4 and the 
n conduction electrons, we have 

NT = 4N — Na  — p + + + n. 	 (4.8) 

On the other hand, 

• = + , 
Nd = rt?i  + nct 	 (4.9) 

From Eqs. (4.7), (4.8), and (4.9) we deduce 

p + = n + 	 (4.10) 

Writing Eq. (4.8) amounts to writing 

f (E)n(E) dE = NT, 	 (4.11) 

where n(E) is the density of states of energy E. The states are either 
delocalized in the valence and conduction bands, or localized for the discrete 
acceptor and donor states, 

This equation expresses the conservation of electron number in the sys-
tem at a given temperature (canonical ensemble) and therefore must give 
the chemical potential or Fermi level through the use of Eq. (4.10). We 
note that since the crystal remains neutral when we substitute donors or 
acceptors, the appearance of positive charges in the form of free holes and 
ionized donors must be compensated by the appearance of negative charges: 
conduction electrons and ionized acceptors. 

(4.7) 
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Fig. 4.1. Density of states of the bands near the gap. 
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The conservation of electron number in a homogeneous semiconduc-
tor is thus equivalent to electrical neutrality. We shall see later that in 
inhomogeneous semiconductors local electrical neutrality does not hold. 

' 4.4 Statistics of Pure or Intrinsic Semiconductors 

We describe as intrinsic a (hypothetical) semiconductor without any impu-
rity or defect. We shall see that some of the properties demonstrated below 
hold for real semiconductors in certain temperature ranges. 

We call  n(E) and 7/,c (E) the densities of states for valence and conduc-
tion electrons (Fig. 4.1). We have seen in Sect. 2.3, Eq. (2.52), that near the 
band edges, at E, and E„, the curve for the density of states is parabolic. 

The total number n of electrons in the conduction band is 

n 
 = f

n(E) f(E) dE. 
CB 

(4.12) 

If the constant energy surfaces are spheres (that is, if the effective mass 
is isotropic) and if there is only one minimum, at k = 0, the value of  n(E) 
for the two spin orientations and unit volume is given by Eq. (2.52) as 

n(E) = 471- (2m e ) 312  13-(E — E,) 112 . 	 (4.13) 

Let us assume that the Fermi level is several times kT below E. Then 
we can use Eqs. (4.2) and (4.12): 

n = exp 
EF — Ec

h 
 foe 

dE n,(E)exp[—(E — E,)1kT]. 	 (4.14) 
kT 	. 
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Because of the exponential factor in the integral we were able to extend 
the upper limit to infinity and use Eq. (4.13) which holds in principle only 
at the bottom of the band. Setting z  = (E - Ec)I kT and using the result 

jcc  x 1 /2  e-x clx = Ç  

we obtain 

n = Nc exp 
EF — Ec 

kT 

where 

= 2 (
2rmekT  ) 312  

h2 	
(4.16) 

We see that ./■,rc  plays the role of the degeneracy in a single level of energy 
E.  We call it the effective or equivalent density of states of the conduction 
band. We note however that Arc  is a function of temperature. 

We can make an exactly similar calculation for the holes in the valence 
band. The number of empty electron places is given by Eq. (4.4), which 
tends to exp(E - EF)IkT for (EF - E) >> kT (electron population close 
to 1, hole population low). We find the hole number p by an analogous 
equation: 

p = exp 
Et, - EF 

kT 
(4.17) 

where Nz  is the equivalent density of states of the valence band 

2irmh kT 3/2  
N0 =  2 	

h2  ) 	
(4.18) 

with mh the hole mass. 
In the case where, as in silicon or germanium, the bottom of the con-

duction band comprises several ellipsoids centered at various points of the 
Brillouin zone, we must take account on the one hand of the number of 
minima, by multiplying Arc  by this number, and on the other hand of the 
anisotropy of the effective mass. The constant energy surfaces around these 
minima are ellipsoids with equations: 

h? (l k2 	kz 	k2 

2 m. mv  mz  

where the origin of the wave vector is taken at the energy minimum consid-
ered. The volume of an ellipsoid of semiaxes a, b,c is (4/3)rabc. The volume 
inside a surface of energy E is thus 

(4.15) 

(4.19) 
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-3 	h2 	n2  ) 	n2  ) 
4 (2ms.E) 1/2  (2myE\ 1/2  (2mz E 1 /2 

	
(4.20) 

and the density of states per unit volume for the two spin orientations per 
ellipsoid is 

n(E) = 7(2) 3/2 (mxnlYmz )112 E1/2 .  
h3 
	 (4.21) 

For silicon we have to replace the factor r4/ 2  which appears in expres-
sion (4.16) by (m04) 1/2  x 6 to take account of the six ellipsoids. We get 
finally 

Arc  = 2.8 1025  m-3  at 300 K. 

If the valence band is degenerate at k = 0 as is the case in Si, Ge, GaAs, 
we have in first approxim3,tion two spherical bands each with an isotropic 
mass Inkh and mkt. We simply have to sum over the two corresponding 

densities of states. The factor m3h/2  in Eq. (4.18) must be replaced by m3h/h2 + 
3/2 

mh  . With this change Art, is 1025  I11-3  in silicon at 300 K. 
'The relations (4.15) and (4.17) hold even if the crystal is not pure on 

the condition that the Fermi level is several times kT from the band edges. 
Taking the product we thus always have 

np = Arc Ar, exp (-
kT  = n. 	 (4.22) 

The quantity n plays the role of the constant in the law of mass action 
for the reaction 

electron + hole4.-72 0 + energy. 

— If the crystal is pure (intrinsic) Eq. (4.10) is 

n=p=nt=pt  

or, taking account of Eqs. (4.15) and (4.17), 

	

eexp 
EF — Ec 	Et, -  EF 

N 	 exP 	• kT 	 kT 

We thus find the position of the Fermi level 

	

1 	kT 
EF — E, = 	+ -1-Ln s7ie  

For "standard" bands (Sect. 2.5) 

Mh 
EF — E, = -E

9 
-
1 

+ -
3

kTLn .Tr-
17e 

	

2 	4 

(4.23) 

(4.24) 

(4.25) 
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We see that for an intrinsic semiconductor the Fermi level lies close to 
the middle of the band gap whatever the temperature. For a band struc-
ture exactly symmetrical with respect to the band gap the Fermi level is 
independent of the temperature. Substituting Eq. (4.25) into Eq. (4.15) or 
Eq. (4.17) we obtain the intrinsic concentrations 

3/2 

	

= = 2 (L 	rne3/4m3h/4 (kT)3/2  exp (- 	
) . 
	(4.26) 

	

h2 	 2kT 

The case of multiple minima, or of degeneracy at k = 0, have to be 
taken into account in the expression for Nc  and Nt, but in all cases the 
relation (4.22) will hold. 

As we have seen in Sect. 3.1b, the electrical conductivity of a crystal is 
the sum of the conductivities due to the electrons and the holes, cre  and ah: 

(4.27) 

Or 

	

= //pee pphe. 	 (4.28) 

In this expression /le  is the electron mobility and ph that of the holes. 
We see from this formula that if the mobilities do not vary too rapidly 

with temperature (Sect. 5.4) the variation of a will be very rapid, as 
exp(-E9 /2kT). This explains the very strong increase in conductivity with 
temperature and provides a method of measuring Eg . In contrast to metals, 
where the number of carriers is constant, the conductivity of semiconduc-
tors increases with temperature mainly through the increased number of 
carriers. Figure 4.2 shows the variation of intrinsic concentration with tem-
perature in several semiconductors. We note the small concentration at 
room temperature: for silicon 

1.6 x 1016  m-3  at 300 K. 

The concentration of silicon atoms in silicon is of the order of 
1028  m-3 . At room temperature the intrinsic band-to-band ionization is 
thus very low, of the order of 10-12  in relative concentration. We then un-
derstand how shallow impurity levels may dominate the properties of silicon 
at room temperature, even at very great purity, as their internal ionization 
energy is very small. 
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1000/T (K-1) 

Fig. 4.2. Concentration of intrinsic charge carriers as a function of temperature in Si, 
Ge, GaAs. In this Arrhenius plot, the slopes of the straight lines are proportional to 
E9 12, as long as the influence of the T3/2  term is not significant. 

X4.5 Statistics of a Semiconductor Containing 
Impurities: The Notion of Majority and 
Minority Carriers 

The relations (4.15), (4.17), and (4.22) actually only use the property of 
the Fermi level of being several times kT distant from the band edges, so 
that we can neglect the 1 in the denominator of the Fermi function. In 
this case we say that the semiconductor is non-degenerate, a degenerate 
semiconductor corresponding to the case where the Fermi level falls close 
to or even within a band. The latter situation occurs in heavily doped 
semiconductors, for which the donor (or acceptor) level is broadened up — 
to merging into the conduction (or valence) band. We shall consider here 
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only impure but non-degenerate semiconductors where the relations (4.15), 
(4.17), and (4.22) remain valid. 

— We note that the word degenerate recurs several times in semiconductor 
physics in referring to different things. This is the normal usage, but it is 
important that this restricted vocabulary should not cause confusion. For 
this reason we recall below the various meanings of the word that may be 
encountered: 

1 - In any crystal the states k and -k are degenerate; this is a conse-
quence of the fact that the Hamiltonian is real. 

2 - If there are symmetries of the crystal potential (rotation, symmetry 
with respect to a point...) the surfaces of constant energy reflect this sym-
metry, and a state deduced from 1/4,,k (r) by one of the symmetry transfor-
mations is degenerate with Oa* (r). There is thus a degeneracy associated 
with the crystal symmetry: for example the minima of the six conduction 
bands of silicon. At the center of the zone this shows itself through the 
possible existence of degenerate levels. 

3 - Finally there is the meaning "degenerate electron gas" in a solid 
when the population of the states is not small compared with 1. 

Sentences 1 and 2 mean that the states have the same energy; sentence 
3 means that Fermi-Dirac statistics cannot be approximated by Maxwell-
Boltzmann statistics. 

n-type Semiconductor 
Consider a semiconductor containing a concentration Nd of donors whose 
ionization energy is Ed but which is completely free of acceptors (Na  = 0). 
At very low temperature the electrons are in the lowest energy states and 
thus bound to the donor centers and in the valence band. 

At higher temperatures the donors will progressively ionize. Let us as-
sume that the Fermi level is below Ed so that all the donors are ionized. 
Then the number of conduction electrons is 

= Nd 
	 (4.29) 

and the relation (4.15) determines the Fermi level: 

EF —  E  = kT log
• 	

(4.30) 
Nd 

N, 

We see that if Nd is of order 1020  M-3  the quantity (EF -E,) is of order 
25 meV • (Ln 10-5) -0.25 eV at room temperature. The Fermi level is 
well below Ed for a wide range of temperatures. When the temperature is 
increased the Fermi level moves away from the conduction band and the 
assumption of complete ionization of the donors remains valid. 

However beyond a certain temperature, which depends only on the 
donor concentration, intrinsic ionization is no longer negligible. Then we 
have to write Eq. (4.10) in the form 
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n = 71-ct p with nit — Nd. 	 (4.31) 

This relation expresses the fact that the electrons populating the con-
duction band originate from the donors and the valence band. Using Eqs. 
(4.22) and (4.31) we obtain 

1 	N2  
(4.32) 

4 

In the preceding limit of intermediate temperature (ni << Nd), 

2 
n 'Al Nd 	Nd) Nd  

2 ni  
13  "Al Nd  

The temperature range for which the electron number remains equal to 
Nd, independent of the temperature, is called the saturation regime. The 
number of holes p is ni • (ni /Nd) <<ni . The ratio of the number of electrons 
to the number of holes is 

N2  d = 	 (4.35) 
p 	ni  

This ratio is very large: for Nd = 1023  Ir1-3 , n/p 1014 . For this reason 
the electrons are called majority carriers and the holes minority carriers. 
Then a silicon crystal containing donors is called n-type silicon, as the 
electric current is carried by electrons, which greatly outweigh the holes. 
It is also called n-doped. Doping of a crystal may be the result of precise 
manufacturing techniques or occur by accident. 

We obtain the remarkable result that the conductivity of such a crystal 
only depends on its concentration of impurities in this temperature range. 
We say that the conductivity is n-type extrinsic. 

At high temperature we can have ni  >> Nd; then Eqs. (4.32) and (4.22) 
can be approximated as 

1 
n  n  + 

1 
p  n  — —

2 
Ncil 

so that we recover the intrinsic regime. 

(4.33) 

(4.34) 

(4.36) 
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p-doped Semiconductor 

Let us consider a crystal where instead of "donor" impurities we have only 
a concentration Na  of "acceptors," for example boron in silicon. We can 
discuss the situation either in terms of the electrons in the electron energy 
diagram or in terms of the holes in the hole energy diagram. In the electron 
energy diagram let us assume that at room temperature the Fermi level is 
above the acceptor level, and thus a few times kT from the valence band. 
The acceptor levels will thus be populated by electrons from the valence 
band which leave holes. We then have 

p =  Na 
	 (4.37) 

and from Eq. (4.17), 

EF — E„ = kTLn
• 	

(4.38) 
Na  

At higher temperature we have to take account of intrinsic ionization by 
writing Eq. (4.10) in the form 

n + Na = 	 (4.39) 

which takes into account the fact that free holes can be created in the 
valence band, either by trapping of an electron in an acceptor level or by 
excitation of a free electron into the conduction band. Taking account of 
Eq. (4.22) we then have 

NZ )

1/2 

p= -2 Na+ (-
4 

+ ni  

and if Na  >> ni, 

p N„ + 	no Ara . 
N. 

In this case n •-•-• (n,/Na) p • (74 I N.2 ). The holes have concentration Na  
and the electrons have the very low concentration ni  • (ni/Na ). In this case 
the electrons are minority carriers. The holes are the majority carriers. In 
this p-doped crystal electric current is carried by the majority hole carriers. 
We say that the conductivity is p-type extrinsic. 

This explains why certain semiconducting crystals behave under the 
Hall effect for example as if the current were transported by "positive" 
electrons. There is a deep symmetry between the properties of n-doped 
and p-doped crystals. 

We could have reasoned entirely in terms of the statistics of holes. Then 
Fig. 3.7(b) becomes Fig. 4.3 (inverting energies): the holes are trapped by 
the acceptors at very low temperatures, but if EFh is situated as in Fig. 
4.3 the acceptors are ionized and 

(4.40) 

(4.41) 
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EFh — Eh 
p = Na  = N, exp 

kT 
(4.42) 

For p-type semiconductors we also have a saturation regime, with the num-
ber of charge carriers equal to N. and independent of temperature. 

n (E) 
Fig. 4.3. Density of states n(E) for the different hole energies Eh and Fermi level position 
EFh near room temperature. 

----At high temperature where ni > N. we recover an intrinsic regime in 
which 

1 
p =  n  +  

1 
n = n  — —N.. 

2 

Figure 4.4 summarizes the results for a semiconductor at ambient tem-
perature, depending on the type of doping. 

X 4.6 Compensated Semiconductor 
at Intermediate Temperature 

Of course in any real crystal, even the purest one can make, there are various 
kinds of impurities. We must now consider the statistics of electrons in such 
a crystal. 

Let us suppose we are at an intermediate temperature in the saturation 
regime of an n-type semiconductor containing Nd donors per unit volume. 
The Fermi level is several kT below the conduction band. Let us introduce 
some acceptors into the crystal at concentration N.. For each acceptor there 
is an energy level situated close to the valence band which will be populated 

(4.43) 
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Fig. 4.4. From left to right, the band diagram, the density of states, the Fermi function, 
and the carrier concentration as functions of energy. (a) Intrinsic case; (b) n-type semi-
conductor; (c) p-type semiconductor. We note that np = rt? in all three cases (After  Sze, 
Semiconductor devices, J. Wiley, 1985.) 
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by an electron, since this level is well below the Fermi level. The acceptor 
has "trapped" an electron. All the acceptors (<< Nd) will thus be ionized 
and the number of free electrons will be decreased accordingly. Thus 

n = Nd Na 	 (4.44) 

and from Eq. (4.13), 

– EF = kT Ln 	 (4.45) 
Nd — N.. 

We say that the material is compensated. Here we have a partially 
compensated n-type material. The majority carriers are still the electrons; 
the number of holes is still very small as the Fermi level is high in the band 
gap. We note however that as the compensation is increased by raising Na,  
the Fermi level decreases. If Na  = Nd the Fermi level will take up the 
intrinsic position given by Eq. (4.24). 

If the number of acceptors becomes larger than the number of donors 
all the donors will be ionized by trapping an electron in an acceptor level. 
We will then have N.– Nd effective acceptors and the concentration of free 
holes will be 

p = N. – Ncl) 

where the Fermi level is given by Eq. (4.17) as 

EF — Et, = kTLn 	 (4.47) 
N. – Nd •  

EF will be quite low in the band gap, and the electron number, given by 
Eq. (4.22) with p = N. – Nd, will remain very small. We will then have a 
compensated p-type semiconductor. 

— These ideas allow us to understand the role of purity in the properties 
of semiconductors at intermediate temperatures. The band structure of the 
material determines three characteristic concentrations Arc , Nt„ and ni = 
(NcN0 112  exp(–Eg /kT). 

If a material contains Nd shallow donors, they will ionize and release n = 
Nd electrons jstip.k, the conduction band. Let us consider the simultaneous 
presence of cge-13" donors. If their concentration is not too high 
they will not play any role because their energy is such that they will 
not be ionized. Consider further the presence of deep acceptors; these will 
capture electrons coming from the donors and partially compensate the 
semiconductor (Appendix 4.2). As long as the concentration of acceptors 
remains small compared with that of the donors we will still have an n-type 
semiconductor. 

The arguments above show why pure crystals are important in semi-
conductor applications: until it was possible to manufacture crystals with 
impurity concentrations less than Ne  the phenomena described above were 

(4.46) 
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not understood. Section 4.9 deals with the fabrication of pure semiconduc- 
tors. 

)<4 • 7 Semiconductor at Low Temperatures 

At low temperatures we have to consider partial ionization of the donors or 
acceptors (the Fermi level is close to the donor or acceptor levels). We shall 
confine ourselves for simplicity to uncompensated n-type semiconductors. 
Then we always have na-  = = 0. Electrical neutrality (4.10) becomes 

p+ nct =n. 	 (4.48) 

Using Eqs. (4.3) and (4.9) we get 

nct = Nd — 71,?1, 	 (4.49) 

 nd = "d 
o 	

1 ± exp(Ed - EF)/kT' 	
(4.50) 

1 

exp(Ed - EF)IkT 	
(4.51) 

(n P)  Nd  1 di exp(Ed - EF)IkT 

Substituting EF from Eq. (4.15) into Eq. (4.51) we get 

(n - p)n = (Nd - n + p) exp ( Ed  - Ec  
2 	 kT ) 	

(4.52) 

At zero temperature n = 0;p = 0; the semiconductor is an insulator. 
The Fermi level must lie above the donor levels. 

At very low temperature the ionization of the donors is weak and the 
hole concentration is negligible, as the Fermi level is very high in the band. 
Neglecting p and n compared with Nd, Eq. (4.52) becomes 

1/2 
	(Ed -E\ (N,Nd) 

2kT 
n = 	

2 	
exp 	c ) . 	 (4.53) 

The electron number increases, with an activation energy equal to half 
the binding energy of the donor. The Fermi level may be obtained by re-
placing n by its expression (4.15): 

kT Nd 
EF — Ec= 

Ed — E 
	+ —2  Ln 

2N, 
. 	 (4.54) 

2 

At intermediate temperature the exponential is of order 1 and the hole 
number is still negligible; we can write Eq. (4.52) in the form 

(Nd - n) 
exp(Ed - EclkT) .  

2n2  
(4.55) 
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For Nd << Nc  the solution n =  Nd is a very good approximation, and we 
recover the saturation regime. 

At high temperature we recover the intrinsic regime (4.36): we can re-
place exp[(Ed — Ec)/ki] by 1 and must now retain p in Eq. (4.52). Further, 
we use Eqs. (4.52) and (4.22) in the case where ni and Nd are both small 
compared with N. 

For a partially compensated crystal such that 

(A rc12) exp[—(Ec — Ed)I /MN° << Nd 

one obtains at very low temperature a regime where the electron number 
varies as exp[(Ed — Ee)IkT]. 

log n 

,-. 
intrinsic regime, 

' slope E , I 2k 

 

 

extrinsic 
saturation 

z, regime 

extrinsic 
ionization regime, 
slope (Ec  — Ed)/2k 

   

1/T 

Fig. 4.5. Variation of the logarithm of the concentration as a function of the inverse tem-
perature for an n-type semiconductor. In practice room temperature is in the saturation 
regime. (From Smith "Semiconductors," Cambridge University Press, 1968.) 

Figure 4.5 shows the behavior of the concentration as a function of the 
inverse temperature. At zero temperature the concentration tends to zero. 
Similar results hold for a p-type semiconductor. 

Exercise: using the data of Chaps. 3 and 4 (and a pocket calculator), _ _ 
show that in silicon doped with 1021  atoms of phosphorus per m3 , the satu-
ration regime where the number of carriers is constant extends from about 
90 K, where n 0.9Nd, to 500 K, where n 1.1Nd. 

Figure 4.6 shows the variation of Fermi level with temperature for an 
n-type semiconductor (upper figure) and a p-type semiconductor (lower 
figure). At zero temperature in the n-type semiconductor the Fermi level is 
between the donor level and the conduction band. 
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Ed 
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intrinsic level 

Nd > N. 

E„ 	  
0 	 T 

E 
E, — 	 (b) 

intrinsic level 	 Nd < N.  

E. _ 
1.- E' 0 	 T 

Fig. 4.6. Position of the  Fermi level as a function of temperature in the cases of (a) n 
doping, and (b) p doping. Note the different units of the abscissa compared with Fig. 
4.5. In the saturation regime the number of carriers is fixed but the Fermi level changes. 
(From Smith, "Semiconductors," Cambridge University Press, 1968.) 

The problem in Appendix 4.2 shows how a semiconductor of given re-
sistivity is manufactured in practice by choosing the type of dopants (deep 
or shallow) and their concentration. 

(4.8 Application: The Semiconducting Thermometer 

These results obviously lead to the principle of low-temperature thermome-
ters which measure the resistance of an extrinsic semiconductor. At and 
above room temperature one generally uses metal resistors as thermome-
ters (such as the etalon thermometer using a platinum resistor), but this is 
not possible at low temperature because metal resistivity does not depend 
strongly on the temperature in this range. 

The reason for this is that in a metal the number of carriers is constant 
and the collision time appearing in the resistivity is r(EF), where EF is 
the Fermi energy of the crystal. What appears in the resistivity, then, is 
the collision time of electrons with the Fermi velocity VF, independent of 
the temperature. This time varies with temperature at high temperatures, 
as the thermal vibrations of the lattice are the main source of collisions, 
and their amplitude increases with temperature. By contrast at low tern- 
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perature this collision process becomes negligible, and the mean free path 
is correspondingly infinite. The mean free path, and thus r(EF) is then 
determined by collisions of electrons of velocity VF with impurities, so that 
the metal resistivity is then independent of the temperature. 

On the other hand, for a semiconductor in the extrinsic regime the con-
ductivity, which varies with the number of free carriers, remains a function 
of the temperature at low temperature as we have seen in Fig. 4.5. Arsenic-
doped germanium is used currently as a thermometer between 0.1 and 100 
K (Fig. 4.7). 

0 100 200 300 400 500 600 

temperature (K) 

Fig. 4.7. (a) Variation of the resistivity of pure germanium as a function of temperature. 
Note the rapid rise of the resistivity at very low temperature. (b) Calibration curve for 
a germanium thermometer. Note the log scale. 

'` 4.9 Growth of Pure Crystals 

We have seen how important it is to have pure single crystals so as to ob-
tain properly controlled resistivities. Silicon is the basic material for almost 
all products involving semiconductor components throughout the world. 
The use of these materials implies a degree of purity out of all comparison 
with what is normally required in other domains. In many applications the 
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presence of deep recombination centers must be avoided and purities of the 
order of 10-9  have to be reached for some elements. 

These single crystals are almost always obtained using a molten bath 
with a composition close to the desired one. This removes the complications 
associated with non-uniform materials. To reach sufficient purity one has to 
start with fairly pure polycrystalline material, itself obtained by hydrogen 
reduction of SiC14 , which is liquid and can be distilled several times for 
purification. 

One of the main problems for the growth of single crystals of large size is 
the control of the temperature gradients which must exist for solidification 
to occur. When the crystal forms from the liquid, the enthalpy of fusion 
Alif is released and must be removed from the system while preserving its 
homogeneity. Usually one uses the extraction or Czochralsky method illus-
trated in Fig. 4.8. A small seed crystal is mounted on a shaft and brought 
into contact with the surface of the bath. The temperature gradients are 
controlled so that the crystal grows at the surface of the seed. 

Fig. 4.8. Growth of a single crystal by the extraction method. From Leturcq and Rey, 
"Physique des Composants Actifs h. Semi-Conducteurs," Dunod, 1978. 

The crystal is then slowly pulled while being rotated. Crystals up to 
50 cm in diameter have been obtained by this method; present standard 
diameters for microelectronic applications are from 4 to 6 inches (10 to 15 
cm). 

However in this method the vessel remains as a source of contamina-
tion. There is almost always pollution by the vessel which may be slightly 
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attacked at the bath temperature (1418°C for silicon). It is therefore prefer-
able to eliminate the vessel. This is possible using the ingenious melting 
zone technique shown in Fig. 4.9. A polycrystalline ingot is heated locally 
by induction until a narrow melting zone forms. The slow displacement of 
the heating coil moves the liquid region as the polycrystalline material fuses 
and solidifies to a single crystal. 

Once the crystal is obtained it is possible to purify it further by zone 
refining, a technique developed by William Pfann at the Bell Laboratories. 
This procedure has improved the attainable purity limits by several orders 
of magnitude and one can now obtain silicon crystals with a purity of 10-1° . 
It is true to say that without this technique a large part of present elec-
tronics and information technology would not exist. Like many discoveries, 
zone refining seems obvious once seen, but required a stroke of genius to 
think of it. 

Let us consider a solid in equilibrium with the liquid of the melting 
zone. We define a coefficient of liquid-solid segregation: 

CL K =
' 	

(4.56) 
Cs  

where CL and Cs are the concentrations in the liquid and the solid. In gen-
eral K is much greater than 1, as the impurities are much more soluble in 
the liquid than the solid. One starts at z = 0 with a crystal having a uniform 
impurity concentration Co. The first melting zone has concentration Co. By 
contrast the first solidified layer obtained as the zone rises has a concentra-
tion q = co/K and is therefore purer. As the melting zone moves, it gains 

container 

polycrystal 

high frequency 
heater 

single crystal 

seed 

Fig. 4.9. Purification of a single crystal by the melting zone method. From Leturcq and 
Rey, "Physique des Composants Actifs 4 Semi-Conducteurs," Dunod, 1978. 
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in impurities and leaves behind a purified crystal until the liquid reaches 
a concentration KCo. Subsequent motions of the zone do not purify but 
make the crystal uniform. After a passage along the crystal, it is allowed 
to cool and one starts again at z = 0, heating again from the concentration 

= co/K. The first crystallized zone after the second passage thus has 
a concentration C' = C0/K 2 . One thus makes several passages, beginning 
at the origin, obtaining the remarkable purities we have mentioned. 

The cost of electronic grade single crystals of silicon is about $100/kg, 
a remarkably low price for such a technological achievement. 



Appendix 4.1 

Occupation Number of a Donor Level 

We first recall the definition of the Fermi factor. We consider the grand 
canonical ensemble where the density matrix D is written 

D = 
exp[- 3(N — EFN)]  

Tr exp[—O(N — EFN)] 
(4.57) 

where = 1/kT, N is the Hamiltonian and N the number of particle opera-
tors.  The operators N and N have the eigenvalues E. tates niEi and 57 —states ni 
respectively. 

Here the states i are completely defined (energy, orbital quantum num-
ber, and spin determined), and the eigenvalues of ni are 0 and 1 for each 
state i. Then for each state 

< ni > = Tr niD, 	 (4.58) 

Tr ni exP[ —NniEi — EFni)] X TYjoi exp[Ei  — 13(niEj  —  EFnj)]  
Tr exP[-0(niEi EFni)] x Trioi exp[Ei  — f3(ni.Ei — EFni)] 

Tr ni  exPHO(niEi —  EFni)]  = 	1 
(4.59) 

Tr exp[—)3(niEi — EFni)] 	1+ exp fi(Ei — EF) • 

For a donor level we wish to know if an electron can occupy any of the 
localized levels (Fig. 4.10), whatever its spin. 

Consider first the donor ground state, a hydrogen-like is state. In fact, 
taking account of the spin, we have two states, is I  and  is I,. Because of 
electron repulsion, there is only one electron to place, and there are thus 
three possible states: empty, one electron in  is  I, and one electron in  is L. 

The occupation number <  n1  > of the  is level can be expressed by 
using Eq. (4.59) for the levels is  I and  is  
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    } 2p 

2s 

is  

Fig. 4.10. Schematic donor levels including possible orbital and spin degeneracies. 

< ni. > = <nie > + < fli8j>, 	 (4.60) 

= E 
Tr ni  exp[-0(niE,  - EFfli )]  

Tr exP[-0(nsEi - EFfli)] 

1 +  2 exp[-)3(Ei. - EF)] 
1 

< ni. > = 

	

	  
1 + (1/2) exP[$(Eis - EF)] 

This is expression (4.3), which we use to calculate the occupation num-
ber of the donor levels. 

A fully rigorous treatment takes account of all the localized donor states. 
For the 2p level for example, there are six sublevels of the same energy 
(1 = 1,m =  -1, 0,1,  and s =1 or 1). Each of these sublevels may be occupied 
by zero or one electron. When there is one electron the 2p_ I 1 term in the 
occupation number is exp[- /3(E2p  - EF)], and the six sub-levels contribute 
in the same way. For a level a of degeneracy gc, = 2(21  + 1), where 1 is 
the orbital quantum number, the term exp[-f3(E0  - EF)] occurs ga  times. 
Further, as the localized donor levels can be occupied by one electron at 
most, there is in all only a single empty level. Hence the mean occupation 
number < n > of the ensemble of localized donor levels can be written as 

t=0,st,81. 

2 exp[-fl(E18 - EF)]  

(4.61) 

(4.62) 

< n > = < > 

2 exP[+/3(Eis - EF)] + . . . + ga  exp[-fl(Ea  - EF)]  
1 + 2 exp[- 3(E18  - EF) + +  g0  exP[-i3(E0 - EF)] 

(4.63) 

(4.64) 
1 

< n > = 	  
1 + {Eûgc, exp[-O(Ea  - EF)]1-1.  

In fact the number and degeneracy of the localized excited states is 
such that the sum Eaga  exp[-O(Ea  - EF)] diverges. This means that if 
we consider all the localized excited states we will always find <n  >= 1, 
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i.e., the electron will never be in the conduction band. This paradox, well 
known for the hydrogen atom, can be resolved. The Bohr radius grows with 
cr, and we should count in the sum only those states which do not overlap; 
if this condition fails the electrostatic potential will no longer go as 1/r and 
the calculation of the donor states is no longer correct. 

In all practical cases the numerical values deduced from formulas (4.62) 
and (4.64) differ very little, and we shall use Eq. (4.62) in this book. 



Appendix 4.2 >, 

Problem: Substrates for Microelectronics 

The microelectronics industry makes great use of epitaxy, the crystalline 
growth of semiconductors, or semiconductor devices, on a substrate of sim-
ilar type. The substrate acts as the mechanical and thermal support, but 
must not short-circuit the components. Thus it must have a very high re-
sistance. 

The objective of this problem is showing how to use appropriate doping 
by deep impurities to render insulating a single crystal of impure gallium 
arsenide (containing residual impurities). We recall that the electrical re-
sistivity p is related to the conduction electron and hole number densities 
n, p by the relation 

p = (nepe  + peph)', 

where pe  and 1111  denote the mobilities of these carriers, and e the electron 
charge. 

The questions in this problem aim at numerical estimates of the resis-
tivity. We simplify the problem as much as possible by adopting adequate 
approximations (for the Fermi factors in particular). 

We give the following characteristics of gallium arsenide: relative dielec-
tric constant Er  = 13; band gap .E, - Et, = 1.4 eV; effective electron mass 
me  = 7 x 10-2m; electron mobility ti e  -= 8500 cm2  • V-1  • s-1 ; effective 
hole mass mh = 0.5m; hole mobility ph = 400 cm2  • V-1  - s-1 ; here m is 
the electron mass in vacuo. It is convenient to use the following numerical 
values: 

2 
No =—

h3 
(27rmkT) 312  = 2.1025  m-3  for T . 300 K, 

e4m 
EH = 	= 13.6 eV. 

2(4rfoh) 2  

EH is the binding energy of the hydrogen ground state. 



116 	Appendix 4.2 

First Question 

Assume the semiconductor is completely pure. What is its resistivity at 
T = 300 K? 

Second Question 

Because of the different affinities of Ga and As atoms, it is impossible in 
practice to produce GaAs crystals with less than 1020  impurities per m3 . 
We assume that these impurities are shallow donors. They then introduce 
energy levels close to the conduction band which we can calculate by liken-
ing the donor to a modified hydrogen atom. For this atom we take account 
of the screening effect through the dielectric constant, and use the fact that 
the conduction electrons are quasi-particles of effective mass me , as shown 
in the book. To calculate the statistical distribution of the electrons we 
assume that each impurity has the effect of introducing into the band gap 
exactly one state (without spin degeneracy) of energy Ed whose position 
with respect to the bottom of the conduction band is that of the ground 
level of this pseudo-hydrogen atom. 

What is the position of this ground level Ed and how does the binding 
energy of the electron in this level compare with kT for T = 300 K? 

What is the position of the chemical potential at T = 300 K in the purest 
material obtainable in practice? What is the corresponding resistivity? 

Third Question 

We can deliberately introduce some chromium atoms into the semiconduc-
tor. We assume that their number density Ncr  is 1023  m-3 . Each chromium 
atom introduced into the crystal brings an electron with it. The earlier ap-
proximation of an equivalent hydrogen atom does not work for these atoms. 
We assume that to each chromium atom there corresponds in the band gap 
an energy level Ear, this time doubly degenerate, situated 0.7 eV below the 
bottom of the conduction band. 

Write down the conservation of the electron number in this system. De-
duce that the Fermi level is very close to Ecr , and that the introduction 
of chromium increases the resistivity. What is the maximum resistivity one 
can reach at T = 300 K? 
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Solutions 

First Question 

We assume that the chemical potential is in the band gap, i.e., we set 
(3 = lIkT,O(E, — EF) >> 1, and 13(EF — Ev ) >> 1 and thus approximate 
by neglecting the +1 term in the denominator of the Fermi factor 

(E) = exp 	—
1 

EF) + 1 exP[-13(E  — EF)]. 	 (4.65) 

Under these conditions the quasi-particles obey ideal gas statistics, and 
the electron and hole number densities are given by 

2 
n = (2inerkT) 3/2  exp 0(EF —  Es ), 	 (4.66) 

-- 

p = —
2 

(2mhrkT) 3/2  exp /3(Ev — EF), 	 (4.67) 
h3  

so that n = (rne /m) 3/2 No exp)3(EF — Ec ) and p = (mh/m) 3/2No x 
exp)3(E, — EF). 

We eliminate the chemical potential by taking the product of these two 
expressions: 

np =  Are(7-1-1 3/2  ( Mh ) 3/2 exp[—O(Ec  — Er)] = n. 	 (4.68) 

For a completely pure semiconductor the condition of electrical neutral-
ity, expressing the conservation of the total number of electrons, can be 
written 

n = p. 

We get 

memh) 2/4  n=p=N0( m2 	exp[-0(E, — Ei,)/2]. 

Numerically we have n = p =  n 	1.1 • 1012  M-3  at T = 300 K. The 
chemical potential EF is given by 

0(EF — E.) = Ln [(n/No)(m/m.) 3/2 1 
= Ln [(p1No)(m1mh) 312 ]• 	 (4.70) 

Given n = p << No, we justify a posteriori the original assumption. The 
resistivity p is p = [ne(Ar  + ph)]-1 . We find p 6.106S1  m. 

(4.69) 
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Second Question 

The binding energy of the ground level of the pseudo-hydrogen atom is 

me  1 
Ee  - Ed = EH x — x 	 (4.71) 

77/ 

We have now taken account of the effective mass me  of the quasi-
particles; the screening effect caused by all the electrons of the solid leads 
to an attractive potential of the form e2 /471-fo Err instead of e2 /4/reor. 

Numerically we have Ec  - Ed 8.10-3  eV. This is less than the energy 
kT for T = 300 K, which is 25 x 10-3  eV. The donor is neutral when the 
level Ed is occupied; it is positively charged when it is empty. The neutrality 
condition for a material containing Nd donors per m3  is 

n = p + [1 - f (Ed)]Nd. 	 (4.72) 

The chemical potential is now closer to the bottom of the conduction 
band (Ee). Assuming that p is negligible, we can then see that: 
• if 1 - f (Ed) << 1, then the chemical potential lies above Ed, and is thus 
close to the conduction band and p is indeed negligible; 
• if 1 - f(Ed) 1 then n Nd from Eq. (4.72). If Nd > n2 , then from 

Eq. (4.68) p < n, i.e., p < 1.1 x 1012  m3 , while Nd > 1020  m-3 , so that 
p « Nd. 

Now, given that at 300 K, 0(E0  - Ed) is less than 1, the Fermi factor 
(E) has the same order of magnitude for E = E, and E = Ed: 

f (Ec) f (Ed)- 

For Nd = 1020 m-3 and No = 2 X 1025  M-3 : 

f(Ed)Nd < f(E) ( —e-rn  ) 3/2  No = n. 

Expression (4.72) thus reduces to 

n Nd 

and we can clearly neglect p by comparison with Nd (the second assumption 
above). 

The chemical potential is given by 

/3(E - EF) = Ln[(No/N4(me/m) 312], 	 (4.73) 

and we find E, - EF = 0.2 eV and thus EF — Et, = 1.2 eV. 
The chemical potential is below Ed, closer to the conduction band than 

the valence band, justifying the approximation n >> p, but it is far enough 
from E, for the approximation of the Fermi factor made in the first question 
to hold. 

The corresponding resistivity is then 
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1 
P — 

Ndette ' 

where Nd =-1020 111 -3  so that p:._-. 0.07 f/ • m. 

Third Question 

The chromium levels are clearly deeper in the band gap than the donor lev-
els; thus the donor electrons are trapped in these levels and EF is decreased. 
The energy Er is lower than the value of the chemical potential calculated 
in the preceding question. The electron number n will thus decrease and 
the resistivity increase. The electrons come either from the valence band (p 
in number) or the chromium levels (Nor  electrons) or the donors (Nd). At 
equilibrium they are either delocalized in the conduction band (n) or local-
ized in the chromium sites [2f(E0r )N0r] or donor sites  [f(Ed)Nd].  Hence 
the balance: 

p + Ncr + Nd -= n +  2f  (Ecr)Ncr + f  (Ed)  Nd. 	 (4.74) 

Since Arc,. ,-, 1023  tri -3  is much larger than all the concentrations Nc17 71)P 
under consideration, this equation requires 

Nor  :-.-- 2f (Ecr)Ncr , 	 (4.75) 

that is, f (Ecr )cs2 1/2, and thus that EF coincides with Ecr  to within a few 
kT . We say that the chemical potential is pinned at the level Er  in the 
center of the band. We deduce 

(m ) 3/2 
—1- 	No eXPO(ECr — Ec), mo 	

(4.76) 

(—mo

3/2 
 ) No exp /3(Ev — Ear). 

Mh 

With Ec  — Er =  E r  — Et, = 0.7 eV we obtain n = 2.5 x 10 11  111-3  and 
p -, 5 x 10 12  m-3 . Thus p L-_. 1.5 • 107  S-2 • m. 

A 

B 

n= 

p=  (4.77) 

Fig. 4.11. Epitazial structure: A: active layer; B: semi-insulating substrate. 
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The introduction of chromium allowed us to obtain a larger resistivity 
than that of the perfectly intrinsic material. There are a few less very mobile 
electrons and a few more fairly immobile holes than in the pure material. It 
is thus a method for obtaining a material of resistivity comparable to that 
of the pure material, starting from a material which necessarily contains 
impurities. This kind of material is called a semi-insulating semiconductor. 
We thus have a method allowing us to transform an impure substrate B into 
an insulator by strongly doping it with deep impurities. We can then grow 
by epitaxy a high quality crystalline layer A, whose electrical properties 
can be controlled by selective doping with shallow impurities (Fig. 4.11). 
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Transport Phenomena 
in Semiconductors, 

5.1  Introduction X 

Whenever an electric field, a concentration gradient, or temperature gra-
dient is present in a semiconductor we observe charge transport (electric 
current) mass transport (diffusion of carriers), or energy transport (heat 
conduction). Further, when a semiconductor is subject to photoexcitation 
there occurs what we may call an internal photochemical reaction: the cre-
ation of electron-hole pairs through the excitation of an electron from the 
valence band into the conduction band. 

For each of these different types of excitation there exist mechanisms 
restoring the system to equilibrium, with characteristic rates which are, 
however, different. We shall see that the average time between collisions, 
measureable from the mobility p = er/m" or from the width of the cy-
clotron resonance, is of the order of 10-13  s. This is very short compared 
with the lifetime of an electron-hole pair created by light The latter time 
can for example be found from the decay of "photoconductivity," the vari-
ation of conductivity connected with the presence of additional electrons 
and holes, following a very short flash of light (cf. Chap. 6). In this way we 
measure lifetimes between 10-3  and 10-9  seconds. 

It is important to understand that even in the absence of any applied ex-
citation, there is ceaseless creation and destruction of electron-hole pairs by 
thermal motion within the semiconductor. We shall see that the character-
istic time of this spontaneous process is exactly the lifetime, and thus very 
long compared with the time between collisions. Because these times are 
very different we can study these processes separately, i.e., determine the 
transport properties such as conductivity, by regarding the electrons and 
holes as non-interacting gases. This is the approach of the present chapter. 
As a second stage we can study the much slower effects of creations and 
annihilations (recombinations) of electron-hole pairs by light or through 
other causes: this is the subject of Chap. 6. 
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We first recall the elementary transport model constructed by Drude 
in 1900, which relates the finite value of the electrical conductivity to mi-
croscopic electron collisions (Sect. 5.2). The predictions of this model will 
be more rigorously justified in Sect. 5.3 by use of the Boltzmann transport 
equation. The main results obtained for semiconductors, and the orders of 
magnitude of the characteristic times and lengths, are given in Sec. (5.4). 
On a first reading the latter section can be studied after reading only Sects. 
5.2 and 5.3d. 

)( 5.2 Drude's Model of Conductivity and Diffusion 

We have seen in the preceding chapter that the occupation probability of 
conduction band states of energy E can be approximated by a function pro-
portional to a Boltzmann factor exp[—Ellen Moreover we saw in Chap. 2 
that electrons respond to an external force in accord with classical dynam-
ics (2.38), provided we replace their mass by the effective mass me . This is 
also true of the holes. We may therefore try to use a classical treatment to 
understand transport properties. This is the basic idea in the application 
of Drude's model to semiconductors. 

We thus consider a perfect electron  g_as, obeying classical mechanic 
and confined within a solid by the Coulomb interaction with the ions, which 
appear only as a potential well of the size of the crystal Like classical gas 
particles, the electrons are subject to random collisions. We know (Sect. 
2.2) that these collisions only occur with imperfections in the crystal and 
the boundaries of the potential well. 

Let us consider the example of Coulomb scattering of an electron by 
ionized impurities that deflect its path. If the impurities are randomly dis-
tributed in the solid, the scattering probability for an electron by impurities 
during the time interval dt is independent of the observation time t, and 
proportional to dt. We write it as dth-,  where the characteristic time T 

depends on the  implitityconcentration. The electron will be more sensitive 
to an impurity if it "feels" it for longer, and thus if its kinetic energy E is 
lower: this must be reflected in the dependence of T on E. 

