
UML V1.4 draft February 2001 3-1

UML Notation Guide 3

This guide describes the notation for the visual representation of the Unified Modeling
Language (UML). This notation document contains brief summaries of the semantics
of UML constructs, but the UML Semantics chapter must be consulted for full details.

Contents

Part 1 - Background 3-5
3.1 Introduction 3-5

Part 2 - Diagram Elements 3-7
3.2 Graphs and Their Contents 3-7
3.3 Drawing Paths 3-8
3.4 Invisible Hyperlinks and the Role of Tools 3-8
3.5 Background Information 3-8
3.6 String 3-9
3.7 Name 3-10
3.8 Label 3-11
3.9 Keywords 3-12
3.10 Expression 3-12
3.11 Note 3-14
3.12 Type-Instance Correspondence 3-15

Part 3 - Model Management 3-17
3.13 Package 3-17
3.14 Subsystem 3-20
3.15 Model 3-25

Part 4 - General Extension Mechanisms 3-29
3.16 Constraint and Comment 3-29
3.17 Element Properties 3-31
3.18 Stereotypes 3-33

Part 5 - Static Structure Diagrams 3-37
3.19 Class Diagram 3-37

3-2 UML V1.4 draft February 2001

3 UML Notation Guide

3.20 Object Diagram 3-38
3.21 Classifier 3-38
3.22 Class 3-38
3.23 Name Compartment 3-40
3.24 List Compartment 3-41
3.25 Attribute 3-44
3.26 Operation 3-47
3.27 Nested Class Declarations 3-50
3.28 Type and Implementation Class 3-51
3.29 Interfaces 3-53
3.30 Parameterized Class (Template) 3-55
3.31 Bound Element 3-56
3.32 Utility 3-58
3.33 Metaclass 3-59
3.34 Enumeration 3-59
3.35 Stereotype Declaration 3-59
3.36 Powertype 3-63
3.37 Class Pathnames 3-64
3.38 Accessing or Importing a Package 3-65
3.39 Object 3-67
3.40 Composite Object 3-69
3.41 Association 3-70
3.42 Binary Association 3-70
3.43 Association End 3-74
3.44 Multiplicity 3-77
3.45 Qualifier 3-79
3.46 Association Class 3-80
3.47 N-ary Association 3-82
3.48 Composition 3-84
3.49 Link 3-87
3.50 Generalization 3-88
3.51 Dependency 3-92
3.52 Derived Element 3-95
3.53 InstanceOf 3-96

Part 6 - Use Case Diagrams 3-97
3.54 Use Case Diagram 3-97
3.55 Use Case 3-99
3.56 Actor 3-100
3.57 Use Case Relationships 3-100
3.58 Actor Relationships 3-102

Part 7 - Interaction Diagrams 3-105
3.59 Collaboration 3-105
3.60 Sequence Diagram 3-106
3.61 Object Lifeline 3-112
3.62 Activation 3-114
3.63 Message and Stimulus 3-115
3.64 Transition Times 3-117
3.65 Collaboration Diagram 3-119
3.66 Pattern Structure 3-122
3.67 Collaboration Contents 3-126

UML V1.4 draft February 2001 3-3

3 Contents

3.68 Interactions 3-128
3.69 Collaboration Roles 3-129
3.70 Multiobject 3-132
3.71 Active object 3-133
3.72 Message and Stimulus 3-135
3.73 Creation/Destruction Markers 3-139

Part 9 - Statechart Diagrams 3-141
3.74 Statechart Diagram 3-141
3.75 State 3-142
3.76 Composite States 3-145
3.77 Events 3-147
3.78 Simple Transitions 3-150
3.79 Transitions to and from Concurrent States 3-151
3.80 Transitions to and from Composite States 3-152
3.81 Factored Transition Paths 3-155
3.82 Submachine States 3-157
3.83 Synch States 3-159

Part 10 - Activity Diagrams 3-161
3.84 Activity Diagram 3-161
3.85 Action state 3-163
3.86 Subactivity state 3-164
3.87 Decisions 3-164
3.88 Call States 3-165
3.89 Swimlanes 3-166
3.90 Action-Object Flow Relationships 3-168
3.91 Control Icons 3-170
3.92 Synch States 3-173
3.93 Dynamic Invocation 3-173
3.94 Conditional Forks 3-174