In Drude's model, whatever the collision mechanism, we take the scat-
tering probability for an electron in the interval dt to be dth- , where the 
collision time is assumed to be independent of E. We call p(t) the probabil-
ity that an electron suffers no collision between t = 0 and the time t. The 
probability of surviving until t + dt without collisions is the product of the 
probability of reaching t without collision, and that of suffering no collision 
between t and t + dt, so that 

+ dt) = p(t)(1 — dt/r). 	 (5.1) 

We get 
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dp= -p dtlr, 	 (5.2) 

rp-(i)-= exp(-t/r)) 	 (5.3) 

The probability density P(t)dt that an electron has suffered no collisions 
between 0 and t but then collides between t and t + dt is 

P(t) dt = exp(-t/r) dt/r. 	 (5.4) 

, The probability density P(t), an exponential distribution, gives the mean 
time < t > between collisions: 

co 
< t > = f tP(t) dt = T. 	 (5.5) 

0 

The average distance Ac  between collisions, called the mean free path, is 
the product of r and the average velocity. We will see in Sect. 5.4 that r 
is of the order of 10-13  s. For an effective mass me  es/ 0.1m, where m is 
the free electron mass, and a thermal speed y at 300 K of several 105  m/s, 
A, = VT is about 20 nm. 

Using the exponential distribution we can calculate the electrical con-
ductivity and diffusivity. 

5.2a Electrical Conductivity X 

In the absence of an electric field, collisions make all directions of motion 
equally probable, each one on average occurring without memory of the 
preceding electron velocity. The electron motion thus produces no global 
electric current. 

In the presence of an electric field C the electrons feel a constant force: 

dv F = -ee = me—
dt• 	

(5.6) 

From the  argument  of Sect. 2.2 the mass involved here is the effective 
mass me  of the electron in the soli& The electrons thus acquire an additional 
velocity component y in the direction of C whose magnitude grows linearly 
with time until the following collision (Fig. 5.1): this component grows 
proportionally with the time for an interval At i , is abruptly annihilated, 
and then begins to grow again during the interval At2, and so on. 

The mean value of the velocity in this process is, from Eq. (5.5), 

< sr > -  	 (5.7) 
me  

er , 
(5.8) 

Me  

which is the drift velocity ve . This quantity is proportional to the electric 
field E. Here we have introduced the electron mobility tie: 
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Ve 

dt — zit 2 	At3 

'ig. 5.1. Increase of the velocity component of a free electron along the direction of the 
.pplied electric field as a function of time in the Drude model (the resulting velocity is 
intiparallel to the field). The drift velocity is ve . 

er 
ILe  =-- —• me  

(5.9) 

A convenient way of deriving the results of the Drude model is to in-
troduce into the dynamical equation (5.6) a viscous friction force –mevir, 
where T is the collision time: 

dv 	 v 
= –ee – me – me  — 	 . 

dt 

The stationary solution (dv/dt = 0) gives again the result (5.8). Equation 
(5.10) can be extended to more complex cases: sinusoidal driving terms and 
applied electric and magnetic fields (cf. Appendices 2.6b and 5.1). 
- The current density Je  is 

Je  = –neve , 	 (5.11) 

where n is the carrier density; Je  is thus proportional to E, allowing us to 
define the conductivity o-e : 

Je = aee 

with 

(5.12) 

=  ne2  --T  = nett,. 
me 

A solid is in the most general case anisotropie, so that the conductivity 
is a tensor (cf. Appendix 5.1). 

Similarly for a semiconductor possessing free holes of effective mass mh 
and concentration p, with collision time Th, a discussion analogous to that 
for the electrons gives 

erh e  
Vh = -G = phe, 	 (5.14) 

77/42 

(5.10) 

(5.13) 

where vh is the hole drift velocity in the electric field C and ph their mobility, 
defined by 
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(5.15) 

is proportional to C, and we define the hole con- 

erh 
ith = 

mh  

The hole current Jit 
ductivity ah by 

Jh = ah e 
with 

(5.16) 

(5.17) 
pe2Th 

ah = 	• 
Mh 

We can verify (cf. Sect. 3.1) that the drift velocities of the electrons and 
holes are in opposite directions, but the current densities Jh and Je  are 
both in the same direction as C and therefore add. The total conductivity 
is thus 

a =  Ce + ah, 

a = netie +Petth• 	 (5.18) 

5.2b Diffusion 

Let us consider a set of identical particles (e.g., gas molecules) with to-
tal concentration n. Assume that some of these particles differ from the 
others, for example that they are radioactive. Let ni be the concentration 
of these particles. In equilibrium the particles are uniformly distributed in 
the allowed volume so that the concentrations n and n1 are independent 
of position. Let us assume now that the distribution of n1 is not uniform, 
but depends on position, e.g., n1 = n i (x), while n remains constant. This 
is not an equilibrium situation. There must therefore be particle motions 
tending to increase the entropy, i.e., trying to make the concentration n1 
uniform, although there is no net motion of matter. Let us call the particle 
current  iN.  If n 1  is not constant we expect as a first approximation that 
the current will be proportional to the concentration gradient, here chosen 
parallel to the x axis: 

„Oni 
= 

Ox 

The coefficient of proportionality D is called the diffusion coefficient. For 
a positive diffusion coefficient, a positive gradient OnilOx gives a negative 
flux tending to equalize the concentration. This equation, called Fick's law, 
describes diffusion in very many cases. 

If we combine Eq. (5.19) and the equation of particle number conserva-
tion: 

at = — V • JN, 
	 (5.20) 

(5.19) 
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we obtain the diffusion equation 

ani 	02n, 
= D at 	ax2  ' 

We immediately see from this equation that if the total particle num-
ber remains constant, diffusion moves particles from dense regions, where 
02n1 /Ox2  is negative, to dilute ones, where it is positive. 

5.2e Diffusion in the Drude Model ), 

We consider a classical gas of non-uniform concentration in the Drude 
model, and attempt to demonstrate Fick's law (5.19) in this case. We as-
sume that the concentration gradient is along x and seek the particle flux 
across unit surface perpendicular to the x axis at time t. This flux consists 
of all the particles directed towards this surface from the left since their 
last collision, from which we must subtract all the particles similarly com-
ing from the right. As the current is proportional to the particle velocity, 
the total current can be written as 

t 
J.IYx = f ni [x – vz  (t – t'Av z  exp[–(t – t1 )17-1—

cle 
-oo 	 T 

—  f
t 

ni  [x + vz  (t – t'Avz  exp[–(t – t')/r] —
de . 

-co 	 T 

This simply states that for a particle to cross the surface at time t with 
speed vz  requires that it should not suffer a further collision after its last 
collision at time t' [using the exponential distribution, cf. Eq. (5.4)]. At 
this time the particle had abscissa x – v x (t – t'), and the number of such 
particles is ni  [x – vz (t – t')]. Expanding to first order, which is valid only 
if the gradient is approximately constant over a mean free path, we have 

de 
JAls = --Ian  f 24(t — t') exPHt – t')/T] — , 	 (5.23) 

Ox _ OE, 	 r 

anr 2 
JArs = ----c

,, 
 al
i 

 T. 	 (5.24) 
ax  

We now have to average over velocities, but counting only positive vz , 
since the particles on the left with velocities to the left do not contribute 
to the current (Fig. 5.2). For an ideal gas the mean value is 

<v  >,.....<  v 	vz2 >= kT Im 	 (5.25) 

and here we have to take one-half of this value. We thus have 

aril kT 
Arz  

Ox  771 
(5.26) 

(5.21) 

(5.22) 
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Fig. 5.2. Drude model for diffusion. Electrons with velocities like vi cross the surface s 
at time t and contribute positively to the diffusion current J.  We have to subtract the 
contribution of electrons with velocities such as v.t. 

We have thus established Fick's equation (5.19) within the framework 
of the Drude model, and obtained a theoretical value for the diffusion co-
efficient 

kT D = — T. 
m 

 (5.27) 

If we now consider the conduction-band electrons we can give a com-
pletely analogous discussion to the extent that the electrons obey classical 
statistics (Chap. 4). Here, the mean free path is determined by collisions 
with lattice defects, e.g., impurities or deformations caused by thermal vi-
brations. The only difference is that we have to replace the mass by the 
effective mass on taking the mean of q. We thus get for electrons 

kT 
De  = — Tel 

Me  

and for holes 

kT 
Ph = —Th. 	 (5.29) 

Mh 

If we compare the relations (5.9), (5.28) and (5.15), (5.29) we see that we 
can write a relation of the form 

kT 
D = —

e
A 	 (5.30) 

for each type of carrier. 
This relation has a more general applicability than the restricted cases 

for which we have derived it, and is called the Einstein relation. 

(5.28) 
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Altogether, if there is simultaneously an electric field and a concentra-
tion gradient, the two currents, drift and diffusion, add together and we 
have for the charge current the expression 

	

Je  = entlee + eDeVn. 	 (5.31) 

For positively charged holes the total current (drift + diffusion) is 

	

= PePILE — eDhVp. 	 (5.32) 

Note the sign difference between Eqs. (5.31) and (5.32) which reflects 
the fact that the diffusion of holes or electrons is always opposite to the 
concentration gradient, whereas this is not true of the associated electric 
current, because of the sign of the charge carried by each particle. 

5.2d Limitations of the Drude Model >' 

This simple model is based on an exponential distribution in which a unique 
collision time T appears, and allows one to describe a conductivity, i.e., 
Ohm's law, and the diffusion constant appearing in Fick's law. It assumes 
that the electrons obey classical statistics, although this is not always true 
in semiconductors. We can check its validity by analyzing the behavior 
of the mobility, as measured, e.g., by the Hall effect: one observes that 
the mobility varies with temperature (see Sect. 5.4), which implies that 
T is a function of electron energy. This is true of collisions with ionized 
impurities, among others. We thus need a more rigorous formalism based 
on the Boltzmann transport equation, which we shall give in Sect. 5.3a. 
We shall recover an expression for the conductivity (Sect. 5.3b) similar to 
that given by the Drude model, with an interpretation of T as a certain 
average of the collision times r(E) over the energy E. We shall also be 
interested in the phenomenon of particle diffusion linked to the presence 
of a concentration gradient (Sect. 5.3c) and we will show that the Einstein 
relation is very general. 

5.3 Semiclassical Treatment of Transport Processes 

The theory of transport processes deals with the relation between currents 
and the forces which produce them. The formulations used for the calcu-
lation of transport properties are based essentially on classical mechanics 
in the sense that one regards the electrons and holes as particles with well-
defined positions and crystal momenta, except for the duration of a colli-
sion, which is assumed negligible compared to the time between collisions: 
this system is completely analogous to an ideal classical gas. However, a 
part of the discussion requires quantum mechanics, namely the treatment 
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of the collision process itself. It is in this sense that the treatment is called 
semiclassical. 

The physical conditions for a semiclassical treatment are first, the distri-
bution of energy levels must be continuous, or at least the distance between 
energy levels much smaller than kT. Second, interactions or correlations be-
tween particles must be weak. Next, the time that a particle spends in a 
state of kinetic energy E, i.e., the mean time between collisions, must be 
large compared with h/E, so that the energy of the state is well-defined. 
Also, the spatial variation of the applied fields must be small over a mean 
free path. Finally, the time variation of these fields must be small during a 
collision event. 

These conditions are satisfied in semiconductors for a very wide range 
of temperatures and fields. We can thus apply the classical treatment to 
the electron and hole gas in semiconductors. We recall here the main lines 
of this treatment. 

In (a) we give the evolution equation for the probability that an electron 
has position r and momentum k at time t. Conductivity is introduced in 
(b), and diffusion in (c). The main results are summarized in (d), and may 
be assumed if it is desired to skip Sects. 5.3a,b,c in a first reading. 

Let us first make the terminology precise. The treatment below was con-
ceived by Boltzmann to describe the transport properties of gases. In solid 
state physics the term "Boltzmann equation" is always used to describe the 
semiclassical transport equation, even for metals, where the electrons obey 
Fermi—Dirac statistics. 

5.3a The Boltzmann Equation for a Semiconductor 

Let f (k, r, t) be the phase density (or distribution function), such that at 
time t the number of particles with momentum within d 3k of k and position 
within d3r of r is f (k, r, t)d3k d3r: this represents the number of particles in 
the volume element of the one particle phase-space at time t. The distribu-
tion function may be either Maxwell—Boltzmann or Fermi—Dirac, according 
to the system under consideration. To clarify these ideas, Fig. 5.3 shows a 
section of phase-space along the (x, k x ) plane. The Boltzmann transport 
equation which governs the evolution of f(k, r, t) can be obtained as fol-
lows. Between the times t and t + dt the points representing the particles 
move smoothly towards the volume element d3k'd3r', equal to d3kd3r to 
second order, under the action of external forces and diffusion. 

However because of collisions some particles (a) are "lost," while others 
(b) are "gained." The conservation of particle number imposes only the 
time independent integral relation 

f (k, r, t) d3k d3r = constant. 	 (5.33) 
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kx  I 

dk x  

(a) 	t + dt 

dx 	 x 

Fig. 5.3. Phase-space with two dimensions x and k.. Time evolution of particles in the 
range dx dk.. 

Comparison of the number of particles within d3kd3r of  (k, r)  at time t, 
and the number within d3kd3r of (k + dk, r + dr) at t + dt requires that 

Of 
f(r + dr, k + dk, t + dt) = f(r,k, t) + (---,4, ) dt, 

where Of /0t)con is the variation of particle number caused by collisions. 
This gives to first order 

Of dx a f dk of of) 
(5.35) 

Or di +  ak Tit + at 	at LAI 

which is the Boltzmann equation. Using Eq. (2.33), the equation of motion 
in the reciprocal space, this can be rewritten as 

V  • VrJ 
, 

± —1 q(e + y x B) - Vk f + = ( - 5  - -t  
h 	

Of 	Of) 
& / cou . 	

(5.36) 

The first term represents the density variation in phase-space when the 
point under consideration moves in a spatially inhomogeneous system. This 
term is related to the diffusion. The second term shows the variation of f 
under the effect of an electromagnetic force applied to a charge q. The 
third term gives the explicit time dependence, for example in the case of 
sinusoidal driving force. This term vanishes in a steady state. The collision 
term is difficult to calculate exactly. One often uses the so-called relaxation 
time approximation, in which 

(Of) _ f — fo  

t l coo 	r(k) ' 
that is, if we impose a distribution function f differing from the equilibrium 
distribution fo, the system will return to equilibrium in a characteristic time 

(5.34) 

(5.37) 
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r(k). This hypothesis gives a good description of most collision processes 
in semiconductors. Thus the steady-state distribution function f is the so-
lution of 

v•V r f+-q-(C+vxB)•Vk f= Too  • h 
	 f - h 	 (5.38) 

5.3b Conductivity 

This is the effect produced by an electric field in a homogeneous semicon-
ductor at constant temperature in the absence of a magnetic field. If there 
is no temperature gradient we have Vr  f = 0 and Eq. (5.38) gives for the 
stationary state 

f = fo - rh -l q C • Vk f(k). 	 (5.39) 

We assume that the deviation of f from the equilibrium distribution func-
tion h is small, so that in the last term of Eq. (5.39) we can replace f by 
h, which depends on k only through the energy. Then 

f = h - Th- 1 
—
ah qe - Vk Ek 	 (5.40) 
OE 

so that for an electron, with the field taken along the x direction, 

f=-- h + Teetix aafE° . 	 (5.41) 

The electric current density ./x  corresponding to a state k is -2evx  (the 
factor 2 comes from the spin). Since the density in k-space is (1/270 3  the 
total current is 

_e2E f 
d3k v 2  —

afo
T. J = 	 

z  4r3 	x aE 
Noting that the total electron number NT in the volume S2 is 

1 
NT = nO =-

471.31 
fd3k f d 3r = --11  si fod 3 k, 

n 	4r3  

we get 

, 
t1 

 I)! (ah/aE) T 
js = — e-en" 	 (5.44) 

f d3k fo 	• 

The current Jr  is proportional to the electric field 6, and we can deduce 
the electric conductivity (cf. Eq. (5.12)) or the mobility p. The expression 
for p can be found from Eq. (5.44), and is positive by definition. 

(5.42) 

(5.43) 
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As we have seen in Chap. 4, the Fermi level is usually sufficiently far 
from the the conduction and valence bands that we can approximate the 
distribution function fo by a Maxwell-Boltzmann law: 

fo = const. exp(-E/kT), 	 (5.45) 

afo 	1 f 	 (5.46) 
OE 	kT 4°.  

The semiconductor is thus non-degenerate. The mobility A can then be 
written, using Eq. (5.44), as 

e f d3k v! 	r(E)fo  
A = +Jz IneE = 	 (5.47) 

kT 	f d3kfo 	. 

If the effective mass is a scalar, i.e., 

me 1  
E =

= mev2 
(5.48) 

2m, -2' 

we have the relations 

f /44,(E)d3k = f v12/0(E)d3k = f v!0(E)d 3k = f v20(E)d3k 

= 2 f 
E0(E)d3k. 	 (5.49) 

3m, 

Further d3k = const. E1/2dE, so that Eq. (5.47) can be written 

= 
2 1 fr E3/2r(E)fo (E) dE 

FL 3me  kT fr E1/2 f0 (E)  dE 
 

Noting that 

00 	 3kT 	 ,_ Ea/z e-E/kTdE  _ 	r  Ei/2  expk 
ElkT) dE 	(5.51) 

2 0  

we finally get 

Jz  = ne2E < 	T  > = aE 
Me  

with 

< T  >. fr  E3/2  exp(-E/kT) dE • 

We see that the conductivity depends on the effective mass and the 
mean relaxation time defined by Eq. (5.53). 

For electrons the mobility is given by 

tze = e
< Te  > 

(5.54) 
me 

io 

fa- T(E)E312  exp(-E IkT) dE 

(5.52) 

(5.53) 
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and similarly for the holes by 

< Th >  
Ph = 
e• 	

(5.55) 
mh  

Expressions (5.54) and (5.55) for the mobilities resemble those of the Drude 
model (definitions (5.9) and (5.15)). However the collision times are av-
erages which use the non-trivial weighting function E3/2  exp(—ElkT)dE. 
Starting from the observed temperature dependence of these averages, we 
can deduce r(E), and thus identify the microscopic collision mechanisms. 
This will be done in Sect. 5.4, where we shall also give the orders of mag-
nitude of the collision times. 

The Boltzmann equation method can be extended to the calculation 
of magnetic effects like the Hall effect, magnetoresistance (variation of the 
conductivity because of the bending of the current lines by the Lorentz 
force), or thermoelectric effects. One finds that the important quantities 
involve not just < T > but also < T-1  >, < T2  > < r  >2 , ..., where  
the mean is defined as in Eq. (5.53), i.e., using the weighting function 
E3/2  exp(—ElkT)dE. Some phenomena such as magnetoresistance for a 
semiconductor with a single carrier disappear if the relaxation time is in-
dependent of the energy. 

For the case of a degenerate semiconductor, for which fo is a Fermi—
Dirac distribution function, which cannot be approximated as Eq. (5.45), 
we have, to the same order in the field as before 

Ofo 3/2 — —r(EF)E3F12, 
Jo 

dE r(E) E E — 

2 3/2 low  dE E112 
 fo= —3 EF 

so that 

Jz  = ne2e T(EF)  
me  

The conductivity and the mobility thus involve the collision time of 
electrons with the Fermi energy, which itself lies in an allowed band in this 
case. These results are intuitively understandable: from the Pauli principle, 
motion of carriers requires accessible quantum states, which can only be 
found near EF. (See Sect. 4.8.) 

(5.56) 

(5.57) 
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5.3c Diffusion 

Equation (5.38) gives the form of the distribution function f for the case 
of a small concentration gradient: f thus differs little from fo, and depends 
on r. In the absence of external forces 

f = fo — Th— iVrf •  Vi  Ek 	 (5.58) 

where fo is constant in space, and the velocity has been replaced by its 
expression (2.29) as a function of Ek. 

We will calculate the particle current density JN. The current corre-
sponding to a state k is 2v(k) (2 for the spin); taking into account the 
density of states (1/270 3  the total current density is 

iN = 	
J 
	 (5.59) 

iN = 47r3 
foV(k)d 3k– 1 	V(k)TV —

Of
d

3
k. 	 (5.60) 

 471-3 	ax 
The first term vanishes as it involves a symmetrical integral of an odd 

function: fo  depends on k only through the energy, which is an even function 
of k. In any case, J must vanish in equilibrium. Similarly, in the second term 
only the velocity component vz  enters, and the (diffusion) current is in the 
x direction. It thus has the form 

1 	 2  of . 
JN,z – 74,7 

fr5 11,T -5-x- a
4

K. 	 (5.61) 

In the case considered, where there is a concentration gradient along x 
allowing a local equilibrium, the phase-space density can be written as 

f = A(x)exp(—E/kT) 

so that the density at the point r is 

A(x 
n(x) = 	

)
f exp(—E/kT)d 3k. 

Comparing Eqs. (5.58) and (5.62), we see that rvz (aA/ax)/A(x) must 
be small compared with unity: the assumption of a small concentration 
gradient is equivalent to taking A(x) as slowly varying over a mean free 
path TVx  

The current becomes 

1 aA 
J.Nx = 	 t4T exp(—EMT)d3k. 	 (5.64) 

From Eq. (5.63), 

1 OA(x) 	On/Ox 
4/1-3  Ox 	f exp(—E/kT)d3k 

(5.65) 

(5.62) 

(5.63) 
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We thus have 

JIslx = 	 (5.66) 
an f v!T  exp(–EMT)d3k  
ax f exp(–E/kT)d3k 

which defines the diffusion coefficient in Fick's law: 

D  f tir(E)exp(–E/kT)d 3k 	
(5.67) f exp(–E/kT)d3k • 

Comparing with expression (5.45) for the mobility we deduce the Einstein 
relation for electrons: 

D = —kT 	
(5.68) 

We have thus generalized Fick's law and the Einstein relation, which we had 
previously only demonstrated in the context of the ultra-simplified Drude 
model. Obviously we get a similar result for holes. All that enters in the 
relation for D is the hole mobility. 

For a degenerate system we find 

7- (EF)v2  
D = 	F 	 (5.69) 

3 

so that 

2 EF 
D = 	 (5.70) 

3 e 

We note that the existence of a relation between the mobility and the 
diffusion coefficient is extremely general: it shows that in fact there exists 
only a single transport coefficient relating the current of charged particles, 
the concentration gradient and the electrostatic potential gradient. This 
is a general property of transport of independent particles, whose proof is 
beyond the scope of the present treatment. The two gradients are the two 
components of the gradient of the electrochemical potential. 

5.3d Summary 

The semiclassical Boltzmann model allows a precise interpretation of the 
relaxation time appearing in the expressions for the mobility and diffusion 
coefficient in the Drude model (expressions (5.9) and (5.28)). What appears 
is a mean < T > of the collision times r(E), defined by 

r(E)E312  exp(–E/kT) dE 

We should remember that other averages over T(E) appear for other prop-
erties such as the Hall effect and magnetoresistance, and the Drude model 
cannot be straightforwardly applied. 

<T  >= fr E3/2 exp(–E/kT) dE 
(5.53) 
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We shall now discuss several of the collision mechanisms determining 
< T >, and hence /2, in semiconductors. 

5.4 The Mobility of Semiconductors 

5.4a Collision Mechanisms 

Any disruption of the crystal periodic structure is a source of collisions. In 
a given crystal there may be various types of collisions with characteristic 
times We thus have to calculate an equivalent time as 

1 	1 	1 
- = - - ± • • • , 
r T1 T2 

since the probabilities of collisions caused by different mechanisms add if 
the events have small probability. For metals this is called Matthiesen's 
rule. 

The main collisions mechanisms axe: 
(a) Scattering by crystal vibrations (phonons). This is the main source 

of collisions at intermediate and high temperatures. The amplitude of the 
vibrations increases with temperature and we expect the collision probabil-
ity 1/r to increase with T. In fact one can show that 

r = aE-1/2T-1 	 (5.72) 

implying mobilities which decrease as the temperature rises. For a non-
degenerate semiconductor we get 

3/2 
= (

7,
i) • 

Exercise: Show that Eqs. (5.53), (5.54), and (5.72) give a law of the form 
(5.73). 

(fi)  Collisions with ionized impurities — the effect of the Coulomb field 
of the impurity. As mentioned above, a rapid particle feels less the potential 
of an impurity, so 1/r decreases as E grows. One can show that 

T = aE3/ 2 	 (5.74) 

which, via Eqs. (5.53) and (5.54), leads to mobilities varying as T3/2 . The 
mobility increases with temperature because electrons with larger velocities 
are less sensitive to the Coulomb fields of the ionized impurities. 

Exercise: Show that Eq. (5.74) implies mobilities varying as T3/2 . 
(7) Neutral impurities and dislocations can also contribute to collisions. 
Figure 5.4 shows the dependence of mobility on temperature for vari-

ously doped samples of silicon. The law T-3/2  (Eq. (5.73)) does not hold 

(5.71) 

(5.73) 
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Fig. 5.4. Temperature dependence of the electron and hole mobilities [Le, Ah for silicon 
samples with different doping levels. The electron mobility is shown as continuous curves 
and the hole mobility as dashed. The dash-dot curves are the best fits to the experimental 
results. 
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Fig. 5.5. Electron and hole mobility in silicon and gallium arsenide at room temperature, 
as a function of the impurity concentration. 
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very well. At low temperature crystal vibrations have very small ampli-
tudes (Tvibration  increases) and collisions on impurities become dominant 
(compare Eqs. (5.72) and (5.74)). The larger the impurity concentration, 
the higher the temperature at which they control the mobility, the weaker 
the maximum mobility. 

At high temperatures, on the other hand, mobilities depend little on the 
concentration, as shown by the measurements at 300 K given in Fig. 5.5. Us-
ing mobility data and effective masses, found, e.g., by cyclotron resonance, 
we can deduce collision times. We note that the variation of mobility at 
high temperature is much smaller than the concentration variation caused 
by intrinsic ionization. This is why the conductivity increases very strongly 
at high temperature despite the decrease of mobility. 

Exercise: Use the data of Fig. 5.5 and the effective masses of Sect. 2.4 
to show that the collision time is of order 10-13  3 in Si and GaAs, both for 
electrons and holes. Assume that the mobility of the conduction electrons of 
silicon is essentially determined by the transverse effective mass. 

The Einstein relation gives the orders of magnitude of the diffusion 
coefficients. We have D = p(kT I e). At room temperature kT e is 25meV; 
if ti = 0.1 m2 /V.s, the diffusion coefficient is 25.  10-4  m2 /s. 

5.4b Selective Doping of Superlattices X 

We shall see at the end of this book that the operation speed of certain 
semiconductor devices improves with mobility. One might think to operate 
at low temperature, noting the data of Sect. 5.4a, but we are limited by 
collisions with ionized impurities. One might try to purify the semiconduc-
tors, but the shallow impurities cannot be removed without also removing 
the conduction electrons. The ideal would be to have electrons without im-
purities. What appeared to be fantasy has been realized following an idea 
by Stiirmer (1980). 

We saw in Sect. 3.3 that present modern growth techniques by molec-
ular beam epitaxy allow us to construct superlattices in composition. 
Let us assume that some donor atoms are added during the controlled 
growth, but only in the semiconductor with the largest gap, Alx  Gai_x  As 
(Fig. 5.6). Then the ground state for the electrons is not localized at the 
donors, in the  Al  x  Gai_x  As region. The electrons fill the free states in 
the GaAs quantum wells. But these are states of conduction parallel to the 
GaAs layers, with very little penetration into the large-gap material con-
taining the impurities. We can say that under these conditions the electrons 
are localized in zones where the impurities are absent and so their mobility 
should be increased. This is indeed observed. The present record (1993) is 

= 1.5 x 102  m2  s-1  at low temperature, while the best mobility 
measured in a single crystal is of the order of 10 m2 .V-1 . s-1 . These are 
huge values. For comparison we recall that the mobility of the best room 
temperature conductor, metallic silver, is of the order of 10-1  m2 . V-1 
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distance 
Fig. 5.6. Selective doping of a superlattice. 

In the GaAs layer the collision time is increased by the same factor as the 
mobility, and the mean free path reaches a fraction of a micrometer. If one 
can manufacture sufficiently small structures, one has electrons that suffer 
no collisions in the plane of the layer. Such electrons are called "ballistic." 
The mobility is not increased in the direction perpendicular to the layers, 
so the mean free path remains of order 10 nm, precisely of the order of the 
thickness of the GaAs layer constituting the quantum well. Devices are in 
development (ballistic electron transistors) which use this property. 



Appendix 5.1 

Problems on the Hall Effect and Magnetoresistance 
of Semiconductors in the Drude Model 

In these problems we study the conductivity originating from carriers which 
may have different charges (negative electrons or positive holes), in the pres-
ence of a magnetic field. We consider the transport equation determining 
the mean velocity y of a given type of carrier in the simplest form of the 
Drude model: 

dv y F __ ± _ ,_ _. 
dt T rn* 

Thus in a steady state (which we assume throughout these problems) 

T 
y = -T F, 

where T and m* are positive scalars (independent of the magnitude and 
direction of y) and F is the external force applied to the carriers. This 
formulation, although extremely simple, does not alter the essential physics 
of the problems. 

First Part 

(1) We consider a crystal with only one kind of carrier, of charge q (-= 
±1.6 x 10-19  C) and concentration n. We apply a fixed electric field 6. 
Derive the relations between y (mean velocity), J (current density), and C 
in terms of the mobility it and the conductivity cr. Pay particular attention 
to signs (by convention the mobility A is a positive quantity). 
(2) We now apply a fixed magnetic field along Oz (Bz  = 0, By  = 0, Bz  = 
B). Show that Ohm's law generalizes to E = 0, or equivalently J = de, 
and show explicitly the resistivity and conductivity tensors /3, ri referred to 
axes Oxyz. In the literature the angle 0, with I tan 01 = AB, is called the 
"Hall angle." Does this suggest to you a geometrical interpretation? 

(5.75) 

(5.76) 
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(3) Slender-bar geometry: We consider a bar of length L along Ox with 
small cross sections Lly, J■ z, such that the current density J lies along 
Ox. (a) Give the relation between ./x  and Es  (longitudinal conductivity). 
(b) Although the current is purely longitudinal, we note that a transverse 
electric field (the "Hall field") appears; give an expression for it. 
(4) Practical application: in a silicon bar with dimensions L = 2 cm, Az = 
0.2 cm, Ay = 0.2 cm, with magnetic field B = 0.1 tesla, we pass a total 
current of Ix  = 10 mA. We measure a voltage Vg — Vp = 4.15 V between 
the ends of the bar, and a voltage VN — Vm = 0.21 x 10-3  V across the 
faces MN of the bar. Calculate the characteristics of the silicon sample. 

40 
	 L 	  

Remark for a voltmeter to perturb as little as possible the potential 
difference it measures, its internal resistance must be large. In practice 
every voltmeter will have various sensitivities; by construction, its internal 
resistance will be smaller for greater sensitivity. Thus a voltmeter with 
an internal resistance of 1000 SZ in the range 0-1 V will only have internal 
resistance 10 S2 in the range 0-1 mV. But the cost of a voltmeter increases as 
its internal resistance per volt. Thus a cheap ('--' $50) modern transportable 
voltmeter has an internal resistance of 10 IcO/V, a good instrument with 
10 MSZ/V costs around $180, while for greater internal resistances one has 
to use an electronic voltmeter (.--. $1000). 

What types of voltmeters are required in practice for these measure-
ments? (The contacts M and N are welds of area about 0.1 cm x 0.1 cm.) 
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Second Part 

(1) We assume now that there are two types of carriers (1) and (2), with 
charges, densities, and mobilities qi, ni, Ai and 42, n21 ti21 respectively (for 
example, two types of electrons or electrons and holes). In all cases 1411 = 
1q21 = e = electron charge. Write down the conductivity tensor. 
(2) Consider again the slender bar. Calculate the longitudinal conductivity 

along  = Jx/Es. Calculate the Hall constant RH = 41.413. 
Note: the exact calculation is laborious. Use the fact that in general pi B 

and p2B are smaller than 1 and calculate to second order in these quantities. 
Do this explicitly for the case of a semimetal or intrinsic semiconductor 

(41 = –q2 and ni = –n2). 
(3) Discuss what happens at the surface of the sample in the case of a single 
carrier type, and in the case of equal electron and hole densities. 

Solutions 

First Part 

(1) Under an applied field C the force is F = qe and the mean velocity is 

711 * 

	 (5.77) 

The mobility p is defined in Eqs. (5.9) and (5.15) as the ratio of v and 
E. As indicated in the problem this quantity is conventionally taken as a 
positive quantity. We thus have 

p = 
1q17- 

and v 	 (5.78) 

The current density J is given by J -= nqv, therefore J = nIqlpe. We recover 
Ohm's law 

J = crE, 	 (5.79) 

where the conductivity a = niqlp = nq2 1- Im* is positive whatever the sign 
of the charge and whatever the convention adopted. 
(2) When both an electric and magnetic field are applied, the force F be-
comes F = q(E +  y x B), and the velocity v is given by the equation 

v = 	(E + v x B). 	 (5.80) 

Using  the relations J = nqv, p = iql- r I in* , and a = niqlp, we find 

141 C = –1  (.1.  —pB x J) . 	 (5.81) 
a 	q 
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This formula can be written as C = 74.1, where the resistivity tensor referred 
to axes xyz is 

_ 	1 
fi = —0. 

1 

lql 
- 

0 

p 

lql 
– —AB 

q 

1 

0 

0 

0 

1 

(5.82) 

We note that in the plane x0y the vectors E and J are not collinear: as 
shown in the figure below, illustrating the vector relation (5.81), the angle 
0 between J and C is given in sign and magnitude by 

tan 0 = (q1 'CAB 

The conductivity tensor Fr is given by simply inverting the tensor /5: 

1 
1+ A2 B2  

q 

lqi 1 + A2B2  

o  

q 	 

NI 1 + A2 B2  

1 
1+  A 2 B 2  

o 

0 

0 
	 (5.83) 

1 

(3) In the slender-bar geometry we assume Jv  =  J  = O. Using the vector 
relation (5.81) or the matrix (5.82) we find 

= clex• 
	 (5.84) 

This is the same relation as in the absence of a magnetic field. Conduc-
tion is not changed by the presence of a magnetic field for a single carrier 
type (in the simple transport model we have adopted): there is no "magne-
toresistance" effect. However we see that a transverse electric field appears, 
which from the definitions of a and A takes the form 

Jx B 
4  nq 

Measurement of this "Hall field" Cy  thus allows us to measure the carrier 
density n and sign. Knowing n, a measurement of a =- nlqIA gives the 
mobility of the carriers. 
(4) Application. From the sign of the measured voltages we see that the 
carriers are positively charged holes. The bar is therefore made of p-type 

(5.85) 
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silicon. The numerical application of the above formulas gives a Hall angle 
5 X 10-4  rad and  j.  = 0.05 M2  V-1 . S-1 , CT = 12 siemens. m, 

n = 1.5 x 1021  m-3 . This is a typical material for the manufacture of 
transistors. - 

Remark the voltmeters used must not disturb the measurement. For the 
longitudinal voltage this is relatively straightforward. We have to measure a 
voltage of order 5 V with a total current of 10 mA: an instrument with about 
20,000 SZ/V will divert about 0.05 mA and thus perturb the experiment by 
less than 0.5%. 

By contrast the measurement of the transverse voltage is much more 
delicate: the internal resistance between the contacts M and N, of size 
approximately 0.1 cm x 0.1 cm, is 

1 L 	2  x 10-3  
= x = 	 160 ft. 

S 12 x 10-6  

For an error less than 2%, the internal impedance of the voltmeter must 
be at least 5014, i.e., 8 kn for 0.2 mV. This corresponds to a sensitiv-
ity of about 40 Mft/V. We therefore need an electronic voltmeter for this 
measurement. 

Second Past 

(1) The currents of the two carrier types add: 

= + = (al +5-2)e. 
	 (5.86) 

We have 

-= 51 + 

We must first add the conductivity tensors (matrices of type (5.83)) to 
obtain ?, then invert this matrix to find pxx  and pzy . 

Setting 	itLIB = 01 and q2112 13/1921/3  = 02, both assumed 
small, and expanding to second order in 01 and 02 we get  

0101 + 0202 	0 

-(01 01+0202) 	01( 1  - 0?) + a2(1 - 03) 	0 

0 
	

0 	01 + 02 

(2) As .Ty  = Jz  = 0, the required quantities follow immediately from the 
tensor p: 

ex = Psx ,/x and 4 = PyxJx- 

Using the fact that azz  = ayy  and oxy  = -ayx , we find 

= . (5.87) 
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Pxx = 	
an (axx) 2  (axy) 2 	d 	= 

cxx 	 arx  
 (axx) 2  + (crxv) 2  • 

	 (5.88) 

Expanding to second order this gives 

Jx  2 \ 	+ a202) 2  (aiei  
along  = —

ex 

= al + a2 — (ale? +.2v
,o

2) 
ai + a2 

After a little algebra this can be written 

a1  a2 
along = cri + a2 	(01 — 02) 2  

+ a2 

	

Or with ai = qIn ipi  and 0.2 	lqin2t42) 

— q2P2) 2B2  
along = Ifil(n1A1 + n2/22) Ii 	 (5.89) 

e2 (nipi +  n2 p2) 2  

We see that in this case the longitudinal conductivity depends to second 
order on the magnetic field unless the carriers have the same sign (qi = q2) 
and the same mobility (pi = p2). This result, the variation of resistance 
with magnetic field, or magnetoresistance, is generic as soon as we are not 
dealing with a single carrier type with a single relaxation time. 

In the same way, the Hall constant is given (still to second order) by 

	

= B • RH = Pyx = 
0'191 + 0-202 
 (ai  a2 )2 
	 (5.90) 

2 	2 

	

qlnith 42n2A2 	 (5.91) RH = 2
(nwi + n2P2) 2 • 

In the domain of validity of these formulas we see that: 
• The magnetoresistance is always positive (resistance increases with mag-
netic field). 
• We can measure the resistance for B = 0, the magnetoresistance (which 
under our assumptions is a very small effect), and the Hall constant RH. 
From these three independent measurements it is in general impossible to 
determine the four unknowns (ni,  Pi,  n2, p2) even if it is possible to guess 
the sign of the charges. 
• If we have reason to believe that n1 = n2 = n, for opposite charge carriers 
(semimetal or intrinsic semiconductor), we can write 

along = I 	+ A2) ( 1  — /12B 2 ), 	 (5.92) 

„2 „2 
P1 	P•2 	'- RH  

(//i +112) 2  nq' 

We find that for the Hall effect it is the carriers with the greater mobility 
that dominate. If Pi  = ti,2 the Hall effect disappears (but conductivity and 
magnetoresistance remain). 
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For the more realistic case of a distribution of relaxation times we must 
generalize the above treatment by using the Boltzmann equation. We ex-
pect the Hall effect to be slightly modified: there appears in Eq. (5.85) a 
correction factor of the form < r2  > / < T >2 . Even for a single car-
rier type, a distribution of relaxation times creates magnetoresistance. This 
magnetoresistance must be calculated using the Boltzmann equation. 
(3) With a single type of carriers we have tit/ == 0; the electric field  6  which 
compensates the Lorentz force is caused by the charges which accumulate 
on the faces M and N once the magnetic field is switched on. 

When there are two carrier types we have  J ,  =  Jiy  + J2y  = 0, but Ji ,  
and J2y  are not separately zero: there are transverse currents of both carrier 
types which cancel. It is clear that charges cannot accumulate indefinitely 
on the faces, and we have a stationary regime where the two types of charges 
reaching the surface (e.g., electrons and holes) recombine in pairs. This 
recombination may give rise to measureable effects, such as light emission 
at the energy of the band gap. 



6. 

Effects of Light 

In Chap. 5 we studied the transport properties of electron and hole gases 
regarded as independent of each other. We will now study the dynamical 
equilibrium between these two gases, particularly in the presence of light. 
This problem is important in practice, since many devices such as detecting 
and emitting diodes use the electro-optical properties of semiconductors. 

Two reactions can occur within a semiconductor subject to intrinsic 
luminous irradiation (with energy greater than the band gap): the first, 

light 	electron + hole 	 (6.1) 

is that of optical absorption, which we shall discuss first. The second reac-
tion, 

electron + hole —+ energy 	 (6.2) 

is the process called recombination. If it results in the emission of light, it 
is called radiative recombination. The annihilation of an electron—hole pair 
can also occur via non-radiative processes. We shall study recombination 
in Sect. 6.2. 

In Sect. 6.3 we will explain the working of several common optoelec-
tronic devices that use homogeneous semiconductors: photoelectric cells, 
photocopiers, and television screens. 

6.1 Light Absorption by Semiconductors 

When a semiconductor is irradiated by light, electrons can be excited from 
the valence band into the conduction band by the absorption of photons, 
provided the photon energy is greater than Eg . Here we shall calculate this 
absorption in the simplest case, that of so-called "direct" absorption. 

We know that a transverse electromagnetic wave propagating in a 
medium has a corresponding vector potential: 

A(t) = A ao cos(wt — K • r), 	 (6.3) 
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where ao is a unit vector orthogonal to K, the wave vector of the light. In 
the following we shall be interested in the absorption of light by a small 
sample of area s and small thickness dx normal to the luminous flux. Under 
these conditions the wave is weakly attenuated and its constant amplitude 
A can be chosen as real by suitable choice of the origins of space and time. 
The wave's electric and magnetic fields have the forms 

OA 
 E = 	

=, 
ao sin(K – wt), 	 (6.4) 

B=Vx A= –A (K x ao) sin(K • r – wt). 	 (6.5) 

The energy flux is given by the Poynting vector 

x 	 (6.6) 
Po 

Averaging over a period and using the relation fotioc2  = 1 we get the mean 
energy flux 

— 1 n- = _ co w 2 A2 e n,  
2 

where n is the refractive index of the medium. 
We also know that in the presence of the vector potential (6.3) the 

Hamiltonian of an electron is 

1 
= -g-n(P + e A) 2  + V (r), 

'H =7-to + —2m
(p • A + A p) + —

e2
A2 . 	 (6.9) 

2m 
The operator no is the crystal Hamiltonian, whose eigenfunctions are the 
Bloch states. For light of sufficiently low intensity, the last term in Eq. (6.9) 
can be neglected and the second term regarded as a small time-dependent 
perturbation of 'Ho. We easily verify that 

[p,A(t)] = –ihV • A(t). 	 (6.10) 

Now with the choice (6.3), the vector potential is such that V • A = 0, 
and p and A commute, so Eq. (6.9) can be rewritten as 

'H = 'Ho + 	• p. 	 (6.11) 
rn 

We thus have a quantum mechanical system subject to a sinusoidal 
perturbation, because of expression (6.3) for A. Indeed, the Hamiltonian 
describing the interaction of an electron with a travelling electromagnetic 
wave has the form 

(6.7) 

(6.8) 

'Hp  (t) = 7-lp  cos(Lût – K • r) 	 (6.12) 
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Or 

74(0 = C exp(iwt) + C+ exp(-iwt) 	 (6.13) 

with 

C+ = L-A  (ao • p) (exp iK • r). 
2m 

As we show in Appendix 6.1, the transition probability from an initial state 
> to a final state If>  of higher energy can be written 

sin2 (1/2)(w, f bi)t 
P,_, f (t) = I < f 	> 12  	 (6.15) 

with 

htd f = (E 	Ei). 	 (6.16) 

We note from this formula that the transition probability between two 
states depends sinusoidally on the time. This probability is proportional to 
the square of the matrix element of the perturbation. Replacing 'lip  by its 
expression we obtain the following expression for the absorption transition 
probability, which we shall use below: 

4  I < f1C+Ii > 1 2  sin2  (1/2) ((A)  f CO)t 
Pi_, 1 (t) = 	 (6 .17) h2 	 (coif  _ w)2 	• 

For the case of optical excitation of a semiconductor, the initial state 
Ik > is in the valence band, and the final state  Ik > in the conduction 
band. 