Part 11 - Implementation Diagrams 3-175
3.95 Component Diagram 3-175
3.96 Deployment Diagram 3-177
3.97 Node 3-180
3.98 Component 3-181

Index 3-185

3-4 UML V1.4 draft February 2001

3 UML Notation Guide

UML V1.4 draft February 2001 3-5

3.1 Introduction

3UML Notation
Part 1 - Background

3.1 Introduction

This chapter is arranged in parts according to semantic concepts subdivided by diagram types.
Within each diagram type, model elements that are found on that diagram and their
representation are listed. Note that many model elements are usable in more than one diagram.
An attempt has been made to place each description where it is used the most, but be aware that
the document involves implicit cross-references and that elements may be useful in places other
than the section in which they are described. Be aware also that the document is nonlinear:
there are forward references in it. It is not intended to be a teaching document that can be read
linearly, but a reference document organized by affinity of concept.

Each part of this chapter is divided into sections, roughly corresponding to important model
elements and notational constructs. Note that some of these constructs are used within other
constructs; do not be misled by the flattened structure of the chapter. Within each section the
following subsections may be found:

• Semantics: Brief summary of semantics. For a fuller explanation and discussion of fine
points, see the UML Semantics chapter in this document.

• Notation: Explains the notational representation of the semantic concept (“forward mapping
to notation”).

• Presentation options: Describes various options in presenting the model information, such as
the ability to suppress or filter information, alternate ways of showing things, and
suggestions for alternate ways of presenting information within a tool.

Dynamic tools need the freedom to present information in various ways and the authors do
not want to restrict this excessively. In some sense, we are defining the “canonical notation”
that printed documents show, rather than the “screen notation.” The ability to extend the
notation can lead to unintelligible dialects, so we hope this freedom will be used in intuitive
ways. The authors have not sought to eliminate all the ambiguity that some of these
presentation options may introduce, because the presence of the underlying model in a
dynamic tool serves to easily disambiguate things. Note that a tool is not supposed to pick
just one of the presentation options and implement it. Tools should offer users the options of
selecting among various presentation options, including some that are not described in this
document.

• Style guidelines: Include suggestions for the use of stylistic markers, such as fonts, naming
conventions, arrangement of symbols, etc., that are not explicitly part of the notation, but
that help to make diagrams more readable. These are similar to text indentation rules in C++
or Smalltalk. Not everyone will choose to follow these suggestions, but the use of some
consistent guidelines of your own choosing is recommended in any case.

• Example: Shows samples of the notation. String and code examples are given in the
following font: This is a string sample.

3-6 UML V1.4 draft February 2001

3 UML Notation

• Mapping: Shows the mapping of notation elements to metamodel elements (“reverse
mapping from notation”). This indicates how the notation would be represented as semantic
information. Note that, in general, diagrams are interpreted in a particular context in which
semantic and graphic information is gathered simultaneously. The assumption is that
diagrams are constructed by an editing tool that internalizes the model as the diagram is
constructed. Some semantic constructs have no graphic notation and would be shown to a
user within a tool using a form or table.

UML V1.4 draft February 2001 3-7

3.2 Graphs and Their Contents

3UML Notation
Part 2 - Diagram Elements

3.2 Graphs and Their Contents

Most UML diagrams and some complex symbols are graphs containing nodes connected by
paths. The information is mostly in the topology, not in the size or placement of the symbols
(there are some exceptions, such as a sequence diagram with a metric time axis). There are
three kinds of visual relationships that are important:

1. connection (usually of lines to 2-d shapes),

2. containment (of symbols by 2-d shapes with boundaries), and

3. visual attachment (one symbol being “near” another one on a diagram).

These visual relationships map into connections of nodes in a graph, the parsed form of the
notation.

UML notation is intended to be drawn on 2-dimensional surfaces. Some shapes are 2-
dimensional projections of 3-d shapes (such as cubes), but they are still rendered as icons on a
2-dimensional surface. In the near future, true 3-dimensional layout and navigation may be
possible on desktop machines; however, it is not currently practical.