6.1a The Fermi Golden Rule 

We consider the probability, for a given initial state Ii >, of finding an 
electron in one or another of a set of final states of energy close to Ef. 
If n(E f) is the density of these states the total probability of finding the 
electron in any one of these states is 

P(t) = 	< f IC  Ii> 
	w)t  dai 	

(6.18) tf.  
4-ifi f I 	+ > 12  n (E f)  

In this integral the only non-negligible contribution comes from the 
region where wif is very close to w, because of the denominator (coif - w) 2 . 
The variation of the function (Aw) -2 sin2  Awt/2 versus Aw = w if - w is 
shown in Fig. 6.1. We see that only a narrow frequency bandwidth of order 
1/e-contributes-  to the integral. We can therefore extend the limits of the 
integral to ±00 and use the fact that both n(E f) = n(Ei + hw,f) and the 
matrix element are approximately constant over the interval h/t to write 

(6.14) 

h2 	(« if--WP)2 
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4 
P(t) = -hp < flc+li > 1 2  n (Ef)  f 	sin2(1/2)(w11 — w)t 

&V (6.19)  
(Li)  % f 	U) ) 2  

or, setting 

1 , 
x = - kwif - w)t, 

2 
1 

P(t) = l <f  ICIi> 12  n(E f) 27r t, 	 (6.20) 

where we have used the fact that 

f sin2  x 

J x2 
-00 

The result (6.20) is remarkable in that while the probability of transition 
from a given state to another given state is a sinusoidal function of time 
(6.17), the total probability of transition from a given initial state to one 
or another of a set of final states which are very close to each other is 
proportional to the time. We may therefore define a transition probability 
per unit time W: 

w  P(t) 27 1  < f  lc+ > 12 n (Ef  ). 
t 	h 

This equation is called the Fermi Golden Rule. In the proof leading to 
this formula we have not used the nature of the system subject to the radia-
tion. This formula applies in several areas of physics, whenever a system 
possessing nearby states is illuminated by monochromatic radiation. 

The fact that the only significant contributions to the integral (6.18) 
come from energies such that wif  w is an expression of conservation of 
energy for states which were eigenstates of the unperturbed system. This 
conservation is exact in the limit of weak perturbations and long time scales. 
The central peak of Fig. 6.1 has height t2/4 and becomes sharper and 
sharper as its width decreases as t -1 . The area under the peak increases 
linearly in time. In this limit we can write Eq. (6.21) as 

W = —27r < f IC+ > 1 2  6 (E f -  E  - h co) 	 (6.22) 
h 

and the transition probability is obtained by integration over the final 
states. 

6.1b Selection Rules 

Using expression (6.14) for C+ and replacing Ii > and  If >  by the corre-
sponding Bloch states, the perturbation matrix element becomes 

—
eA 

exp(-ikf • r)ti: (r) exp(iK r)x 
2m 	 ,-f 

(ao • p) exp(iki • r)u,,i, (r)d 3r, 	 (6.23) 

= 

(6.21) 
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sin2  (cot/  —  w)02  
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Fig. 8.1. Variation of the function (coif — co) -2  sin2 (tos1 — cv)t/2. 

where u(r) are the periodic parts of the Bloch functions, indexed y for the 
valence band and c for the conduction band. This integral can be regarded 
as the matrix element of the periodic operator ao • p between two functions 
of Bloch form, one characterized by kf — K, the other by k. This matrix 
element vanishes unless, from Appendix 2.1, 

kf =  k  ± K. 	 (6.24) 

Now, the light wave vector is very small on the scale of the Brillouin 
zone, as the wavelength of light with rira.) Eg  is around 104  times larger 
than the lattice constant. We may therefore neglect K in Eq. (6.24) and 
write 

--= kf 	 (6.25) 

for allowed transitions. 
Transitions of this kind can therefore only occur when the electron wave 

vector after excitation is approximately equal to the wave vector before 
excitation. For this reason the transitions are called vertical or direct. They 
are represented in Fig. 6.2 by the arrow (a). An "oblique" transition such 
as (b) is forbidden for the above process. 

In comparing matrix elements or estimating their order of magnitude, 
it is useful to remember (see Chap. 2) that the periodic parts of Bloch 
functions resemble atomic wave functions, and write 

t2/4 

(r) = N-112 1k,,k, (r) exp(iki • r), 	 (6.26) 
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Fig. 8.2. Direct (a) and indirect (b) absorption in a semiconductor. 

where N is the number of unit cells of the crystal. With this convention 
the periodic parts are normalized over the unit cell and have an amplitude 
comparable to the atomic functions. Only matrix elements with ki  = kf 
appear, i.e., matrix elements of p between valence and conduction functions 
with the form 

1 f 
	tic*. (r)d3r 

N fcruatal volume 

funit cell 
	k. (r) p 	(r) d3r 

= < >  i. 	 (6.27) 

The components of < p >k, will have the same order of magnitude as 
the matrix elements of p between two atomic states. Finally the matrix 
element appearing in the transition probability will be 

eA 
<kf,c IC+Iki, v  >= i-rtao• <P >k 6(k1  — kf). 	 (6.28) 

To simplify the notation we shall write 

ao.  < P  >k,="- Pk,- 	 (6.29) 
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6.1c Calculation of the Absorption Coefficient 

The total probability WT of photon absorption is calculated by summing 
Eq. (6.22) over all the initial states of the solid (valence band states) and 
all possible final states (conduction band states): 

27r e2 A2  
WT = 	h 4 2  13)24  6(kz  — kf) 6(E1 -  E  - hi.e) 	 (6.30) 

k 	M  

with 

h2  ki 
E - Ec  = 	 

2m, 

h2 k? 
- Et, = 	" 

2mh 

for a "standard" band structure (Fig. 6.2). 
Summing over ki  we get 

27r e2A2 	2  6 {h2k,,, 
WT .hw 

h 4m2 Pkf 	2 m5 -g  — 	
(6.33) 

kf 

We can transform the discrete summation into an integral by using the 
density of states in k space. For a sample of volume sdx this density is 
sdx/47r3  so that 

27r e2A2  s dx 	 h2 	(1 	1 

	

121.WT = — — — 3 ,Lf p? 6 [-- — + —) + Eg 	 • 
h, 4m2  47r3 	 f 	2 	me  mh 

(6.34) 

The periodic functions u t, and ue  vary slowly with k (see for example 
the k p method, Appendix 2.4), so we can regard p, as independent of k 
and write 

2 	2 
Pkf  P • 

We define the reduced mass Mr  by 

-1 	-1 	-1 
mr =  m1 rnh • 

We set x = (h2  /2m r)k2f  + E9  —  11w. It remains to integrate 

e2A2p2 3/2  

87r2m2h 8 d.x 27r (2hm2r
) 

	f

- Eg  + x) 1 /2  6 (x) dx. 	(6.37) 

We obtain 

(6.31) 

(6.32) 

(6.35) 

(6.36) 
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Fig. 8.3. Absorption threshold of InSb at T = 5 K. The measurements (points) are 
compared with the predictions of Eq. (6.40). The deviation at high energy is suppressed 
by taking account of the correct density of states, which is no longer parabolic at large 
k, and of the variation of the matrix element pkf  with kf. 

s dx e2A2 	 )3/2.n 2true p 112 WT 
4/r h4m2 

(2m 	
• 	• (6.38) 

The average incident photon flux is 17 I hi.,) per unit area, and by defini-
tion the fraction of incident photons absorbed over a depth dx is 

T1 
WT = a— 3 ux 

Substituting Eqs. (6.7) and (6.38) in Eq. (6.39) we get 

(2m,.) 3/2  e 22 1  p  
a = 	

2ireo 
cm 

 m2 
-h---

3“)
(ruo  

This establishes Eq. (2.106) for the case of direct transitions. This re-
sult was obtained by J. Bardeen, F.J. Blatt, and L.H. Hall (Atlantic City 
Photoconductivity Conference, 1954). 

Absorption  varies from one semiconductor to another through the values 
mr, p and the  refractive  index n. An average order of magnitude is 

(6.39) 

(6.40) 

a(cm-1 ) = 4.104 [(hv — E9 )(eV)1 1/2 . 	 (6.41) 
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For  hi'  = 1.1 eV and Eg  = 1 eV we find a 104  cm-1 , showing that 
a semiconductor is an efficient absorber. It is sometimes used as a filter 
transparent to long wavelengths. 

The experimental dependence of a  (hi.' - .E9 ) 1 /2  can be seen as proof of 
the existence of direct permitted transitions between band extrema. Figure 
6.3 shows the results found for indium antimonide, InSb. We see that near 
the band gap, which is 0.22 eV for InSb, Eq. (6.40) is well satisfied. But 
when the initial or final states have energies in the valence or conduction 
bands comparable with the band gap, the above approximations are no 
longer sufficient. 

6.1d Excitons 

Figure 6.4 shows the absorption coefficient of GaAs for photon energies close 
to Eg  (E9  = 1.52 eV at low temperature). We note the presence of a peak 
near Eg , which is not predicted by the calculation of Sect. 6.1c. This results 
from the creation through photon absorption of excitons, whose definition 
we now give. 

The ground state of the semiconductor corresponds to a full valence 
band with an empty conduction band. According to what we have said, 
the first excited state should correspond to an electron at the bottom of 
the conduction band with a hole at the top of the valence band. In this 
state these two charges are assumed to be far away in real space. We have 
created a non-interacting electron-hole pair by absorbing a photon of energy 
hv = Eg . 

In fact the electron, because of its negative charge, feels the Coulomb 
attraction of the positively charged hole. It is feasible that a bound electron-
hole state can exist whose energy will be less than that of the dissociated 
electron-hole pair. To find the binding energy of this exciton pair we solve 
a "hydrogen-like" problem of two charged particles of effective masses me  
and mh, which also involves the dielectric constant of the medium (the 
problem is analogous to that of the binding energy of an electron and a 
donor, treated in Sect. 3.2). To obtain the motion about the center of mass, 
we take the reduced mass (6.36), so that the binding energy is 

Mr  1 El 
Eexc 	—mo  or n2  , (6.42) 

where E1 = -13.6 eV. As mh > me  in general we have mr  < me , and 
Eexc  is of the order of the donor binding energy (a few meV for the III-V 
compounds of Sect. 3.5). We thus obtain a hydrogenic series of levels. To 
energy Eexc  we must add the kinetic energy of the center of mass, with a 
mass me  + mh. The lowest optical excitation energy of the solid will thus 
not be hi'  = E9 , but  hi'  = Eg  + Eexe , and in some cases we get a series of 
peaks corresponding to different values of n. 
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Fig. 8.4. Absorption in GaAs near threshold, at various temperatures. As the temper-
ature increases the band gap decreases, basically because of the thermal expansion of 
the lattice (Appendix 2.3). The peak is caused by absorption leading to the creation of 
excitons and is more prominent at low temperature: if kT is of the order of the exciton 
binding energy, broadening of the peak will become significant. 

Figure 6.5 indeed shows the exciton levels n = 1, 2, 3 as well as an even 
lower excitation energy, corresponding to the creation of an exciton bound 
to a neutral donor (D° — X), a system consisting of the donor nucleus, two 
electrons, and a hole. 

It can be shown that the formation of an exciton is possible only for 
vertical transitions (cf. Fig. 6.2), which occur in most III—V semiconductors. 
From Eq. (6.42) the binding energy of the exciton is greater, and the exciton 
thus more readily observable, the larger m,. (and thus me ) is, and the 
smaller Er  is. As m,. and Eg  are small in the same materials (cf. Sect. 2.4), 
excitons are more easily observed in semiconductors with large band gaps. 

6.2 Recombination 

When a semiconductor is illuminated, its properties are modified by the 
creation of electron-hole pairs, and we study these changes here. We expect 
qualitatively that as the number of electrons and holes increases the con-
ductivity should rise: this is called photoconductivity. It is easily observable, 
and is currently used to measure light intensity in photoelectric cells. If a 
crystal is submitted to continuous irradiation the number of electron-hole 
pairs should steadily increase in time, and the conductivity would tend to 
infinity, contrary to experiment. The limiting factor is the destruction of 
electron-hole pairs by recombination processes. 
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Fig. 8.5. Absorption measured at T = 6 K of a sample of pure GaAs containing residual 
donors. The absorbance is proportional to the absorption coefficient a. Note the peaks 
corresponding to the levels n = 1,2, and 3 of the exciton, as well as a peak associated 
with an exciton bound to a neutral donor (D° — X). 

There are other means of establishing electron and hole concentrations 
departing from thermal equilibrium: injecting excess carriers through a 
metallic contact, or bombarding the semiconductor with charged particles, 
which can create excess electron-hole pairs as they decelerate. The latter 
effect is used to detect particles. In all these cases the return to thermo-
dynamic equilibrium once the external excitation stops must involve the 
disappearance of the excess electrons and holes. These recombination pro-
cesses play an important role in semiconductor devices: diodes, transistors, 
and light-sensitive devices. When light is emitted by the semiconductor 
we speak of photoluminescence, electroluminescence, thermoluminescence, 
etc., depending on the type of excitation. 

Consider a semiconductor in which we have created deviations An and 
Ap from the equilibrium concentrations. We call Go (T) the rate of creation 
of electron-hole pairs through thermal agitation. If we leave the system to 
evolve freely, the concentrations will return to the equilibrium values n0, p0. 
We may thus express the variation of n and p by the equations 

n = no  ± An, 	 (6.43) 

dn d An 
dt 	= Go (T) — 

Tn 
(6.44) 

where rn  is a quantity which can vary with p. In equilibrium d(An)/dt = 
0, n = no  and 
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Go = 
no 	

(6.45) 
Tno 

where rno  is the value of rn  for n = no . Equation (6.45) can thus be written 
as 

d Ln no  n 
dt 	Tno Tn 

	 (6.46) 

Similarly we can write 

d Zip po  p 

	

=. , 	 (6.47) 
dt 	Ty), 	Tp 

Equations (6.46) and (6.47) do no more than introduce the ad hoc quan-
tities rn ,  ri,.  These quantities may well depend on n and p and in the general 
case we can say no more without explicit analysis of the microscopic recom-
bination process. The kinematics of recombination can indeed be complex. 

Things are simpler if we consider a doped semiconductor subject to 
moderate light excitation. We consider for example an n-type semiconduc-
tor, i.e., one where no  >> Po . lithe deviations An and  Zip  are much smaller 
than no , n will change little during the return to equilibrium. We may thus 
regard rp  as independent of An and write rp  = TN . Then 

d Zip 	Zip . 
= – — with Ap = p – po. 	 (6.48) 

dt 	Tp  

For this reason Tp is called  the lifetime of the minority carriers, here the 
holes. 

The solution of Eq. (6.48) has the form 

Zip  = Apo exp(–t/rp) + const 	 (6.49) 

and if electrical neutrality holds at all times, An = Zip. 
We can make this description more precise by considering a particu-

lar recombination process: the direct recombination of electron-hole pairs 
where the recombination involves the simultaneous disappearance of an 
electron and a hole. The evolution of the electron number is given by the 
equation 

dn dp 
(6.50) 

dt 	dt 

where G is the total generation rate. Indeed the number of electrons recom-
bining per unit time is proportional to the number of electrons present, as 
each electron has the same probability of recombining. Further this prob-
ability is, for an electron, proportional to the number of free holes it may 
encounter, hence the form of the first term. The factor A depends on the 
semiconductor but not on n or p. We have added the quantity G which 
represents the generation rate for pairs. 
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In thermodynamic equilibrium, i.e., in the absence of excitation, dn/dt = 
0; n = no; p = Po. Equation (6.50) gives the thermal pair generation rate 
as a function of the annihilation rate: 

Go (T) = A no  po = An?. 	 (6.51) 

If there is an additional generation rate g, e.g., by light, Eq. (6.50) allows 
us to write Eq. (6.51) as 

dn d An 
dt 	dt = Anp +Go+ g, 

d An d Ap 

	

dt 	dt 	
A (no + An)(po + AP) + Go + 137 

d An 
= —

d Ap 
= –Apo An – A (no + An) Ap + g. 	 (6.52) 

	

dt 	dt 

In an n-type sample, where no >> po, and if the injection of carriers is 
small (An and Ap « no) we have 

dAn d Zip 
(6.53) 

	

dt 	= 
–A no 

AP  g.  

One defines 

1 
(6.54) 

In the absence of excitation 

din 	An 
= – — 	 (6.55) 

	

dt 	T 

d Ap Ap 
= 	 (6.56) 

dt 

The time constant for the disappearance of electrons and holes is the 
same in an n-type semiconductor, but it is the lifetime of the minority 
carriers. This lifetime decreases as the concentration of majority carriers  
increases. 

Remarks 

If g is constant in time, then in a steady state, 

p = po  + g rp. 	 (6.57) 

If at some arbitrary time t1 the light is switched off then, setting t1 = 0, 

p(t) = po + g Tp exp (– —
t 

. 
Tp 

(6.58) 
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Fig. 8.8. (a) n-type sample subject to continuous irradiation; (b) behavior of the con-
centration of minority carriers when the irradiation is switched off; (c) measurement of 
the lifetime. One injects a light pulse of duration short compared with the lifetime. The 
variation of the resistance of the sample follows that of the number of carriers. (After 
Sze: "Semiconductor Devices," J. Wiley, 1985.) 

This is the principle of the measurement of the lifetime of the minority 
carriers illustrated in Fig. 6.6. 

The result we have obtained may seem paradoxical. The lifetime of the 
minority carriers governs the dynamics of recombination. We can under-
stand this by referring to the recombination probabilities of Eq. (6.53). 
The recombination probability of an electron, no matter what its origin, is 
An0.6p/no = A.6p, and thus depends on  zip. It is therefore not uniquely 
determined. The recombination probability of an additional electron is 
An oAplAn = An o  = 7-1-1 . This is the inverse lifetime of the minority 
carriers. The recombination probability of a hole, which must have been 
created by photoexcitation since we neglected po << .6p, is AnoAPIAP, 
i.e., the same. We should remark that the recombination probability of a 
hole is large because it sees many electrons. 

Of course in a p-type semiconductor the reverse occurs; recombination 
is governed by the lifetime of the minority carriers which are then the 
electrons. 

t 
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Recombination Processes 

Recombination processes can be classified into three main categories. 

direct recombination 
Direct recombination is the reverse of the creation of an electron-hole 

pair by a photon. We consider the ensemble (photon + crystal). If we ne-
glect the interaction between radiation and matter resulting from the force 
exerted by the electric field of the light on the electrons, the state (photon 
+ valence-band electron) is degenerate with the state where the photon is 
absorbed and the electron is in the conduction band. If we leave the system 
in one of these states it will stay there indefinitely. 

This is no longer true if we take account of the interaction between 
radiation and matter. As we saw in Sect. 6.1 and Appendix 6.1, in the 
presence of this interaction the state (photon + electron in the valence 
band) is no longer an eigenstate of the system. If we leave the system in 
this state at time t = 0, then after time t the quantum state will have 
a non-zero projection on the state (absorbed photon + conduction-band 
electron). There is thus a finite probability of absorption of the photon 
and the creation of a pair. Conversely an electron in the conduction band 
can relax to the valence band by the same effect, with light emission. We 
call this radiative recombination. Appendix 6.2 gives the calculation of the 
radiative recombination probability. We can also have direct non-radiative 
recombination via processes involving several electrons. An electron falls 
back into the valence band, the corresponding energy being given to another 
conduction electron whose energy in the band increases. This is called Auger 
recombination. 

recombination through traps or deep impurities 
In this process recombination occurs in two stages well separated in 

time. For example a conduction electron may first be captured by an im-
purity whose level lies deep in the band gap. At a later time this occupied 
center may capture a hole from the valence band (or, equivalently, emit an 
electron into the valence band), finally ensuring the recombination of an 
electron-hole pair. As shown in Appendix 6.2 the probability of a radiative 
transition decreases very rapidly as the photon energy increases. Performing 

a 

(a) 	(b) 
	

(c) 

Fig. 6.7. Recombination by trapping: (a) electron capture; (b) hole capture; (c) recom-
bination. 
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the transition in two stages, thanks to the trapping, can make this process 
much more probable than the emission of a single photon. 

The process is shown schematically in Fig. 6.7: a recombination cen-
ter alternately captures an electron and a hole and thus "catalyzes" their 
recombination. 

In fact, in the intermediate stage it is possible for an electron to be 
re-excited into the conduction band before capturing a hole. In this case 
we speak of a slow trap, reserving the term recombination center for the 
case where the capture probability of a hole is larger than the probability 
of re-emission of the electron towards the conduction band. It appears that 
the kinematics of recombination by deep centers can be complex. 

We give here some orders of magnitude to emphasize the importance 
of recombination via deep centers: we shall see later that the direct recom-
bination time in germanium is of the order of 1 s. In the purest known 
crystals the measured time is several milliseconds. It has been shown that 
the presence of a relative concentration of 10-7  copper atoms in germanium 
reduces this time to 10-6  s. The study of recombination processes via deep 
centers is a very active field of the physics of semiconductors. 

Given that most crystalline imperfections (impurities, gaps, disloca-
tions, grain boundaries) can produce states in the band gap, we can see 
here once again why the manufacture of pure single crystals (cf. Sect. 4.9) 
is so important (both terms are necessary: chemically pure single crystals 
without crystallographic defects) if one wishes to obtain long lifetimes. 

surface recombination 
Even a perfectly pure and perfectly regular crystal has an external sur-

face which breaks the periodicity. This break means that not all the chemi-
cal bonds of the surface atoms can be satisfied. There are therefore quantum 
states, localized near the surface, with an energy within the band gap. The 
presence of surface impurities also contributes to the presence of "surface 
states" which can be very effective recombination states. 

Figure 6.8 illustrates the various recombination processes. 

6.3 Photoconductivity and its Applications 

6.3a Detection of Electromagnetic Radiation 

A direct consequence of the creation of electron-hole pairs is photoconduc-
tivity. If there is an excess An and Ap of carriers, the photoconductivity of 
the semiconductor varies as Au: 

An e + Ap e. 	 (6.59) 

A commonly used detector of visible light is cadmium sulphide CdS. 
In CdS the band gap Eg  is direct (extrema of the valence and conduction 
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Fig. 6.8. The various recombination processes: (a) direct radiative recombination; (b) 
direct Auger recombination; (c) recombination via trapping on a deep center. In the 
latter case the figure shows the state of the system before and after each of the stages 
(1), (2), (3), (4). (After S.M. Sze, Physics of Semiconductor Devices.) 
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bands are at k = 0) and the width of the gap is 2.4 eV at 300 K. The 
absorption threshold is therefore 2.4 eV, corresponding to a wavelength of 
520 nm, in the green region of the visible spectrum: green and blue are 
absorbed while longer wavelengths (yellow, red) are transmitted. A CdS 
crystal thus has a yellow-orange color when seen in transmission. 

There are many semiconductors with band gaps less than 1 eV, whose 
absorption thresholds are in the infrared. For example the three lead 
salts PbS, PbSe, and PbTe have band gaps of order 0.2 eV. Some alloys 
Hgi_x CdsTe have an Eg  of 0.04 eV, which corresponds to A = 30 pm, in 
the far infrared. These materials are used to build infrared detectors. 

In a material containing impurities with quantum states in the band 
gap, light can excite electrons from these localized states into the conduc-
tion band. In this case there is light absorption at energies less than Eg  and 
creation of conduction electrons without the creation of free holes. Recom-
bination occurs when the electron falls back to the localized level. In this 
case one speaks of extrinsic absorption and photoconductivity. Germanium 
doped with gold is used as a sensitive infrared detector between 10 and 20 
pm. 

6.3b Electrophotography 

The xerographic photocopying process is an important application of pho-
toconductivity. The photoconducting material is amorphous selenium, a 
semiconductor whose band gap is around 2.1 eV at 300 K. This material 
is deposited by vacuum evaporation in the form of a thin film on a metal-
lic substrate. Selenium has very high resistivity of around 10" Q.m. The 
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Fig. 6.9. Principle of electrophotography: (a) deposit of positive charges over the surface; 
(b) recording the image; (c) deposit of pigment; (d) transfer of the pigment to paper. 
(After Dalven, "Introduction to Applied Solid State Physics," Plenum Press, 1980.) 
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first stage of electrophotography consists of depositing a positive charge on 
the semiconductor surface using an electric discharge (corona effect). The 
charge stays on the surface because of selenium's high resistance. This is 
shown in Fig. 6.9(a). The second stage consists of sending the luminous 
image one wishes to record on to the selenium (Fig. 6.9(b)). The illumi-
nated regions become conducting and the charge moves away while the 
dark parts of the image remain charged. The resistivity of the semiconduc-
tor is so high that the charge does not leak laterally. The result of this 
operation is a distribution of positive charges that replicates the dark re-
gions of the image being copied. We have obtained an electric image. The 
third stage (Fig. 6.9(c)) consists of coating the electric image with black 
pigment which preferentially fixes itself electrostatically to the charged re-
gions that have not been illuminated in the second stage. The last stage 
is the transfer of the black pigment to ordinary paper (Fig. 6.9(d)). The 
pigment is finally fixed to the paper by heating and provides a permanent 
positive image. 

6.3c The Vidicon Tube 

The Vidicon tube is the light-sensitive part of the early TV camera. The 
tube, shown schematically in Fig. 6.10, contains a thin layer of a photocon-
ductor sensitive in the visible — for example As2 S3 or Pb0, for which Eg  is, 
respectively, 2.5 and 2.3 eV. The material must have a very high resistivity 

1013  n.m in the dark. Photons reach the photoconducting material after 
crossing a transparent conducting electrode. The photoconductor is contin-
uously scanned from below by an electron beam, which scans its surface 
sequentially. If the electron beam arrives at a point that is illuminated on 
the front, the material conducts, and a current proportional to the light 
intensity at this point will be produced. 

We thus obtain an electrical signal containing information about the 
light received at a given point of the screen. This signal is then processed, 

photons 

MG' 

tube 

scanning 
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beam 
Fig. 6.10. Schematic view of a Vidicon tube. 

transparent 
conductor 
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and then may for example be reproduced on the cathode-ray tube of a TV 
set. 

We note that the production of the image on the cathode-ray tube 
also uses semiconductors. The screen is covered with powder, usually alloys 
such as ZnS—ZnSe, which emit visible light when excited by a high-energy 
beam of electrons. This phenomenon is called cathodoluminescence. ZnS 
and ZnSe are semiconductors whose band gap is in the ultraviolet or the 
blue, and which are doped by various elements, generally copper or silver 
associated with a halogen. These impurities create deep levels which cannot 
be described using effective mass theory. Luminescence occurs between a 
delocalized band state and a deep level, or between two deep levels. By 
judicious choice of the doping agents one can cover the visible spectrum. The 
three color bands of color television are obtained by using three different 
powders with adapted doping chemicals. 

Image converters, which allow night vision by transforming an infrared 
image into a visible one, coasist of a Vidicon tube followed by a cathode-ray 
tube. 



Appendix 6.1 

Quantum System Submitted to a Sinusoidally 
Varying Perturbation 

We are interested in a system (here a semiconductor) submitted to a trav-
elling electromagnetic wave. The system Hamiltonian is 

h = No ± Ni. 	 (6.60) 

Here 'Ho describes the semiconductor in the absence of the electromag-
netic field and Hi its interaction with the field. We assume 'Hi small com-
pared with f o ; it has time dependence: 

7-(1 (t) = Hi cos(wt – K - r), 	 (6.61) 

where w is the wave frequency and K its wave vector. 
We assume that at the initial time to  the system is in one of the known 

eigenstates In> of No: 

No In >= En In > . 	 (6.62) 

As this state is not an eigenstate of H the system must evolve according to 
the Schrödinger  equation: 

ih—
d [CO  >= 1-1 1.0 (t) > . 	 (6.63) 
dt 

We seek the probability of finding the system in the eigenstate  If >  at 
time t(with t > to). Hence we project the state IOW > along the basis In > 
of eigenstates of No: 

10(0 >. E -yn (t) exp( – i En t I h) In > . 	 (6.64) 
n 

If the Hamiltonian 'Hi were time-independent, the -yn  would be constant. 
Applying the Schrödinger  equation to IOW > we find the relation between 
the coefficients 7n (t) and their time derivatives d-yn(t)/dt: 
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ih 	—
d

t
^in (t) exp(_iEnt/h) In > 

d 

ihEN(t) (---
iEn

) exp(–iEnt/h)In > 
h 

= E(No + )'Yn (t) exp(–iEnt/h)in >, 

which, on using Eq. (6.62), give 

ih—
d
t

ryn (t) exp(–iEnt/h)In > 
d 

= Eni'Yn(t)exp(--iEnt/h)In > . 

Multiplying by < kl we get 

d 
ih—

dt
-yn(t) = 	exp i(Ek – En )t I h < ktfli ln>. 

We thus have a set of differential equations to solve, with the initial 
condition that at t = to = 0 the system is in the state Ii  >, i.e., -ri(to) 
1,-yk(to ) = 0 for k i. The probability Pi_,f of finding the system in the 
final state f at t when it was in the initial state i at t = 0 is 

f (t) = 1 < ft(t) > 12  = 117(01 2 - 
	 (6.67) 

We have assumed H i  small compared with 'Ho , so we set 

= XH1, 	 (6.68) 

where A is a small parameter. We can expand in powers of A, and solve Eq. 
(6.66) by equating coefficients of powers of A: 

ih 
 (

d 	d 	d 
--- "Yrc(t) + 	(t) ± A2 	ft 	) dt 	dt 	dt k ‘ I -1-  • • • 

= 	fry(t) + A-y4(t) + A 27(t) + ...] X 

exp[i(Ek  – En )t I h.] < 	In > . 	 (6.69) 

To order zero: 

d 
(6.70) ih—

dt
-y 2(t) = 0. 

(6.65) 

(6.66) 



Quantum System Submitted to a Sinusoidslly Varying Perturbation 	169 

To first order: 

d , 
ih A -dvk (t) = 	7,-; (t) exP[i(Ek — En  )t/h1 < k I A'Hti.  In > , 	(6.71) 

and so on. 
Retaining just the first order in A and using the initial conditions we 

get 

11),(0 = bat 
d , 

ih—
dt

-yk(t) = "ri exp[i(Ek — Ei)t/h] <kIniIi > . 

For the final state If >, such that 71(to) = 0, 

1 = jt 
o  exp[i(Ef — Ei)t/h]  <f  IfliI > dt. 	 (6.73) 

In this approximation, called the Born approximation, the transition 
probability from j> to If >  is 

Pi—. f(t) = 	 (6.74) 

We assumed -4(t) small, so Pi_.1  « 1.  
We now give the results more explicitly for the interaction of a solid 

with the electromagnetic field. The interaction Hamiltonian is (cf. Eqs. 
(6.13) and (6.14)): 

eA 
ni = 2m 

ao [exp i(wt — K • r) exp[—i(wt — K • r)]] • p, 	 (6.75) 

so that 

fl  = C exp iwt + C+ exp(—iwt) 	 (6.76) 

with 

c+  eA exp iK r 
(6.77) 

2m  

We recall that with the gauge Eq. (6.3) A and p commute. We set 

Ef —  E  =  11 .0,1 > 0 	 (6.78) 

as we are interested in photon absorption from the initial state. Expression 
(6.73) for -y(t) is then 

1  f (t) 	0  exp iwift[< f IC expiwtli > + < f IC+ exp(—iwt)li >1 dt 

1 exp i(wif +  w)t — 1  
zh 

[< poi > 	
i( 1  +w) 

+ 

< fic+ii  > exp i(wif —w)t— 1  
i( 1  -w)  

(6.72) 

(6.79) 
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0 
Fig. 8.11. Variation of the absorption transition probability Pi1 versus time for different 
values of zlito = (vs  f — 

We consider the neighborhood of w = wif: The first term is of the order of 
w -1 , the period of the electromagnetic wave, while the second is of the order 
of t, much longer than the period of the wave. The first term is therefore 
negligible compared with the second, so that 

sin2 [(w,  f  co)t /2 1  
f (t) = 	< f lc+  > 1 2 	 (6.80) 

(w11 —w)  

and 
(t) = 

2 ( 2eA hm) 
1 < flexp(iK • r)ao  • pli > 12 

 sin 2 	f -  w)t/2]  
[(w21 w)/2] 2  

The variation of Pi_,f (t) as a function of time for several values of Ace 
— w is shown in Fig. 6.11. Pi_,1  is a sinusoidal function of time whose 

peak value is proportional to 1/(Aw) 2 . For very small t << 1 for all 
Au)) all the curves coincide, and grow as t2 , getting out of phase for larger 
t. Conversely Pt— f can be regarded as a function of w with a resonance of 
width AW = 7r/2t  around w = coif (cf. Fig. 6.1). 

To calculate the emission probability from an excited state we have to 
distinguish between induced and spontaneous emission. The calculation of 
induced emission is symmetrical with the one we have just performed for 
absorption: one simply reverses the roles of  li> and If >. The calculation 
of spontaneous emission is complex but involves the same matrix element 
as for absorption, so that the same selection rules do apply. 

(6.81) 
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Calculation of the Radiative Recombination 
Probability 

As we have seen in Sects. 6.1 and 6.2, there is a close connection between 
light absorption by a semiconductor and radiative recombination, as both 
involve the saine  quantum states and the same electromagnetic interaction. 

We show here that if the absorption coefficient is known one can deduce 
the radiative lifetime. The basis of the proof consists of noting that in 
thermal equilibrium the rate of creation of electron-hole pairs is equal to 
the recombination rate. Using the detailed balance of these processes for 
each frequency interval I), v+dv we can write that the emission rate R(v)dv 
is equal to the pair generation rate 

R(v) d v = P (v)p(v)d v, 	 (6.82) 

where P (v) is the probability per unit time of absorbing a photon of energy 
hi/ and creating a pair, and  p(v)du is the photon density between frequen-
cies u and  u  +  du  for a unit volume. In thermal equilibrium this is given by 
the Planck blackbody law modified to account for the refractive index n of 
the medium: 

87r v2  n2 	1 	d(nu) 
 d v . p(v)d v =  	 (6.83) 

c3 	exp (h vIkT) -1 dv 

This formula is easily proved by noting that the density of photon states 
in the volume n, (0/87r3 )47rk2dk, multiplied by 2 (for the 2 polarization 
states of light), should be multiplied by the Bose factor [exp(hv/kT)- 1] -1 . 
As the wave vector k is 2rnvic, the number of occupied states between v 
and v + du is 

2 x ±1-47T-  (27rn iZ) 2  d (27ml)) x 	
1  

87r 3 	c 	c 	exp (h vIkT) - 1 
(6.84) 

giving Eq. (6.83). 
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We also have to relate the probability P(v) per unit time of absorbing 
a photon of energy hi'  to the light-absorption coefficient a(v). The electric 
field of a wave propagating a distance x into a medium of refractive index 
n and absorption coefficient a is 

E = exp i (27r vt - kx) exp(-a x/2). 	 (6.85) 

Here a and n depend on v. The travelling energy is proportional to 

/(x) = (Re 6)2 exp(-ax). (6.86) 

The quantity a -1 , the inverse of the absorption coefficient, can be regarded 
as the mean free path of a photon of energy hi'  in the medium before 
it produces a band-to-band transition at this energy. In fact a dx is the 
probability that a photon is absorbed between x and x + dx. The change 
of intensity over dx is 

dl = I (x + dx) - 1(x) = - I (x)a dx 	 (6.87) 

and integration of this equation gives just the form (6.86). The probability 
that a photon will not be absorbed over the distance x is thus exp(-ax) 
and the probability that it is absorbed exactly between x and x + dx is then 

ads  exp(-a x). 	 (6.88) 

The photon mean free path is then 

L 
 
00 

dx  a x exp(-a x) = a-1 . 	 (6.89) 

The mean lifetime r(v) of such a photon is thus a 1 vg-1  where vg  is the 
wave group velocity in the medium 

dw 	du  
g  

= — = c
d ' 	

(6.90) 
dk 	nu 

finally giving the inverse photon lifetime 

1 	dv 
av - — = ac 

d nv 
. 	 (6.91) 

g 	r(v) 

The probability P(v) per unit time of absorbing a photon is the inverse 
of the lifetime: 

P(v)  = r(v) ,  

so, substituting Eqs. (6.83), (6.91), and (6.92) into Eq. (6.82), 

8ir 	v2n2a 
R(v) d v = 	  

0 exp (h vIkT) - 
1 d v. 

 

(6.92) 

(6.93) 
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This is called the Van Roosbroeck-Shockley relation [Physical Review 94 
1558, (1954)1. It is the fundamental relation between the expected emission 
spectrum and the absorption spectrum. The total number of recombinations 
per unit volume and per second is obtained by integrating over frequency. 
Setting u = hvIkT: 

87 n2  ( kT ) 3  f n2  (v) (

1

v)u 2  
R. .1: R,,dv = 	—

h 	
du. 	 (6.94) 

c2 	 eu  —  

We note in Eq. (6.93) that if a( v) vanishes, corresponding to hi'  < Eg , 
the emission will also vanish at frequency v. Formula (6.93) allows us to 
transform the absorption spectrum of a semiconductor of known refractive 
index into its emission spectrum. The integral in Eq. (6.94) is negligible 
except over a very narrow frequency band of width kT/h near the funda-
mental absorption because of the factor eu in the denominator and because 
a = 0 for  hi'  < Eg . We see that the light emission by a semiconductor 
is relatively monochromatic. This is the reason why the electroluminescent 
diodes used in control panel lights or in fiber optic telecommunications emit 
well defined colors. 

Although the calculation above was for band-to-band transitions, it also 
holds for transitions between any pairs of states whatsoever. We see from 
Eq. (6.93) that if we consider a transition from the conduction band to a 
deep level in the band gap, the first stage of recombination through impurity 
centers, the factor exp(hvIkT) is much smaller, as  hi'  Eg  for the band-
band transition is replaced by hi'  E912 for recombination by centers; 
hence the probability of the latter process is greatly enhanced. 

In thermal equilibrium (Eq. (6.51)) 

R = Go(T) = A q. 	 (6.95) 

The radiative lifetime defined by Eq. (6.54) is then given for n-type 
material by 

1 
= T1,  
	 n Po 

In an intrinsic material with Lip  = An << ni  we have from Eq. (6.53), 

d  tin  
= -2A ni  An + g 

dt 

and the intrinsic lifetime is defined by 

12R  
ni 

(6.96) 

(6.97) 

(6.98) 

The following table gives the values of the lifetimes calculated from Eqs. 
(6.94), (6.96), and (6.98). 
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Radiative Recombination at 300 K 
T 

Eg  ni 
Material (eV) (x 1020  m-3 ) T (intrinsic) 

Si 1.08 0.00015 4.6 h 
Ge 0.66 0.24 0.61 s 
GaSb 0.71 0.043 0.009 s 
In As 0.31 16 15 	ps 
InSb 0.18 200 0.62/28 
PbS 0.41 7.1 15 	ps 
PbTe 0.32 40 2.4 ps 
PbSe 0.29 62 2.0  Its  
GaP 2.25 

for 1023  m-3  
majority 

carriers (As) 

2500 
150 

0.37 
0.24 
0.12 
0.21 
0.19 
0.25 

3000 
R. N. Hall, Proc. Institution of Electrical Engineering 106B Suppl. No. 17, 923 

(1959). 

We observe the wide range of recombination times for different semi-
conductors. 
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Semiconducting Clusters for Non-Linear Optics 

In recent years much interest has been focussed on "optronics," a new 
technology in which electronics would be replaced by optics (or electron 
current by photon flux). This needs non-linear optical devices using non-
linear optical materials. In such a material the absorbed radiation power is 
not a linear function of the incident power. This can be realized in particular 
with small clusters of semiconducting materials. 

For usual semiconducting samples or devices of macroscopic size, the size 
effects are negligible. Indeed the quantum confinement effect (as measured 
by the energy of the lowest state in a finite cubic box) of a microelectronic 
transistor of typical size of L = 3 Am corresponds to an energy shift 6E = 
(h212m)(14 ± ky2 ± ic.2) = 3h212mL 2 = 10-8  eV. This energy is very small 
compared to the thermal energy and plays no role. Even if m is replaced 
by the effective mass m* of order m/10 this confinement energy is small. 
However if one considers very small clusters of size ranging from 1 to 10 
nm the confinement effect becomes large and can be observed. Using the 
effective mass approximation one can write the energy of the lowest state 
corresponding to the conduction band as 

Ec,cluster = Ec,bulk + 3h2 /2me L2 . 	 (6.99) 

In the same manner one can write the highest energy corresponding to the 
valence band as 

Ev,ciuster 	— 3h2 / 2mhL2 . = Ev,bulk 

In consequence the new energy for the gap is 

(3h2/2L2 ) (m: 1  + mh-1 ). Eg,cluster = Eg,bulk + 

(6.100) 

(6.101) 

This increase in energy may be partially compensated by excitonic ef-
fects that we neglect here for the sake of simplicity (see Chap. 6.1d for 
excitonic effects). 
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atomic 
level 

cluster 
levels 	 crystalline 

quasi-continuum 

Fig. 8.12. Comparative scheme of the energy levels for atoms, clusters, and large crystals. 
In large crystals, the distance between energy levels is so small that one speaks of a quasi-
continuum. 

The next effect is that the splitting between conduction (or valence) 
levels is increased drastically for the same reason. There no longer exists 
a quasi-continuum of states like in a large crystal but a finite number of 
discrete levels. This is schematized in Fig. 6.12. Finally the energy level 
scheme near the new gap is shown in Fig. 6.13. 

The non-linear absorption of these small clusters is related to the fact 
that their optical absorption is very large because the "oscillator strength" 
is spread over a limited number of states. This means that the absorption 
probability for photons is larger than in crystals of macroscopic size. This 
can be understood from Eq. (6.21). The absorption probability for photons 
corresponding to the excitation from a single level to a single final level of 
width ,6E is proportional to the density of final states n(Ef)=- 11,6E. In 
a bulk semiconductor the term which corresponds to ,6E is of the order of 
the bandwidth (a few eV) whereas in the cluster the width of the discrete 
levels is typically 10 to 100 hundred times smaller. Correspondingly the 
absorption probability is very large. 

The absorption spectra of glasses containing clusters of CdSi_x  Sex  is 
shown in Fig. 6.14. The smaller the size of the cluster, the higher the absorp-
tion energy. Because of the enhanced absorption, it is possible to "saturate" 
the optical transition, that is to equalize the populations of the fundamental 
and excited states, using moderate radiation power. Here the fundamental 
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Cluster 
Bulk semiconductor 	

Discrete 

Conduction band 	
- 

	 States 

, 

Eg 

A ) 

Valence Band 
	

Discrete 
States 

4-- Distance Cluster Diameter 

Fig. 6.13. Energy levels near the forbidden band gap for bulk and small clusters of 
semiconductors. The increase in the distance between valence states and excited levels 
is a consequence of quantum confinement. 

state corresponds to a full valence band and the excited state corresponds 
to the occupation of the lower state in the conduction band. Of course satu-
ration can be achieved if the recombination is slow enough or if the intensity 
of the laser irradiation (pump laser) is large enough. Once saturation exists 
it is no longer possible to absorb photons of the same wavelength because 
the number of electrons excited by light from the valence to the conduction 
band is equal to the number of electrons which transit from a state of the 
conduction band to an empty state of the valence band under the light 
illumination. This phenomenon, which is called "stimulated emission," is 
due to the fact that the transition probability from i to f,  Pi,f that one can 
compute from Eqs. (6.79)—(6.81) is equal to the transition probability from 
f to i:  P1 , . In this saturation situation, the system has become non-linear. 
There exists a "self-induced transparency" because no more light can be 
absorbed at that wavelength. 

Another illustration of quantum confinement is the recent observation 
of light emission in the visible range by porous silicon. The band gap of 
ordinary crystalline silicon is situated in the infrared range and for this 
reason silicon cannot be used as a light-emitting material. Porous silicon 
is usually obtained by electropolishing of silicon in aqueous hydrofluoric 
acid and has been shown recently (1990) to emit light in the visible range. 
This fact (emission of light at an energy larger than the gap energy of bulk 
silicon) is explained by the fact that this material which is highly porous 
(50% porosity) is made of an irregular columnar structure with a typical 
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0.5 - 

650 	600 	550 	500 	450 	400 
Fig. 6.14. Absorption spectra of three glasses containing small clusters of CdSi_zSe.. 
The cluster diameter is 12 nm for (1), 5 nm for (2), and 2.5  urn  for (3). The cluster 
diameter can be measured by electron microscopy. The quantum confinement effect due 
to the size reduction from (1) to (3) creates a "blue shift" of the absorption threshold. 
The apparition of structure is a consequence of the fact that the distance between energy 
levels is also increased. 

size of a few nanometers. Also, in this material the quantum confinement 
is the essential mechanism for the increase of the effective band gap, as 
schematized in Fig. 6.13. 



7. 

Carrier Injection by x 
Light 

When a semiconductor is subject to a flux of radiation of energy exceed-
ing that of the band gap the rate of creation of electron-hole pairs varies 
spatially as light is progressively absorbed. Under these conditions there 
appear diffusion currents due to the non-equilibrium injection of carriers 
by light. 

We shall see that the system rearranges itself in order to maintain elec-
trical neutrality, The excess carriers created near the surface redistribute 
themselves over a finite distance, the diffusion length, determined by the dif-
fusion coefficient and the recombination time of the minority carriers. The 
concepts introduced in this chapter will be useful for the study of more 
complex systems, such as inhomogeneous semiconductors, which are the 
building blocks of solid state electronic devices: junctions and transistors. 
These devices are studied in Chaps. 8-10. 

7.1 Basic Equations for Semiconductor Devices  

We recall here the current Eqs. (5.31) and (5.32) involving the drift and 
diffusion currents: 

Je = nej e  C + eDeVn, (7.1) 

Jh = Peithe — ephVP, 

= 

(7.2) 

(7.3) 

The continuity equations, which express the particle number conserva-
tion, have to include recombination terms. These have to be considered 
for each type of particle. For the minority carriers, np  electrons in p-type 
material, pn  holes in n-type material: 

8np a  ?up  — 11,1, 	V •  Je  
gn 	 (7.4) at 	 e 
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aPn 	Pn — en  V • Jit  = gp 	 (7.5) 
at 	 T P 	 e , 

where go  and gp  are the creation rates wising from external excitations, and 
4„ en  the equilibrium concentrations of minority carriers. If the system is 
electrically neutral (a question discussed in Sect. 7.2 and Appendix Ti), the 
concentration of majority carriers is obtained from the neutrality relation 

nn  - nn  =  p  - pn 
	 (7.6) 

and an analogous relation in p-type material: 

n, — npo = pp — 
	 (7.7) 

7.2 Charge Neutrality 

Consider a homogeneously doped semiconductor in which one has created 
carrier concentrations no  + An and po  +  p.  If .6n differs from zip there 
will be a space charge of density 

p = e(4p - An). 	 (7.8) 

We wish to show that in fact An =  zip except in the presence of a very 
strong field. The charge and electric field are related by Poisson's equation 

p e (Ap -  An) 
V • e 	= 	 (7.9) 

fo 

We take p = 1018m-3 ,  Lip  -  Lin  = 10-2p, and er 	10, eo 
10-11  F.m-1 . Then V • e is of the order of 1.6 x 107  V • m-2  and the 
electric field produced by the charges in a slab of thickness d is 1.6 x 107d 
(V • m-1 ). Over a 1 cm slab, E = 1.6 x 105  V • m-1 . For ordinary fields we 
will thus have charge neutrality, or more precisely charge quasi-neutrality, 
even in the presence of fields and currents. 

It is also interesting to consider the time variation of the charge density 
p in the simple case where we neglect recombination and diffusion. The 
usual charge conservation law then applies: 

V• J = V at = -
dp 

(7.10) 
dt 

or using Eq. (7.8), 

d (An  - Zip) 
dt 	

- --
a 

(An -  Lip). 	 (7.11) 
E0 Er 

If at time t = 0 there is a charge imbalance Gan - 43) 0 , this imbalance 
decreases according to 
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(zin — Ap) = (An — AP)o exP( -tiT0), 

where 

fO  
To  = a 

is a characteristic time for the medium called the dielectric relaxation time. 
This is the time required for the charges to screen the perturbation. This 
time is very short, even in a semiconductor where the conluctivity is lower 
than in a metal. In a silicon crystal with a = 100 SZ • nand  coer  10-10 

 F • m-1  we get To 10-12  s. If a space charge is created it will therefore 
disappear very quickly. 

We may therefore assume that in homogeneously doped materials under 
normal conditions charge neutrality holds even in the presence of external 
excitation. This is nevertheless only an approximation, and we should really 
refer to it as charge quasi-neutrality. We give a more complete treatment 
including diffusion in Appendix 7.1, which shows that the approximation 
is excellent. 

We shall see in Chap. 8 that in materials with strongly inhomogeneous 
doping there can exist large electric fields and large net charge densities. 

7.3 Injection or Extraction of Minority Carriers 

We can now discuss the electron and hole currents in a semiconductor 
where n or p depart from their equilibrium values. We shall consider one-
dimensional motion in the x direction resulting from concentration gradi-
ents along x. We consider only extrinsic materials, e.g., n type, and as an 
example we study the effect of irradiation by light at the end of a semi-
conducting bar (Fig. 7.1). If the photon energy is high enough (3 or 4 eV) 
the absorption coefficient is about 106  cm-1 . This means that the light 
intensity is multiplied by 1/e over 10 nm, and that electron-hole pairs are 
created at the surface only. Appendix 7.2 gives a more detailed treatment 
of this phenomenon. In steady state there is a concentration gradient near 
the surface. t , 

The equations governing the phenomenon are the cwrent equation (7.2) 
and the charge conservation equation (7.5). In the bulk of the material the 
generation rate gp  is zero and if there is no electric field in the system, 
substitution of Eq. (7.2) in Eq. (7.5) gives 

amn Pn P° 
 

at 	T 	
+ D----.  

aX2  

In steady state we have 

Pn Pn  , n  02Pn 0= 	-r
aX2 

. 	 (7.15) 

(7.12) 

(7.13) 
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rt V e•••••••111. 

0 
Fig. 7.1. n-type semiconductor crystal illuminated at one end. 

The boundary conditions are pn (x = 0) = p?„ Apz (0) and pn (x 
oc)  = A. The solution of Eq. (7.15) is 

Pn(x) = + .6pn  (0) exp(-x/Lh) 
	

(7.16) 

with 

Lh= sJDh Tp. 
	 (7.17) 

The length L h  is called the minority carrier diffusion length. 
— For the irradiation of Fig. 7.1 the diffusion profile is show-din Fig. 7.2. 
The length Lh characterizing the injection effects is relatively large. With 
Dh = 25 x 10 m2 /s and rp = 10-6  s we get Lh  = 5 x 10-5  m. As 
there exists a hole concentration gradient there will be a diffusion current 
depending on x: 

Ap 
Jh(x)= -Dh e

0 
 ax  . 	 (7.18) 

At the surface 

Ph 
Jh(X = 0) = e—Ap,,(0). 	 (7.19) 

Expression (7.19) is needed for an understanding of the p-n junction 
and the junction transistor. In the present example the "diffusion velocity" 
Dh/Lh is 50 m • s-1 . The electric field E which would give the same value 
of drift velocity is given by e Dhl(Lhilh)r•/ 500 V m-1  for silicon. This 
large value shows that the transport of minority carriers may in some cases 
be essentially a diffusion current. This discussion is taken up more thor-
oughly in Appendix 7.1. The electron concentration is found from charge 
quasi-neutrality (7.6). In short: light creates a packet of excess holes, mi-
nority carriers, at x = 0. The majority carriers (electrons) surround them 
and screen them, so as to maintain charge quasi-neutrality  in the sample. 

o 	Lh = phtp  
Fig. 7.2. Hole concentration profile. 
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Of course we get an equivalent situation for the injection of electrons in 
p-type material. Conversely we shall show in the next chapter that in an 
inhomogeneously doped semiconductor, where this screening cannot occur, 
charge neutrality cannot be enforced everywhere. 
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Charge Quasi-Neutrality 

We give here a simple example showing that the surface injection of carriers 
leads not only to a diffusion current of the minority carriers, but also to the 
existence of an electric field which appears spontaneously in the system. 
However this field is very small, and we can show that the deviation from 
charge neutrality remains very small. 

We take the geometry of Fig. 7.1. We assume that irradiation creates a 
departure from equilibrium at the surface of n-type material. For simplicity 
in the following we suppress the index n on the concentrations. 

We start from the charge conservation equation and the expression for 
the current, which are (cf. Sect. 7.1) 

ap 	P Po V • 
at 	 e ' 

31t = PePh g – ephVP, 

which in one dimension gives 

01) P – Po 	Op 	OE 	a2p 

at 	Ph 	+ Ph 	± ph  • OX2  

Up to now we have omitted terms containing the electric field under 
the assumption of strict charge neutrality. We thus found the stationary 
solution (7.16): 

P(x) = P AP(0 ) exP(–x/Lh) 	 (7.23) 

and 

a 	Ph 
Jh(X) = –e El

l) 
 ho  = e —

L

Ap(0) exP(–x/Lh). 
h 

(7.24) 

We consider the total current J =Je  Jh. From Eqs. (7.1) and (7.2): 

(7.20) 

(7.21) 

(7.22) 
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J=Je+Jh 
=n  e A, E +p e Ah E + e De  Vn – e ph VP. 

In steady state 

d 
v • J = --

p  
dt 

 = 0  

and J is constant along the bar. But the current vanishes far from the 
surface, and therefore must vanish everywhere, so that from Eq. (7.25): 

(n e A, + p e Ah) 6 = e Dh V'p – e De  Vn. 	 (7.27) 

Equation (7.27), which is rigorous, shows that we can have strict charge 
neutrality—i.e., Vn = Vp at each point, and thus 6 = 0 since in this case 
there is no charge in the system—only if the electron and hole diffusion 
coefficients are equal. The physical reason is that electrons and holes are 
created in equal numbers at the surface, but as the diffusion coefficients 
are different the electrons and holes diffuse differently, leading to the ap-
pearance of a space charge. This charge creates the field 6 of Eq. (7.27) 
and thus allows the drift current on the left-hand side to compensate the 
differences between the diffusion currents. 

To evaluate the order of magnitude of the electric field 6 we note that 
we can neglect the hole drift current in Eq. (7.27), as there are very few 
holes in n-type material. We then have 

1 
6=  —(Dh Vp – De  Vn). 

n lie 

We assume that charge neutrality holds to a first approximation, so that 
Vn = Vp and 

e  ,., ph 
 (i 

 _ De ) v,p.  
(7.29) 

We set 

De  = A, = b  
(7.30) 

D,, Ph 

with b a parameter of order unity. The charge required to create the field 
6 is obtained from Poisson's equation: 

p(x) = co erV  .6  = –°–!!LE 	Dh(1 b) AP(°)  exp(–x/Lh). 	(7.31) 
n ite 	L2  h 

To obtain Eq. (7.31) we used Eq. (7.29) and the approximate solution 
(7.23) of the systems (7.20) and (7.21). At x = 0, using LK = DhTp : 

p(0) = "1 -L.  (1 b) AP (°) . 	 (7.32) 
n pe 	T P 

(7.25) 

(7.26) 

(7.28) 
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The charge density p is the deviation from strict electrical neutrality: 

	

p =(zIp —  1n)e 	 (7.33) 

Or 

	

(Zip — An)x=o = 	Er ( 1 b) AP(°)  
e n  ite ` 	T 

which using Eq. (7.13) becomes 

(pp  — Z1n)x=o _ To 1—  b). 	 (7.35) 
zip(0) 

This value is very small, as the dielectric relaxation time is always very short 
compared with the lifetime Tp : for example To 10-12  s while Tp 10-6  s. 
The deviation from strict equality of the electron and hole concentrations 
is in this case only 10-6  times the deviation of the minority carriers from 
the equilibrium concentration. It is of course exactly zero if b = 0, i.e., if 
ph = De  became then the electrons and holes diffuse at precisely the same 
speed. 

(7.34) 
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Problems on Photoexcitation, Recombination, 
and Photoconductivity 

We consider a semi-infinite sample of n-type silicon with electron concen-
tration no, steadily illuminated by light of wavelength A or energy hv and 
intensity 10 (Fig. 7.3). The wavelength considered here is 500 nm (blue-
green), with a corresponding absorption coefficient a = 104  cm-1 . 

hv 

Fig. 7.3. A semiconducting sample is illuminated by photons of energy hv. 

Problems 
1. Why is the electron-hole pair creation rate g non-uniform in the sample? 
Find its variation as a function of x. Assume that each photon absorption 
produces an electron-hole pair. 

2. Write down the differential equation for the excess hole concentration 
,6p(x) (with respect to the equilibrium concentration). Show that the so-
lution of this equation is the sum of two decreasing exponentials in x, and 
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'pare their characteristic lengths. Take the hole recombination time as 
1  /Ls  and their diffusion coefficient as Dh = 25 x 10-4  m2  s-1 . 

As boundary condition assume that there is no recombination at the 
race of the sample, i.e., the hole current vanishes at x = O. Give an 
ression for Ap(x) and sketch its variation. 
3. Calculate the surface density of excess holes, and show from the re-
,s of 2 that Eq. (7.16) describes the variation of Ap(x) correctly. For 
= 1 W/m2  what is the surface hole concentration? What is the surface 
:tron concentration? 
4. An external bias is used to set up an electric field e between the 
:trodes M and N, in the geometry of Fig. 7.4. The thickness / of the 
Lple is assumed large compared with Lh, and its width is d. 
Calculate the current i through the cross section of the illuminated 
Liconductor, and show under the above assumptions that it exceeds the 
k current io by 

h i' 	l' 

3re  it.h and /le  are the hole and electron mobilities, respectively. This 
ression does not involve the absorption coefficient a. Also give the form 
N when hi'  is close to the band gap energy. 

(7.36) 

1»  L,,  

7.4. Principle of the measurement of photoconductivity. 

5. Keeping the illumination and the sample as in 4 we now extract the 
ess carriers from the back face via an electrode P, (Fig. 7.5). Assuming 
Lin that / >> Lh, and following 3, find the excess hole concentration 
(x), using the facts that the hole current vanishes at x = 0 and the 
ess holes are extracted at x = I. What is the current J(/)? 
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Fig. 7.5. Extraction of the excess carriers at the back of the sample. The front surface 
is covered with a transparent conductor such as I.T.O. (indium-tin-oxide). 

Solutions 

1. The intensity reaching depth x is 

I = Io exp(- (Ix). 	 (7.37) 

Between x and x + dx an intensity 

dl  = a h dx exp(-ax) 
	

(7.38) 

is absorbed. We verify that foœd/ =  10 •  The creation energy for an electron-
hole pair is hv = hcl A, so that the number of pairs g(x)dx created per unit 
area between x and x + dx is 

g(x) dx = a I 0  dx exp(-ax)lhv 	 (7.39) 

with g(x) expressed in particles/m 3  s. 
2. The conservation equation for the minority carriers (holes) involves 

the creation rate g(x): 

Ozp  (x) 	82 p(x)  Zip a h 
= D,. 	

2 	 hv 
exp(-ax). 	 (7.40) 

at 	Ox  
We seek the steady-state solution. This is the solution of a second order 
differential equation with constant coefficients and a function of x on the 
right-hand side. The solution of the homogeneous equation is 

(M) = A exP(-x/Lh) 
	

(7.41) 

with A = constant and Lh = (Dhr) 1/2 . In fact, when x is large compared 
with Li, and a-1  there are no more excess holes and Ap(x) vanishes. A 
particular integral of Eq. (7.40) is 
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Ap (z) = C exp(—ax), 	 (7.42) 

where C is fixed by the condition 

c  (a2 D h 77:1 	ah v/0 	 (7.43) 

a T 
C = 	 (7.44) 

hi'  (1 — a2  g) 
Numerically, with Dh = 25 X 10-4  m2/s, T = 1 p,s, we get Lh = 50 

pm, the characteristic length for diffusion. Optical absorption occurs over 
a distance of order a-1  = 10-4  CIII = 1 pm, much smaller than Lh. The 
product aLh is much larger than 1, and C is negative: 

—T h C 	 (7.45) 
a LI, hv• 

The general solution of Eq. (7.40) is thus the sum of two terms, the first 
varying rapidly and the second slowly: 

ZAP (x) = C exP( —ax) + A exp(—x/Lh), 	 (7.46) 

where C is given by Eq. (7.44). The constant A is determined by the con-
dition that the current should vanish at x = 0, with 

Jh (X) = — Dh a  , 	 (7.47) 

= Dhla Czexp(— ax) + (Al Lh)exP(—x/ Lh)l- (7.48) 

The first component of the current pulls holes out of the solid, the second 
pulls them into it. From Jh(0) = 0 we deduce 

A = —a C Lh l 	 (7.49) 

AP(x)  =  hi'  (a2  L - 1) [aLh exp(—s/Lh ) — exP(—ax)]. 
ar  10 	 (7.50) 

3. The excess hole density at x = 0 is 

ar  L. 
Ap(0) =  	 (7.51) 

hi' (a Lh-F1) •  

Since aLh  >> 1, we have 

T 
4(0) 	 (7.52) 

itv 
AP(X) AP( 0)eXP( — X/Lh) 	 (7.53) 

which is Eq. (7.16). This expression correctly describes the variation of 
zip(z) for x > 	(cf. Fig. 7.6). 



For the dark current 
(To = e(no iin + Po up), 
co •-• e no tin 

1 
i = Ed f o-  (x) dx. 

o 
(7.54) 

(7.55) 
(7.56) 
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up 
diffusion region 

APtoud 
	 - C a L I , exp (-xIL h ) 

	 I. X ..- 
/ C exp (-ax) 

/ 

absorption 
region 

Fig. 7.6. The heavy curve shows Ap(x), and the two dashed curves the two terms of Eq. 
(7.50) which build  p(x). 

The energy of a blue-green photon of 500  nia  is given by hc/A = 
2.48 eV. For  10 = 1 W/m2  we have 2.5 x 1018  photons/m2 .s. The ex-
cess surface hole concentration given by Eq. (7.52) is about 5 x 1018 /m3 . It 
equals the excess electron concentration. 

4. The current through the cross section of the semiconductor and the 
electric field E are related by 

0 

since the semiconductor is n type. When illuminated, 
La  (x) = e tz,„ An (x) + e Ai, Ap (x), 	 (7.57) 

	

Ac (s) = e Zip (s) (on + lip), 	 (7.58) 

Ai = i -. it)  _ .I.( Zia (x) dx 
io 	to 	I cro 	' 

z 
Aio lie  + IA  fo AP (x) dx 
jo - 	ile 	1 no 	. 

The integral in the numerator can be found from Eq. (7.50). Because 
a-1  « Lh «1, 



00 
Ap (x) dx (x) dx = -C 	- -1 ) . 	 (7.61) 

Since aLh >> 1, we get 

io 	 ) hv nol . 
	 (7.62) 

'his expression involves only the photon number Why, and not the varia-
ion of a with hi'.  This comes from the approximation aLh >> 1. We have 
detector of light that is fairly insensitive to photon energies. 

In contradistinction, when we use photons with energy close to the band 
ap, a is small, and we can have a-1  > 1, where Lh is not modified. Then 
oh «1 « a-1 , aLh «1, 

j zip 	
2 

(x) dx = -C a Lh+ C
1 — exp(-a/) 	

(7.63) 
a 

-C a LI + Cl Cl. 	 (7.64) 

loreover C is now positive: 

T h 
C 	

hv 	
(7.65) 

D that the photoconductivity signal 

• jo 1  ± tih a T 43  
no 	lie! hi'  

( 
	

(7.66) 

; proportional to aio in the energy range where a is small. The photo-
onductivity spectrum, i.e., the curve Aio(hv), for a source with photon 
umber varying weakly with hi',  will exhibit the variation of a close to the 
bsorption threshold, and in particular the exciton peaks (see Sect. 6.1d). 

5. The general steady solution of the differential Eq. (7.40) now has the 
)rm 

AP (x) = AexP(-x Lh) + B exP(x/ Lh) + C exP(-ax), 	(7.67) 

rhere C is given by Eq. (7.44), and A and B are determined by the bound-
ry conditions 

Jh = 0, i.e., Dh[(A - B)/Lh +  Ca] = 0 at z  =- 0; 	 (7.68) 

lip =0, i.e., A exp(-//Lh) + Bexp(//Lh) + C exp(-a/)  =0  

at x = /. 	 (7.69) 

We still have a-1  << Lh «1, hence exp(-al) << exp(-1/ Lh) << 1, 
cl that 

A -Ca LheXP(1/Lh) [exP (i/Lh)+exp(-//Lh)]; 	 (7.70) 

B Ca Lhexp( -1/Lh) / [exP (//Lh)+ exp ( - //Lh)]; 	(7.71) 
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hence 

Jh (I) = --'1::. [A exp(-1/Lh) - B exp(/ / Lh) + a Lh CexP(-4201, -uh 
4 (1) = -2 Dh C a/[exp(//Lh) +exp( - //Lh)]• 

Replacing C by its expression in the same approximation we get 

Dh  a2  7-  Is  

Jh (1) '•-• 2
a2  LI, hv[exp (//Lh)+ exp( -1/4)1' 

Jh (1)'-'---' 2 hil.  exp(-//Lh). 	 (7.74) 

The current collected at the back face of the illuminated sample is a diffu-
sion current. The situation is comparable with that of a p-n-p transistor 
(see Chap. 10) in which holes are injected from the emitter to the base and 
extracted at the collector. 

(7.72) 

(7.73) 
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p-n Junction 

1 Introduction: Inhomogeneous Semiconductors 

the remaining chapters we shall discuss the physics of various "electron 
whines" such as diodes, transistors, etc. These devices are now vital for 
eryday life and for the industrial development of the second half of the 
th century. They mostly consist of semiconducting structures which are 
homogeneous either through their chemistry or because of doping. While 
)ssical mechanical machines are assembled from variously shaped compo-
nts, the "electron machines" we will study are manufactured essentially 
r spatially varying the concentration of impurities. 

The p-n junction is a vital component of all these devices, both be-
use  of its direct applications and because an understanding of its physics 
:plains the junction transistor and many other devices. A p-n junction 
onsists of a semiconducting crystal whose concentration of shallow impu-
ties varies with z so that a p-type region, where N. — Nd > 0, is next to 

n-type region, i.e., to one where N. — Nd  < O. This is therefore an inho-
ogeneous semiconductor, where the electron and hole concentrations vary 
ith position, even in thermodynamic equilibrium, i.e., in the absence of a 
trrent. Now, if there is a concentration gradient there must be a diffusion 
Lrrent. For the electrons, for example, this is 

Je,d = 	Vik 

For the electron current to vanish, the drift current ne ite  C must exactly 
incel it: 

n pe  = —De  VII, 	 (8.1) 

There must therefore be an electric field, which in the absence of external 
Larges can only result from a charge density p within the system. This 
Lows that: 

In thermodynamic equilibrium, in an inhomogeneously doped system, 
charge neutrality cannot be preserved everywhere. 
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Once charge neutrality is violated an electrostatic potential V(x) ap-
pears, given by Poisson's equation 

Z■ V (x) — p (x)  

with 

p(x) = e[ p (x) — n (x) + n,t (x) —  n (x)], 	 (8.3) 

where the concentrations of free carriers n,p and ionized impurities n,t, 
now depenfron position. 

This macroscopic potential is added to the usual crystalline potential 
and shifts the energy levels by an amount —eV (x). The general shape of 
the bands is shown in Fig. 8.1. 

E0  

E F 	  

E, (x) 

distance 
Fig. 8.1. Band shape in an inhomogeneous semiconductor at thermodynamic equilibrium. 

For a system in thermodynamic equilibrium the chemical potential, or 
Fermi level, which is the partial derivative of the thermodynamic potential 
with respect to the particle number, is spatially constant. 

We have to consider an energy origin E0  which is independent of the 
charge distribution, for example, the energy of a static electron at infinity 
(this is the zero of energy in the hydrogen atom, compared with which 
the ground state has energy —13.6 eV). Then if the energy of a given 

Er co 
(8.2) 
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conduction-band electron is E and  E1 (r)  is its energy with respect to the 
bottom of the conduction band, we have 

E = E(x) + E(x) 
Eco  — eV(r) + Ei(x) 	 (8.4) 

and the Fermi function is 

1 + expE(E — EF)/k71 1 + exp[(Ec  +  E1  — EF)IkT)] .  

The number of conduction electrons at abscissa r is then given by 
00 

n (x) = 	n[E — Ec  (r)] f dE 
E(x) 

co 	n (E1) dEl  
(8.6) = 

fo  1 + exp[(Ei + E(x) — EF)IkT] •  

There will be analogous Eqs. (8.6'), (8.6")... giving p(x),n3(x), 
n; (x) as we have seen in Chap. 4. The total charge density is given by 
Eq. (8.3). Solving the equilibrium junction problem then reduces to solving 
Eqs. (8.2), (8.3), (8.6), (8.6'),... so as to find the potential distribution and 
the carrier densities as functions of the coordinates. 

When the Fermi level is far from the band levels (see Sect. 4.4), Eq. 
(8.6) gives for each n: 

n (x) = NcexP[ — (Ec(x) — EF)/k71, 	 (8.7) 

n (r) = const. exp[e V (x)IkT], 

and 

1 
—
n

Vn = VV = 
kT 	kT 

Substituting in Eq. (8.1) we recover the Einstein relation (5.30). There is 
of course an equivalent result for the holes. Formula (8.7) shows that the 
electrons are more numerous in regions where the Fermi level is closer to 
the bottom of the conduction band. 

8.2 The Equilibrium p-n Junction 

9-vW 
In the following we shall limit ourselves to what is called an abrupt_junc.- 
_tion. It consists of a semiconducting crystal in which the impurity concen-
tration changes discontinuously from a majority concentration of donors to 
a majority concentration of acceptors at x = 0. Of course in reality it is 
impossible to set up such a system and the transition from the n to the p 
region is fairly gradual, as shown schematically in Fig. 8.2(a), but we shall 

f=  (8.5) 

(8.8) 

(8.9) 
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see that we can often approximate this type of profile by a discontinuous 
one (Fig. 8.2(h)). 

I 	doping 
concentration 

(a) 

0 

Fig. 8.2. Doping profile of a p-n junction: (a) real profile; (b) approximation as a dis-
continuous profile. 

8.2a Qualitative Discussion )( 

Let us assume that we have made an abrupt junction by bringing together 
two crystals of different types. The band diagram of the two separate sys-
tems is shown in Fig. 8.3. The Fermi levels in the two crystals are different. 
We assume we are in the saturation regime where n =  Nd  and p = N., 
with the Fermi levels in the band gap; the materials are assumed to be 
non-compensated (this simplifies the notation  without loss of generality in 
the following). 

We denote by np° and pl°, the electron and hole concentrations in the 
p-type material and n°n , the corresponding concentrations in the n-type 
material, before they are brought into contact. The carrier concentrations 
are given by Eqs. (4.14), (4.16), (4.31), and (4.37): 

p(7), = N.= Ny exp[—(EF, p  — E,)/k7], 	 (8.10) 

np°  = 74/pp°  = Nc exp[— (E,p  — EF, p )Ik71, 	 (8.11) 
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WNW n type 

 

   

  

• • •  CB 

	ERA  

  

  

distance 
Fig. 8.3. Energy levels in two separated n- and p-type crystals. The hatched zones 
represent filled states, the heavy dots conduction electrons, and the open dots holes. 
(After Dalven, "Introduction to Applied Solid State Physics," Plenum Press, 1980.) 

p?, = n? 	=  N,,  exp[—(EF, a  — E v ,n) I k7 ], 

n?, = Nd = Nc exPHEc,n — E F,n) I k71, 
0 0 	0 0 nn  pn  = np  pp  =  N  Nt, exp(—Eg  / kT) = 74. 

(8.12) 

(8.13) 

(8.14) 

As the chemical potentials differ from left to right, a reaction will occur 
if the two systems are brought into contact to make a junction; electrons 
will pass from the system where the chemical potential is higher (on the 
right) towards the p region on the left, and the holes will move from left 
to right. This movement of free carriers may also be described in an ex-
actly equivalent fashion by saying that the concentration gradient creates 
a diffusion current of electrons from right to left and of holes from left to 
right. The additional electrons in the p material are the excess minority 
carriers: they recombine with the majority holes, with a similar effect for 
the additional holes in the n region. The electrons leave ionized donors of 
concentration Nd in the n material, and the holes leave ionized acceptors of 
concentration Na  in the p material. A region of non-zero charge is then cre-
ated near the junction. This is called the space-charge region and is shown 
in Fig. 8.4. 

However, this process cannot continue indefinitely as the space charge 
creates an electric field that opposes the diffusion of majority carriers. This 
is how equilibrium is achieved. The space-charge zone is a region where 
the number of free carriers is very low; for this reason it is also called the 
depletion region. The space-charge zone bears a charge, namely that of the 
fixed donor or acceptor sites that are no longer neutralized. 

E 
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Fig. 8.4.  (a) et charge density p(r), and (b) free charge density, in a p-n junction. 

8.2b Potential Difference between the p and n Regions 

Equilibrium thermodynamics gives the internal electrostatic potential dif-
ference 0 between the p and n regions. The overall shift ofthe_ bands in the 
junction region must have the shape shown in FiE8.5 as in equilibrium the 
chemical potential must be constant throughout the -system.  Far from the 
junction the n and p materials must retain their original properties, i.e., 
constant free carrier concentrations, equal to the initial donor and acceptor 
concentrations (24, = N., r4), = Nd), and constant electrostatic potential as 
the current must vanish. 

If the electrostatic potentials in the n and p regions far from the junction 
are Vn  and Vp , then setting 

(8.15) 
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E, 

B.5. Band profile across an equilibrium p-n junction. 

kave 

E;c,p Ec,n = —e (Vp Vn) = e 
	

(8.16) 

using Eqs. (8.10), (8.11), (8.13), and (8.14), 

E kT 	Nd 
6 = 	— log 	 (8.17) 

e 	e 	/sT, /V, • 

Che internal potential is thus slightly smaller than the band gap. In 
Dn at room temperature Eg  = 1.12 eV; Arc  ", 3 x 1023  m-3 ; Nt, 1025 

 '; kT le = 0.025 V; if Na  = 3 x 1023  111-3 , Nd -= 10 21  III-3  we have 
5V. We note that we also have from Eqs. (8.10)-(8.13), 

-0-P  = P-rin  = exp(-e 0/kT). 
Pp 

0 
(8.18) 

Calculation of the Space Charge 	).( 

from the junction electrical neutrality holds between mobile and fixed 
.ges. In contrast, close to the junction, the Fermi level is far from the 
Is. This is why there are few mobile charges here (see Eqs. (8.10)- 
3)). Further, the density of carriers given by Eq. (8.8) varies exponen-
y, i.e., very rapidly with the potential. This means that if the potential 
the shape shown in Fig. 8.6(a) the space-charge density given by Eq. 
) will have the shape shown by the thick curves in Fig. 8.6(b). 

Sect. 8.1 we set ourselves the aim of integrating the Poisson equation 
the potential with a local charge depending on this potential through 
laws of statistical mechanics. We see that to a good approximation we 
regard p as constant and equal to -Olt, in the p region over the range 
veen —dp  and 0, and equal to +eNd between 0 and cin ; it remains to 
rmine the distances  d, d.  We replace the real charge density curve of 
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(b) 

Fig. 8.8. (a) Electrostatic potential across an equilibrium p—n junction; 03) corresponding 
charge density. The dashed curve is the approximate form of p used in the calculation 
in the text. 

Fig. 8.6(b) by the dashed curve. We then have to integrate the very simple 
equations 

02 V OE 	e Na  
O- x 2  Ox 	Eo Or 

for — dp  < x < 0, 	 (8.19) 

a2 v OE 	e Nd = 	= 	for 0 < x < dn . 	 (8.20) 
Ox 

- 2 

 Ox 	fo Er 

Noting that the electric field vanishes in equilibrium for x = —dp and 
dn , since the current is zero at these points, we get 

E 	
e N. 

(x + dp) for — dp  < x < 0, 	 (8.21) 
0 Cr  

e Nd 
E = 	(x — d.) for 0 < x < dn • 

fO fr 
(8.22) 

We note that at x = 0: 

N. dp = Nd dn. 	 (8.23) 
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; equation states that the total space charge of the p region exactly 
pensates that of the n region. It reflects the global neutrality of the 
tion, since the "manufacture" began with two electrically neutral re-
s. A second integration gives the potentials, with V = Vp  for x = -dp : 

((x) = c7C-,-. Na(x + 4)2  + Vp for - d.,, < 0, (8.24) 

e  Na  2 e Nd  ( X 2  I 	= 2 e0  et.  dp  	dn  x)+Vi, for 0 5_ x 5_ dn . (8.25) 
er 2 

= dn  we have V = Va  and 

	[Na 4+ Nd 1]. 	(8.26) 
2 co er 

Che quantities dn , di, are found from Eqs. (8.17) and (8.23). The form of 
electric  field is shown in Fig. 8.7. It is negative, repelling the electrons 
ing from the n-type region on the right and the holes coming from 
p-type region on the left, and thus separates the free carriers from the 
e-charge region. 

L7. Electric field across an equilibrium p-n junction. 

Che width of the space-charge region can be found from Eqs. (8.23) and 
3): 

V = dp  + dn  = 	e  
Er 0) 1/2 (Na+  Nd )1/2 

Nd 	• 

2 €o  

With (/) 1 V; Nd,Na  es,  1021  m-3 ; fOr '" 10-10  F.m-1  we get W 
10-6  m. If lei is the modulus of the maximum field at the junction, 

e Nd da  e dp  em l=  	 (8.28) 
Or 	€O Cr 

We note that the triangle in Fig. 8.7 has area 0, or 

1 	 1 
6 = -2 le.1(dn + dp) = lent 	 (8.29) 

(8.27) 
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where W = (d, d p ) is the width of the space-charge region. 
Let us consider the example of a junction where Na  >> Nd, called a p+ - 

n junction; then dp « dc , and the space-charge region mainly extends into 
the less doped region, with W (2e 0f4/eNd) 1/2 . The maximum electric 
field in the less doped region is of the order of 0/W or about 10 6  V/m for 
a junction where the space charge extends over 1 pm. 

For the "abrupt-junction" approximation used in this section to hold 
we require that in a real junction the region over which the doping varies 
from p type to n type should be much smaller than the size W we have just 
calculated. Suppose that the junction was made by diffusion of phosphorus 
into silicon originally of p type. If the diffusion operates for time t, the 
width of the profile is of the order of L = (Dph0spht) 112 , where Dphosph 
is the diffusion coefficient of phosphorus. For phosphorus in silicon at 
1000° C we have Dphosph 10-17m2  s-1 . If diffusion lasts about 
103  s, we get L = 10 -7  m: one can therefore manufacture junctions where 
the width of the space-charge region is much larger than that of the region 
where the doping changes. Such junctions can reasonably be regarded as 
abrupt. 

A real junction is never made by assembling two different crystals (n-
and p-type) because their surface properties (surface states to be discussed 
in Sect. 9.4) would totally perturb the above situation. 

8.2d Currents in the Equilibrium Junction 

As we have seen above, the total current through the junction vanishes be-
cause the chemical potential is constant. This is true for the electron and 
hole currents separately. It is interesting to understand the mechanism by 
which each of these currents cancels out. In the uniform regions where the 
charge density is zero, left and right of the deserted region, the current of 
each type of carrier vanishes because the electric field is zero. By contrast 
there is a very strong electric field in the deserted zone. Although the num-
ber of carriers is small, the drift current for each type is large, and the 
total current vanishes because there is an equally large opposing diffusion 
current. The diffusion current is large because the concentration gradient 
is large in this region (Eq. (8.9)). It is interesting to find the order of mag-
nitude of these currents. For simplicity let us consider a symmetrical junc-
tion. Then at z  = 0 the Fermi level is exactly in the middle of the band 
gap and the concentrations are the intrinsic ones. The drift current J = 
niep,E is then about 0.1 A/cm2  for silicon where n ^,  1016  m-3 ; p - 0.1 
m2 - V-1  -s-1  and for an electric field of about 106  V-m-1  as we have just 
seen. This is the typical value for the drift current at the center of the 
junction. This reasoning holds for electrons and holes. 

In summary, in equilibrium, far from the junction, the current vanishes 
because the carriers have a constant concentration and there is no electric 
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field. In the center of the space-charge region two very large currents, the 
drift and diffusion currents, cancel exactly. 

8.3 The Non-Equilibrium Junction 

Let us now assume that we apply an external voltage by means of a dc gen-
erator connected across the junction. We say that the junction is biased. 
The external voltage V, is counted positive if it tries to make the p-doped 
side positive with respect to the n-doped side, and thus tends to decrease 
the height of the potential barrier between the two regions. The chemical 
potential cannot be constant in the whole system and a  current will circu-
fafejlowever the space-charge region has very high resistivity since it has 
few free carriers. We can thus say that the potential drop will occur in the 
space-charge region, the width of this zone possibly being modified by the 
presence of the external potential. Outside this region of very high resistiv-
ity the p and n regions can be regarded as approximately equipotential as 
their resistance is low. 

The effect of applying an external potential V, is shown schematically 
in Fig. 8.8. The distances dn  and di, are modified by the existence of V, and 
become din  and dip , which are both functions of 'V,. 

A calculation analogous to that of Sect. 8.2c gives 

	

— =
2  e 
	[N. d;2  + Nd 42] 	 (8.30) 

	

 €0 	- 
and 

Na  d; = Nd  d. 	 (8.31) 

We note that the electric fields and size of the space-charge region are 
modified without changing their order of magnitude. 

8.3a Energy Level Diagram 

To understand the operation of a biased junction, it is useful to consider 
the energy diagram in the three cases of zero, forward, and reverse bias, 
as shown in Figs. 8.9(a), 8.9(b), and 8.9(c). Applying a potential difference 
across the junction means imposing a difference in chemical potential be-
tween left and right. We can do this in practice by making two contacts 
of the same metal at the extremities of the junction and holding them at 
different potentials. 

The band profiles are arcs of parabolas as shown by Eqs. (8.24) and 
(8.25). 

Outside the space-charge region, the p and n conductors remain equipo-
tential (apart from the small variation corresponding to the ohmic drop in 
the two materials when a current flows). We then have 



(8.32) F, EF,n = —e V,. 

V  (x)  

—d' 	0 	d' „ 
Fig. 8.8. Profile of the electrostatic potential of the junction for an applied positive or 
negative voltage  V. The dashed curves show the potential for Ve  = 0. 
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8.3b Calculation of the Current 

To calculate the current we make use of our description of the equilibrium 
currents in the unbiased diode. We saw that in the space-charge region 
two very large currents (drift and diffusion) exactly cancel. To calculate 
the current in the presence of an external voltage we assume first that the 
resultant current is small compared with the opposing components of the 
equilibrium current. Then in the current equation for (for example) the 
electrons 

Je  = n e  6  + e De V n, 	 (8.33) 

we can neglect Je  compared with the two terms on the right-hand side and 
write in the presence of currents 

n e e # — e De V n 	 (8.34) 

or, using the Einstein relations, 

n (x)# const. exp 
e V (x)  

(8.35) 
kT 

The latter equation shows that for currents that are not too large (we 
will specify this later) the electrons are in thermal equilibrium in the space-
charge region. Then using Eq. (8.35) at the points —dip  and din , we have 
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n(x=—(1, ) 
	 = exp [–e(0 — Ve )ficT] . 	 (8.36) 
n(s=+do 

But the electron concentration in the n-type material, for x > d',„ has 
the fixed value Nd, so that 

n(z—do = Nd exp [–e(0 — V)/k7]. 	 (8.37) 

Using Eq. (8.18), 

n(x=_do = n:exp 
e 
kT 
	 (8.38) 

This shows that in the presence of the external voltage the concentration 
of minority carriers is modified at the edge of the space-charge region. For 
x = --dip  we have a deviation from the equilibrium population of amount 

( e  V \  
zi n(x— do  = 	— 7-1,0,=74; [exp(—) —1] . 

kT 

Depending on whether V, is positive or negative, the concentration of 
minority carriers is increased or decreased. We thus say that there is injec-
tion or extraction of minority carriers. This injection or extraction takes 
place from the majority carrier region. We can say that the concentration 
deviation is created by the change in the height of the potential barrier, 
which changes the number of electrons able to diffuse from the n region 
towards the semiconducting p region. We expect this number to depend on 
Ve  through a Boltzmann factor. The p region behaves as a semiconduct-
ing strip whose surface population of minority carriers is maintained out 
of equilibrium. There is therefore diffusion and an associated diffusion cur-
rent. This situation was considered in the preceding chapter (Sect. 7.3 and 
Appendix 7.2). The current is given by Eq. (7.19), or here, for x = 

De  
Je = e A n(x---d )  • 	, 

J, = e n° 	[exio e 	– 11 . 
P Le  L 	kT 

Similarly for the holes, analogous reasoning gives the diffusion current 
at the edge of the n region, so that for x = -Fcrn : 

0 ph r /eve\ 
jh  = e  Pn—  {exP 	 • Lh 

(8.42) 

(8.39) 

(8.40) 

(8.41) 

If there is no recombination in the space-charge region these two currents 
are constant in this zone and add. The total current is therefore 
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J = Je Jit 

= 
 e (

n° e  + p° 
n 	

[exp (-e±re-) - 1] , 

	

P  L e  	Lh 	kT 

= Je [exp ( 7e ) - 1] . 
kT 

The quantity Je  is called the saturation current: 

ph 

	

= e (n°„—
D e 	

—
D h

) = e nt? ,
De ▪r 	„ir  

	

Le 	- Lh 	(Le Na 	lvd) 

Because of the factor n?, Je  varies very rapidly with temperature. The 
turation current is small compared with the current components at the 
citer of the barrier. Taking Na  = Nd = 10 21  M-3  and  D/L  5 m. s-1  
get Je „, 10-11 A/cm2  for a silicon junction, or six orders of magnitude 

low the drift current at the center of the barrier. This order of magni-
de justifies the hypotheses made in writing Eq. (8.37). Even for forward 

(ve  > 0) the law (8.44) will be correct as long as Je  exp(eVe /kT) re-
lins small enough compared with the drift current at the center of the 
rrier, and thus remains applicable over a very wide range of current (from 
-11  Aicm2  up to about 10-3  Aicm2  in the example considered). 
The law (8.44) is called Shockley's law, and dates from 1949. Its form 

shown in Fig. 8.10. When Ve  is very large and negative we say that the 
ltage is reversed and the current is -Je . For Ve  > 0 we say that the 
ltage is direct; the current is then positive and increases exponentially 
th the applied voltage. This behavior is shown in Figs. 8.10(a) and 8.10(b) 
large and small scales. Figure 8.10(b) is drawn for Je  = 2.19 x 10 -11 

 'cm2 . Notice the difference in the scales of the ordinates for direct and 
verse voltages. 
It is interesting to note that for a strong reverse bias the electrons, the 

Lnority carriers in the p region, that reach the barrier are accelerated 
the electric field. They cross the space-charge region from right to left, 

file the electrons in the n region, where they are the majority carriers, 
nnot diffuse into the p region because they cannot cross the very high 
tential barrier. Then for x = -cep  the electron concentration falls to zero 
d there is a concentration gradient for x < -dip . We thus have a semi-
nducting strip in which we have created a deviation Anp  = -np° from 
e equilibrium populations at x = 	In this situation electron-hole 
,irs are generated to compensate this deviation and diffusion results. The 
ctron contribution to the saturation current can then be interpreted as 
e maximum electron current one can draw from p-type material by ex-
3,cting all the minority electrons at its surface. This current can only flow 
ntinuously if there is continuous reappearance of the minority electrons 
Ld thus generation of electron-hole pairs by the material. For this reason 
is current is often called the "electron generation current." Similarly the 
her component of Je  is often called the "hole generation current." 