There are basically four kinds of graphical constructs that are used in UML notation:

1. Icons - An icon is a graphical figure of a fixed size and shape. It does not expand to hold
contents. Icons may appear within area symbols, as terminators on paths or as standalone
symbols that may or may not be connected to paths.

2. 2-d Symbols - Two-dimensional symbols have variable height and width and they can
expand to hold other things, such as lists of strings or other symbols. Many of them are
divided into compartments of similar or different kinds. Paths are connected to two-
dimensional symbols by terminating the path on the boundary of the symbol. Dragging or
deleting a 2-d symbol affects its contents and any paths connected to it.

3. Paths - Sequences of line segments whose endpoints are attached. Conceptually a path is a
single topological entity, although its segments may be manipulated graphically. A segment
may not exist apart from its path. Paths are always attached to other graphic symbols at both
ends (no dangling lines). Paths may have terminators, that is, icons that appear in some
sequence on the end of the path and that qualify the meaning of the path symbol.

4. Strings - Present various kinds of information in an “unparsed” form. UML assumes that
each usage of a string in the notation has a syntax by which it can be parsed into underlying
model information. For example, syntaxes are given for attributes, operations, and
transitions. These syntaxes are subject to extension by tools as a presentation option. Strings
may exist as singular elements of symbols or compartments of symbols, as elements in lists
(in which case the position in the list conveys information), as labels attached to symbols or
paths, or as stand-alone elements on a diagram.

3-8 UML V1.4 draft February 2001

3 UML Notation

3.3 Drawing Paths

A path consists of a series of line segments whose endpoints coincide. The entire path is a
single topological unit. Line segments may be orthogonal lines, oblique lines, or curved lines.
Certain common styles of drawing lines exist: all orthogonal lines, or all straight lines, or
curves only for bevels. The line style can be regarded as a tool restriction on default line input.
When line segments cross, it may be difficult to know which visual piece goes with which other
piece; therefore, a crossing may optionally be shown with a small semicircular jog by one of
the segments to indicate that the paths do not intersect or connect (as in an electrical circuit
diagram).

In some relationships (such as aggregation and generalization) several paths of the same kind
may connect to a single symbol. In some circumstances (described for the particular
relationship) the line segments connected to the symbol can be combined into a single line
segment, so that the path from that symbol branches into several paths in a kind of tree. This is
purely a graphical presentation option; conceptually the individual paths are distinct. This
presentation option may not be used when the modeling information on the segments to be
combined is not identical.

3.4 Invisible Hyperlinks and the Role of Tools

A notation on a piece of paper contains no hidden information. A notation on a computer screen
may contain additional invisible hyperlinks that are not apparent in a static view, but that can be
invoked dynamically to access some other piece of information, either in a graphical view or in
a textual table. Such dynamic links are as much a part of a dynamic notation as the visible
information, but this guide does not prescribe their form. We regard them as a tool
responsibility. This document attempts to define a static notation for the UML, with the
understanding that some useful and interesting information may show up poorly or not at all in
such a view. On the other hand, we do not know enough to specify the behavior of all dynamic
tools, nor do we want to stifle innovation in new forms of dynamic presentation. Eventually
some of the dynamic notations may become well enough established to standardize them, but
we do not feel that we should do so now.

3.5 Background Information

3.5.1 Presentation Options

Each appearance of a symbol for a class on a diagram or on different diagrams may have its
own presentation choices. For example, one symbol for a class may show the attributes and
operations and another symbol for the same class may suppress them. Tools may provide style
sheets attached either to individual symbols or to entire diagrams. The style sheets would
specify the presentation choices. (Style sheets would be applicable to most kinds of symbols,
not just classes.)

Not all modeling information is presented most usefully in a graphical notation. Some
information is best presented in a textual or tabular format. For example, much detailed
programming information is best presented as text lists. The UML does not assume that all of
the information in a model will be expressed as diagrams; some of it may only be available as

UML V1.4 draft February 2001 3-9

3.6 String

tables. This document does not attempt to prescribe the format of such tables or of the forms
that are used to access them, because the underlying information is adequately described in the
UML metamodel and the responsibility for presenting tabular information is a tool
responsibility. It is assumed that hidden links may exist from graphical items to tabular items.

3.6 String

A string is a sequence of characters in some suitable character set used to display information
about the model. Character sets may include non-Roman alphabets and characters.

3.6.1 Semantics

Diagram strings normally map underlying model strings that store or encode information about
the model, although some strings may exist purely on the diagrams. UML assumes that the
underlying character set is sufficient for representing multibyte characters in various human
languages; in particular, the traditional 8-bit ASCII character set is insufficient. It is assumed
that the tool and the computer manipulate and store strings correctly, including escape
conventions for special characters, and this document will assume that arbitrary strings can be
used without further fuss.

3.6.2 Notation

A string is displayed as a text string graphic. Normal printable characters should be displayed
directly. The display of nonprintable characters is unspecified and platform-dependent.
Depending on purpose, a string might be shown as a single-line entity or as a paragraph with
automatic line breaks.

Typeface and font size are graphic markers that are normally independent of the string itself.
They may code for various model properties, some of which are suggested in this document and
some of which are left open for the tool or the user.

3.6.3 Presentation Options

Tools may present long strings in various ways, such as truncation to a fixed size, automatic
wrapping, or insertion of scroll bars. It is assumed that there is a way to obtain the full string
dynamically.

3.6.4 Examples

BankAccount

integrate (f: Function, from: Real, to: Real)

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

3-10 UML V1.4 draft February 2001

3 UML Notation

The purpose of the shuffle operation is nominally to put the cards into a random
configuration. However, to more closely capture the behavior of physical decks,
in which blocks of cards may stick together during several riffles, the operation is
actually simulated by cutting the deck and merging the cards with an imperfect
merge.

3.6.5 Mapping

A graphic string maps into a string within a model element. The mapping depends on context.
In some circumstances, the visual string is parsed into multiple model elements. For example,
an operation signature is parsed into its various fields. Further details are given with each kind
of symbol.

3.7 Name

3.7.1 Semantics

A name is a string that is used to identify a model element uniquely within some scope. A
pathname is used to find a model element starting from the root of the system (or from some
other point). A name is a selector (qualifier) within some scope—the scope is made clear in this
document for each element that can be named.

A pathname is a series of names linked together by a delimiter (such as ‘::’). There are various
kinds of pathnames described in this document, each in its proper place and with its particular
delimiter.

3.7.2 Notation

A name is displayed as a text string graphic. Normally a name is displayed on a single line and
will not contain nonprintable characters. Tools and languages may impose reasonable limits on
the length of strings and the character set they use for names, possibly more restrictive than
those for arbitrary strings, such as comments.

3.7.3 Example

Names:

BankAccount

integrate

controller

abstract

this_is_a_very_long_name_with_underscores

Pathname:

MathPak::Matrices::BandedMatrix

UML V1.4 draft February 2001 3-11

3.8 Label

3.7.4 Mapping

Maps to the name of a model element. The mapping depends on context, as with String. Further
details are given with the particular element.

3.8 Label

A label is a string that is attached to a graphic symbol.

3.8.1 Semantics

A label is a term for a particular use of a string on a diagram. It is purely a notational term.

3.8.2 Notation

A label is a string that is attached graphically to another symbol on a diagram. Visually the
attachment normally is by containment of the string (in a closed region) or by placing the string
near the symbol. Sometimes the string is placed in a definite position (such as below a symbol)
but most of the time the statement is that the string must be “near” the symbol. A tool maintains
an explicit internal graphic linking between a label and a graphic symbol, so that the label drags
with the symbol, but the final appearance of the diagram is a matter of aesthetic judgment and
should be made so that there is no confusion about which symbol a label is attached to.
Although the attachment may not be obvious from a visual inspection of a diagram, the
attachment is clear and unambiguous at the graphic level (and poses no ambiguity in the
semantic mapping).

3.8.3 Presentation Options

A tool may visually show the attachment of a label to another symbol using various aids (such
as a line in a given color, flashing of matched elements, etc.) as a convenience.