(8.43) 

 (8.44) 

(8.45) 
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current 

forward 

reverse voltage 

V, (V) 

Fig. 8.10. Current-voltage characteristic of a p-n junction. (a) Linear scale; (b) enlarged 
view of the region near the origin. The current density scale is expanded by a factor 10 
for the reverse region, causing the change of slope at the origin. 

We have assumed that recombination is negligible in the space-charge 
region. To justify this we note that if the mean electric field in this zone is 
of the order of 106  V/m an electron of mobility 0.1 m2  - V-1  s-1  has a drift 
velocity of 105  m/s and the region of 10-6  m thickness is crossed by the 
minority carriers in 10-11  s, much shorter than the recombination time. By 
contrast the diffusion of the majority carriers takes a time of order W2/D 
or about 10-9  s. The recombination time may not always be extremely long 
compared with this time and the above theory must be modified. 

Shockley's equation shows that the p-n junction is an efficient rectifier, 
as the current depends very strongly on the sign of V5 ; for this reason it is 
often called a p-n diode. In real diodes there are several limitations which 
we have neglected: 

- we assumed generation and recombination of pairs to be negligible in 
the space-charge region; 



• Jh  (x) .....  

X 
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- we limited ourselves to moderate currents; 
- we neglected the sides of the junction, where surface recombinations 

,ccur. 
These effects, and the resistance of the p and n regions, may modify the 

urrent-voltage characteristics of the diode. 

1.3c Current and Concentration Distributions 

Ve note from Eq. (8.39) that if Ve  is positive An is > 0: We say that 
ainority carriers are injected. If the potential is strictly constant (by charge 
ieutrality) for _x < ,4 and x > 4 the current at the edge of the_ space 
huge is purely a diffusion current. This is shown in Fig. 8.11. 

In a steady state we have 

dp 
V • J = --

dt 
= 0, I 	 (8.46) 

aid  the total current (electrons + holes) must be constant along x. 
If there is injection of excess minority carriers, the carriers injected at 

he edge of the space-charge region diffuse and give rise to the diffusion 
urrent shown. As the total current must be constant, the majority car-
ier current must also vary with x, as shown in Fig. 8.11. An excess of 
aajority carriers, extremely small in relative value, must therefore appear 
o compensate the charge of the injected minority carriers. Far from the 
unction the diffusion currents are small and the current is thus-entirely a 
[rift current of majority carriers, with uniform concentrations again. Hence 
here are five successive regions in a non-equilibrium junction: homogenous 
•type, p diffusion, space charge, n diffusion, and homogenous n type; by 
ontrast there are no diffusion regions in an equilibrium junction, and thus 
Inly three regions. 

J , Je , eJh 

P tYPe 	n type 

ig. 8.11. Total current density (J), electron current density (Je ), and hole current 

ensity (Jh ) across a p-n junction. (After Dalven, "Introduction to Applied Solid State 
'hysics," Plenum Press, 1980.) 
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Fig. 8.12. Concentration profile in a forward biased germanium p-n junction (Ve  = 
0.1 V). (After Middlebrook, "An Introduction to Junction Transistor Theory," J. Wiley, 
1957, 1965.) 

Figure 8.12 gives the carrier densities in a germanium p-n junction as 
a function of s for a forward bias of 0.1 V. Note the logarithmic scale of 
the ordinate. The excess of majority carriers is negligible. The excess of 
minority carriers resulting from injection is very small compared with the 
majority carrier concentrations but very large compared with the equilib-
rium concentration of minority carriers. We see the five spatial regions: at 
the left and right of the figure the unperturbed n and p zones (not shown); 
then closer to the space charge, regions A and B where the current is mainly 
a diffusion current; and finally at the center the very narrow space-charge 
region. 

Remark: For the non-equilibrium p-n junction it is useful to introduce 
the notion of "quasi-Fermi level": as this is not an equilibrium, the Fermi 
level is not constant in space. However from the concentration n(x), by 
analogy with expression (8.7) we can define the electron quasi-Fermi level 
EFe by 

n(x) = Nc exp[-(Ec (x) - EF.)1k71 	 (8.47) 

Or 



8. The p-n Junction 

EFe  = Eco  – eV (x) + kT log  [n(x)/N]. 	 (8.48) 

iilarly we define the quasi-Fermi level EFh for the holes: 

EFh =  E 0  — eV(x) – kT  log  lp(x)/N4 
	

(8.49) 

an equilibrium junction EFe  and EFh are equal, so that 

Eco  – E.„0  + kT log [n(x) p(x)IN, 1%4] = 0 
	

(8.50) 

ich is the law of mass action (Eq. (4.22)). In this case the quantities 
e , EFh do not depend on position, so that we recover the relation (8.7) 
its equivalent for holes. In a non-equilibrium junction the quasi-Fermi 
As vary with position. We now show that the spatial variation of EFe  is 
ited to the corresponding current Je : 

On 
= e tie n E + e De—ax' 	

(8.51) 

	

OV 	kT On 
= –e n —a--; + e tie—e 	 (8.52) 

= n(x) p.,—[–e v(x) + kT Ln n(x)]. 	 (8.53) 
8x 

•ng the definition (8.48) of EFe , we obtain 

OEFe 
Je 

 

= n(x) 1.4 ax  . 

lilarly we have 

aEFh 
= P(X) ilh 

OS • 

e quasi-Fermi levels are actually the electrochemical potentials of trans-
rt theory. 
The  notion of quasi-Fermi levels provides a description of the carrier 
isity even within  the space-charge region. We show that Je  varies little 
this region: from the conservation equation for the minority carriers in 
ady state: 

an 10J, n – no n  

Ot e Ox 	rn 

OJe 	 –  no 
— = e t 	 
ax 	rn ) 

deduce 

< .45ninex • 
OX  Tn  

(8.54) 

(8.55) 

(8.56) 

(8.57) 
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The variation of Je  occurs over a distance of order of the diffusion length 
L e , or about 0.1 mm, while the width of the space-charge region di, + dn  is 
about one micron. Then using the Einstein relation we have 

eL e c  
< — 	 (8.58) 

To 

aEFe  < eLe  nmax  Onme., kT kT 
— < — . 	 (8.59) 

8x 	TL  n 	n Le  L e  

The variation of EF, over the distance (dp  + dn ) is certainly less than 
kT(dp  + dn )I L e , and thus much smaller than kT . We can say nothing about 
the variation of EFe  in diffusion regions except that on the n side on << Nd 

(and Op << N. on the p side), so that EFe  coincides with the Fermi level 
on the n side, and the quasi-Fermi levels have the variation shown in Fig. 
8.13 across a non-equilibrium junction. 

Fig. 8.13. Variation of the quasi-Fermi levels across a forward biased p-n junction. The 
slopes are not to scale. The width of the p (or n) diffusion zone is several times Lh (or 
Le ). 

At the limit of the space charge we recover Eq. (8.35). The quasi-Fermi 
level of each species is approximately constant across the space-charge re-
gion because, if we neglect recombination, there is no other process allowing 
the electrons and holes to interact. The quasi-Fermi levels, which are the 
electrochemical potentials for the electrons and holes, are then decoupled. 
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d Capacitance of a Junction 

he presence of external bias, the size of the space-charge region is altered. 
,he case N. >> Nd we get from Eq. (8.33), 

_ 2  es er - Ve )  
n 	e Nd 	• 

?.re is an accumulation of charge between the two conducting materials, 
hence a capacitance. The charge per unit area is eNddi. or 

Qc = [2E0 fr(q)- Ve)e Ned' /2 . 	 (8.61) 

ye change the bias Ve  by a small amount dV, we have a differential 
acitance per unit area: 

d Q, cd 	2-1/2[E, 
fo e 

dV, 	
Nd1 	- 1/2 [0 K1 -1 /2 . 

For fr fo ", 10-10  F•111-1 ; Nd 10 21  m-3 ; (0-Va) 1 V, the capacitance 
0.01 iificm2 . This shows that in the equivalent electrical circuit 

p-n junction there is a capacitor in parallel across the junction. The 
le of the capacitance depends on the bias voltage  V. 
A device of this type is called a "varaktor," a contraction of "variable 
Aor." The variation of capacitance with applied voltage is shown in Fig. 
1. The ac behavior of p-n junctions is studied in Appendix 8.1. The 
trol of a capacitance by an applied voltage has many applications; for 
mple, varactors are used in the automatic frequency control of radio 

e Breakdown of a p-n Junction 

we apply a reverse voltage exceeding a certain value to a diode, the 
erse current increases very rapidly, as shown in Fig. 8.15(a). This sudden 
rease is called "breakdown," and can occur as a result of two different 
-hanisms 
The first of these is the Zoner  effect, the direct tunneling of charge 
riers between bands under large reverse bias. Figure 8.15(c) shows the 
td diagram in this case. The inverse polarization lowers the energies on 
n side with  respect to those on the p side. For a sufficient voltage there 
be occupied states in the valence band on the p side at the same energy 

empty states in the conduction band on the n side. There is therefore 
possibility of tunnelling between the p and n sides. The width d of the 

rgy barrier decreases as the reverse bias increases, and the probability 
tunnelling depends exponentially on the width of the barrier. Thus the 
erse current increases rapidly above the threshold Vz. 
Another mechanism which can cause breakdown is the multiplication of 
number of carriers through an "avalanche." Within the junction there 

(8.60) 

(8.62) 
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Fig. 8.14. Capacitance of a p—n junction as a function of applied voltage. 

Fig. 8.15. (a) Current—voltage characteristics of a Zener diode; (b) band profile for 
Ve  = 0; (c) band profile for Ve  = Vz  «0. (After Dalven, "Introduction to Applied 
Solid State Physics," Plenum Press, 1980.) 

is a very strong electric field. The electrons can be accelerated by this field 
until they acquire very large kinetic energies, at which point the electron gas 
is no longer in thermodynamic equilibrium with the lattice. If an electron 
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has a kinetic energy greater than the band gap it can create an electron-hole 
pair by giving up its energy. These new carriers are themselves accelerated, 
and can create new pairs, hence the name "avalanche" for this process, 
which clearly leads to a rapid increase of the reverse current. 

8.3f Transient Response of a p—n Junction 

An important characteristic of the behavior of a p-n diode in the large signal 
regime is its recovery time. Consider a junction forward biased at voltage 
V1(> 0), in steady state, and assume that at time t = 0 the applied voltage 
is suddenly changed to a new reverse value V2 (< 0). The non-equilibrium 
carrier distributions will reach a new steady state only after a characteristic 
time r,.. 

Due to the rapid transit time, we can assume that the free carrier con-
centrations at the edges of the space region instantaneously take their new 
equilibrium values. We can describe the evolution of the non-equilibrium 
carrier densities from the initial steady state (ni(x),pi(x)) to the final 
steady state (n2 (x), p2 (x)) by introducing the distributions An = n - ni 
and  Lip  = p - pi. These distributions obey the equations 

0An 	a2 An An 
— (p region), 	 (8.63) 

at 	ax 	Tn 

8Ap 	O2  Lip  Lip  = Dh— — (n region), 	 (8.64) 
at 	OX2 	Tp 

with the boundary conditions 

t = 0 -* An =  Lip  = 0, everywhere except at x = 0, 	(8.65) 

An = np [exp(eV2/kT) - exp(eVi /kT)], 	 (8.66) 
X = 0 -■ 

Lip  = pn [exp(eV2/kT) - exp(eVi /kT)]. 	 (8.67) 

The solution of these equations is shown schematically in Fig. 8.16. The 
distribution An (or  Lip),  initially confined near x = 0, diffuses into the p 
(or n) region, while An(x = 0) (or Ap(x = 0)) remains constant. At times 
t << Tn , Tp, An and  Lip  have a spatial extent of the order of (Det) 1 /2  and 
(Dht) 1/2 , respectively. 

This gives a current density 

eDe  An (0)  eDh  Lip  (0) 	1 
AJ — . 	 (8.68) 

VDT-, t 

For t > r,, 'r  recombination is important, bringing An and  Lip to the 
new steady state 

An (x) = An (x = 0) x exp(x/Le), 
Lip (x) =  Lip  (x = 0) x exp(-x/Lh). 	 (8.69) 
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Fig. 8.16. Non-equilibrium densities of electrons (An) and holes (43) as functions of 
position for various times, when the applied voltage changes from V1  > 0 to V2  < O. For 
clarity the curves are not drawn to x = 0 where they take the same value. 

( 172) 

Fig. 8.17. Response of the current J when the applied voltage changes from VI > 0 to 
V2  < O at time t = O. 

For t >> Tn  Tp we have J J(V2 ). The recovery time is the larger of 
the two times Tn ,  ri,. For short times the carriers injected earlier maintain 
the junction as apparently conducting, even though V2 is negative, and a 
significant reverse current flows. This is shown in Fig. 8.17. 

This effect is obviously a hindrance to using a p—n junction as a rectifier, 
since it will not work above a frequency f 1/Tr . High-frequency p—n 
rectifiers have to be made with short recombination times, for example, by 
introducing impurities creating recombination centers in the semiconductor. 



Lppendix 8.1 

roblem: Non-Stationary p—n Junctions and their 
igh-Frequency Applications 

oblems 3 and 4 are independent of 1 and 2. Solution of problem 1 is 
cough for attempting the second part of this study. 
Aim of the problem: p-n junctions are currently used as ac rectifiers. 

nvever, when the ac frequency is raised, new phenomena appear that 
Ike p-n junctions difficult to use as rectifiers, but malse them valuable for 
ier applications. Here we present an introduction to these phenomena. 
In all of these problems we assume that the junction is subject to a 

ne-dependent voltage of the form V = Vp  - V,= Vo + Re(Weiwt), where 
' is infinitesimally small (the "small signal" domain) and we consider the 
ear response of the system, i.e., terms up to the first order in 5V. (The 
a of the diode as a rectifier clearly departs from these assumptions.) As 
the steady case, we must distinguish on the one hand phenomena associ-
xl with charges stored in the space-charge region, and on the other hand 
enomena involving transfer of carriers across the junction. We assume 
at the voltage applied to the device appears fully and instantaneously at 
a edges of the space-charge region. 
We shall adopt the following notation: er  is the relative dielectric con-

Lilt of the semiconductor, Na  and Nd the doping of the p and n regions, 
;pectively, N, and /s.r„ the equivalent densities of states of the conduction 
d valence bands, De, rn, Le, np (and Alt, Dh, Tp, Lh,pn) the mobility, 
fusion coefficient, recombination time, diffusion length, and equilibrium 
ncentration of electrons in the p region (and of holes in the n region), dp 
d 4 the respective widths of the space-charge regions on the p and n 
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First Part: Abrupt p-n Junction 

The energy level scheme of an abrupt planar p—n junction in equilibrium is 
given in Fig. 8.5. The plane of the junction is taken as  z  = 0 and we call 
4)(> 0) the internal potential of the equilibrium junction. 

1. Using the standard approximation of the space charge leading to 
bending of the bands in parabolic arcs, give an expression for the charge Q 
per unit area stored as fixed charges in the band-bending regions on either 
side of the junction plane as a function of V and the dopings Na , Nd. 

2. Deduce from the foregoing an expression for the current density 6.J (t)  
associated with the variation of Q over time, and show how for small signals 
this effect gives the junction the behavior of a capacitor whose capacitance 
depends on Vo  (a "varactor"). Give the values of the "differential capaci-
tance" C (defined in Sect. 8.3) per unit area and of the associated complex 
impedance Z1 . We recall that the complex impedance per unit area is the 
ratio Z = AVIAJ, where 2cV and AJ are 6V and bJ expressed in complex 
notation. 

3. First neglecting 6J1 , determine the current density J =  Jo +  8J2  (t)  
corresponding to the passage of mobile carriers across the junction. One 
makes the usual (Shockley) approximations, which imply that the electrons 
and holes are each separately in thermal equilibrium in the space-charge 
region (Eq. (8.35)) and neglects recombination in this region. Write down 
the equations governing the evolution of the minority carrier densities (elec-
trons in the p region and holes in the n region) in neutral regions, and the 
boundary conditions. Using the fact that bV is infinitesimal, write these 
equations and boundary conditions to zeroth and first orders in  6V.  

4. Solve these equations and find expressions for J0 and 6.12. Deduce 
as a function of Vo the contribution Z2 to the complex impedance per 
unit junction area associated with the transfer of mobile carriers. Explain 
physically the co dependence of this impedance. 

5. Combining the results of 2 and 4, give an expression for the impedance 
per unit area of the junction. In a real diode the impedance does not tend 
to zero for infinite co. Why? 

6. We have so far taken 6V as "infinitesimal." Up to what order of 
magnitude of EVL (in volts) is this an acceptable approximation? 

Second Part: Extension to Large Signal Regime: 
The p-i-n Diode 

For high frequencies the allowable range of 6V for a linear response can be 
extended beyond 6VL, because of an effect related to the width of the space 
charge. This effect is particularly important in the pin diode studied here. 
The pin (p—i—n) diode, generally made of silicon, is derived from the p—n 
junction by adding an undoped silicon zone (i = "intrinsic") of width ,A 

100 ttm between the p and n regions (Fig. 8.18). 



p = 	 n =  Nd 

0 
. 8.18. Schematic view of a pin diode. 

The three following questions deal with the energy level scheme of the 
diode in equilibrium. Lacking an analytic solution of the band bending 

an i region, we attempt to understand it intuitively in the next two 
estions. 
7. A simple approximation to a p-i junction is a p-n junction with 
<< Na  (a p-n-  junction). Using the results of 1, what can you say 

out the width of the space-charge zone in the n-  region compared with 
width of the corresponding zone in the p region? In which spatial region 

es most of the variation of the electrostatic potential occur? 
8. Consider next the behavior of the space charge zone in an intrinsic 

niconductor. Write down in one dimension the Poisson equation and the 
'lotion expressing the charge density as a function of the electrostatic po- 

and deduce the differential equation satisfied by the potential. This 
uation has no analytic solution. Nonetheless, one can estimate the order 
magnitude of the characteristic distance over which the bands curve. To 
S end, rewrite the equation in an approximate form in the limit of very 
all potential variation and give a solution in terms of a characteristic 
tance A. Express the characteristic distance A (the "screening length") 
a function of the intrinsic equilibrium carrier density 2ni. Calculate A 

•  silicon at room temperature (Er  = 11.7; ai = 1.4 x 10 16  m-3 ). 
9. For typical concentrations Na , Nd (see the main text), what is the 

ler of magnitude of the width of the space-charge regions for the n and 
parts of the junction? Assuming that the results of 8 remain valid for 
> kT/e, give the form of the energy level scheme for an equilibrium pin 
)de.  

10. When the diode is reverse biased (-V0 >> kT/e), the i region is al-
)st completely depleted of carriers. Deduce a very simple approximation 
the form of the electric field in the three regions p,  j, and n. The differ-

tial capacitance of the diode then reduces to that of a plane capacitor. 
ve without calculation the expression for this capacitance per unit area. 

11. Consider a forward biased diode (Vo >> kT I e), and assume for 
e moment dV = 0. Because of the bias of the p-i and i-ii junctions, a 
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significant number of carriers is injected into the i region: holes from the p 
region and electrons from the n region. In which sense does the screening 
length A (found in 8) vary? Deduce that the i region is neutral except for 
two layers of width A, and that the electric field is either uniform or zero. 
We wish to show now that it is zero. For this we assume as in the main text 
that the electrons and holes are each separately in equilibrium in the space-
charge regions and in the intrinsic region, and also that the recombination 
time is infinite. Applying Eq. (8.35) to the electrons and its equivalent to 
the holes, show that the potential difference between x = 0+  and x = 
is zero. 

Sketch the shape of the energy bands as a function of x. 
12. Assuming complete symmetry between electrons and holes (Nc = 

N,  Na  = Nd), calculate the carrier density in the various regions. Show 
that the current is still given by the expression found for Jo in 4 (Shockley's 
law). 

13. The response of a pin diode to an ac excitation bV is essentially 
dominated by the i region. (You may assume this without proof.) This 
region is electrically equivalent to a resistance Ri in series with a capacitance 
C. We calculate Ci in this question and  R.  in the next one. 

If the diode is biased forward with a voltage 170, the i region can store 
free carriers, electrons, or holes, which flow to the n side for electrons (and 
to the p side for holes) when the voltage 170  is reduced to zero. We thus have 
a rather peculiar capacitor, which stores a hole charge Qi and an electron 
charge —Q, in the same region of space. Calculate the value of Q, per unit 
area, and the differential capacitance Ci  = dQ,IdVo. Compare Ci with the 
capacitance found in 10 for a reverse bias. 

14. For forward bias the i region does not behave simply as a capacitance 
Ci but also as a resistance R.i  whose value is determined by the stored charge 
density. Give the value of Ri  per unit surface as a function of Vo. Above 
what frequency co is the impedance of a pin diode dominated by 11, rather 
than by the impedance of Ci ? Show that the corresponding time can be 
regarded as a diffusion time for the i region. 

Practical Importance of the p-i-n Diode 

For a sufficiently high forward bias the impedance of the diode is small. 
This is therefore a short circuit controllable by the applied voltage Vo. The 
pin diode is thus an electronic switch controlled by the voltage. On the 
other hand if we apply a large ac voltage, since the impedance varies very 
rapidly with the voltage we have a non-linear device suitable for harmonic 
generation. 



• In the presence of an applied voltage V, the potential difference be-
E!11 the n and p sides becomes 0 — V. The charge density is —eNa  on 
p side and +eNd on the n side. The respective widths dp and da  of 
w regions obey (Nad;2, + Ndd2n )e/2ereo = — V (from continuity of the 
antis» and Nadi, = Nddn  (field continuity). We deduce 

[ 2 er  ea (4) —  V) Na Nd  1 1/2  
N.+ Nd j 

charge stored in the junction is Qp  = —eNadp  on the p side, and the 
osite on the n side, with 

IQ' = Qn = —Qp = [2 e rfo (4) — V) Na Nd/(Na + NO1 112  

6.11  (t) 

ch is 

Re (iCco 

s gives 

c  

)ciated 
3. For 

On 
— 
Ot 

2. Counting the current as 

d 
= Tit Qp  = Re (ito 6V 

= 	(ia, 6V  

of the form 

6V  e t) = C dVIdt. 

a differential capacitance 

r 	e 	eo 	Nd 1 1/2  

positive in the 

dQ p etwt) 

direction p 	n 

1 v=vo ' 

e Er  E0 	Na  Nd 
(8.7 3) 

we have 

(8.72) 

1 / 2 

(8.74) 

is 

(8.75) 

' dV 

et)  x [ 2(  .
0  V0) 	+ Nd 

per unit surface: 

Z1 = 
equation for the carriers 

with a complex impedance 
the p region the transport 

02n 	n — np  
e  Ox 2 	Tn 

—oo n np  
The boundary conditions are 	 (8.76) x 0_ n np  exp(eV/kT). 

th V = Vo + Re (6Veiwt), and setting n = no + Re(bneiwt) we have to 
3 order in 6V: 

r, 02no 	— 71/4 
0 = 

 Tm 	
(8.77) 

0X2   

x —+ —oc  no np  
The boundary conditions  are 	 eVo 	(8.78) 

x 0_ no —■ np  exp 	. 

dp Na dn Nd = (8.70) 

(8.71) 



To first order in 6V: 

icobn = De
02bn  On 
ax2  
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(8.79) 

with boundary conditions 
x -oo bno  

-■ 0_  Sn  — 
kT

e6V
n

P 
exn 

kT 
eVo 

(8.80) 

Similarly, setting p = po  +Re(6pe ) in the n region, we have, to zero order 
in bV: 

02P0 PO Pn 
0x2  

with boundary conditions 

and to first order in bV: 

026p  bp  
Dh— — 

8X2  Tp 

(8.81) 

PO Pn 
eVo 	(8.82) 

P°  pn  e"P  

(8.83) 

with boundary conditions 
+00 

x 0+  

Op 
ebV 	eVo 	(8.84) 

SP  kT Pn exP  
4. The solutions of the differential equations written down in 3 are: 

to zero order in 6V: 

p side: no (x) = np  11 + [exp (e,4) 	exp (Txe ) , 	(8.85) 

n side: po (x) = pn  {1 + [exP ( e/4/2"-?,) - exp 	 (8.86) 

with L e  = N/De  -rn  and Lh = .V.Dh Tp  

to first order in bV: 
ebV 

p side: Sn  (x) = npi-cy- exp(eVo/kT)exp(x 1-1V---it—corn1 Le), (8.87) 

edit 
n side: 

Op  (s)  = 
pn_f., exp(eVo/kT)exp(-x V1 + iwrp/Lh). (8.88) 

This gives the following currents at x = 0: 

, &no r h  , OPo 
Ox)lx=o 

Jo = e (1.4 — - 1./ — ax 
= _  "13 np 

-T- 
 , Ph P-\  rexp  ( 1_._16 ) - 1] , 	 (8.89) 

L, 	L 	J I —h „ kT 
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06n 	06p) 
6J2 -+- e (ife 	- 

	

Ox 	ex ) s=o 
e26V 	eVo 
kT exP  kT x  

De  np  -V1+ wira  Dh pn V1 + ice7-p  
Re 	 . 	(8.90) 

L e 	 Lh 

The complex impedance Z2 is the ratio of 6V to 6J2, both taken as 
complex: 

= — =  
6J2 	e2 	kT 
617.  kT p( Vo )(Denp-t/1  iteTn  DhPn 	iWTp)  

L e 	 Lh 

	
-1 

(8.91) 

If cv << 1/7n , 1/7-p , the junction has the time to reach a steady state 
over a time of order half a period; Z2 is thus real and close to dVo/Vo. 

If w >> 1/7-n , 1/7-j„ a steady state is never reached: diffusion only affects 
a thickness of order (D/u4 1 /2  (the distance over which carriers diffuse in a 
time of order 1/w), giving the dependence of 6J2 on co 112 . 

Remark an impedance with (iw) -1/2  dependence is typical of diffusion 
processes. Here it simultaneously describes the resistance and capacitance 
associated with the injected charge. 

5. bjtottd = 6.11 + 6.12. The impedances  Zi ,  Z2 are thus combined in 
parallel: 

Z 
 .1-  1 + i 1' 

L Zi Z2 

j. r  e Er  Eo Na  Nd , 1/2 
 

[AO — Vo) No + Ndj 
 	-1 

	

eVo (De  np  V1+ icora  Dh Pn 	iwTp  e2  
ex e1' 

kT 
 

	

 kT 
	

L e 	 Lh 

(8.92) 

In practice the impedance of a real diode does not tend to zero for infinite 
u.) as the resistance Rs of the semiconductor bulk is in series with Z: 

	

Ztotal = Z + Rs• 
	 (8.93) 

6. In the region in which Z is dominated by the capacitance of the space-
charge region (that is, typically for eVolkT < 0 for reverse bias), the linear 
approximation is acceptable for 6V << - Vo  1 V, typically. For a for-
ward bias of the junction, Z2 becomes dominant. The linear approximation 
means to replace the factor exp(e6V/IcT) of the boundary conditions (8.76) 
by 1+  (e6V/IcT) in the boundary conditions (8.80). This is acceptable only 
for 6V << kT le 25 mV at room temperature. 
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7. From 1 we have dn icip = Na lNd >> 1, and the space-charge region is 
much larger on the weakly doped side (n — ). The variations of electrostatic 
potential similarly compare as 

(e/2ereo)  Nd  	= 	>> 1. 	 (8.94) 
(e/2ereo ) Na  a?, 	di, 

Most of the potential variation occurs on the less-doped side (n — ). 
8. The Poisson equation is 

d2 V(x)  
cls2  = Er E0 • 

In the presence of a potential difference V with respect to the intrinsic 
region, the densities of electrons and holes are given by 

n (x) =  n  exp[eV(x)1k7], 	 (8.96) 

p (x) = n, exp[—eV(x)Ik7] 	 (8.97) 

Hence 

p (x)= e(p — n) = —2 e  n  sh[eV(x)IkT]. 	 (8.98) 

The differential equation satisfied by the electrostatic potential is thus 

d2V(x) 
 = 

2 e ni
sh[eV(x)11a]. 	 (8.99) dx2 

Er E0 

If eV(x) << kT we get the approximate equation 

d2 V 	2 n• e2  
= 	2 	V 	 (8.100) 

dx 2 	r fo  kT 

whose general solution is 

V = exp(x/A) + exp( —x/A) 	 (8.101) 

with 

= (er  eo kTI2n, e 2 ) 1 /2 . 	 (8.102) 

The characteristic length À is the screening or Debye length. This length 
characterizes the screening effect, i.e., the rapid spatial attenuation of the 
effect of an applied electrostatic perturbation on a conductor. This length 
is shorter the higher the free carrier density (whatever the sign of their 
charge). Here the total free carrier density is 2nd . Equation (8.102) gives 

•--• 24  Jim  for silicon at room temperature. This length is of the same order 
as Z.  

9. For typical dopings Na , Nd the width of the space-charge regions on 
the n and p sides (see the text) is about 0.1 — 1 pm, and thus much smaller 

(8.95) 
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1.19. Band profile of an equilibrium pin diode. 

	low- X 

A and A. Similarly as in  7,  we deduce that the largest part Vi of the 
Ltion of the potential /5 occurs in the intrinsic region (Fig. 8.19). 
O. Under reverse bias, since the i region is almost completely depleted of 
ers, we have p 0 there, giving d2 V/dx 2  = 0 from Poisson's equation. 
electric field is constant in the i region. The only space charges are 
'arrow zones (cf. 7) at the edges of the n and p regions. The potential 
Ltion is negligible in these zones, and we can approximate the electric 
as 

= 0 (n and p regions), 	 (8.103) 

—170  
(2, region). 	 (8.104) 

A 

diode's capacitance is identical to that of a plane capacitor whose plates 
he p-i and i-n boundaries, hence 

€1:1  = A  
LI 

(8.105) 

1. If there are many injected carriers, the carrier concentration clearly 
eds 2ni (strong injection regime), and from 8 the screening length be-
is much smaller than A. The space charge in the i region concentrates 
Le edges, and most of the i region becomes neutral (n = p). 
ince the i region is neutral, E is constant. We assume that E is non-zero, 
show that this is contrary to the condition n = p. 
hider the hypothesis that A is small and E is constant, the band profile 
ld have the form shown in Fig. 8.20 for forward bias Vo. 
ri the approximation where the electrons and holes are separately in 
ibrium on either side of the space charge around x = 0, we have 
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Fig. 8.20. Band profile in a forward biased pin diode, assuming non-zero electric field in 
the i region. 

13  (A) = N. exp (--e V1  
) kT • 

Similarly 

n (A – A) = Nd exp (---ei:4-2,) . 

Further we also have equilibrium across the i region, so that 

[ e (V2 + V3 )1 
n Pt) = Nd exp 	

kT  j'  

(8.106) 

(8.107) 

(8.108) 

p (A – A) = N. exp [ e (V1  ± V3) 1 	 (8.109) 

	

kT 	j • 

Charge neutrality implies the equality of Eqs. (8.106) and (8.108), and 
of Eqs. (8.107) and (8.109). We deduce 

eVi. 	e(V2  + V3)  + log—Nd  
- — . 

kT 	kT 	N.' 	
(8.110) 

eV2 	e(Vi + V3) 	N. 
kT 	

+ logrrd . 	 (8.111) 

Adding Eqs. (8.111) and (8.110) gives V3 = 0, showing that the bands are 
flat in the i region. The electron and hole concentrations are constant and 
equal in this region, and the electric field vanishes (Fig. 8.21). 

12. Setting V3 = 0 and equating (8.106) and (8.108) we have 

Na  exp (--
eVi  
kT) = 

Nd exp (--eV2 ) . 
kT 

(8.112) 
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8.21. Real band profile in a forward biased pin diode. 

;her 

.(171 + V2) = e(45—  Vo). (8.113) 

This fixes V1 and V2 . If we assume for simplicity that Na  = Nd, then 
= V2 == (0 —  V — 0)/2. In this case the electron and hole concentrations 
he i region are equal, and 

= p = Nd exp[— e(4' — V0)/2  lab 	 (8.114) 

= ni  exp(eV0/2 kT). 	 (8.115) 

Charge neutrality holds again, but with charge densities higher than in 
ilibrium: the product np differs from q. 
The minority carriers in the n and p regions are governed by the same 
ations and the same boundary conditions as in 3. Then we 'have, as in 

p region: n = np[l + (exp(eVo/kT) — 1) exp(x/Le)] 

and p Na  
n region: p = pn[l + (exp(eVo I kT) — 1) exp( — x/Lh)] 

and n Nd. 

(8.116) 

(8.117) 

As there is no recombination in the i region, we can find the current as 
and in the main text: 

	

De  n 	ph P7b  

e 	L: 	 Lh 	[exp(eVo/kT) — 1] (Shockley's law). (8.118) 

13. The total hole charge stored per unit area in the i region is 

Qi  e  n 1  exp(eV0/2 kT). 	 (8.119) 



dQi 
Ci 

dV 
e2 ni 
	exp(e170/2kT). 

2 kT v.ve  
(8.120) 
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The total electron charge stored in this region is –Qi . The variation of 

Q - 
	V gives a capacitance per unit area: 

This capacitance can be much larger than that found in 10. The tran-
sition between the two regimes occurs at 

2kT 2kT Cr E0 4kT 2A 
Vo  = —e  Ln  e2 ni 	= -e  Ln 	 (8.121) 

ii2

which is of the order of kT/e. In practice the capacitance of the junction 
will be dominated by this effect once 170 > 0. 

The existence of a capacitance when the i region is essentially neutral 
everywhere (n = p) may seem surprising at first sight. In contrast to a 
normal capacitor, electrons and holes are stored in the same spatial region, 
but with different chemical potentials (the quasi-Fermi levels EFel EFh) • 

They do not react because recombination is considered to be infinitely slow. 
14. The series resistance of the i region per unit area is 

Ri  = 	 (8.122) 
ni exp(e170/2kT) e (tie + 

This resistance dominates the impedance of the diode if Ri  >> 1/Cs, i.e., 
for frequencies such that 

2kT  (lie ph)  2 (De + Dh) 
w >> 1/RiC,, = 	2 	 • 	 (8.123) e0, 	 ,62  

The associated response time 42 /2(De  + Dh ) represents the mean time an 
electron and a hole initially placed at opposite ends of the i region take to 
meet if they travel by diffusion. It is also the characteristic time taken by 
the i region to reach a steady state by diffusion. By inTining the inverse 
process (dissociation of an electron-hole pair into an n-region electron and 
a p-region hole) we can also regard this time as an effective lifetime for the 
i region. 



oplications of the p—n 
nction and Asymmetrical 
vices 

-n junction has many applications which we sketch below. There 
course other asymmetrical devices such as the metal-semiconductor 
t. We encounter this latter structure as soon as we try to use the 
cal properties of semiconductors in circuits, and we must thus under-
its properties. The metal-semiconductor contact properties are also 
basis of the Schottky diode operation. 

Lny of the properties of these devices depend directly on the surface 
ties of  the semiconductors, which we shall summarize. These proper-
5o allow the use of semiconductors as light detectors. Finally we shall 
)e junctions between chemically distinct semiconductors, or "hetero-
ms." 

kpplication of p-n Junctions 

are many applications of the p-n junction. The most obvious is their 
ac rectifiers, which produce the dc current required for motors, elec-
s, and all types of electronic devices. These applications make direct 
Shocldey's law 

= J,[exp 	- 11 . 
kT 

applications involve the physics we discussed in Chap. 8. 
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9.1a Photovoltaic Cells and Solar Cells 4  
Consider an unbiased p-n junction. The junction is in equilibrium and there 
is an energy barrier eçb between the n side and the p side. The electrical 
field of the barrier is E. If we illuminate the semiconductor with light of 
sufficient photon energy ruv we create electron-hole pairs. Excess minority 
carriers are then accelerated by the internal field E, which separates them, 
repelling the electrons to the n region and the holes to the p region. This 
is shown in Fig. 9.1(a). The separated carriers create an electric field E.' 
which opposes the field E. The resultant field is then 6 — E', meaning that 
the potential drop between the p and n sides is reduced from (/) to —1/1 
as shown in Fig. 9.1(b). 

The effect is the same as a forward bias 171 applied to the junction, the 
net result being the creation of a potential difference Vf  at the extremities 
of the junction. The appearance of this potential difference at the edges of 
an illuminated junction is called the "photovoltaic effect." The maximum 
value of Vf is 4), which is in turn less than Eg  I e (Eq. (8.17)). 

distance 	
II 

(a) 	 - - - external 1 
circuit 

(b) 

Fig. 9.1. Band profile of an illuminated p-n junction. (a) The electric field E of the 
junction separates the carriers created by the illumination. (b) The photocreated carriers 
induce an electric field 6', and thus a voltage Vf usable in an external circuit. 

When the junction is illuminated we may then say that a photocurrent 
—/f appears, in the opposite sense from the direct current. Connecting an 
external circuit to the illuminated diode allows us to measure this current. 
If the I-V characteristic of the junction is of the form (9.1), and if P is the 
photon flux and n the quantum efficiency, i.e., the  number of pairs collected 
for one photon, then the photocurrent If is 

= 277 e P, 	 (9.2) 

the total current under illumination is 
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/ = /, [exp 	177,f — 1] — if 	 (9.3) 

and the voltage V/ is given by 

vf  kT log  [I + I.+ If] . 	 (9.4) 

The current—voltage characteristic of the illuminated junction is shown 
in Fig. 9.2. The junction behaves as a generator in the region 171 > 0, I < O. 

Fig. 9.2. Current-voltage characteristic of a photovoltaic cell. The full curve is that 
obtained under illumination, and the dashed curve without illumination. The distance 
between the two curves increases with If'  and thus with illumination. 

A junction diode can be used as a photoelectric cell and as a light 
detector, but its most important application is the direct conversion of 
light energy into electrical energy in a solar cell. The power of such a cell, 
i.e., the product Vf x I, is maximal when the area of the rectangle OM is 
maximal. 

The global yield of a solar cell depends on the fraction of radiation 
absorbed by the semiconductor and on the quantum efficiency. The solar 
spectrum has its maximum intensity at = 0.5 pm, and the spectral energy 
is still about half of this maximum for  À  = 1 pm. This means that a diode 
with band gap Eg  of about 2 eV is efficient in transforming the high-energy 
part of the solar spectrum but does not collect the infrared energy. By 
contrast a semiconductor with a band gap of 0.5 eV absorbs most of the 
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photons arriving from the sun but the quantum efficiency decreases: solar 
photons whose energy greatly exceeds Eg  create very energetic electron-
hole pairs which can lose their energy by exciting crystal vibrations, i.e., 
by heating the crystal, and this energy is lost. Crystalline silicon is a good 
compromise; the theoretical quantum efficiency is 20% and cells have been 
constructed with efficiencies,of 15%. Of course if the recombination time is 
too short the current if is smaller, the pairs recombining on the spot before 
the junction field separates them. 

The power supplied by a solar cell is proportional to its surface: the flux 
of solar energy at the Earth is about 1 kW/m2 , so a 1 cm2  cell will yield 
about 10 mW. It is expensive to produce large areas of crystalline silicon. 
This is why solar cells in everyday use (e.g., in calculators) use amorphous 
silicon (see Sect. 3.3), which is cheaper to produce. One can make junctions 
out of it, and the efficiency of such solar cells can reach 10%. These cells 
are currently used in pocket calculators. 

9.1b Electroluminescent Diodes and Lasers X 

Electroluminescent diodes  are devices that directly convert electrical en-
ergy into luminous energy via radiative recombination. This is the inverse 
transformation to that occurring in a photovoltaic cell. We have seen in 

- Chap. 6 that in the presence of excess electron-hole pairs recombinations 
will occur, and some of these will be radiative. In a forward biased junc-
tion one can cause injection of excess carriers and thus light emission. The 
emission will be intense if the radiative efficiency is relatively large, i.e., if 
the efficiency of the non-radiative processes is not too large. This requires 
pure semiconductors, but also, from the formula of Appendix 6.1, semicon-
ductors whose absorption coefficient is large at energies near the band gap. 
Semiconductors with direct gaps (see Sect. 2.6a), i.e., where the minimum 
of the conduction band and the maximum of the valence band are at the 
same point of the Brillouin zone, have large radiative efficiencies. This is the 
case for GaAs which emits in the very near infrared. The main materials 
now used for electroluminescent diodes axe, besides GaAs, GaP and alloys 
GaAsi _rPx  which have band gaps between 1.4 and 2.2 eV. We thus get 
emissions from the near infrared to the green according to the amount of 
arsenic in the alloy. 

To use electroluminescent diodes for electronic displays, we seek emis-
sion in a range where the human eye is most sensitive, i.e., in the green 
region of the spectrum. 

These diodes are also used in optical telecommunications for converting 
an electrical signal into an optical one. The signal is then conveyed by op-
tical fibers and transformed into an electrical signal by a photovoltaic cell. 
One wants to use the wavelength where the attenuation in the fiber is a min-
imum, in general 1.5 pm. For this one uses the compound Ga0.47In0. 53As. 
The quantum efficiency in the best cases lies between 10-3  and 10-2 . All 
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of this shows the importance of the study of recombination processes for 
practical optimization of such devices. 

The_radiativezecombinations referred to above are spontaneous recom-
binations, i.e., ingolierent_ However we have seen in Appendix 6.1 that they 
are fairly monochromatic, the relative emission width being of order kT/Eg . 

Besides these processes there exists a completely different emission pro-
cess, stimulated emission which occurs when a photon of energy Eg  meets an 
electron-hole pair of equal energy. There is then emission of a second photon 
in phase with the first one. If the number of pairs is large enough this pro-
cess can be cumulative and lead to the emission of coherent monochromatic 
radiation, i.e., to a laser (Light Amplification by Stimulated Emission of Ra-
diation). A threshold current must be reached to start the phenomenon in 
a diode. Semiconducting lasers are small and can work from a very simple 
energy source, an ordinary battery. Quantum well lasers made of GaAs be-
tween barriers of  Al  z  Gai_s  As, or of Ga0.47 In0.53 As between InP barriers 
(cf. Appendix 3.2; Sect. 5.4 and Sect. 9.6) have particularly low threshold 
currents and are used in fiber optic telecommunications. 

9.2 The Metal-Semiconductor Contact in 
Equilibrium \ 

An understanding of the properties of a junction between a metal and a 
semiconductor, also named "Schottky diode," becomes necessary as soon 
as we weld metallic contacts on a semiconductor in order to use it in an 
electrical circuit. Will the contact be a rectifying one or an ohmic one, i.e., 
behaving as a pure resistance? 

First we study the equilibrium junction and then the effect of applying 
a voltage. We must use the same energy scale for the quantum states of the. 
metal and the semicondu-ctor- We choose As energy reference the energy of 
a static electron at infinity (this is the energy zero in the hydrogen atom). 
We call this the "vacuum level7 — 

Let us begin by some definitions. In a metal we call the work function 
the energy required to remove an electron that is close tsa the surface and  

at the metal Fermi energy EF,„ and leave it in vacuum with zero velocity 
(see Fig. 9.3). In truth the energy of an electron close to the surface is not 
the same as that of a static electron at infinity as there is an interaction 
between the moving electrons of the metal and this electron. This "image 
charge effect" is small and we shall neglect it in the following. 