3.8.4 Example

Figure 3-1 Attachment by Containment and Attachment by Adjacency

BankAccount

account

3-12 UML V1.4 draft February 2001

3 UML Notation

3.9 Keywords

The number of easily-distinguishable visual symbols is limited. The UML notation makes use
of text keywords in places to distinguish variations on a common theme, including metamodel
subclasses of a base class, stereotypes of a metamodel base class, and groups of list elements.
From the user’s perspective, the metamodel distinction between metamodel subclasses and
stereotypes is often unimportant, although it is important to tool builders and others who
implement the metamodel.

The general notation for the use of a keyword is to enclose it in guillemets («»):

«keyword»

Certain predefined keywords are described in the text of this document. These must be treated
as reserved words in the notation. Others are available for users to employ as stereotype names.
The use of a stereotype name that matches a predefined keyword is ill-formed.

3.10 Expression

3.10.1 Semantics

Various UML constructs require expressions, which are linguistic formulas that yield values
when evaluated at run-time. These include expressions for types, boolean values, and numbers.
UML does not include an explicit linguistic analyzer for expressions. Rather, expressions are
expressed as strings in a particular language. The OCL constraint language is used within the
UML semantic definition and may also be used at the user level; other languages (such as
programming languages) may also be used.

UML avoids specifying the syntax for constructing type expressions because they are so
language-dependent. It is assumed that the name of a class or simple data type will map into a
simple Classifier reference, but the syntax of complicated language-dependent type
expressions, such as C++ function pointers, is the responsibility of the specification language.

3.10.2 Notation

An expression is displayed as a string defined in a particular language. The syntax of the string
is the responsibility of a tool and a linguistic analyzer for the language. The assumption is that
the analyzer can evaluate strings at run-time to yield values of the appropriate type, or can yield
semantic structures to capture the meaning of the expression. For example, a type expression
evaluates to a Classifier reference, and a boolean expression evaluates to a true or false value.
The language itself is known to a modeling tool but is generally implicit on the diagram, under
the assumption that the form of the expression makes its purpose clear.

3.10.3 Examples

BankAccount

BankAccount * (*) (Person*, int)

UML V1.4 draft February 2001 3-13

3.10 Expression

array [1..20] of reference to range (-1.0..1.0) of Real

[i > j and self.size > i]

3.10.4 Mapping

An expression string maps to an Expression element (possibly a particular subclass of
Expression, such as ObjectSetExpression or TimeExpression).

3.10.5 OCL Expressions

UML includes a definition of the OCL language, which is used to define constraints within the
UML metamodel itself. The OCL language may be supported by tools for user-written
expressions as well. Other possible languages include various computer languages as well as
plain text (which cannot be parsed by a tool, of course, and is therefore only for human
information). The OCL language is defined in Chapter 6, Object Constraint Language
Specification.

3.10.6 Selected OCL Notation

Syntax for some common navigational expressions are shown below. These forms can be
chained together. The leftmost element must be an expression for an object or a set of objects.
The expressions are meant to work on sets of values when applicable.

3.10.7 Examples

flight.pilot.training_hours > flight.plane.minimum_hours

company.employees−>select (title = “Manager” and self.reports−>size > 10)

item ‘.’ selector the selector is the name of an attribute in the item or the
name of the target end of a link attached to the item. The
result is the value of the attribute or the related object(s).
The result is a value or a set of values depending on the
multiplicities of the item and the association.

item ‘.’ selector ‘[‘ qualifier-
value ‘]’

the selector designates a qualified association that
qualifies the item. The qualifier-value is a value for the
qualifier attribute. The result is the related object selected
by the qualifier. Note that this syntax is applicable to
array indexing as a form of qualification.

set ‘->’ ‘select’ ‘(‘ boolean-
expression ‘)’

the boolean-expression is written in terms of objects
within the set. The result is the subset of objects in the set
for which the boolean expression is true.

3-14 UML V1.4 draft February 2001

3 UML Notation

3.11 Note

A note is a graphical symbol containing textual information (possibly including embedded
images). It is a notation for rendering various kinds of textual information from the metamodel,
such as constraints, comments, method bodies, and tagged values.

3.11.1 Semantics

A note is a notational item. It shows textual information within some semantic element.