An analogous definition applies to the semiconductor, and allows us to 
define its _work function  08 .  However in a non-degenerate semiconductor 
the Fermi level EF, is in the band gap, and there are therefore,no electrons 
at this level. Also the position of EFi  relative to the maximum E, of the 
valence band and the minimum  E of the conduction band depends on the 
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distance 
Fig. 9.3. Band profile of separated metal (left) and semiconductor (right). We have 
assumed that the work function Om  of the metal exceeds that of the semiconductor (0 8 ). 
The electron states occupied at T = 0 K are hatched. 

doping. The work function (/)8  is therefore not an intrinsic quantity and 
we prefer another quantity, which is intrinsic, the affinity x which is the 
difference between Ec  and the vacuum level E. We have the following 
relaaronsT- 

Çbm  = Evac — E Fm , 	 (9.5) 

= Evac – EF87 	 (9.6) 

x = Evac  – Ec  = (/), – (Ec – EF8 ). 	 (9.7) 

In the usual metals and semiconductors 0„„ 08 , and x are a few eV. To 
form a metal—semiconductor junction we imagine bringing the two—solids 
closer, i.e., we reduce the distance clof Fig. 9,3, We assume in the following 
that the semiconductor is of type n, and in Sect. 9.2a we take Om  > Os  as 
in Fig. 9.3. The other case is treated in Sect. 9.2b. 

9.2a Om  > q5 8  

As d becomes very small the electrons from the semiconductor can pass 
into the metal by tunnelling until the Fermi levels line up (Fig. 9.4). There 
is then in the semiconductor a space-charge region of width W, empty of 
electrons, where there are only the fixed positive charges of the uncompen-
sated donors. As the number of available electron states in the metal is very 
large, the screening is very strong and only the metal surface is affected. 
The electron current forms a negative surface charge layer, which, with the 
positive space charge of the semiconductor, creates an electric field confined 
almost entirely within the space-charge region. 
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EF 

E, 

s — X 

Ev  

distance 
1,041,■./ 

Fig. 9.4. Band profile for a metal and a semiconductor almost in contact. 

distance 
Fig. 9.5. Metal—n-type semiconductor junction in contact (Om  > 

An electric potential and thus a bending of the bands results. In the 
semiconductor the energy of an electron at the bottom of the conduction 
band is greater at the surface, where this electron is an amount x below 
Evac , than in the interior, where it is (/),, — x above the Fermi level, and 
thus at 0,n  — (08  — x) = x + (07n  — 08 ) below E. The energy of the band 
bending is thus (4,,n  — Os ). When the contact is made the band profile has 
the form shown in Fig. 9.5. 
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As the figure shows, the barrier Om  - x for crossing from the metal to 
the semiconductor is larger than the one separating the semiconductor from 
the metal, which is 0, - 08 •  The width of the band bending is found by 
solving the Poisson equation: in the space-charge region the charge density 
is eNd, where Nd is the donor concentration. 

From 

d 2  V 	e Nd 
= 	 (9.8) 

dx 2 	f0Er 

and the boundary conditions for x = W: 

dV 
= u, 

dx 
-e[V(W)- V(0)1= 

we deduce that the bending is parabolic and that 

e2 Ndw2 
= ÇPm — Wa  

Or 

W = [2 Co er(471 - 08)/e 2 Na] 1/2 . 	 (9.12) 

This expression is very similar to that for the half-width of a p-n junc-
tion (Eq. (8.27)). The accumulated charge per unit area in this region is 

Q = eW Nd = [2foerNd(4'm - 08)1 1/2 - 
	 (9.13) 

9.2b 	< 08 	X 
We now turn to the case where the metal work function is less than that 
of the semiconductor. When the two solids are far apart the energy level 
diagram is that of Fig. 9.6, which we should compare with Fig. 9.3. We 
imagine the two solids brought close together. 

When the distance d becomes very small, electrons pass from the metal 
to the semiconductor: this creates a positive charge layer at the metal sur-
face and a negative one near the semiconductor surface, until there is only 
a single common Fermi level. At the surface the conduction band remains 
a distance x from E„, as shown in Fig. 9.7. 

Because of the existence of these charges there is an electric field and 
hence a bending of the bands. The transferred electrons occupy there0on  
where E is below the Fermi level, and constitute an accumulation layer _ 
whose thickness W' is much less than the width W of the band-bending _ 
region. Because •:-Firnie arge  density of -states in the conduction band, a 
small W' is enough to accommodate the electrons transferred from the 
metal. Once contact is made, the energy profile becomes as in Fig. 9.8. 

2 E0 Er 

(9. 9) 

(9.10) 

(9.11) 
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distance 
Fig. 9.6. Band profiles of separated metal (left) and an n-type semiconductor (right), in 
the case Om  < 

EF 	
— 

Eu  

distance 
Fig. 9.7. Metal—n-type semiconductor with contact almost made (Om  

9.3 Non-Equilibrium Metal—Semiconductor Diode 

9.3am>4s  X 

In this case there is a very resistive space-charge region, and the  applied 
external_potential V, appears exclusively across this region., in the  rest of 
the system the bands remain horizontal on the energy diagram,  and  are 
simply shifted. The structure of Fig. 9.5 becomes that of Fig. 9.9(a) for 
forward bias (potential more negative on the semiconductor side, Ve  > 0) 
and that of Fig. 9.9(b) for reverse bias (V, < 0). 
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E, 

EF 

E„ 

W' 

distance 
Fig. 9.8. Metal—n-type semiconductor junction in contact (Om G 4).9)• 

X - 

V, > 0 
	

Ve  < 0 
forward bias 	 reverse bias 

	

(a) 
	

(b) 
Fig. 9.9. Polarized metal—semiconductor junction (O m  > Oa ): (a) Ve  > 0, semiconductor 
negatively biased with respect to the metal, forward sense; (b) Ve  <O,  reverse bias. 

In the absence of Ve  the current vanishes, so the current J1  from the 
metal to the semiconductor exactly balances the current J2 from the semi-
conductor to the metal. Applying V, changes the barrier,between the semi-
conductor and the metal by an amount -eV,,;  the corresponding current 
becomes J.  However the current J1  stays the same, since the barrier in the 
metal-se- Mic-onductor direction is unchanged. As the current 4 corresponds 
to an activation process, the number of electrons able to cross the barrier 
is given by a Boltzmann factor, such that 

	

= J1 exp 
e 
kT • 
	 (9.14) 
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The resulting current J = Ji  + 4 is 

J = [exp i—c--e  V; —1 
	

(9.15) 

The current—voltage characteristic J(Ve ) is analogous to that of a p—n 
junction and gives rise to rectifying behavior. The saturation current is 
to first approximation the thermionic emission current of the metal below 
the Om  — x barrier. 

9.3b çbm  < Os 

The NAdth_of_the space-charge region is small, so this region has very low 
resistance. Thus the voltage V, appears over the bulk semiconductor and 
produces a "sloping" band profile. The structure of Fig. 9.8 becomes Fig. 
9.10(a) or that of Fig. 9.10(b) according to the sign of V,. 

(a) forward bias 
	

(b) reverse bias 

Fig. 9.10. Metal-semiconductor junction (Om  < 08 ): (a) forward biased, Ve  > 0; (b) 
reverse biased, Ve  <0.  A way of remembering the shape of the figure is to imagine that 
the band structure is made of rubber bars attached to the metal side and one seeks to 
bend them up or down to the right. 

For forward bias, therais no barrier to  MSS from the semiconductor  _to' 
the meta_lsiiixeear_to_the contact all of the electron states arelull. 

For reverse bias, there is a barrier to cross of order 08 —x, the equilibrium 
distance of the Fermi level from the conduction band. In a semiconductor 
of typical n doping, this barrier is no more than one hundred melr;  it is 
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thus easily crossed by the bias electrons. In consequence the current passes 
in a similar way for both: one observes an approximately ohmic behavior 

_..inon-rectifying). 
In summary, a metal-n-type semiconductor junction behaves very dif-

ferently, depending on whether the work function 0, of the metal is less 
than or greater than that of the semiconductor (Os ). If we want to make 
a simple ohmic contact on a given semiconductor we must choose a metal 
whose work function O m  is less than 08 • By contrast if we wish to make a 
diode we take a metal with Om  greater than 08 . 

We can easily show that these conclusions reverse if we consider metal 
contact with a p-type semiconductor. Note that the above discussion ne-
glected the presence of surface states in the semiconductor. We will consider 
their effect in Sect. 9.4. 

We note finally that in contrast to the p-n junction, the currents crossing 
metal-semiconductor junctions are always majority carrier currents. 

9.4 The Semiconductor Surface >( 

A free surface constitutes a rupture of the periodicity of the solid. The 
crystal potential vanishes outside the solid, thus, a priori, we would expect 
to represent it as the dashed curve in Fig. 9.11 near the surface. In reality 
quantum mechanics predicts a non-zero probability of finding the electron 
in the vacuum near the surface. There is then a lack of negative charge, 
thus a positive charge, in the first atomic layers of the solid. We thus have 
a surface dipole, whose effect is to create a potential jump. The shape of 
the potential is therefore that of the full curve in Fig. 9.11(b), the surface 
potential jump being directly related to the work function of the solid. 

---- Moreover the presence at the surface of dangling (unsaturated) bonds or 
atomic rearrangements induces surface electron states. These states can be 
acceptors or donors. In usual semiconductors, e.g., Si or GaAs, the density 
Ns of _these states is very high, of the order of a fraction of a state per 
surface atomic site. For example, at the surface (110) of GaAs where the 
total atom density is 8.8 x 1014  cm-2 , the density Ns of quantum surface 
states is of order 1013  cm-2 . 

Let us consider the  effect Qu the_band profile of the introduction of 
surface states. We start with a semiconductor with no surface states: its 
bands are flat (Fig. 9.12(a)). We then consider the introduction of a few 
surface states, e.g., surface acceptors whose energy level is A below the 
conduction band, in an n-doped semiconductor. Electrons from the bulk 
will occupy these states since their energy is below the Fermi level. 

There will remain an uncompensated charge on the semiconductor, and 
thus a depletion zone of height Ob as in Fig. 9.12(b). Charge  neutrality 
requires these surface charges Qs to be compensated by the total volume _ 	 _ _ 
charge. 

••■•••,. 
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A P  

a) 

   

   

b)  

  

X  

   

solid 

Fig. 9.11. (a) Charge density p and (b) electrostatic energy near a solid-vacuum interface. 

The dashed curves take no account of the probability of finding an electron just outside 

the solid, while the full curves correspond to the real situation. The dashed and solid 

curves differ only within two interatomic distances of the surface. 

(a) (b) (e) 

Fig. 9.12. Band profile at a semiconductor-vacuum interface: (a) semiconductor without 
surface states; (b) low density  Ni  of surface states; (c) high density Ns2 of surface 
states. The Fermi level is then said to be pinned by these states. 
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= (2f0f,Nokb) 112  = —Qs. 	 (9.16) 

For average doping, Nd 1022  In-3  and 44  r 1 eV, the charge accu-
mulated in the space-charge region is of the order of 3 x 1011  electrons per 
cm2 . We obtain a remarkable result: the charge which can be accumulated 
in the volume, for fixed doping, is limited, as Ob is always smaller than 
Eg . Consequently the surface charge Qs is limited, independently of the 
number of surface states N. These surface states are thus only partially 
filled if their number exceeds (€0E,NdA) 1 /2 1e: the Fermi level is thus a few 
kT from the surface quantum levels. This is the situation depicted in Fig. 
9.12(c). We say that the Fermi level is pinned by the surface states. In 
fact the Fermi level of the solid is still determined by the concentrations of 
dopants and not by the surface. As the surface states must be within a few 
kT from the Fermi level, it is the band bending Ob that adjusts its value to 
fulfill this condition. The Fermi level is at a distance ,AE (to within a few 
kT) of the surface conduction band. We have 

LIE  = 	Ec,bulk EF, 	 (9.17) 

where Ec,bulk  denotes the position of the bulk Fermi level. If we make a 
junction between a metal and this semiconductor the height of the barrier 
from the semiconductor side will be Ob, independent of the work function 
of the metal. 

The possible existence of surface states may have a considerable influ-
ence on properties of semiconductor interfaces, junctions. In particular the 
discussion of Sect. 9.3 on the metal-semiconductor diode has to be modified 
to account for their influence. 

9.5 Photoemission from Semiconductors 

In the photoemission process, or photoelectric effect, a photon gives energy 
to a bound electron and releases it from the solid. Let us consider a p-type 
semiconductor. If the electron is in the valence band (Fig. 9.13) the required 
energy is Eg  + x, where x is the affinity defined in Sect. 9.2. For p doping 
the bands bending caused by the pinning of the Fermi level is downwards, 
so that the surface affinity ".1bulk is Xsurf.  = Xvolume (kb. For a clean surface -v 
and xi...face  are of order 5 eV, and only an ultraviolet photon has enough 
energy hvi to liberate electrons. 

We have seen in Sect. 9.4 that the value of the work function or the 
affinity is determined by the size of the surface charge dipole. This dipole 
can be reduced by the surface deposition of a monolayer of cesium, an easily 
ionized alkaline metal. The vacuum level is shifted relative to the semicon-
ductor bands, and we can even reach a situation in which the vacuum level 
E2„„c  is lower than the level Ec  of the bottom of the conduction band in 
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Fig. 9.13. Vacuum-p-type semiconductor interface and the lowering of the affinity. For 
an excitation energy 1w2 near the forbidden band, photoemission does not occur unless 
the affinity has been reduced so that the vacuum level E2va,c is lower than E.  

photon — 

tube 	V2 

Fig. 9.14. Schematic view of a photomultiplier tube. The photoemissive surface P is 
followed by dynodes Di, D2, D3,... held at potentials 0 < Vi < V2 < V3,... which multiply 
the electrons. (From Dalven, "Introduction to Applied Solid State Physics," Plenum 
Press, 1980.) 

the bulk of the solid. The affinity is then X2surface• To remove an electron 
it therefore suffices to excite it with a photon of energy liv2 just exceeding 
Eg , and thus in the visible range. If the electron is excited into the conduc-
tion band close enough to the surface it may be emitted into vacuum: this 
is possible if the electron reaches the surface after its random walk in the 
bulk, before recombination. 

This is the principle of the photocathodes in GaAs photomultipliers. 
These are very sensitive light detectors, whose quantum efficiency can reach 
30%, or 0.3 electrons per photon. After being extracted from the cathode by 
photoemission, the electron passes through several multiplier stages, called 
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dynodes, held at increasing positive potentials: at each stage an electron 
gives rise to several secondary electrons. This is shown in Fig. 9.14. These 
detectors, which can be used in the visible or the ultraviolet range (for any 
photons with energy larger than the band gap of the semiconductor) are 
very sensitive and can count single photons. 

9.6 Heterojunctions X 

In Chap. 8 we studied the p—n junction, made of two semiconductor samples 
of the same chemical composition but different dopings ("homojunction"). 
If we have two semiconductors A and B differing in their chemical com-
position and possibly their doping, but with sufficiently similar crystalline 
lattices that epitaxy, i.e., a continuity of the crystal lattices of A and B, is 
possible, we can form a "heterojunction." 

We take the example of a junction formed from p-type GaAs and n-
type Al. Gai_z  As. Figure 9.15 shows thellancl structure_ when the_ tw_o 
s_Ducf onductors__are apart. 

The material with the larger band gap is Al  z  Gai_x  As. The vacuum 
level, i.e., that of a free electron at rest outside the solid, is the same for the 
two materials, and the affinities are exi and ex2. The difference between 
the two band gaps E92 —E9 1 is divided unequally between the valence bands 
(AE) and the conduction bands (AE c). In non-degenerate semiconductors 
these quantities do not depend on the doping. Once the contact is made the 
Fermi levels are aligned. An internal potential difference eck = EF2 — EF1 
appears here too. Figure 9.16 corresponds to a heteroj  unction  made from 
the materials depicted in Fig. 9.15. 

ex , 

	 ex2 

E. 

	
1 AEc 

	 E, 

GaAs 
	 AlzGal _As 

E, 
	OP- 

distance 

Fig. 9.15. Band profiles of two different semiconductors when far apart from each other: 
on the left GaAs (p type); on the right Al. Gal, As (n type). 
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distance 
Fig. 9.16. Band profile of a heterojunction formed from the materials of Fig. 9.15. The 
dashed curve shows the behavior of electrostatic potential energy. 

We note from Fig. 9.16 the asymmetry between the electrons and holes 
for such a band profile: in the conduction band we have a potential well and 
a barrier, and in the valence band a simple discontinuity, which is increased 
by Z1E, with respect to the homojunction. We can guess that this increase 
of the height of the poteattal barrier will modify the transport of holes 
in the p-n direction, and that moreover the GaAs electrons will tend to — 
accumulate in the (triangular) conduction well. The width of this well is a 
fraction of the width of the space charge W, i.e., a few tens of nanometers, 
depending on the doping. We thus obtain a quasi-two-dimensional electron 
layer. 

Heterostructures are in current use. We noted in Sect. 5.4b that by 
selective doping of superlattices, which are periodic repetitions of hetero-
junctions, one can obtain extremely high electron mobilities, the electrons 
and ionized donors being spatially separated. 

a.) 



10. 

The Principles of Some 
Electronic Devices 

In this last chapter we apply the concepts introduced in this book to ex-
plain the operation of several electronic devices which make use of junctions: 
the junction transistor, the field-effect transistor  (PET),  the junction FET, 
and the MOSFET. Some problems in Appendices 10.1, 10.2, and 10.3 give 
a more quantitative description. We shall describe the principle of integra-
tion and planar technology, and we shall discuss the concepts and hopes of 
band structure engineering, which allows the manufacture of semiconduc-
tors conceived on paper for particular uses. Miniaturization of circuits and 
memories has been the great technological revolution of the last 40 years. 
The physical limitations of this revolution are briefly discussed at the end 
of this Chapter. 

10.1 The Junction Transistor 

A junction transistor is a single crystal containing two junctions (in princi-
ple monocrystalline) of opposite polarities in series. We can thus have p-n-p 
or n-p-n transistors. Here we describe the operation of a p-n-p transistor. 
The results apply without restriction to n-p-n structures if we change the 
directions of the currents and voltages and permute the symbols p and n. 
These transistors are also called bipolar transistors, as their operation relies 
on die existence of two types of carriers. 

In Fig. 10.1 three regions are shown: the p+-doped emitter, the weakly 
n-doped base, and the moderately p-doped collector. 

The base is smaller than the diffusion length in a recombination time. 
A forward voltage is applied to the emitter-base junction, and reverse volt-
age to the base-collector junction. We shall confine ourselves to a semi-
quantitative description of the working of this junction transistor. 

The applied emitter-base voltage is positive and the applied base-
collector voltage is positive and large. Thus: 
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Fig. 10.1. Bias of a p—n—p transistor and sign conventions for the currents. 

Fig. 10.2. Schematic band diagram for a biased p—n-p transistor: E = emitter; B = base; 
C = collector (From Dalven, "Introduction to Applied Solid State Physics," Plenum 
Press, 1980.) 

VB - Vs » VE - VB >O. 
	 (10.1) 

Figure 10.2 shows the band diagram for a transistor biased in this way. 
The detailed equations governing the working of a junction transistor are 
given in Appendix 10.1. Consider a flux of particles within the transistor as 
shown in Fig. 10.3. Since the emitter-base junction is forward biased, there 
is an injection of holes into the base (flux 1 of the figure). The holes diffuse 
(flux 2) without recombining if the base is small. However at the base-
collector junction there is a strong field that sweeps up the holes reaching 
the base-collector space-charge region (flux 3). In fact, a few holes diffusing 
into the base will recombine with electrons, the majority carriers within the 
base (which is weakly n-doped); this is the flux 4 of holes, which do not reach 
the collector. Electrons must therefore be supplied by theexternal circuit 
to replace electrons recombining with the holes. This flux is represented by 
the dashed arrow (flux 5). Also there are electrons injected from the base to 
the emitter in the forward biased emitter-base junction, but this injection 
is small as the base is weakly n-doped. This is flux 6. 

Overall the relation between the emitter-base current and the voltage 
differs little from the characteristic equation for a junction, i.e., 

5re 
/E =  I  {exp (VEkT  VB 	11 . 	 (10.2) 
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(a) 

P+  

0 _.... 

n P 

® -0-- - 1  
■ 4 

(b) 

Fig. 10.3. Schematic view of particle fluxes in a p-n--p transistor: (a) across the leads; 
(b) on the band diagram. The arrows denote the particle currents (thick for electrons 
and dashed holes). We note that the electric currents corresponding to (5) and (6) add, 
respectively, to (4) and (1). (After Dalven, "Introduction to Applied Solid State Physics," 
Plenum Press, 1980.) 

On the other hand, we see that all the fluxes are proportional and that 
lc  is a little smaller than IE. We set 

= 

Since 

IE = 

Ic 
IE 

113• 

+ 

(10.3) 

(10.4) 

(10.5) 
1+3  

The factor  0,is called the current gain of the transistor. This factor is 
typically 100 and shows that the current 1c  is only slightly less than IE. A 
large current gain requires a very thin base, and the diffusion coefficient and 
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recombination time must be large. The effective width of the base depends 
on the technology used in manufacturing the transistor. But it also depends 
on the doping of the base. We have seen that if the base is weakly doped 
the  space-charge region will extend further on each side of the base, leaving 
at the center a narrower neutral zone for the holes to cross. The lifetime 
of the minority carriers will be longer in a semiconductor with an "indirect 
gap" where the recombination probability is lower (cf. Appendix 6.2) as the 
optical absorption is weak. Silicon is a good example. 

Application: Transistor Amplifier 

Here we shall describe a very simple example of the use of a p-n--p transis-
tor as an amplifier, with the further aim of introducing planar technology, 
the basis of integration at both small and large scales (cf. Sect. 10.4). The 
symbols shown in Fig. 10.4 are used to represent p-n-p and n-p-n tran-
sistors in circuit diagrams; the base is the connection to the left, and the 
emitter is represented by the arrow, whose sense is the forward sense of the 
base-emitter junction. The simplest amplifier then consists of the arrange-
ment in Fig. 10.5. The transistor is suitably biased by the dc voltages V1 
and V2, and we can use Eqs. (10.2) and (10.3 )  The generator produces an 
input signal of small amplitude s which may, for example, be sinusoidal. 
We can write down Ohm's law for the base loop 

8 -EV2 = (VE — VE) RE lE • 	 (10.6) 

Fig. 10.4. Conventional representation of p-n-p and n-p-n junction transistors. The 
sense of the arrow is that of the direct electric current across the emitter-base junction. 

In this expression (VB - Ye) is always small compared with the other 
voltages in the circuit as the junction is forward biased. Thus using Eq. 
(10.5), 

— 	  

f3 + 1 RE 	RE • 

(s + v2) 	— (8+ 1'2 ) (10.7) 

INC 
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Atil3 f-10 eNne 

 

Fig. 10.5. Arrangement of a p-n-p transistor as an amplifier. 

There is therefore a small sinusoidal current -s/RE in the collector 
and thus an output voltage signal -sRe/RE at the collector, the output 
terminal of the amplifier. The voltage gain is therefore 

Rc ICI = 	 (10.8) 

One can easily obtain gains of the order of 100. An n-p-n transistor 
is (or rather was) made by pulling a large crystal from an n-doped bath 
whose composition is changed by adding acceptors in sufficient numbers, 
and then again by adding donors in still larger numbers. If necessary this 
operation can be repeated several times, since as we saw in Chap. 4, what 
matters is Nd — Na  in the n material and Na  - Nd in the p material. We 
thus obtain a cylindrical bar  alternately n and p doped, which we cut off 
and arrange as in iFig. 10.61 

In the device studied above the intrinsic limit to the operation speed 
of  the transistor  is the transit time of the minority carriers in the base, 
i.e., the time taken for the injected holes to diffuse to the base collector 
junction. This time is given by 

=T30 
cP 

(10.9) 

where d is the base thickness. With a very thin base of 10-6  m this time is 
about 10-9  s for silicon. If we wish to make very high-frequency transistors 
we must use a material such as gallium arsenide GaAs where the mobility, 
hence the diffusion coefficient, is higher than in silicon and a thin base. 
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p n 

Fig. 10.6. Manufacture (a) and mounting (b) of an n-p-n transistor. (From Marmstadt 
and Enke, "Digital Electronics for Scientists," Benjamin, 1969.) 

10.2 The Field-Effect Transistor 

This frequency limitation does not exist in devices whose functioning relies 
only on the majority carriers, such as field-effect transistors (FETs). In a 
FET, the current is controlled by an applied voltage: such a transistor is 
essentially a resistance whose value is controlled by the applied voltage. 

10.2a The Junction FET 

Figure 10.7(a) shows a rectangular bar of n-type silicon with two metallic 
contacts at its ends, the source and drain. It acts as a resistor. Suppose now 
that we create above and below this resistor two p+—n junctions as shown 
in Fig. 10.7(b). We reverse bias these junctions using a contact. Then the 
original conductance of the resistor 

1 W 
(10.10) 

R L 

is reduced as the width of the neutral region where the electrons can flow 
is decreased by the width of the space charge. This in turn is controlled by 
the voltage applied at the gate G. We thus obtain a resistor controlled by 
the voltage. The problems of Appendix 10.2 analyze the junction FET in 
greater detail. 
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Fig. 10.7. Principle of a junction FET. (a) Silicon resistor; (b) schematic picture of a 
junction FET. (After Marmstadt and Enke, "Digital Electronics for Scientists," Ben-
jamin, 1969.) 

10.2b The MOSFET 

The MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is a 
unipolar device where the  resistance of a semiconducting channel is con-
trolled electrostatically. The idea is to use a capacitor, one plate of which 
is metallic and the other being the semiconductor. The structure is shown 
in Fig. 10.8(a). 

For a silicon structure the insulator is a layer of silica (Si02) obtained 
simply by oxidation of the semiconductor. When a voltage is applied across 
such a system a charge appears on the two plates of the capacitor. The car- 
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Fig. 10.8. (a) Structure of a MOSFET; (b) behavior of the potential across the structure. 

riers distribute themselves so as to create a total charge opposed to that at 
the metal surface. There thus appears a space charge near the semiconduc-
tor surface. We shall see that depending on the sign and size of the charge, 
we may have accumulation or depletion of free carriers, or even inversion, 
i.e., the appearance of a layer of minority carriers at the surface. In this 
system the semiconductor carriers are in thermodynamic equilibrium, since 
there is no current in the semiconductor. This is possible, even though the 
Fermi levels in the metal and the semiconductor differ, because the presence 
of the insulator prevents charge transport perpendicular to the surface of 
the device. 

The equations governing the charge distribution are thus the Poisson 
equation (Eqs. (8.2) and (8.3)) (8.8) and the law np = q. The problem is 
the same as that of the equilibrium junction. We confine ourselves here to 
a qualitative description. Appendix 10.3 gives a quantitative treatment. 

Figure 10.8(b) shows the behavior of the potential in this structure 
for the case where the metal is negative with respect to the semiconductor 
(Vn, — V, < 0). In this case the negative potential of the metal attracts holes. 
The energy levels of the semiconductor increase near to the insulator. Die 
band scheme is shown again in Fig. 10.9(a)forp-type material. We see that 
the-Fermi level, which is constant since we are in equilibrium, is closer to the _ 
valence band at the surface and there will be accumulation or enhancement 
of hole concentration at the surface. 
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a) V„, — < 0 
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Fig. 10.9. Energy levels in the semiconductor of a MOSFET as a function of distance 
from the insulator: (a) negative voltage applied to the metal; (b) small positive voltage; 
(c) large positive voltage. 

By contrast in the case where (V„, — V8 ) is positive, the holes are repelled 
and the band scheme is shown in Fig. 10.9(b). At the surface the Fermi level 
is further from the band edges, and there is depopulation, or d_epletion, of  
mobile carriers. Thus there remain only ionized acceptors near the surface 
with concentration Na . 

Above a certain threshold, for large positive voltages applied to the 
metal we obtain the band scheme shown in Fig. 10.9(c): there are three 
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zones. At the surface the Fermi level is close to the conduction band, and _ 
electrons appear. This is called an inversion layer. The electron nbr in 
this inversion layer de-pends directly on  the voltageapplied to the metal. 
Deeper in the semiconductor we encounter.a_depleted region where the  only 
charges_are ionizeçal ,cceptom.  before reaching the neutral semiconductor. 
' The operation of a MOSFET makes use of these phenomena. The struc-
ture of a MOSFET is shown in Fig. 10.10(a). Two contacts of types opposite 
from the chosen substrate (here p type) constitute the source and the drain. 
These contacts bound the active region of the MOSFET which is situated 
below the gate. The gate, oxide, and substrate constitute the structure 
(metal, oxide, semiconductor) discussed above. The  source is linked to the 
substrate. In the absence of sufficient positive polarization at the gate, the 
substrate remains jitype everywhere and there is no conduction between the  
source and the drain, as the source-substrate and substrate-drain junctiona-
are back-to-back. 

a) 	 b) 
Fig. 10.10. MOSFET transistor with n-type channel: (a) structure; (b) effect of bias. 
(After Leturcq and Rey, "Physique des Composants Actifs it Semi-Conducteurs," Dunod, 
1978.) 

In contrast, if a sufficient_positive voltage is applied to the gate, one 
can create a surface inversion layer, called the induced channel—see Fig. 
10.10(b). There is then continuity of n-type conduction between source and 
drain and a source-drain current can flow. The resistance between source 
and drain is therefore controlled by the value of the applied voltage between _ _ 
gateand source. We can thus construct a device whose current is controlled 
by a voltage and not a current as in the junction transistor. This constitutes 
the n-MOS, since the induced channel is n type; the device operates in the 
enhancement mode, since applying VG > 0 makes electrons appear. 

Exercise: Can an n-MOS enhancement transistor work as an n-MOS de-
pletion transistor under certain circumstances? 

Present electronic logic provides the logical functions NO, AND, OR 
by use of inverters, which are just MOS transistors or combinations of 
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MOS, conducting or not, depending on the voltage applied to the gate. 
The advantage of these circuits over bipolar transistors is that, because 
Of the oxide layer,  no current flows between the gate and the conducting 
channel. _ - 

The complementary MOS inverter, called CMOS (see Appendix 10.3, 
end of the solutions), is the basic element of logic circuits. It consists of 
an electron-channel MOS transistor (n-MOS) and a complementary hole-
channel transistor (p-MOS) which behaves exactly opposite to an n-MOS 
transistor under voltages applied to its gate. Whatever the applied voltage, 
one of the transistors is always blocked: in principle no electric current 
flows, implying very small dissipation. 

10.3 An Application of the MOSFET: 
The Charge-Coupled Device (CCD) 

We have just seen that in a MOSFET made of a p-type semiconductor we 
can create a potential well for the electrons (Fig. 10.9(c)) in the inversion 
layer if we apply a strong positive voltage to the metal. The accumulation 
and storage of minority carriers in a surface potential well are the basic 
principle of CCD cameras which are now the most common image converter 
in video systems. 

The structure involves a p-type semiconductor covered by an insulating 
layer and a series of very close metal gates. When we apply to the sys em 
of Fig. 10.11(a) positive potentials V1 = V3 = V4, V2 >  V1,  a potential we 
for the electrons appears under electrode 2. 

VI V2 V3 V4 	 V1 V2 V3 V4 
14A  djA  diA 	insulator ivto rjA 	E4A  
	 / 

        

        

-leee; 
p-type semiconductor 

   

L ®[ 

 

        

        

(a) 	 (b) 

Fig. 10.11. Schematic figure of a CCD. The metallic gates are hatched. The potential 
profile of the electrons is shown dashed. The potentials applied in (a) are such that V2>  

= V3 =  V4,  and the potential well is under electrode 2. In (b), V3 > V2 >  Vi  = V4 
and the electrons transfer from electrode 2 to 3. 

Let us assume that some electrons are introduced under "gectrode 2, 
where they are stored: as there are no holes in the inversion layer there 
is no recombination. If the potentials are changed so that V1 = 74 

<V2  < V3, the charges move towards the deeper potential well, ending 
up under electrode 3 (Fig. 10.11(b)). 
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By applying an appropriate sequence of voltages on the various gates, 
we can transfer the charges from one region to another of the surface, and 
scan it point by point and line by line. We can identify which charges come 
from which region by analyzing the resulting sequence of electrical signals. 

The minority carriers (ele_c_trons in this figure) can be produced_by lu-
minous excitation. Each surface element or pixel provides a charge, and 
we-thiis h-a-ve  the conversion of an image consisting of a set of light or dark 
points into an electro-optical signal. This provides an electrical signal whose 
amplitude varies with the light intensity at various points of the original 
image. 

Charge-coupled (CCD) devices are very sensitive light detectors. They 
have now replaced Vidicon tubes in cameras and kinescopes, and they are 
used in spectroscopy and astronomical detection, where, for example, arrays 
of  400x1200  pixels with a quantum efficiency of 0.5 electrons per photon 
are currently used. 

10.4. Concepts of Integration and Planar Technology 

The recent and spectacular development of microelectronics is related to 
the use of planar techniques and the consequent idea of an integrated cir-
cuit. Consider the amplifier whose circuit diagram is given in Fig. 10.12. It 
consists of a p-n-p transistor, resistors, and capacitors. We have seen that 
a homogeneous semiconductor can behave as a resistor and that a reverse 
Wised junction behaves like a capacitor for ac current. Thus the circuit 
(Fig. 10.12(a)) can be constructed from fused elements, but all made from 
silicon as shown in Fig. 10.12(b). The passage to Fig. 10.12(c) is obvious 
as it is not necessary to link semiconductors of the same type by metallic 
wires. We are led to a circuit of three elements. Deforming these elements 
we can combine them into a single semiconducting layer containing n, p, 
and intrinsic regions, the latter being insulating (Fig. 10.12(d)). It is these 
same ideas that are currently used in the manufacture of electronic devices 
from audio sets to computer components: microprocessors, memories, etc. 

These circuits are constructed on a substrate: a thin slice, or "wafer," 
of monocrystalline material of adequate resistivity. The wafers are several 
cm (typically 10) in diameter and a thickness of several 10-1  mm. Their 
manufacture involves the operations of oxidation, masking, diffusion, metal 
deposition in vacuo, and possibly epitaxy, i.e., the growth of a monocrys-
talline layer, of adjustable doping on a monocrystalline substrate. 

An important step involves the ability to create by "lithography" an 
oxide layer of a given design on the silicon wafer. This layer acts either as 
an insulator or as protection for the substrate in a later operation, e.g., 
diffusion. 

The first operation is to (a) oxidize the substrate uniformly (Fig. 10.13). 
Then a photoresist resin which polymerizes in light is deposited on the 
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Fig. 10.12. (a) Schematic view of a p-n-p transistor used as an amplifier; (b) circuit 
made of fused elements; (c) suppression of connecting wires; (d) planar technology. (After 
Brophy, "Semiconductor Devices," George Allen and Unwin, 1964.) 

oxide (b). The system is then illuminated through a mask (c) and the resin 
polymerizes at the places that receive light. The non-polymerized resin is 
then dissolved (d) and the silica attacked by an acid that does not affect 
the polymerized resin (e). Finally the resin is dissolved in an appropriate 
solvent (f). 

The manufacture of an n-p-n transistor is illustrated in Fig. 10.14. 
An epitaxial n layer is grown on an n+ substrate. (a) After oxidation, 
a window is removed by photoetching Acceptors (e.g., boron) are then 
diffused through this window. (b) After recoddizing, a new smaller window 
is removed, through which phosphorus is diffused to make the n+ layer, the 
emitter (c). It remains to make the metallic contacts. The device is oxidized 
and windows cut over the active regions. A metallic layer is deposited over 
the device from which we eliminate superfluous zones by photoetching (d). 
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Fig. 10.13. The photolithography process (see the text). (After Tom Forrester, ed. "The 
Microelectronics Revolution," Basil Blackwell, 1980.) 

Note that the exact shape of the base volume is not really limiting, be-
cause diffusion currents always follow the concentration gradients, whatever 
their geometrical distribution. 

These techniques allow us to produce from a limited set of operations 
a considerable variety of logic circuits with complex functions, known col-
loquially as "chips." One can manufacture connected sets of transistors, 
resistors, and capacitors, but integration allows us to conceive devices with-
out discrete equivalents, e.g., transistors with multiple emitters. This last 
technique is called 12L (Integrated Injection Logic). 

Two parameters govern progress in this domain: the size of an element 
and the speed of operation. The minimum size of an element is determined 
by the wavelength of the electromagnetic radiation used for the photolithog-
raphy. Diffraction effects limit the definition of the image to around half a 
wavelength. The size of an element is currently of the order of 2 pm or about 
ten times the wavelength of the ultraviolet light used for the photolithog-
raphy. A transistor and its contacts occupy between 10-4  and 10-3  mm2 . 
The use of light of shorter wavelength (UV or X-rays from synchrotron ra- 
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Fig. 10.14. Manufacture of an n—p—n transistor. (After Leturcq and Rey, "Physique des 
Composants Actifs  à  Semi-conducteurs," Dunod, 1978.) 

diation) should allow the size to be reduced. The precision of positioning 
the masks in the successive operations will have to conform to this size 
reduction. A 0.3 pm scale technology is expected to be operative in the late 
nineties. 

Another important parameter is the minimum time for an elementary 
operation. This is the time taken, for example, by the carriers to cross the 
channel of a MOSFET. If L is the length of the channel and vd the drift 
speed 

L L 	L2  
= — = — = 	 

V • Vd PE 	• DS 

For L = 10 pin,  p  = 0.1 m2  • V-1  • s-1 , and VDS = 2 V, this time is of 
the order of 10-9  s. (Compare with (10.9).) The time taken by the whole 
system to complete a logical operation is not T but proportional to T. We 
see that the reduction in size corresponds not only to a greater integration 
density but also to increased speed. However, in strong electric fields of 
order 106  V/m the speed vd saturates at around 10 5  m/s for electrons of 
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silicon and thus T will in future vary as the size L and not as its square. 
There are however difficulties in increasing the number of components per 
chip, related to the fact that a single defect can prevent the functioning 
of the entire device. These defects can come from the substrate (scratches) 
but also from dust that may contaminate the  surfaces at each stage of the 
process—the work must therefore be performed in dust-free environments 
("clean rooms"). Also circuits that are too complex cannot be tested in all 
their states. It is now becoming necessary to design chips in which a part 
of the circuit is devoted to testing the subcircuits of the same chip. 

10.5 Band Gap Engineering 

The recent ability to manufacture semiconductors layer by atomic layer 
through molecular beam epitaxy allows one to produce structures that are 
sequences of heterojunctions. Depending on hosV -sUccessive layers are doped 
we obtain either a band profile with gaps (intrinsic or weakly doped semi-
conductors) or of the type shown in Fig. 9.16. This gives a new technique, 
"band gap engineering," so-called since the band profile can be modeled at 
will. It takes advantage of severa_leftts: the possibility of confining and 
controlling the wave function culminates, for example, in the manufacture 
of a FET in which the conducting channel does not contain any dopant, 
increasing the mobility (cf. Sect. 5.4). The asymmetry of the electrons and 
holes in heterojunctions allows the design of circuits where only the major-
ity carriers are active. The ability to stack circuits of several nanometers 
thickness leads to a miniaturization no longer limited by lithography. 

Semiconducting heterostructures that make use of quantum effects have 
been used commercially for several years: for example, adjusting the_energy 
of the transition between the conduction and the valence ground states 
through the choice of the well width (cf. Appendix 3.2), together with 
the large value of the absorption coefficient (cf. Appendix 6.3), allow the 
construction of efficient laser diodes, in which the rate of conversion of 
electrical energy into light is large. These systems operate in the red or 
near infrared range and are currently used in fiber optics communication. 

Many other applications of band gap engineering are in progress. As an 
example we describe the principle of an infrared detector in the 5-10 pm 
range based on a dissymetrical quantum well structure (Fig. 10.15). 

In such a system, the average position of an electron in the quantized 
level E2  is shifted in space with respect to that in the quantized level El. 
This charge displacement is associated with a very large transition matrix 
element between El  and E2 . This ensures a very strong coupling of the 
well with the electromagnetic field. In a sense the well behaves as a giant 
molecule with a size of the order of nanometers. 

If the well is n doped, in the dark electrons occupy the level El. By illu-
mination with infrared photons, these electrons are promoted to E2  (bound- 



10.5 Band Gap Engineering 	263 

AlxGa i,As GaAs AlyGai _yAs Al„Ga i _xAs 

E2  

El 

Distance 

Fig. 10.15. Conduction band profile of a dissymmetrical quantum well structure. 

to-bound transition) or to the delocalized levels above the Al. Gai„ As 
barrier (bound-to-free transition). If the structure is submitted to a trans-

verse electric field, the energy profile is as in Fig. 10.16. 
When an infrared photon induces a bound-to-free (a) transition, like in 

the figure, i.e., if its energy is larger than the distance between E, and the 
barrier, the photoexcited electron is swept by the electric field, and produces 
a photocurrent. In the case of a photon exciting the  E1 —E 2  bound-to-bound 
(b) transition, the excited electron can tunnel from the level E2  through 
the barrier in presence of the electric field (Fig. 10.16). The barrier being 
triangular, it is easier to cross by tunneling when the field is strong. In both 
cases the absorption of an infrared photon leads to a photocurrent. 

Moreover in presence of the electric field, the positions of El and .E2  are 
slightly modified by the linear Stark effect (Fig. 10.17). Then the energy 
of the photons which are absorbed by the structure can be slightly tuned 
through this electric field. 
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Distance 
Fig. 10.18. Modification of the band profile of Fig. 10.15 by application of a transverse 
electric field. 

10.6 Physical Limits in Digital Electronics 
	/ 

Since 1958, the beginning of the integrated circuit era, the size of the small-
est circuits has decreased by an average of 13% per year. At this rate it will 
be around 0.1 pm by the year 2000. Assuming that technological progress 
allows the manufacture of submicron circuits, it is essential to understand 
the fundamental limits on miniaturization and integration. 

We summarize below some of the physical limitations to the electronic 
treatment of information by solid-state electronics. We shall see that one of 
the main limitations arises from the need to treat numerical data digitally. 



10.6 Physical Limits in Digital Electronics 265  

I 

negative electric field positive electric field 

	0- 
Distance 

Fig. 10.17. Linear Stark effect on the band profile of Fig. 10.15. The modifications of the 
energy level positions and of the optical transitions depend on the sign and amplitude 
of the electric field. 

The Need for a Digital Treatment 

In electronic information processing or calculation, all data are manipulated 
in a large number of successive operations. A small error introduced into 
each operation can cause the complete loss of the original information. A 
random error of 1% at each step becomes an error of 100% after 104  opera-
tions. For this reason one uses digital, particularly binary, representation of 
the input data, which allows one to prevent the buildup of random errors by 
"restandardizing" each "digit" at each stage. Consider the simplest binary 
calculation, which associates an output S = E + 0 with each input E. If 
E = 1 V it may be that because of an imperfection or perturbation we have 
S = 1.01 V (a 1% error). At the end of this elementary process we recognize 
that the actual output value (1.01) is close to 1 and thus corresponds with 
certainty to the value 1 and not the value 0. We can thus assign it the value 
1. Digital representation thus allows one to obtain arbitrarily high precision 
by increasing the number of binary digits of the representation. 

Minimum Energy of a Logical Operation 

We may also ask what is the limiting energy required for a logical operation 
(Landauer, 1961). The simplest physical system representing a binary state 
has the potential energy shown in Fig. 10.18. 

This system is bistable in the sense that it can exist in either the state 
0 or the state 1. Consider the operation of putting the system in state 0 
whatever the initial state. If we wish to be certain to find the system in 
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Fig. 10.18. Potential energy of a binary system. Dashed, the energy obtained by appli-
cation of an external force. 

state 0 we have to apply an external force so as to lower the energy of the 
left-hand potential well (dashed curve in Fig. 10.18). We thus increase the 
probability of finding the system on the left. For this probability to get 
very close to 1 we must lower the potential by several times kT. In other 
words, the system must dissipate an energy several times kT, i.e., 4-10-21  J, 
in each operation of resetting to zero. In fact, for the best currently available 
complete circuits, the product of the power P times the duration T of 
an operation is of the order of 10-10  J. It requires, for example, 10 -1  W 
to perform an operation in 10-9  s, and we are thus very far above the 
fundamental limit described here. 