3.11.2 Notation

A note is shown as a rectangle with a “bent corner” in the upper right corner. It contains
arbitrary text. It appears on a particular diagram and may be attached to zero or more modeling
elements by dashed lines.

3.11.3 Presentation Options

A note may have a stereotype.

A note with the keyword “constraint” or a more specific stereotype of constraint (such as the
code body for a method) designates a constraint that is part of the model and not just part of a
diagram view. Such a note is the view of a model element (the constraint).

3.11.4 Example

See also Figure 3-17 on page 30 for a note symbol containing a constraint.

Figure 3-2 Note

3.11.5 Mapping

A note may represent the textual information in several possible metamodel constructs; it must
be created in context that is known to a tool, and the tool must maintain the mapping. The
string in the note maps to the body of the corresponding modeling element. A note may
represent:

• a constraint,

• a tagged value,

• the body of a method, or

This model was built
by Alan Wright after
meeting with the
mission planning team.

UML V1.4 draft February 2001 3-15

3.12 Type-Instance Correspondence

• other string values within modeling elements.

It may also represent a comment attached directly to a diagram element.

3.12 Type-Instance Correspondence

A major purpose of modeling is to prepare generic descriptions that describe many specific
items. This is often known as the type-instance dichotomy. Many or most of the modeling
concepts in UML have this dual character, usually modeled by two paired modeling elements,
one represents the generic descriptor and the other the individual items that it describes.
Examples of such pairs in UML include: Class-Object, Association-Link, Parameter-Value,
Operation-Invocation, and so on.

Although diagrams for type-like elements and instance-like elements are not exactly the same,
they share many similarities. Therefore, it is convenient to choose notation for each type-
instance pair of elements such that the correspondence is visually apparent immediately. There
are a limited number of ways to do this, each with advantages and disadvantages. In UML, the
type-instance distinction is shown by employing the same geometrical symbol for each pair of
elements and by underlining the name string (including type name, if present) of an instance
element. This visual distinction is generally easily apparent without being overpowering even
when an entire diagram contains instance elements.

Figure 3-3 Classes and Objects

A tool is free to substitute a different graphic marker for instance elements at the user’s option,
such as color, fill patterns, or so on.

Roles (in collaborations) are somewhat between types and instances. Like instances, they
identify distinct occurrences of a single classifier. Like types, they describe a reusable element
that can have many distinct instances. A role is a distinguishable use of a classifier, but one that
is still part of a general description (a collaboration) that can be used to create many instances.
A run-time object may correspond to zero or more classes and to zero or more roles. The
notation for a role permits indication of its base clasifiers. The notation for an instance permits
specification of its classifiers, its roles, or both.

Point

x: Real
y: Real

rotate (angle: Real)
scale (factor: Real)

p1: Point

x = 3.14
y = 2.718

:Point

x = 1
y = 1.414

3-16 UML V1.4 draft February 2001

3 UML Notation

A role is indicated by a name, colon, and type, not underlined and part of a collaboration. An
instance is indicated by an optional name, optional slash followed by list of roles, colon, and
list of types.

Figure 3-4 Roles and objects

p1/lead: Point

x = 3.14
y = 2.718

p2/lead,tail:Point

x = 1
y = 1.414

lead: Point

tail: Point

roles objects

UML V1.4 draft February 2001 3-17

3.13 Package

3UML Notation
Part 3 - Model Management

3.13 Package

3.13.1 Semantics

A package is a grouping of model elements. Packages themselves may be nested within other
packages. A package may contain subordinate packages as well as other kinds of model
elements. All kinds of UML model elements can be organized into packages.

Note that packages own model elements and are the basis for configuration control, storage, and
access control. Each element can be directly owned by a single package, so the package
hierarchy is a strict tree. However, packages can reference other packages, modeled by using
one of the stereotypes «import» and «access» of Permission dependency, so the usage network
is a graph. Other kinds of dependencies between packages usually imply that one or more
dependencies among the elements exists.

3.13.2 Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached to the left side
of the top of the large rectangle. It is the common folder icon.