The Quantum Limit 

If we wish to localize a physical system between two distinct states after a 
delay T, these states must differ by an energy AE > hr -1 . The dissipated 
power is thus hr -2 . Here again this limit is remote from practical perfor-
mances. For AE = 10-10  J, At ,s,  10-23  s while the best circuits presently 
work at At ‘--, 10 -9  s. It is therefore not the fundamental limits which deter-
mine the present performance of computers. We should nevertheless gather 
from this discussion that the order of magnitude of the energy necessary to 
run a logical system must be several times kT. 

The "Natural" Voltage Scale for Semiconductor Electronics 

The operation of restandardizing requires by definition the use of a non-
linear device. Now, the basic non-linear relation available is Shockley's law, 
which gives the characteristic J(V) of a p-n junction (Chap. 8). For an 
electronic device built using this law to be strongly non-linear we have to 
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apply voltages of a few times kT le = 25 x 10-3  V. This is why the "natural" 
voltage scale used in digital electronics is of the order of a volt. 

Transmission of Data 

To move from one stage to the next the voltage must be carried by con-
ductors with an impedance Z. The power required is thus at least of the 
order of (kTle) 2 Z -1 . It is very difficult to produce lines where Z is very 
different from the impedance Z0  of vacuum, which is 300 ft. We find in this 
case a power 2 x 10 -6  W. This power corresponds to an energy 106 kT 
per nanosecond, showing why the energy dissipated per operation is much 
higher than the thermodynamic limit kT. 

In practice the voltages used are 10 or 100 times larger than kT/e and 
this is the main source of dissipation in logic circuits. Given this power, 
one has to efficiently cool the most rapid circuits to prevent their deteriora-
tion. Heat removal at present sets the practical limit for the most powerful 
machines. 

Miniaturization Limit 

There are other limits which are caused by the nature of the manufactur-
ing process itself (photolithography, chemical etching, and so forth). We 
mention the striking limit coming from the inherent fluctuation of small 
objects. A cube of semiconductor of size 0.2 pm contains on average only 
80 impurities if the semiconductor is doped at a concentration of 10 22  m-3 . 
The role of statistical concentration fluctuations becomes very important 
when we envisage several million circuits per chip as we do now, near the 
end of the 20th century. 
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Problems on the n-p-n Transistor 

The aim of these problems is to give a simple quantitative description of 
the operation of the bipolar transistor, which we have already discussed 
qualitatively. We consider the device shown schematically in Fig. 10.19, 
consisting of a semiconducting single crystal with three successive regions 
of different dopings. These regions are conventionally called emitter (here of 
type n+, strongly doped), base (weakly p doped), and collector (normal n 
doping), and we shall denote physical quantities in these regions by indices 
E, B, and C. For example, for the emitter nE and  PE  are the equilibrium 
electron and hole concentrations; DE,  TE,  and LE the diffusion coefficient, 
recombination time, and diffusion length of the minority carriers (here the 
holes since the emitter is n doped). 

The crystal has the form of a rectangular parallelepiped with its long 
side along Ox, and cross section S (Fig. 10.19): the emitter-base and base-
collector junctions are in planes perpendicular to Ox, so the currents have 
non-zero components only along Ox. We assume further the lengths of the 
emitter and collector sections are infinite. The thickness of the base is A. 

Problems 
1. Show the band energy profile as a function of x when the system is 

in equilibrium. Note the appearance of two space-charge regions, bounding 
three neutral regions. 

In the transistor's normal regime there is a forward bias on the base-
emitter junction (B—E), and the base-collector junction is strongly biased 
in the reverse sense: if we adopt the convention VE = 0, the applied voltages 
shown in Fig. 10.19 are VE  < 0,  IVEI >> (kTie) = 25 mV at the emitter 
and Ve >> WEI at the collector. We assume that the voltage drops in 
the bulk of the semiconductor are negligible. Show the band scheme as a 
function of x for these conditions. 

2. Write down the evolution equations for the minority carrier density 
in the three neutral regions taking account of diffusion and recombination, 
and simplify them in the stationary case. 
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Fig. 10.19. Schematic representation of the structure of an n-p-n transistor with the 
standard sign conventions for currents. 

3. We will assume as for the biased p-n junction that the widths of 
the space-charge regions are negligible compared with the diffusion lengths 
and that in the space-charge regions the electrons and holes are in thermal 
equilibrium (cf. Eq. (8.35)). Deduce the ratio n(0+ )/nB, where n(0+ ) is the 
electron concentration in the base at the edge of the space-charge region. 
Similarly calculate p (0-)/PE,n(A-)/nn, and P(4+)/Pc- 

4. Find the hole concentration in the emitter by solving the differential 
equation corresponding to 2 with the boundary conditions of 3. Deduce 
the current density Jh (04 of injected holes at the base-emitter junction. 
Assume that the current densities are conserved across the junctions, and 
that the points 0+ , 0_ have the same abscissa, 0, in the algebraic expressions 
obtained. 

5. The same question for the holes in the collector. Deduce Jh(A+), the 
hole current density at the base-collector junction. 

6. The same question for the electrons in the base. Because of boundary 
conditions at xa...,  0 and at x :-_-_-• A it is convenient to introduce hyperbolic 
functions sinh(x/ LB) and sinh[(x - I)/LB] rather than exponentials. De-
duce the current densities J, (0+ ) and 4(.6_) at the two junctions. For ease 
of writing set eVE/kT = vE,eVc/kT = vc. 

7. Deduce from questions 4 and 6 the total intensities 1E crossing the 
emitter and /c crossing the collector. Take the positive senses as in Figs. 
10.19 and 10.20. 

8. Using the assumptions VE < 0,VC >> 0 show that if we also have 
A << LB, then 1c and IE are of the same order, and thus IB << lc. 
Interpret this physically. 

9. In the limit Vc >> 0 the currents IE and Ic depend only on VE; 
calculate the differential current gain 0 = d/c/d/B of the transistor. How 
should the transistor be made so that fi is as large as possible? Calculate 
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/3 for nE = 1025  m-3 , PB = 3 1022  m-3  Itc = 5 • 1021  m-3 ,  Z.  = 3 Am, 
DE =10-4  M 2 /S, DB = 3.5 x 10-3  m2 /s, LE =1 pm, LB = 100 tan. 

10. Draw the characteristics of the transistor, i.e., the set of curves 
/c = f (Vc - VE) for different values of VE. 

11. Why are users of transistors advised not to interchange the collector 
and emitter leads? 
Remark: As seen in this problem, the diffusion of the carriers across the 
base (here the electrons) determines the operation of the transistor. The 
geometry of the emitter or collector has no influence. This justifies the 
choice of simple parallelepiped geometry in this problem. 

Solutions 

1. In equilibrium the Fermi level is constant throughout the system. We 
know that each p-n or n-p junction has a space-charge region whose width 
is determined by the doping as represented in Fig. 10.20(a). Figure 10.20(b) 
shows the band profile of a polarized transistor. 

2. The carrier conservation equation for holes in the emitter is 

Op 1 OA P -  PE  
• e ax 	TE 

where Jh is the hole electric current. 
For the minority carriers, the current is essentially the diffusion term, 

so for holes in the emitter we have 

OP 
Jh -e n

• 	
(10.12) 

Ox 

Combining these equations we get 

811• - DR a 2P  P 	PE  = 0 in the steady state. 	 (10.13) ax2 	TE  

Similarly, in the steady state we write for the base electrons: 

0 2n  n- nB 
DB 

9x2  
	 = 0 	 (10.14) 

TB 

and for the collector holes: 

0 2P  P - Pc  
Dc 9 	- 0. 	 (10.15) 

uX- 	Tc 

3. The equations above involve the diffusion lengths 

LE = 	LB = VDB TB, and Lc = VDc  Tc.  (10.16) 

At the edge of the space charge of the emitter-base junction minority 
carriers are injected into the base since the junction is forward biased. For 
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Fig. 10.20. Band profile in an n-p-n transistor: (a) zero bias; (b) profile when biased 
(VE  <O,  Vc > 0). The arrows show the energy shifts, giving the algebraic values on the 
energy axis. 

example, electrons are injected from the emitter to the base. The assump-
tion of thermal equilibrium for the carriers in the space-charge region allows 
us to write 

n (0+ ) = nB exp(-e VE/kT), 	 (10.17) 

p (0_) = pE exp(-e VE/kT). 	 (10.18) 

As VE < kT le, we have 

n (0+ ) >> nB, p (0-) >>  PE • 	 (10.19) 

There are thus more minority carriers than in equilibrium. 
The base-collector junction is reverse biased, resulting in extraction of 

minority carriers, so that 

n (A4 = nB exp(-e Vc MT), 	 (10.20) 

p (A +) = pc exp(-e Vc I kT). 	 (10.21) 

As Vc >> 0 we have 

n (.d_) « nB, P (A+) << PC. 	 (10.22) 

Remark: We can use the language of quasi-Fermi levels introduced in Eqs. 
(8.48) and (8.49) for the polarized junction. As we are in the low injection 
regime, the quasi-Fermi levels of the majority carriers in the neutral re-
gions are very close to those in equilibrium. The widths of the space-charge 
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regions are small compared with the diffusion lengths, so the quasi-Fermi 
levels are little changed in these regions. The position of the quasi-Fermi 
levels EFe ,EFh for electrons and holes is shown in Fig. 10.21 for the band 
profile of Fig. 10.20. 

4. The hole concentration in the emitter is 

x 	 x 
p = pE + Alexp (—LE ) + A2 exp H) , 

1-,E 
(10.23) 

where A1, A2 are constants determined by the boundary conditions 

/ e VE\ 	 X 

P  = PE  [exP  –1.'-) 1 exp "7E- +pE . 

for x –*  –oc  
for x --, 0_ 

Hence, for x < 0, 

P –■ PE  so that A2 = 0, 

P = PE exp(–e VE/kT). (10.24) 

(10.25) 

The corresponding current is 

O 
Jh (X) = – e  DE ! 

Ox, 	
(10.26) 

jh (x)  = e 
LE 

 DE pE [exp  ( e V TE) 	
1 (10.27) 1] exp (-) 

k 	 LE 

The current of holes injected at x = 0_ from the base is 

e DE pE  re  Le VE) 11 . 
(10.28) .1h (04 = 

LE [ XP 	kT j 

5. Following the method of 4, we get 

e Dc pc  r  ( e Vc) il . 
(10.29) A (z = A+) – Lc LexP  – kT j j 

6. The electron concentration in the base is found from 

, 	x 	, 
 n – nE = Ai  sinh — + A 	
x – A 

2  sinh 	, 
LB 	 LB 	

(10.30) 

e VE 	 li . 
at x = 0+  nB exp (-- —kT ) = na - 	A2 smh ( 	(10.31)4), 
at x = .6_ 	nB exp 

( e Vc) 	 . 

(10.32) kT = 
nB + Ai  smh 

(4) . 
For ease of writing we set 

e VE/kT = vE, e Vc/kT = vc. 	 (10.33) 

We deduce 



Problems on the n-p-nllansistor 	273 

emitter 

(x) 

EFe, EFh 

eVc 

	EFeJEFh 

Fig. 10.21. Quasi-Fermi levels Ep e , EFh in a polarized n-p-n transistor (VE < 0, 
Vc > 0). 

n — nB =nB 

— 

Je (z) = e  

--= 

A 

1.
1—B -F 

[sinh x  

[sinhTB-x  

I  [exp(—vE) 

[exp(—vc) — 11 

A  
— 1 ] } / sinh lT?  , 	(10.34) 

— 1] 

(10.35) 

B) {{ 	LB ]cosh—[exp(—vc) 

LB 
O 

DB ± 

e DB ns 
LB 

— 

sinh(AIL  

[ [exp(-1,E) cosh x  ,,7 11 1 

E, (x) 

base 	 collector 
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so that 

eDB na  J,(0+) = 	r 	x 
LiB 

1  
Isinh(A/L B ) [exP(-1)c) –11  – 

[coth41 [exp(–vE) – 

eDB na  x 
LB 

{[COth4 ][eXp(-Vc) - 1] - 

(10.36) 

1 
sinh(A/LB) 

[exp(–vE) – 1] 
 j. 
	 (10.37) 

7. In the space-charge region of the emitter-base junction the total cur-
rent is conserved. As in the text, we use the expression for the electron and 
hole currents in the region where the current is purely diffusive. The cur-
rents 'E, 'C  flow towards x < 0; also the current is the flux of the current 
density across the section S, so that 

IE = -S kie (0+) + Jh (04, 	 (10.38) 

Ic = -S We (A-) ± Jh (A-01, 
IE DB na  
eS = LB 

{ sinh (A/LB) iexP(–vc) 

 1 

DE PE  

LE
[eXP( -VE) - 1], 

LJE 

eS = LB 

DB na 
 { coth—TA  [exp(–vc) – 

Li 	
11+ 

s 

lc  

(10.39) 

– 1] + [coth 13  (–vE) –  ii}  + 
A 

(10.40) 

1 
sinh (A/LB) lexP(–vE) –11 } – 
Dc Pc  [ 

	

Lc 
exp(—vc) — 1]. 	 (10.41) 

8. The assumptions about VE,ITc imply that exp(–eVE/kT) >> 1 and 
exp(–eVc/kT) << 1. Further, if the base is narrow enough that A/LB << 
1, we can write sinh(A/LB) = Z1/LB,  coth(A/LB)'2.- LB/A >> 1 and 

(DB nB  DE PE) 
eXP( -VE), IE eS 	+  7.

E 	
(10.42) a 	-14 

, eS DB na  
 a 	
, 	■ 

	

expk–vE)• 	 (10.43) 
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Then the term in (1/A) dominates the terms in 1/LB or 1/Lc, and 
IE, IC effectively reduce to their first term, and are thus of the same order. 
As IE = 1B + IC', this implies IB  «JE. ,••••' 

Physically, if the base is narrower than the diffusion length, and if it 
is rather weakly doped, so that (pE/nB) • (A/LE) << 1, almost all the 
electrons injected from the emitter towards the base manage to cross it 
without recombining, and reach the collector. 

9. The differential current gain o is defined by 

dl0 	d 
= 

 d 	
= 

d (IE - Ic)/dlig •  

Taking the exact expressions (10.40) and (10.41) for IE and Ic we get 

— Ic = eS 
[DB  nB cosh  (LI/LB) - 1  DE PE] 

LB sinh (L1/LB) 
 + 

E 	
[exp( - vE ) - 1] + 

eS 
[DB  nB  cosh  (4/LB)  -  1 De pci 

LB 	Shlh (A / L B) Lc 
[exp( - ve ) - 1] . 	 (10.45)  

For A << LB, 

d IcId VE 	 exp(-vE), 	 (10.46) 
kT zI  

d 	
-e2S (DE nn  A 

2 LB 

± 

LE 

DE PE  ) 
(JE  - Ic)/d VE 	kT 	LB 	

exp(_vE), 

(10.47) 

1 
===1 Air xriAioN r 	 , 	 \ 	irb 	ir 	 kcal Jag ) 	 ) Jag -r kpE/nB) ki-/E/ 	liJE / LIE 1J 	

(10.48)
• 

To increase o, one adjusts the doping to have  PE  <<nB, or equivalently 
nE >> pB (since nE • PE  = na • pa = nt). The emitter will be strongly 
doped, the base weakly doped. An indirect consequence of these different 
dopings is an increase in the lifetime in the base, and hence LB. 

For the values given in the question 13 is about 1500. 
10. The characteristics (Fig. 10.22) are horizontal straight lines ("satu-

rated" transistor) except when V0 -VE is small. k then decreases abruptly. 
For VE = 0 and any Vc, the current k is also very small ("blocked" tran-
sistor). 

11. The symmetry of the n-p-ii  transistor is only superficial. The emitter 
is strongly doped and the collector is not, so reversing these connections 
leads to poor performance (for example, a lower f3). Moreover, because of 
the strong doping of the emitter, the base-emitter junction would not in 
general stand large voltages and would "break down." 

(10.44) 

-e2  S DB nE  
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A 
VB = o 

-0— saturation regime 

increasing (- VE ) 

VE = 0 
lir  VC - VE 

0 
Fig. 10.22. Characteristics /c = f (Vc — VE) with the base at zero potential, for different 
values of the emitter potential. 
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Problems on the Junction Field-Effect Transistor 
(JFET) 

In 1952 W. Shockley conceived an active device consisting of a slice of 
semiconductor between two reverse-biased p-n junctions. The principle is 
to modify the size of the conducting region called the channel by varying 
the reverse bias of the junctions. The device is shown in Fig. 10.23. We 
shall study the simplified geometry shown in Fig. 10.24, concentrating on 
the active part between the junctions. 

The p+ regions (gates) are negatively biased with respect to the contact 
S, called the source, and taken as the origin of the potentials. The contact 
D is called the drain. We apply to the drain a voltage positive with respect 
to the source. The thickness of the n region is 2a, its length is L, and its 
width b. The set of characteristics measured for such a device (curves of 
drain current ID as a function of the drain voltage VD for various gate 
voltages VG) has the form shown in Fig. 10.25. The aim of these problems 
is to understand this figure. The various notations are introduced below. 

Problems 

1. We are first of all interested in the case of infinitesimal drain potentials. 
In this limit the channel can be regarded as an equipotential, and because of 
the inverse polarization applied to the gates a depleted zone appears on each 
side, with uniform width d. Express d as a function of the internal potential 
4) of the junction, the applied gate voltage VG, the dielectric constant eofr 
of the semiconductor, and the donor concentration Nd. (Consider the case 
where Nd << N., the acceptor concentration in the p+ region, and neglect 
Nd/Na  compared with 1.) 

2. If the electron mobility is pa , give the channel conductance G as a 
function of the voltage applied to the gate. Express the result as a function 
of Go  = 2eizeNdabl L, the channel conductance in the absence of any space 
charge. 



p + regions (upper and 
lower gates) 

drain 
-o D 

VD 

-- 

Fig. 10.23. Perspective view of the active part of a junction field-effect transistor. (After 
Millman and Hallcias, "Integrated Electronics: Analog and Digital Circuits and Systems," 
McGraw—Hill, 1972.) 
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3. Give the minimum thickness 2a,, of the n-doped slice required for 
the conductance to be non-zero in the absence of a potential. Give this 
explicitly in the case Nd = 1021  M -3 ;  Or = 10-10  F • m-1 : take 0 = 0.8 
V. 

4. In the same regime where VD is very small, consider the case where 
there is non-zero conduction, i.e., a> am . The device behaves as a variable 
resistance controlled by the gate. Show that the conductance vanishes for 
a particular value Vp of the gate voltage, which we call the pinch voltage, 
and give the expression for it. Find this voltage for a = 2.65 • 10-6  m. 

5. The gate current does not appear in the results. Why? 
6. In the same approximation (VD small), write the equations of the 

characteristics ID  = f (VD) as functions of the parameters Go, (4) — VG), 
and 0 = (0 — Vp). Compare briefly with Fig. 10.25. 

7. Now discard the assumption that VD is infinitesimal. The larger VD 
is, the less can the channel be regarded as equipotential. For a positive 
drain voltage the junction is more strongly reverse biased near the drain 
than near the source, and the width d(x) of the depopulated zone on each 
side varies with x as shown in Fig. 10.26. 

We assume L >> 2a. Then the current lines are effectively parallel to 
Ox and Jv  << Jx , implying 4 « ex  (Fig. 10.27). The equipotentials in 
the conducting channel are to a first approximation planes orthogonal to 
Ox and Es  is then independent of y. 

We count the current positive when it flows from the drain to the source. 
Using the functions d(x), V(x), the width and voltage in the depleted region, 
find the current at x in the useful section. 

8. The current I(x) is independent of x. Why? 



A 

"linear" I saturation 
region 	region 

V=O  

l Val  = Vp/4 

'VG' = V/2 

1//////////////////////////////////////////////////////////////////ll 

P+  

Fig. 10.26. Depleted regions and the conducting channel in a polarized JFET. 
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Vs = 

Fig. 10.24. Schematic view of the same transistor showing the doping of various regions. 
(After Leturcq and Rey, "Physique des Composants Actifs  à  Semi-conducteurs," Dunod, 
1978.) 

a) 
	

b) 

5 10 15 20 25 30 
	

0 	V 	V "D,S 
	

VD 

VG volts 
Fig. 10.25. Characteristics of the 2N3278 transistor (Fairchild Semiconductor Company). 
(a) Experimental curves; (b) simplified version of the same curves: /, /", V, V', V" 
denote saturation drain currents and voltages. The pinch voltage Vp is defined in problem 
4. 

12 

10 

8 

4 
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9. Deduce a differential equation relating V(x) and dV(x)Idx, in which 
the drain current ID is a parameter. For convenience use Go and 0. 

10. Integrate this differential equation between x = 0 and x = L so as 
to obtain ID as a function of Go, VD, 0, V)  , and  V. Assume the channel is 
nowhere pinched. 

11. What are the conditions on the applied voltages for this equation to 
hold? For what value of VD = VD, Saturation = VD ,s is the channel pinched 
at x = L? 

12. Under these conditions express the saturation current I D ,s as a 
function of Go , li; and VD ,,9 . This relation bounds in Fig. 10.25(b) a region 
called "linear," to the left of the dashed curve. Show that this curve is a 
parabola with the equation 

Go (VD,S) 2  
4 	V) 

for VD,s «Ç1). 

(10.49) 

current lines 

- 

D 
	■ x 

Fig. 10.27. Current lines in the channel of a polarized JFET. (After Leturcq and Rey, 
"Physique des Composants Actifs it Semi-conducteurs," Dunod, 1978.) 

13. One might imagine that for VD > VD,s the conducting region is 
closed off at the pinch and the current /D drops. But experimentally one 
sees (Fig. 10.25(a)) that this does not happen. The current is stable above 
VD ,s (in fact it rises very slightly). We investigate this regime here. 

The problem is as follows: in the pinch region the electric field is very 
large. But in the presence of such a field the usual transport equations, 
derived for situations close to thermodynamic equilibrium, are no longer 
valid. In particular Ohm's law falls. Show first that in the above description 
the electric field grows in modulus and tends to infinity for x = L when 
VD —■ VD ,S • 



14. We thus have to consider the properties of a semiconductor in a very 
strong field and we may wonder if the electron velocity tends to infinity as 
we increase the field. It does not. In the presence of a field, the electrons 
gain between collisions an energy which is no longer negligible compared 
with the thermal energy kT , where T is the lattice temperature. If the 
electron collisions with the lattice were strictly elastic the mean energy 
of the electron gas would increase. But the collisions are not elastic: the 
electrons lose energy at each collision and an equilibrium is established. We 
call this a "hot" electron gas, which we describe by an effective temperature 
T, which differs from that of the lattice (T), and by a distribution of electron 
energies E obeying 

f = A exp (--
kTe 	

(10.50) 

The effective temperature of the electrons is an increasing function of the 
electric field intensity. By substituting this distribution function in the ex-
pression for the mobility deduced from the Boltzmann equation, show that 
for collisions with crystal vibrations (cf. Sect. 5.4a) the mobility is pro-

portional to T-1Te-1/2 , and is thus a decreasing function of the electric 
field. 

15. In fact one observes that in silicon the mobility follows a law which 
can be modeled as 

(10.51) 
- 1 + tie  idir/dxl /vi 

The velocity vi appearing in this equation is a limiting velocity, which 
is 105  m - s-1  in silicon. The behavior of the drift velocity as a function of 
electric field is shown in Fig. 10.28. 

The description of the fields and currents in this case is more complex. 
In particular the approximation of neglecting the y dependence of the com-
ponent Er  (and the Ey  component) no longer holds throughout the device. 

  

V = Vi 
VI 

0 	Ec 	 Ex  
Fig. 10.28. Variation of the drift velocity with the electric field Er. 
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We retain the approximation however. Show from the equation obtained in 
7 that for a given current the channel is no longer completely pinched in 
the strong electric field region, the width of the conducting region remain-
ing approximately constant in this region. Give an order of magnitude of a 
"very strong" field. 

16. To understand this saturation region we can schematically represent 
the problem by decomposing the crystal into two regions: one with a weak 
field and constant mobility, of length LI, and a region with very strong field 
and constant velocity with length L2, with L =  L1  ± L2. We can assume 
that V(x = L1) = VD,s and thus that V(x = L)-V(x = L1) =VD — VD,S. 
Give a maximum value for L2. Evaluate this in the case VD — VD,S =  10 V. 

17. Assume that L = 10-4  m. Summarize the behavior of the charac-
teristics in the saturation region. 

18. What causes the abrupt rise of ID for very large VD? 

source contact 	upper gate (diffused) drain contact 

epitaxial n layer 

substrate 

Fig. 10.29. Section of a JFET. 

19. A real device, manufactured using planar techniques, is shown in 
section form in Fig. 10.29. What other effects, neglected here, can modify 
its behavior? 

Solutions 

1. From Eq. (8.60), 

d = [2 fofr (4) 

2. We have for 

1 	s  
G=  IT? 	crz  

= Go  {1 

VG)/ eNd] 112  

a conducting parallelepiped of cross 

2 b  
Nd e tioT(a - d) 

a 

(10.52) 

section s = 2(a- d)b: 

(10.53) 

(10.54) 

(10.55) 2 Erf° (4) 	VG) 1 1/2 } . [ 	
e Nd 
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3. For d = am  the conductance is zero, because the depleted region 
blocks all the conducting space. From Eq. (10.52), with VG = 0: 

(2cofr 	)112 am   = 	 (10.56) 
e Nd 

(  2. 10-1° 	0.8 
= 	

)1/2 
am 	 =-- 1/Lm 	 (10.57) 

1.6 . 10 -19  1021  

4. From Eq. (10.54), G = 0 when 

2Erfo 
e Nd a2 

(0 Vp) = 1, 	 (10.58) 

Or 

e Nd a2  
Vp = 	 (10.59) 

2er  eo 

Vp = -4.8 V. 	 (10.60) 

5. The gate current is that of a reverse biased junction and is negligible. 
6. Using Eq. (10.56) in the form 1/, = eNda2/2€,•€0, we get 

	

, (0- 	VG) 1/2  
/D

1 u 
= Go [.1. 	 ,D• 	 (10.61) 

This gives a family of straight lines through the origin. The slopes in-
crease when the magnitude of VG rises from Vp. 

7. The current at x is the flux of the current vector J(x) in the depleted 
section, with modulus 

r—d(x) 

-a-l-d(x )  

J(x) = Ndepo(dV/dx) is independent of y in the present approximation, so 

I (x) = 2[a - d (x)]t, e Nd Ae—
dx• 

8. If no current flows in the gate, all the electrons supplied by the source 
must reach the drain. 

9. Equation (10.52), evaluated at the point x where the applied voltage 
at the junction is VG — V (X), can be written 

d (x) [2eofrfrb - VG ± V (x)11  1/2 

eNd  

or using Eq. (10.59), 

d (x) 
= a  (0  - 	+ V (x)) 1 /2 	

(10.65) 

I (x) = biJ (x)Idy. 	 (10.62) 

(10.63) 

(10.64) 
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Substituting in Eq. (10.59), 

VG +V(x)) 112] dV 
(10.66) 

(10.67) 

(10.69) 

I(x) = 	=2abeNd lie  [i 	
(4)—  

11) 

— VG + V (x)) 1/21 
Go L 

dV 
(-17' 

= 	(0 [1 	
1/) 	) 

10. From Eq. (10.67), 

VD 

ID dx 	ID L 	Go L (10.68) 
 

VG + V)1/21 
dV = 	= 	 (0— 10 	

Jo
[1 	

, 

2 (0— VG +VD) 3/2  — 	—  V0 ) 3/2 ] G0 = 	[VD 
3 	 0112 	 • 

11. For Eq. (10.69) to hold we must have reverse bias, the gate current 
must be negligible, and the channel must be open everywhere, or 

VG < 0 and IVGI < Vp, VD —VG > 0, VD — VG < —Vp. 	(10.70) 

The channel is pinched at x = L when VD,S = VG —  VP.  
12. The current ID,S is found by substituting VD,s into Eq. ( 10.69), 

(i) 	- 	3  
VD,S 2 2 CP — VD,S) 312 1  

ID,S = GO 
 (10.71) 

For VD,s/I,P << 1, 

ID,S GO11, [ 7, 	+ 	1 2   
VD,s 2 2 ( 3 VD,s  3 (VD,$) 2  .1] 

Go (VD,$) 2  
4 	• 

13. From Eq. (10.67), 

dV\ 	1  
GO L 1 — [(Ck — VG + VD)/0]

1/2 

is infinite for VD =VD,S = VG — Vp. 
We can also say that the area crossed by the constant current vanishes. 

This requires the electric field to be infinite 
14. We showed in Chap. 5 that 

= e
< T > 
	 with 	 (10.74) 

r(E) E312  f (E) dE 
T > = 	!cc 	 (10.75) 

E312  1(E)  dE 
o  

(10.72) 

(10.73) 



15. Replacing p in Eq. (10.63) we have 

dVIdx 
(10.77) = 2[a — d(x)]b e Nd 

/4 1+ tie ' VildV dXl .  
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Replacing f(E) by A exp(-E/kTe ) and T by E-1/2T-1  for collisions with 
crystal vibrations for a lattice temperature T (see Sect. 5.4a), we get 

< 	T -1 T;-112 . 	 (10.76) 

dV 	VI 
For  — >> 

dx 	Pe 

ID  = 2[a - d(x)]be Nd VI- (10.78) 

For a very strong field, d becomes independent of x since ID is  conserved. 
As this constant value is less than a (ID  > 0) the channel is no longer 
pinched. The critical value of the field is Ec = vz/Pe• For vi 105  m • s -1 , 
Pc 0.1 m2  V-1  • s -1 , a "strong field" will be greater than ec, which is 
106  V • m-1 . 

dV vj  
16. In the strong-field region of length L2, —> —, and 

dx Pe  

L  di- 1.4 
VD VD,S 	—dX > 

L i  dx 
(10.79) 

(VD -  VD,$) Pe  L2 G 	 10-5  m. 	 (10.80) 
vi 

17. In the saturation regime the conductance of the low-field region 
is given by Eq. (10.71), where we replace L in Go  by LI, and thus Go 
by GoL/(L - L2). As L2 is much smaller than L the current is almost 
constant (in reality it increases slightly), and the strong-field region does 
not contribute significantly to the total conductance. 

18. This is the reverse breakdown of the gate-drain junction. A current 
therefore flows in the gate. We note that the more negative VG is, the lower 
the breakdown voltage at the drain: the important quantity here is the 
difference between the gate and drain potentials, which must be kept below 
the breakdown voltage. 

19. We have neglected the y dependence of the electric field and the 
edge effects, among others arising from the finite width of the device. The 
coefficients appearing in the calculation are slightly modified without chang-
ing the behavior. The main effect is the existence of non-zero resistances 
between the source contact and the active region and between the active 
region and the drain contact. 
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Problems on MOS (Metal-Oxide-Semiconductor) 
Structure 

We study here the MIS (metal—insulator—semiconductor) and MOS (metal-
oxide—semiconductor) structures, which are the building blocks of MOSFET 
transistors, just as p—n junctions are for bipolar transistors. To this end, 
we consider the plane capacitor shown in Fig. 10.30(a), formed of a semi-
conducting substrate covered with an insulatio:EgAde layer of thickness 
d and a metallic layer. The insulating layer rigWri's a agEeAtefrom flow-
ing between the metal and the semiconductor, and thus THSws control of 
the electric field in the semiconductor by the voltage applied to the metal 
electrode without there being injection of carriers, unlike the case of a p—n 

junction. 
Figure 10.30(b) gives the energy diagram of the MOS structure when 

the two ends of the structure are not electrically connected. Conditions are 
assumed uniform in planes parallel to the interfaces, and thus depend only 
on the variable x orthogonal to the interfaces, as in the notation of Fig. 
10.30. 

The energy origin is arbitrary, but a convenient way of relating the 
semiconductor and metal energies in the present case is to refer the energies 
of the two media to the energy E0 of the bottom of the oxide conduction 
band. The Fermi levels in the metal and semiconductor are E Fm , EF sc . We 
denote by Om , Oa, the quantities E0  — EF,„ E0 — EF3c. In general the Fermi 
levels do not coincide since the metal and the semiconductor are isolated 
from each other and cannot exchange electrons. We set Om  — 48c =  
The case case 20 > 0 is shown schematically in Fig. 10.30(b). This figure also 
shows the bottom Ec  of the conduction band, the top of the valence band 
Et, 	— Et, = Eg , the semiconductor band gap). We call the interface 
affinity x the difference between the energy of the oxide conduction band 
and the energy of the conduction band of the semiconductor at the oxide—
semiconductor interface: 

x = (Eo — Ec)x=o. 
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a) metal 	insulating 
layer 	oxide 

semiconductor 

electrical 
contact 

electrical 
contact 

-d 
metal 	oxide 

0 
semiconductor 

b) 
	 4 E  

oxide conduction band 
E0 

E, 

Eg  
EF„, 

E, 

Fig. 10.30. (a) Schematic view of a MOS structure; (b) energy diagram of this structure 
when the end contacts are not electrically connected. 

MOS Capacitor without Applied Voltage 

In Part 1 of this discussion we connect the two electric contacts by an 
external lead without any applied voltage (short circuit). Figure 10.31 shows 
the resulting energy diagram for this structure. 

1. Explain how the charges move to establish equilibrium, defined by the 
equality of Fermi levels in the metal and semiconductor. Justify the new 
energy diagram of Fig. 10.31 quantitatively, in particular the bending of 
the bands at the surface. Can you explain briefly why the interface affinity 
has not changed? 

2. Deduce that there is now an electric field between the two plates 
of the capacitor formed by the MOS structure. Assume that there are no 
charges in the oxide and thus that the field is constant over the width of 
the oxide. Give the sign of the electric field as a function of the sign of AO. 

3. Under the conditions of Fig. 10.31 the energy of an electron depends 
on x, since there is an electrostatic potential V(x) in the semiconductor 
and in the oxide caused by the charge distribution induced by the electrical 
contact between the metal and the semiconductor. The energy of an electron 

A41 
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(P. 

Epm  E 

—d 	0 

Fig. 10.31. Energy diagram of the structure shown in Fig. 10.30 when the metal and 
semiconductor are short-circuited by an external lead. 

at the bottom of the semiconductor conduction band is  E(x) = Ec (+co) — 
eV (x), where --e is the electron charge, and we assume that the induced 
electrostatic potential vanishes far from the interface, i.e., for x large and 
positive. 

Write down the continuity of the electric displacement vector D = EC, 
where E is the dielectric constant of the medium (e = Eof,.) and C the electric 
field. Deduce a relation between the electrostatic potential Vs = V (x = 0) 
at the oxide—semiconductor interface and its derivative at x = 0 for x > 0, 
(017/0x)0 +  involving AO, e, d and the dielectric constants €ox Esc of the 
oxide and semiconductor. Sketch the form of V(x) in the case AO > 0 for 
—d <  z  < +oo. 

4. From now on we study an n-type semiconductor, uniformly doped 
with donor concentration Nd. We assume further that the Fermi level re-
mains deep enough in the band gap for all the donors to be ionized. Express 
the densities n(x),p(x), p(x) of electrons, holes, and charges as functions of 
eV (x)I kT, Nd, and the intrinsic density n. Write down the differential 
equation obeyed by V(x). 

MOS Capacitor with Applied Voltage 

To simplify this study (and particularly the notation), we henceforth con-
sider an "ideal" MOS structure, where AO = O. The energy level scheme 
when the metal and semiconductor are short-circuited by an external lead, 
is given in Fig. 10.32. 
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Fig. 10.32. Energy diagram of an "ideal" MOS structure. The figure should be compared 
with Fig. 10.31, which shows a "non-ideal" structure under the same conditions. 

We now consider the MOS capacitor with a voltage VG applied at the 
metal layer called the gate, the right-hand region of the n-type semicon-
ductor being now at zero potential (Fig. 10.33). 

5. The oxide is a perfect insulator, so, apart from a transient interval 
during the establishment of the voltage VG, no current flows in the capac-
itor. What can we deduce about the Fermi level in the semiconductor and 
the relative positions of the Fermi levels in the metal and the semiconduc-
tor? 

metal 
oxide 

n-type 
semiconductor 

V G 

- - - - - 

r 

E, 

M.  
	I 1 	 

Fig. 10.33. MOS capacitor biased by the voltage VG. 

6. For the moment we limit ourselves to the case where VG is negative 
and not too large in modulus (IVGI < about E9 l2e). 

(a) Integrate the equation giving V(x), assuming that the donors are 
ionized and using for p(x) an approximation copied from that in the abrupt 
p—n junction (cf. Chap. 8). State this approximation and show that 

x 
 V (X) = Vs (1 —)

2 
 TT 	for 0 < x < W, 

V (x)= 0 	 for  x>  W, 

V (x) = Vs + (Vs — VG): for — d < x <0, 

(10.81) 

(10.82) 

(10.83) 
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where the width W of the space charge depends on Vs. Give an expression 
for Vs as a function of Nd and W. 

(b) Writing the continuity of the electric displacement vector ce across 
the oxide-semiconductor interface, give a relation between V0, V5,  and W 
(VG). Show that 

W (VG ) d Esc kb. 	2VG  EL 

fox 	 d2  e Nd Esc 	• 

(10.84) 

Applications: 
Calculate W for VG = -1 V; e = 1.6 • 10-19  C; eox = 

3.2 10-11  F m-1 ; E„ = 10-19  F • m-1 ; d = 150 nm; Nd =1022  m-3 . 
The maximum field that can be supported by silicon without breakdown 

is 109  V/m. What is the maximum value of W for n-type silicon (Nd = 
1022  m-3 )? 

7. Under the preceding approximations, give an expression for the total 
charge appearing in the semiconductor when we apply a voltage VG to the 
gate: 

Qs  (VG) = 	P (x) dx- 
o 

A charge QG = -Qs appears at the metal-oxide interface, and we 
define the differential capacitance per unit area of the MOS structure by 
the relation C = dQGIATG. 

Show that C can be regarded as the resultant capacitance when the 
capacitance Cox  = eox /d of the oxide layer and the capacitance C., o  of the 
space-charge region are placed in series, where 

C 	
dQs 	Esc  (10.85 BC 

	

	 ) = 
dVs W(VG) .  

Calculate Cox  and C.c  for the data given in 6. 
8. Sketch the forms of the energy levels in the following cases: 
(a) VG 5_ 0; 'Vol  E9 /2e; 
(b) VG << -Ede; 
(c) VG > 0. 
Explain briefly why the cases (a), (b), (c) are known, respectively, as 

depletion, inversion, and enhancement. Sketch the curves giving V(x) for 
-d < x < +oo in the various cases. 

9. Find the value VG = Vthreshoid for which there is complete depletion 
of a region of the semiconductor of thickness 1= 200 nm doped with Nd = 
1023  m-3 , when the oxide layer has thickness d = 100 nm. 

For what value of VG do we reach inversion? Take the intrinsic concen-
tration as  n = 1.6 x 1016  m-3. 
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Applications of the MOSFET 

In practice the semiconductor is used as a resistor whose value can be 
controlled by use of the applied gate voltage VG. We thus consider a square 
of semiconductor in the y-z plane, with total thickness 1 in the  z direction. 
On one of its faces is an oxide layer of thickness d and a metal layer. On the 
other face is a metallic contact, through which we can apply a voltage VG 
to the MOS structure as described in Part 2. We denote as the transverse 
resistance R(VG) the resistance measured for a current flowing in the z 
direction while a voltage VG is applied across the two sides of the structure 
(Fig. 10.34). 

Fig. 10.34. Schematic view of a MOSFET. 

10. Show that R(VG) does not depend on the surface area of the square 
and express R(VG) as a function of R(VG = 0) = Ro, 1, and W(VG) in the 
depletion regime (a) of 8. 

The interesting quantity for applications is the differential conductance 
G = d(11R)IdVG. Show that G(VG) is proportional to C(VG) and that 
the constant of proportionality is the mobility of the charge carriers in the 
semiconductor. 

11. We observe that when 'VG' is increased with VG <0,  the resistance 
R first grows monotonically, and for sufficiently small l it reaches effectively 
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infinite values. On the other hand if  I is large enough there is a value of VG 
above which R decreases abruptly. Can you explain this? 

Solutions 

1. The alignment of the Fermi levels required for equilibrium is achieved 
by a flow of electrons from the semiconductor to the metal, since EFsc 
FFm  = Lq> 0, thus charging the semiconductor positively and the metal 
negatively. The upward bending of the conduction band results from an 
electron depletion near the interface. The bands stay parallel because the 
width of the band gap is an intrinsic property of the semiconductor; similar 
considerations hold for x = (E0 — Ec ) x.,0 , the energy required to transfer 
an electron from a quantum level in the interior of the semiconductor to a 
well-defined level at the exterior, near the interface. 

2. As charges have now appeared on both sides of the oxide layer, there 
is an electric field from the semiconductor to the metal if AO > 0 and in 
the opposite direction if AO <0.  

3. 
c,c  dV 

fozeos = esc Esc; eos = 	( i) 
fox 	) • 0+   

The quantity .A(/) is now the energy shift between the two regions with 
flat bands in the metal and the semiconductor. This shift is split between 
the oxide and the region where the bands bend in the semiconductor. The 
energy jump x at the semiconductor surface remains the same. The elec-
trostatic potential V(x) shown in Fig. 10.35 varies continuously. 

We have 

Z14 [—eV(—d)] — [—eV(oo)] 

= —e[(V (—d) — V(0)) + (V(0) — V (oo))1 

—e(de os  +Vs), 

so that 

114) Esc d  dV) 
e 	f 	dx 0+  —  V. 	 (10.87) 



Or 

02 V (x) 	eNd r 
ax2 = es, 11 exP eV(x)exP 	eVic$"x) )1 • d 

(10.91) 
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V (x) 

metal oxide 

0 
semiconductor 

d 

Fig. 10.35. Electrostatic potential across a MOS capacitance in the case Zick > O. 

4. 

n (x) = N, exp 
Ec (x)  - EF) 

kT ) 

Nc exp 	[Ec(°°) 
 kT 

eV (x)] - EF) 

n (x) = exp 
Ec (oo) - EF\ exp  eV (x)  

kT ) 	kT 

= Nd exp 
eV (x)  

kT 

p (x)= 
n(x) Nd 	kT ) • 

= —
n?

exp 
( eV (x)) 

The potential V(x) obeys the Poisson equation 

02V _P (x) with p (x) = e (Nd - n P) 
Esc Ox 2  

(10.88) 

(10.89) 

(10.90) 

5. There is no current, so EF is constant in the semiconductor. 

EFm  — EF8c -eVG• (10.92) 

6. In this case the Fermi level is always within the gap. We assume, 
as for the p-n junction (Sect. 8.2), that the electron density n(x) = 
Nd exp(eV(x)/kT) varies rapidly enough so that we can define a depletion 
length W(VG) such that 

P (x) Nd e for 0 < x < W(VG), 
p (x) = 0 	for x > W(VG), 

p (x) = 0 	for - d < x < O. 	 (10.93) 
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The distance over which n changes from Nd to nearly zero is much 
smaller than W(VG) and we thus take p(x) as varying discontinuously, as 
in Chapt. 8, so that 

	

82V 	eNd 
= — 	for 0 < x < W. 	 (10.94) 

	

ax2 	Esc 

	

(a) For 0 	< x  < W, V(x) = Vs (1 — 1+7 ) 2 , 	 (10.95) 

e Nd W 2  

with boundary conditions V(—d) = VG;V (0) =VS, so that 

V (x) = Vs + (Vs — VG). 

(b) We have continuity of the displacement vector at x = 0: 

fox eox(0) = fac ese (0) 

or, using the expressions for E = —dVIdx in the two materials, 

Vs — VG 2 f 8  
—fox d 
	= 	Vs 

giving 

VG =Vs (—Esc d 
 

fox W 

Substituting expression (10.96) for Vs in Eq. (10.102): 

(10.99) 

(10.100) 

(10.101) 

(10.102) 

vG 	e Nd w2 (2 f sc  d +1) , 	
(10.103) 

(10.104) 

1 	 . 	

(10.105) 

values W(VG) 	120 nm. The max- 

2e  

W2  + 2d c  
fox 

W = 	'c-d 
fox 

Numerical app 

fox W 

W 	VG 	0 + 	= 
eND 

1 	
2 VG EL 

d 2  e Nd esc 
[ 

ications: for the given 
imum field in the oxide is (E9c /fos )Emax , where E„,„„ is the field in the 
semiconductor. Integrating dEldx = A/E sc  we get eNdWmaxlese = Erna., 
implying Wma„ = 20 Am. 

with Vs = 
2 esc 

for x > W, V (x) = 0, 
82 

for d < x <0,  

(10.96) 

(10.97) 

(10.98) 
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7. The charge QS appears in the space-charge region, of width W(VG): 

Qs (VG) =
J 

e Nd dx = e Nd W (VG)) 	 (10.106) 
o  

QG = —Qs = - e Nd  W, 	 (10.107) 

dQG = -e Nd dW. 

Differentiating Eq. (10.98) with respect to W(VG) 

dVG = -e Nd (—
d 
 + —

W 
 dW 

cox 	cac 

giving the differential capacitance per unit area 

dVG 	1 	d 	W 	1 	1 — 	— — 

we get 

(10.108) 

C: 

(10.109) 

(10.110) 

= 8.3 x 10-4  F/m2 . 

dQG 	C 	Eox 	Esc 	Cox 	Csc 

with 

Cox = E0r/Ell CSC = e8/W. 

For the values given Cos  = 2.1 x 10-4  F/m2 ;  C8  

8. (a) E9 /2e < VG <0. 
We are in the depletion region since n(0) < Nd. (See Fig. 10.36.) 

0 
Fig. 10.38. Band profile and electrostatic potential in the depletion regime. 

(b) VG << -E9 /e.  
We are in the inversion region as p(0) > n(0): the semiconductor has 

become p type (hole conduction) near the interface. (See Fig. 10.37.) 
(c) VG > 0. 

We now have enhancement as n(0) > Nd. Electrons accumulate at the 
interface, as seen on Fig. 10.38. 



      

      

 

   

EF„ 

      

      

	0. X 

0 

aid profile and electrostatic potential in the inversion regime. 

'aid profile and electrostatic potential in the enhancement regime. 

kad is such that W(VG) = 200 nm. From the expression for 
;et 

=-- —13.2 V. 

ersion when 

(co) Nd 
	 (10.111) 
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( evs) 
p (0) = exp —

kT ) 

Vs 	2 Nd 
so that = -- log — -0.78 V. 

kT 	e 	ni  
From the expression for Vs: 

(10.112) 

    

V  2 E8C VS  
W(VG) = 	 0.1 m. 

eND 	
A 

 

At inversion W(VG) is less than the channel width. The channel is inverted 
before it is fully depleted. 

From the expression for VG as a function of Vs: VG = -5.65 V. 

10. 
cc 

1 	f n(s) etz e  dx • L 
o 	

1 
- . 

L 	- J 
 Nd elle  dx 

R 	 w 
W 

= Nd  elle  1 (1 - T ) , 

, 
R (VG) = Ro (1 

W(VG)\ -1 

1 	) 

(10.113) 

(10.114) 

where L is the length of a side of the square, 1 the semiconductor thickness, 
and  j the electron mobility in the semiconductor: 

(d (11R) 	 dW VG)  
G (VG) = 	

_ 
- tie ND e 

dVG 	 dVG 
dQG 

= lZe 

	

	= pe C(V). 	 (10.115) 
dVG 

11. When we increase 'VG, with VG < 0,  W grows and can become equal 
to 1 before we reach the inversion regime. There are then practically no more 
mobile carriers in the semiconductor and its resistance is extremely high. In 
contrast, if 1 is large enough we reach the inversion regime before completely 
depleting the semiconductor. The conductance then increases abruptly be-
cause it arises from the mobile holes which appear in the inversion region 
at the oxide-semiconductor interface. 
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Supplement: Integrated Circuits with MOS 
Transistors 

These are of two types: normally on and normally off, depending on whether 
the structure at rest (VG = 0) conducts or not. These structures are also 
sometimes called depletion-mode or enhancement-mode, respectively. This 
means that when a voltage is applied the structure becomes non-conducting 
("normally on") or conducting ("normally off"). Depending on the material 
of the channel (n or p) this change of state occurs for a positive or a negative 
voltage. 

Figure 10.10 shows an enhancement-mode MOSFET with an n channel: 
when a voltage is applied between the source and drain electrodes (n type), 
one of the junctions between source or drain and substrate (p type) is 
reverse biased and does not allow current to flow. 

When a sufficiently large positive voltage is applied to the gate, there 
will be inversion near the oxide, i.e., the appearance of significant numbers 
of conduction electrons; hence the name "n channel." Analogous reasoning 
shows that a structure with source-drain electrodes of p type and a substrate 
of n type (as in the problems) will conduct if a negative voltage is applied 
at the gate. This would be a p-channel enhancement-mode MOSFET. 

The depletion structures are entirely analogous. We start from a situ-
ation of inversion at rest because of the presence of static charges in the 
oxide. These charges induce charges of opposite sign in the semiconductor. 
As we can easily introduce positive ions into the oxide (Nat ions) the usual 
case involves the introduction of an n channel with p-type source and drain 
contacts. Depletion-mode MOSFETs are n-channel transistors with n-type 
source and drain contacts. Applying a negative voltage to the gate then 
empties the channel of electrons. The channel becomes p type and one of 
the contacts blocks the current. 

In each case it is clear that the channel conductance is a linear function 
of the applied voltage in a certain range. There is then a linear amplification 
effect: linear control of the source-drain current ID by the gate voltage. The 
parameter gm  = OIDMVG is called the transconductance of the transistor 
and is one of the essential parameters for the user. 

Microlithography techniques allow one to manufacture n-channel and p-
channel MOSFETs simultaneously on the same substrate. In this way one 
produces complementary structures called CMOS (Complementary MOS) 
as in Fig. 10.39(a). The equivalent electrical scheme is given in Fig. 10.39(b). 
These structures have the property of having two stable states in which the 
current dissipation is infinitesimal. These are used in binary logic applica-
tions in which the signal is either 0 or 0.5 V. 

One applies voltages Vhigh = 5 V at S2 and  V,, = 0 V at S1  throughout. 
Assume that the input voltage is 5 V (Fig. 10.39(c)). The gates G1, G2 are 
positively polarized and electrons are attracted. We thus create an n channel 
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a) n-channel 
MOSFET 

p-channel 
MOSFET 

b) 

c)  

d) 

Vhigh 

5V 

5V • 

17P tYPe 
n type 
	 oxide 

Fig. 10.39. (a) CMOS structure, with two complementary MOSFETs. The p region of the 
n-channel MOSFET is obtained by diffusion; (b) equivalent electrical scheme; operating 
as an inverter; (c) linput = 5 V; (d) Vinput = 0 V. 
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in the MOS on the left which becomes conducting. By contrast the MOS 
on the right is blocked since it contains two head—tail junctions in series. 
In these conditions the MOS behaves as a short circuit and Voutput  ''', 0 V. 

On the other hand if Vinput  = 0 the left-hand MOS is blocked if we chose 
it "normally off," while that on the right conducts if it is "normally on." 
The output voltage is then 5 V. In both cases one of the two MOS in series 
is blocked and the current flowing in the circuit is very small. This device 
is an inverter of very low power dissipation. 

MOSFETs constitute the most rapidly developing sector of integrated 
circuit production (annual growth rates of between 30%-60%). The reason 
for this success comes from the ease of manufacture (fewer masking levels 
than in bipolar circuits) and their low dissipation. The degree of integration 
is also higher because of the reduced size of the transistors, which are the 
building blocks of each device; indeed, 64-megabit memory chips are cur-
rently being developed and will presumably reach the market shortly. On 
the other hand MOSFETs are slower than bipolar transistors because of 
the large gate capacitances, caused by the presence of an insulating layer. 



Values of the Important 
Physical Constants 

Avogadro's number 	 N = 6.02 x 1023  
electron charge 	 e = -1.6x10-19  coulomb 
electron rest-mass 	 m = 0.91x10-3°  kg 
Planck's constant 
	

h = 6.624x10-34  Is 
velocity of light 	 C 

 =  2.9979x  108  m•s-1  
electron specific charge 	 elm = 1.76x1011  C•kg-1  
electron radius 	 7.0 = e2 /47reomc2  = 2.82x10-18  m 
first Bohr radius 	 ao = 5.29x10-11  m 
proton-electron mass ratio 	 = 1,836.1 
Boltzmann's constant 
	

k = 1.38.10-23  J.K-1  
Bohr magneton 	 AB = -9.27x10-24  J.1-1  
wavelength associated with 1 eV 

	
=  1.239m 

frequency associated with 1 eV 
	

= 2.418x1014  Hz 
energy associated with 1 K 

	
= 8.616x10-8  eV 

temperature associated with 1 eV 
	

= 11,605 K 





l orne  Physical Properties of 
Iemiconductors (286 K) 

E, 
(eV) 

P. 
(cm2N.$) 

Ph 
(cm2/V.$) e--n2  a  

angstr. 
d 

(g.cm -3 ) 
F. T. 
( °C) 

C 5.4 1 800 1 200 5.5 3.567 3.51 3 550 

W 
Si 
Ge 

1.15 
0.65 

1 900 
3 800 

480 
1 800 

11.8 
16.0 

5.42 
5.646 

2.42 
5.36 

1 412 
958 

Sn 0.08 2 500 2 400 6.47 6.0 232 

Se 1.6 0.6 8.5 
4

'
35 

4.95 
4.8 220 

VI 

Te 0.33 1 100 560 5.0 
4

'
447 

5.915 
6.24 452 

BP 6 100 11.6 4.537 2.97 3 000 
AI P 2.5 3 500 11.6 5.43 2.85 1 500 
AI As 2.3 1 200 200 5.63 3.81 1 600 
AI Sb 1.52 400 150 10.3 6.13 4.22 1 060 

III Ga P 2.25 so 17 8.4 5.44 4.13 1 350 
V Ga As 1.42 8 500 400 13.5 5.65 5.31 1 280 

Ga Sb 0.69 4 000 650 15.2 6.095 5.62 728 
In P 1.27 4 600 700 10.6 5.869 4.78 1 055 
In As 0.35 30 000 240 11.5 6.058 5.66 942 
In Sb 0.17 70 000 1 000 16.8 6.48 5.775 525 

IV 
IV Si C 3.0 60 8 10.2 4.35 3.21 2 700 

IV Pb S 0.37 800 1 000 17.9 7.5 7.61 1 114 

VI Pb Se 
Pb Te 

0.26 
0.25 

1 500 
1 620 

1 500 
750 

6.14 
6.45 

8.15 
8.16 

1 062 
904 

V 
VI Bi2Te

3 
0.15 1 250 515 10.48 7.7 580 

Il Cd3As2  0.13 15 000 8,76 6.21 721 
V Cd Sb 0.48 300 300 6,471 6.66 456 

Zn 0 3.2 190 8.5 5.18 5.60 1 975 
Zn S 3.65 100 8.3 5.423 4.80 
Zn Se 2.6 100 16 5.75 5.667 5.42 1 515 
Zn Te 7.15 50 18.6 6.101 5.54 1 239 

II Cd S 2.4 200 5.9 5.83 4.82 685 
VI Cd Se 1.74 500 4.30 6.05 5.81 1 350 

Cd Te 1.50 650 45 11.0 6.48 6.20 1 098 
Hg S 2.5 5.86 5.852 7.67 583 
Hg Se 0.3 18 500 14 6.08 8.5 798 
Hg Te 0.2 22 000 160 6.429 8.42 670 

rle table gives the values of the band gap energy, electron and hole mo-
lities, high-frequency dielectric constant, crystal lattice constant, density 
Ld fusion temperature. 
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relation to band gap width, 58- 

60 
silicon, 73-74 

Bipolar transistors, 247-251, 268, 
286, 300 

Bloch functions, 12-13, 18-23, 31, 
55, 61, 76, 151-152 

Bloch states, 23-25, 27, 41, 148, 151 
matrix element of a periodic op-

erator between, 49-51 
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Bloch's theorem, 3, 11-14, 18-20, 88 
quantum states of a perfect semi- 

conductor, 31, 36 
Blocked transistors, 275 
"Blue shift," 178 
Body-centered cubic lattice, 19 
Bohr radius, 33, 72, 114 
Boltzmann equation, 122, 128, 129- 

130, 135, 281 
magnetoresistance, 146 

Bonds 
covalent, 5, 54-55, 65, 71-72 
partially covalent, 5 

Born  approximation,  169 
Born-von Kirmin boundary condi- 

tions, 12, 18, 27 
Boron, 73, 74 

as acceptor in silicon, 101 
Bose factor, 171 
Bravais lattice, 16-19, 20, 28 
Breakdown, 214-216, 285 
Brillouin zone, 20-22, 68, 78, 151, 

233 
quantum states of a perfect semi- 

conductor, 27-28, 33, 39 
symmetries of the band struc- 

ture, 51-53 

Cadmium selenide (CdSe), 2 
Cadmium sulfide (CdS), 17 

detector of electromagnetic ra-
diation, 164 

Cadmium telluride (CdTe), 2 
Calculator photocells, amorphous sil-

icon for, 89-90 
Canonical ensemble, 93 
Capacitances, 214-215, 295, 300 

pin diode, 228-229 
Carrier injection by light, 179- 

183 
Carrier number density, 103, 124 
Cathodoluminescence, 166 
Cathode-ray tubes, 166 
Cations, 2 
Channel, 277, 278-280, 284, 285, 297 
Channel conductance, 277 
Charge conservation equation, 180, 

181, 184  

Charge-coupled device (CCD), 257- 
258 

Charge density, 186, 194, 237, 
242 

Charge neutrality, 180-181, 183, 
194-195, 210, 241 

pin diode, 227-228 
Charge quasi-neutrality, 180, 181, 

183, 184-186 
Charge transport, 122 
Chemical attack, 267 
Chemical approach, 4, 31, 54 
Chemical potential, 92-93, 116, 203, 

204, 205; see also Fermi 
level 

in pin diode, 229 
in p-n junction, 195, 198, 199 
in substrates for microelectron- 

ics, 117, 118-119 
Chips, 260, 300 
Chromium, 119-120 

doping of gallium arsenide sub-
strate, 116 

"Clean rooms," 262 
Clusters, 175-178 
CMOS, 257, 298 
Cohesive energy, 59-60 
Collector, 268, 269, 270 
Compensated semiconductors, 102- 

105 
Complementary hole-channel transis- 

tor (p-MOS), 257 
Complementary MOS transistor 

(CMOS), 257, 298, 299 
Complex impedance, 219, 222, 224, 

229 
Conduction band, 5-6, 15, 29-30, 65- 

66, 132, 153, 219 
effective mass of, 25-26 
energy overlap, 60 
heterojunctions, 245-246 
in germanium, 63, 64, 74, 77 
inhomogeneous semiconductors, 

195-196 
in silicon, 74, 77, 78 
quantum states of a perfect 

semiconductor, 43, 44-46 
total number of electrons in, 1, 

93-95 
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Conduction electrons, 60, 92-94, 127, 
138 

in p-n junction, 195-196, 198 
Conduction well heterojunctions, 246 
Conductivity, electrical, 24, 47-48, 

121, 129, 131-133 
Drude's model, 123-125, 140- 

146 
n-type extrinsic, 100 
p-type extrinsic, 101 

Conductivity tensor, 143, 144 
Conservation of particle number, 94, 

129, 179 
Constant energy surfaces, symmetry 

of, 22, 53 
Constant free carrier concentrations, 

199 
Constant velocity, 24 
Copper, doping for Vidicon tube, 166 
Corona effect, 164 
Coulomb interaction between ions and 

electrons, 8, 10, 122 
Coulomb repulsion between localized 

electrons, 92 
Covalent bond, 5, 54-55, 65, 71-72 
Creation rate, 181, 189 
Crystal momentum, 23-26 
Crystal potential, 6, 18, 61, 99 
Crystal symmetries, 22 

quantum states of three-dimen-
sional, 16-18 

Crystal vibrations (phonons), 136 
Cuprous sulfide (Cu2S), 2 
Current, 27, 69, 70, 124-125, 128, 

205-217, 219, 269, 274 
Hall effect and magnetoresistance 

in Drude model, 140, 142 
in p-n junction, 216 

Current gain of a transistor, 249 
Cyclotron resonance, 46-48, 69, 78- 

83, 121, 138 
Czochralsky method, 109, 110 

Dangling bonds, 88 
Debye length, 220 
Deep levels, 76, 119 
Degeneracy, 5, 9 
Degenerate electron gas, 99 

Degenerate semiconductors, 98, 133, 
135 

Density of states, 27-30, 75, 89-90, 
103 

of bands near the gap, 94 
conduction band, 219 
for conduction electrons, 94 
for holes, 102 
for valence electrons, 94, 219 
in energy, 29-30 
in the reciprocal space, 27-28 

Density operator, 112 
Depletion length, 293, 294-295, 296, 

297 
Depletion-mode structures, 298 
Depletion region, 198 
Diamond, 28 

band structure by LCAO me-
thod, 54 

Dielectric constant, 76, 115, 116, 219, 
277, 288 

Dielectric relaxation time, 181 
Differential capacitance, 219 
Differential conductance, 291 
Differential current gain, 275 
Diffusion, 125-130, 134-135, 138, 258 

in Drude model, 126-128, 129 
in n-p-n transistor, 268, 270 

Diffusion coefficient, 179, 1M-188, 
193, 210, 219, 268-269 

definition, 125 
of phosphorus in silicon, 203 

Diffusion current in p-n junction, 
194, 198, 203, 207-208 

Diffusion equation, 126 
Diffusion length, 179, 219 

in n-p-n transistors, 269-270, 
272, 275 

Diffusion velocity, 182 
Digital electronics, physical limits in, 

264-267 
Diodes, 157 
Direct absorption, 147-148 
Direct lattice, 18, 19, 49 
Direct optical transitions, 45, 70, 

151-152, 161 
Direct polarization, 205, 248 

in pin diode, 220-221, 226, 227, 
228 
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Direct polarization (cont.) 
in p-n junction, 233, 239, 240, 

270 
Direct recombination, 161 
Dispersion relations, 7, 10, 13, 

22, 23, 29, 39, 57, 66 
Dissymmetrical quantum well 

structure, 263 
Distorted linear chain, 38-39 
Distribution function, 129 
Donors, 72, 74-77, 92, 93, 102, 

277 
concentration in p-n junction, 

199 
concentration of ionized, 93 
concentration of neutral, 93 
ground state of, 91, 92 
ionized, 92-93, 99, 104, 105, 

198 
occupation number of levels, 112- 

114 
Doping, 65, 100, 102, 106-107, 115- 

120 
in heterojunctions, 245-246 
miniaturization limit of im- 

purities, etc., 267 
in pin diode, 220-221, 225, 

226 
planar technology, 258 
p-n junction, 194, 197, 203 
semiconductor surface, 158, 241- 

243, 290 
of superlattices, 138-139, 246 

Drain, 252, 277-279, 280, 298 
Drift currents, 128, 179, 194, 203, 

208, 210 
Drift velocity, 123-125, 182, 209-210, 

281-282 
Drude model, 3, 47, 135 

of conductivity and diffusion, 122- 
128 

diffusion in, 126-128 
Hall effect in, 140-146 
limitations of, 128 
magnetoresistance in, 140- 

146 
Dynamical Random Access Memo- 

ries ("DRAM"), 3 
Dynodes, 244 

Edge effects, 285 
Effective density of states of the con- 

duction band, 95 
Effective mass, 25-26, 34, 46-48, 86, 

95, 118 
conduction electrons, 116 
from k • p method, 62 
gallium arsenide, 115 
hole, 68-69 

Effective mass tensor, 26, 81 
Effective mass theory, 76, 84, 86, 

166 
Effective potential, 86 
Effective temperature, 281 
Ehrenfest's theorem, 24 
Eigenstates, 7, 62, 87, 148, 150, 167 

of crystal Hamiltonian, 21-22, 
53 

of energies, 54, 55 
of Hamiltonian, 9, 13, 24 
one-dimensional AB crystal, 35 
tight binding approximation, 31 

Eigenvalues, 13, 21, 31-32, 36, 37, 
39, 40, 62 

Einstein relation, 127-128, 138, 196, 
205, 213 

for electrons, 135 
for holes, 133 

Electrical conductivity, 123-125 
Electrical neutrality, 94, 105, 117, 

158, 179 
Electrical resistivity, 115 
Electric current density, 131 
Electric displacement vector, 288 
Electric field 

and charge quasi-neutrality, 184, 
185 

dissymmetrical quantum well 
structure, 263 

in equilibrium p-n junction, 198, 
203 

in junction field-effect transis-
tor, 285 

in MOS structure, 287, 288 
photoconductivity, 191 
p-n junction, 201, 202, 203, 204- 

205, 231 
Electric image, 165 
Electrochemical potential, 135 
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Electroluminescence, 157, 233-234 
Electromagnetic radiation detection, 

164 
Electron-channel MOS transistor 

(n-MOS), 257 
Electron generation current, 208 
Electron-hole correspondence, 68-69 
Electron-hole pairs, 67, 76, 229 

annihilations (recombinations), 
121, 147, 164, 233, 234 

avalanche, 214-216 
creation of, 121, 189 
destruction by recombination pro- 

cesses, 157, 158, 161-162 
excitation by direct optical tran- 

sition, 70 
excitons, 155 
generation, 208-209 
in electroluminescent diodes, 233- 

234 
in photovoltaic cells, 233, 234 
in unpolarized p-n junctions, 231 
photoconductivity, 157, 164-166 
rate of creation, 157-159, 171 

Electron language, 68, 70, 74-75, 93 
Electron number, 105, 158 

compensated semiconductors, 104 
conservation of, 94 

Electron number density, 117 
Electrons 

ballistic, 139 
Bloch, dynamics of, 23 
cyclotron resonance in silicon, 

78-83 
diffusion of, 128 
effective mass, 16 
free mass of, 4 
inhomogeneous semiconductors, 

196 
mobility, 97, 123, 133, 137, 188, 

281 
nearly free model, 7-11 

Electrophotography, 164-165 
Electrostatic potential, 10, 195, 199- 

201, 292-293, 295-296 
in heterojunctions, 242, 246 
in MOS structure, 287-288 

Elementary cells, 28, 35, 38 
Ellipsoids of equal energy, 95-96 

Emission 
induced, 170 
spontaneous, 170 

Emission rate, 170, 171 
Emitters, 259, 268-272, 275, 276 
Energy, 66 

of band bending, 236 
binding, 58-60 
cohesive, 58-60 
density of states in, 29-30, 94- 

95 
of electron, 25 
excitation, 59 
ionization, 63, 72, 73-74, 75- 

76, 99 
minimal, of a logical operation, 

265-266 
transport, 121 

Energy band, 12, 21 
Enhancement-mode structures, 298 
Enriching, 256 
Enthalpy of fusion, 109 
Envelope wave functions, 76, 86 
Epitaxy, 84, 245, 258 

substrates for microelectronics, 
115, 119-120 

Equilibrium p-ii junction, 196-203 
currents in, 203 

Equivalent density of states of the 
conduction band, 95 

Equivalent density of states of the 
valence band, 95 

Excess electron concentration, 191 
Excess hole density, 190, 191 
Excited states, of pure semiconduc-

tors, 65-77 
Excitonic effects, 155-157, 175, 192 
Extended zone scheme, 13, 21 
Extraction method, 109, 110 
Extrinsic absorption, 164 

Face-centered cubic lattice (fcc), 17, 
19, 28 

Fermi-Dirac statistics, 4, 14, 91, 92, 
98, 99, 103, 112, 129, 133, 
195-196 

approximations for, 115, 117, 
118-119 
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Fermi Golden Rule, 149-151 
Fermi level, 91-94, 96-99, 101-102, 

108, 132, 133, 213, 234, 241; 
see also Chemical poten-
tial 

chromium doping effect on, 116 
in heterojunctions, 245-246 
metal-oxide-semiconductor field- 

effect transistor, 254, 256 
MIS and MOS structures, 286, 

288, 289, 292, 293 
non-degenerate semiconductors, 

234-235, 237 
in p-n junction, 195, 196, 197, 

200, 203 
pinning, 243 
semiconductors at low temper- 

ature, 105-107 
semiconductor-vacuum interface, 

242, 243 
Fermions, 4 

pin diode, 229 
Fermi velocity, 108 
Fiber optic telecommunications, 234, 

262 
Fick's law, 125, 126, 128, 135 
Field-effect transistors (FETs), 247, 

252-257 
First Brillouin zone, 20-21, 27-28, 

39, 78 
periodic operator matrix elements, 

51 
symmetries of the band struc-

ture, 52-53 
Forbidden band, 9, 15, 177; see also 

Band gap 
Forward bias, 240 
Fourier expansion, 8, 11, 40, 49-- 

50 
Free carrier, 195, 198, 202 
Free electron mass, 4, 75, 123 
Free hole, 73-74, 93, 101, 104, 125 

Gallium, 73, 84 
Gallium-aluminium arsenide, 233 
Gallium antimonide (GaSb), 2 

radiative recombination, 174 
Gallium arsenide (GaAs), 2, 5, 17 

absorption coefficient of, 155- 
157, 233-234 

degenerate valence bands, 96 
electron and hole mobility and 

impurities, 137, 138, 139 
intrinsic charge carrier concen- 

tration, 98 
mean free path, 139 
molecular beam epitaxy, 84, 

87 
photomultipliers, 244 
p-n junctions, 245 
quantum well lasers, 234 
substrates foi microelectronics, 

115-120 
transistor amplifiers, 251 
valence band of, 70 

Gallium phosphide (GaP), radiative 
recombination, 174 

Gate, 277, 278, 283-285, 289-290, 
298, 302 

Germanium, 2, 5, 28, 64, 76 
band gap of, 28 
band structure by LCAO 

method, 54 
binding energy, 73, 74 
degenerate valence bands, 96 
density of states, 95 
doping with gold, 164 
intrinsic charge carrier concen-

tration, 98 
p-n junction, 210, 211 
recombination, 162, 174 
resistivity, 108 

Grey tin (Sn), 28, 60 

Hall angle, 140, 144 
Hall constant, 142, 145 
Hall effect, 2-3, 26, 101, 128, 133 

collision times, 135 
in Drude model, 140-146 

Hall field, 142, 143 
Hamiltonian, 4, 7, 9, 23, 99 

applied to Bloch function, 11, 
13 

atomic, 54 
crystal, 35-36, 53, 54 
electron, 55, 148 
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Hamiltonian (cont.) 
interaction with light, 167, 169 
invariance, 17, 22 
in k-space, 21 
matrix representation, 32 
perturbation, 62 
pseudo-hydrogen atom, 72 
symmetry properties of, 22 

Heavy holes, 42, 70, 82 
Heisenberg principle, 87 
Heterojunctions, 230, 245-246, 262 
Hexagonal lattice, 19 
High-frequency p-n rectifiers, 217 
Hilbert space, 60 
Hole, 3, 42, 188, 198, 202 

binding energy of semiconduc-
tors, 60, 65 

concentration of, 93, 95, 117, 
182 

definition, 26, 66 
definitions of wave vector, en- 

ergy, and current, 68 
effective mass of, 68-69, 87, 95 
energy of, 66, 102 
free, 73-74, 93, 101, 104 
idea of, 65-70 
mobilities, 97, 125, 133, 135, 137 
occupation, 92 
velocity of, 68 

Hole current, 70, 125, 211 
Hole diffusion coefficients, 128, 185 
Hole drift velocity, 124-125 
Hole generation current, 208 
Hole language, 68, 70, 74 
Homogeneous semiconductors, 258 

statistics of, 91-111 
Homojunction, 245, 246 
Homopolar chemical bond, 67 
"Hot" electron gas, 281 
Hybridization, degree of, 36 
Hybrid orbitals, 54, 55  

Impurity statistics, 92, 105 
Indium, 74 
Indium antimonide (InSb), 2 

absorption threshold, 154, 155 
radiative recombination, 174 

Indium  arsenide  (InAs), radiative re- 
combination, 174 

Indium phosphide (InP), 2, 17, 234 
Indium-tin-oxide (I.T.0.), transpar- 

ent conductor coating, 189 
Induced channel, 256 
Infrared detectors, 164 
Injection of carriers, 179 
Inhomogeneous semiconductors, 

194-196 
Insulators, 5, 15, 27-30, 38-39, 77 
Integrated circuits with MOS tran- 

sistors, 298-300 
Integrated Injection Logic (12 L),  260 
Integration, principle of, 247, 258- 

262, 300 
Intensity of light beam, 44 
Interaction integrals, 56 
Internal photochemical reactions, 121 
Internal potential of p-n junction, 

200 
Intrinsic semiconductors, 94-98, 103, 

145 
Inverse polarization, 208, 284 

pin diode, 221, 226 
p-n junction, 240 

Inversion layer, 256 
Inversion symmetry, 22 

of constant energy surfaces in 
k-space, 21-22 

Inverter, 299, 300 
Ionization, thermal, 3 
Ionization energy, 63, 72, 73-74, 75- 

76, 99 
Ionized impurities, 136, 195 
Isotropic effective mass, 29-30 

Image charge effect, 234 
Image converters, 166 
Impedance, 224, 267 
Impure semiconductors, 72, 98-102 
Impurity bands, 77 
Impurity levels, 92, 97  

Junction field-effect transistor 
(JFET), 247, 252 

problems on, 277-285 
Junctions, 179; see also p-n junc- 

tions, metal-semiconductor 
junction 
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Junction transistor, 182, 247-251 
problems on, 268 

Kinetic theory of gases, 85 
k p method, 41, 61-64 
k-space, 21-22, 131 

Laser diodes, 262 
Laser irradiation, 177 
Lasers, 233-234 
Lead selenide (PbSe), 2, 164 

radiative recombination, 174 
Lead sulfide (PbS), 2, 164 

radiative recombination, 174 
Lead telluride (PbTe), 2, 164 

radiative recombination, 174 
Level filling, 14-15 
Light 

carrier injection by, 179-183 
effects of, 147-166 

Light-absorption coefficient, 172 
Light emission, 170 
Light holes, 42, 63, 64, 70, 82 
Light-sensitive devices, 157, 230, 232, 

244, 258 
Linear amplification effect, 298 
Linear chain, distorted, 38-39 
Linear combination of atomic orbitals 

(LCAO) method, 31 
band structure of column IV el- 

ements, 54-60 
Liquid-solid segregation, coefficient 

of, 109-110 
Lithography, 258, 260, 262 
Localized states, 91-92 
Lorentz force, 133, 146 
Luminescence, 166 

Magnetoresistance, 133, 135 
in Drude model, 140, 145-146 

Majority carriers, 100, 198, 208, 209- 
211, 241, 248, 271-272 

band gap engineering, 262 
minority carrier injection or ex- 

traction, 183 
Masking, 258-259, 300 
Mass, reduced, 153-154 

Mass action, law of, 212 
Mass transport, 121 
Matrix element, 40, 152 

periodic operator between two 
Bloch states, 49-51 

Matrix element of V between two 
states 1k>  and 1k' >, 8 

Matthiesen's rule, 136 
Maxwell-Boltzmann statistics, 3, 91, 

99, 129, 132 
Mean free path, 108, 123, 134, 172 

diffusion in the Drude model, 
126-127, 129 

gallium arsenide, 139 
Mean occupation number, 113 
Mean relaxation time, 132, 133 
Mean velocity, 123, 140, 142 
Melting zone technique, 109-111 
Memory capacity in computers, 3 
Metal, 15, 38 
Metal deposition in vacuo, 258 
Metal-insulator-semiconductor 

(MIS), 27-30, 286 
Metal-type semiconductor contact, 

junction, 237-243 
Metal-Oxide-Semiconductor Field- 

Effect Transistors 
(MOSFET), 247, 253-258, 
286; see also (MOS) 

minimum time for an elemen- 
tary operation, 261 

Metal-oxide-semiconductor (MOS) 
structure 

applications, 291-292, 298-300 
capacitance, 287-290, 293, 295 
electric field, 287, 288 
electron density, 293 
problems on, 286-300 

Metal-semiconductor contact in equi- 
librium, 234-238 

Metal-type-n semiconductor junc- 
tion, 239, 240, 241, 243 

Metal work function, 234-235, 237, 
241 

Microelectronics, substrates for, 115- 
120 

Microlithography techniques, 298 
Miniaturization, 1, 267 
Minibancis, 87 
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Minority carrier diffusion length, 182 
Minority carriers, 100-101, 179-180, 

198, 207-210, 231 
conservation equation for, 189 
diffusion current of, 184 
injection or extraction of, 181- 

183, 207, 210 
junction transistors, 250 
lifetime of, 158-161 
in n-p-n transistors, 268, 270 
in pin diode, 228 

Mobility of electrons and holes, 115, 
121, 125, 131-133, 136-138, 
209-210 

in junction field-effect transis-
tor, 281 

Molecular beam epitaxy (MBE), 84, 
85; see also Epitaxy 

doping of superlattices, 138 
Momentum, 23-26 

crystal, 23 
true, 23 

Motion, equation of, 25, 47 

n channel, 298 
n-doped semiconductor, 101, 107, 241- 

243 
Nearly free electron model, 4, 7-11 
Non-degenerate semiconductors, 98- 

102, 132, 136, 245-246 
Non-linear optics, 177 
Non-ohmic contacts, 2; see also p-n 

junction, metal-semicon- 
ductor junction 

Non-stationary p-n junctions and their 
high-frequency applications, 
219-229 

n-p-n transistor, 250, 252 
manufacture of, 259, 261 
problems on, 268-276 

n-type semiconductor, 99, 102-104, 
106, 159, 238 

Oblique transitions, 152 
Occupation number, 112-113 
Offset (band), see Band discontinu-

ity, 246 

Ohm's law, 3, 128, 140-141, 142, 280 
One-dimensional crystal, 7, 35-39 
Optical absorption, 147-157, 190 
Optical excitation, 69 
Optical methods, for energy level de-

terminations, 44-46 
Optronics, 175 
Orthogonalized plane waves, 40, 41, 

42 
Oscillator strength, 176 
Oxidation, 258-259 

Partial ionization, 105 
Partially covalent bond, 5 
Particle current, 125 
Particle number conservation, 129, 

179, 195 
Pauli matrices, 41 
Pauli principle, 14-15, 28, 41, 133 
p-channel enhancement-mode 

MOSFET, 298 
p-doped semiconductor, 101-102, 

106-107 
Peierls transition, 39 
Periodicity of the crystal, 8, 18, 20, 

49, 88 
Periodic operator 

action on a Bloch function, 50- 
51 

Periodic potential, 7, 41 
Periodic Table, 2, 17, 73 
Perturbation theory, 8, 62, 64, 151 

first-order, 23 
time-dependent, 167 

Phase space density, 129, 134 
Phonons, 24, 45, 136 
Phosphorus 

diffusion coefficient, 203 
ionization of, 72 
substitution in a silicon lattice, 

71 
Photocathodes, 244 
Photoconductivity, 15, 69, 156-157, 

164-166 
decay of, 121 
electromagnetic radiation detec-

tion, 164 
measurement principle, 188 
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Photoconductivity (cont.) 
problems on, 187-193 
Vidicon tube, 165-166 

Photoelectric effect, 243 
Photoemission, from semiconductors, 

243-245 
Photoexcitation, 81, 121 

problems on, 187-193 
Photogravure, 259, 260, 267 
Photoluminescence, 157 
Photomultipliers, 244 
Photon absorption, 147, 153, 169, 187 
Photon density, 171 
Photon flux, 231 
Photons, 44-46, 65, 67, 147, 165-166 

absorption probability, 170, 172, 
176 

infrared, 262-263 
mean lifetime of, 172 
ultraviolet, 243-245 

Photovoltaic effect, 231-233 
Pinching voltage, 278, 279 
Pinning of Fermi level, 243 
pin diode, 219-229 

chemical potentials, 229 
complex impedance, 222, 224, 

229 
doping, 220, 225-226 
Fermi levels quasi, 229 
practical importance, 221-229 
recombination, 229 
space charge, 220, 225-226 

"Planar" fabrication techniques, 1 
Planar technology, 3, 247, 258-262 
Planck blackbody radiation law, 171 
Plane wave, 7, 11, 40 
p-n junction, 182, 194-217 

applications and asymmetrical 
devices, 230-246 

band profile, 206, 238 
breakdown of, 214-216 
capacitance of a junction, 214- 

215 
current and concentration dis- 

tributions, 205-213 
doping profile, 197 
electrical field, 201, 202, 203, 

231 
in equilibrium, 196-203  

germanium, 210, 211 
high-frequency applications, 

219-229 
illuminated, band profile, 231- 

232 
transient response of, 216-217 

p+-n junction, 203 
p-n-p transistor, 193, 248-249, 250, 

251, 258-259 
Point symmetries, 22 
Poisson equation, 180, 185, 195, 220, 

254 
electrostatic potential, 293 
for pin diode, 225, 226 
and width of band bending, 237 

Polarization voltage, 204, 214 
Potential wells, 122 

digital electronics, 266 
heterojunctions, 246 
MOSFET, 257 

Poynting vector, 148 
Primitive cell, 16, 28, 54, 57 
Pseudo-atom, 72, 73 
Pseudo-wave function, 75-76 
p-type semiconductor, 103, 104, 106- 

107, 161 
Pump laser, 177 
Pure crystals, growth of, 109-111 
Purely covalent semiconductors, 5 

Quantum confinement effect, 177-178 
Quantum efficiency, 231, 232-233, 

244, 258 
electroluminescent diodes, 233, 

234 
Quantum limit, 266 
Quantum numbers (n, k), 12, 15, 18, 

72 
Quantum states, 20, 91, 161 

impure semiconductors, 65-77 
of perfect one-dimensional crys-

talline solid, 7 
of semiconductor, 16-48 
of three-dimensional crystal, 16- 

18 
Quantum well lasers, 234 
Quantum wells, 76, 84-87, 138-139, 

263 
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Quasi-continuum, 8, 19, 176- 
177 

Quasi Fermi level, 210-213, 271- 
273 

Quasi-particles, 66, 116, 117 

Radiation, detection of, 164 
Radiative lifetime, 171 
Radiative recombination, 147, 161- 

163, 171-174, 233 
Radio receivers, automatic frequency 

control of, 214 
Reciprocal space, 19-21, 25, 27-28, 

40, 49 
Recombination, 121, 147-163, 216, 

268 
Auger recombination, 161, 

163 
direct recombination, 161, 163 
junction transistor, 250 
per unit volume and per 

second, 173 
pin diode, 229 
problems on, 187-193 
processes, 161-163 
surface recombination, 163 
time, 209, 219 
by trapping or deep impurities, 

161-162 
Recombination by trapping or deep 

impurities, 161-162 
Recombination center, 162 
Rectifiers, 2, 217-219 
Reduced mass, 153-155 
Reduced zone scheme, 13, 21 
Reflection experiment, 46 
Refractive index, 148, 155, 171- 

173 
Relaxation time, 130, 135 
Resin polymerization, 258 
Resistance (controlled) temperature 

dependence, 107, 252, 258 
Resistivity, 108, 204 

high resistivity substrate for 
microelectronics, 115-120 

Resistivity tensor, 143 
Resonance cyclotron, 48 
Restricted zone scheme, 13, 21  

Reverse bias, 205, 240-241 

Saturated transistors, 275 
Saturation current, 208, 240, 279, 

285 
Saturation regime, 100, 102, 106- 

107, 197 
Schottky diode operation, 230 
Schrödinger equation, 4, 12, 18, 20, 

23, 31, 40, 75 
symmetries, 53 

Screening effect, 116, 118, 219 
Self-induced transparency, 177 
Semiclassical treatment of transport 

processes, 128-135 
Semiconducting clusters for non-lin- 

ear optics, 175-178 
Semiconducting thermometer, 107- 

108 
Semiconducting superlattice, 84-87 
Semiconductors 

amorphous, 88-90 
binding energy, 58-60 
chemical approach, 3-6 
compensated, 102-105 
components sales, 3 
containing impurities, statistics 

of, 98-102 
covalent, 5 
definitions, 1-3 
degenerate, 98, 133, 135 
doped, 158, 194 
electro-optical properties of, 

147, 233-234 
excited states of, 65-77 
history, 2 
homogeneous, 91-111, 258 
impure, quantum states of, 65- 

77 
inhomogeneous, 194-196 
intrinsic, 94-98, 103, 145 
light absorption by, 147-157 
light emission by, 173 
perfect quantum states of, 16- 

48 
photoemission from, 243-245 
pure, excited states of, 65-77 
pure, statistics of, 94-98, 117 
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Semiconductors (cont.) 
semi-insulating, 119-120 
statistics of impure, 98-102 
surface of, 241-243 
transport phenomena in, 121- 

139 
Semiconductor-vacuum interface, 

band profile of, 242 
Semimetal, 60 
Shallow acceptor, 74 
Shallow donor, 73 
Shockley's law, 208, 221, 228, 230, 

266 
Silicon, 2, 5, 29, 76, 101 

amorphous, 88, 89, 90 
band gap of, 28 
band structure by LCAO method, 

54 
binding energy, 73, 74 
crystalline structure of, 18 
cyclotron resonance, 78-83 
degenerate valence bands, 96 
density of states, 95 
doped, 106-107, 137 
doping and mobility, 136-138 
doping with phosphorus, 203 
effective masses of electrons and 

holes, 69, 80 
electron and hole mobility and 

impurities, 136-138, 251, 
281 

growth of pure crystals, 109- 
111 

impurity band formation, 77 
impurity levels, 72, 97 
integration, 258-259 
intrinsic charge carrier concen-

tration, 98 
lithography, 258 
photon absorption production 

of an electron-hole pair, 187 
pin diode, 219-229 
quantum efficiency, 233 
radiative recombination, 174 
real band structure, 41-43 
resistor, 253 
valence band of, 30, 34, 70-71 

Silver, mobility value in, 139 
Slow trapping, 162  

"Small signal" domain, 219 
Solar cells, 231-233 
Source, 252, 277, 298 
Space charge, 181, 185, 246 

calculation of, 200-203 
Space-charge region, 198, 202-205, 

207-208, 210-214, 219, 
235-237, 239-240 

diffusion current, 207 
metal-semiconductor junction, 

240 
in MOS structure, 290, 294-295 
in n-p-n transistors, 268-272, 

274 
pin diode, 220-221, 225, 226 
recombination, 209-210 

Spin-orbit interaction, 41-42 
Spins, 14, 27, 94, 96 

degeneracy, 57, 116 
role of, 41 

Standard band structure, 43 
Stark effect, 263, 265 
Steady state distribution function f,  

131 
Stimulated emission, 177, 234 
Substitutional impurity, 71, 73-74 
Substrates for microelectronics, 115- 

120 
"Superbands" theory, 87 
Superlattices, 76, 84-87 

doping, selective, 138-139, 246 
Surface electron states, 163, 241 
Surface recombination, 163 
Symmetrical junction, 203 
Symmetries 

of band structure, 22, 52 
of crystal potential, 61 

Temperature gradient, 121 
Thallium, 73-74 
Thermal energy, 76 
Thermal excitation, 15, 28, 127, 157- 

159 
Thermionic emission current, 240 
Thermoelectric effects, 2, 133 
Thermoluminescence, 157 
Thermometer, semiconducting, 107- 

108 
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