The contents of the package may be shown within the large rectangle. Contents may also be
shown by branching lines to contained elements, drawn outside of the package (see example
below). A plus sign (+) within a circle is drawn at the end attached to the container.

• If the contents of the package are not shown within the large rectangle, then the name of the
package may be placed within the large rectangle.

• If the contents of the package are shown within the large rectangle, then the name of the
package may be placed within the tab.

A keyword string may be placed above the package name. The predefined stereotypes facade,
framework, stub, and topLevel are notated within guillemets.

A list of properties may be placed in braces after or below the package name. Example:
{abstract}. See Section 3.17, “Element Properties,” on page 3-31 for details of property syntax.

The visibility of a package element outside the package may be indicated by preceding the
name of the element by a visibility symbol (‘+’ for public, ‘-’ for private, ‘#’ for protected, ‘~’
for package).

Relationships may be drawn between package symbols to show relationships between some of
the elements in the packages. An import or access relationship between two packages is drawn
as a dashed arrow with open arrowhead, labeled with the string «import» or «access»,
respectively.

3-18 UML V1.4 draft February 2001

3 UML Notation

Elements from imported or accessed packages may be shown outside the package symbol. As
(public) elements in imported packages are added to the client namespace, they may
alternatively be drawn inside the package symbol.

3.13.3 Presentation Options

A tool may show visibility by a graphic marker, such as color or font.

A tool may also show visibility by selectively displaying those elements that meet a given
visibility level, e.g. all of the public elements only.

A diagram showing a package with contents must not necessarily show all its contents; it may
show a subset of the contained elements according to some criterion.

3.13.4 Style Guidelines

It is expected that packages with large contents will be shown as simple icons with names, in
which the contents may be dynamically accessed by “zooming” to a detailed view.

UML V1.4 draft February 2001 3-19

3.13 Package

3.13.5 Example

Figure 3-5 Packages and their access and import relationships.

Figure 3-6 Some of the contents of the Editor package shown in a tree structure.

Controller

Diagram
Elements

Windowing
System

Domain
Elements

Graphics
Core

Microsoft
Windows

Motif

WindowsCore

MotifCore

Editor

«import»

«import»

«import»

«import»

«import»

«import»

«access»

«access»

Editor

Controller
Diagram
Elements

Domain
Elements

3-20 UML V1.4 draft February 2001

3 UML Notation

3.13.6 Mapping

A package symbol maps into a Package element. The name on the package symbol is the name
of the Package element. If there is a string above the package name other than «model» or
«subsystem», then it maps into a Package element with the corresponding stereotype. If there is
a string «model» or «subsystem», then it maps into a Model or Subsystem element,
respectively.

A relationship icon drawn from the package symbol boundary to another package symbol maps
into a corresponding relationship to the other package element.

A symbol directly contained within the package symbol (i.e., not contained within another
symbol) maps into a model element either owned or referenced by the package element. The
alias used for a referenced element is often its pathname, in which case it is directly visible
from the diagram that the element is not owned by the package. Only the reference is owned by
the current package. Alternatively, a symbol shown outside the package symbol, attached to one
of the symbols within the package symbol, denotes a referenced model element.

Symbols connected to the package symbol by branching lines with a plus sign at the end
attached to the package symbol, map to elements in the package.

3.14 Subsystem

3.14.1 Semantics

Whereas a package is a generic mechanism for organizing model elements, a subsystem
represents a behavioral unit in the physical system, and hence in the model. A subsystem offers
interfaces and has operations, and its contents are partitioned into specification and realization
elements. The specification of the subsystem consists of operations on the subsystem, together
with specification elements such as use cases, state machines, etc.

Apart from defining a namespace, a subsystem serves as a specification unit for the behavior of
its contained model elements. A subsystem may or may not be instantiable.

3.14.2 Notation

A subsystem is notated basically in the same way as a package, with the addition of a fork
symbol placed in the upper right corner of the large rectangle. The name of the subsystem
(together with optional keyword, stereotype, etc) is placed within the large rectangle.
Optionally, especially if contents of the subsystem is shown within the large rectangle, the
subsystem name and the fork are placed within the tab (the small rectangle).

An instantiable subsystem has the string «instantiable» above its name.

The large rectangle has three compartments, one for operations and one for each of the subsets
specification elements and realization elements. These are usually shown by dividing the
rectangle by a vertical line, and then dividing the area to the left of this line into two
compartments by a horizontal line. The operations are shown in the upper left compartment, the
specification elements in the compartment below, and the realization elements in the right
compartment. The latter two compartments are labeled ‘Specification Elements’ and

UML V1.4 draft February 2001 3-21

3.14 Subsystem

‘Realization Elements’, respectively, to avoid potential ambiguity. The operations compartment
is unlabeled. This is the general pattern for subsystem notation, although there are many
different ways to customize it in a particular diagram, see Presentation Options and Example
below.

Figure 3-7 The general pattern for subsystem notation, with three compartments.

The mapping from the realization part to the specification part, i.e. to operations and
specification elements, is drawn using dashed arrows with closed, hollow arrowheads. For
collaborations, the mapping may also be expressed textually.

When a subsystem is shown together with other, peer elements in a diagram, it is often shown
without contents, in which case there are no compartments in the large rectangle. See Example
below.

3.14.3 Presentation Options

The fork symbol may be replaced by the keyword «subsystem» placed above the name of the
subsystem.

The compartments may be rearranged within the subsystem symbol.

One or more of the compartments may be collapsed or suppressed. In cases where more than
one diagram is used to show all information about a particular subsystem, each diagram shows
a subset of the subsystem’s features and/or contents. Hence, compartments not relevant in a
particular diagram are suppressed.

All contained elements in a subsystem may be shown together in one, non-labeled
compartment, i.e. no visual differentiating between specification elements and realization
elements is done.

Tools may provide alternative ways to differentiate specification elements from realization
elements, such as different colors, using the keyword «specification» for specification elements,
etc.

Specification Elements

Realization Elements

3-22 UML V1.4 draft February 2001

3 UML Notation

As with packages, the contents of a subsystem may be shown using tree notation. Distinction
between specification and realization elements may then be done e.g. by having two separate,
labeled branches, or by showing the category separately for each element in the tree as
suggested above.

3.14.4 Example

Figure 3-8 An overview diagram showing subsystems with interfaces and their dependencies.

Figure 3-9 All contained elements of a subsystem shown together without division into compartments.
Here, the subsystem offers operation1(...) although this is not explicitly shown.

In Figure 3-9 no visual separation between specification and realization elements is made. The
following three figures are schematic examples where the specification/realization distinction is
explicit. Together these figures constitute an example of how the basic notation for subsystem
can be used to show different “views” of a subsystem in different diagrams, together giving the
whole picture of the subsystem.

SS1

SS2 SS3

operation1(...) : Type1

«Interface»

UML V1.4 draft February 2001 3-23

3.14 Subsystem

Figure 3-10 The specification part of a subsystem; compartment for realization part is suppressed.
Implicit from the diagram is that the operation4(...) is either an operation of a specification
element (UseCase1 or UseCase2) or of the subsystem itself. Furthermore, in cases where no
operations are used for the specification but only contained specification elements, there is
no operations compartment, and vice versa.

Figure 3-11 The realization part of a subsystem; compartments for specification part (i.e. operations and
specification elements) are suppressed. Alternatively, collaborations could be shown in a
separate diagram.

operation2(...) : Type2

operation3(...) : Type3

UseCase1

UseCase2

Specification Elements

operation1(...) : Type1

«Interface»

operation4(...) : Type4

«Interface»

operation1(...) : Type1

Realization Elements

3-24 UML V1.4 draft February 2001

3 UML Notation

Figure 3-12 The mapping between specification part and realization part shown using all three
compartments, but only those realization elements with relevance to the mapping are
shown. The figure also shows examples of different ways to express the mapping.

Figure 3-13 A component modeled using a subsystem and classes stereotyped «focalClass» or
«auxiliaryClass», respectively.

Realization Elements

operation1(...) : Type1

operation2(...) : Type2

representedOperation:
operation2

Specification Elements

operation3(...) : Type3

operation4(...) : Type4

«Interface»

UseCase1

UseCase2

Realization ElementsSpecification Elements

create(...)

«Interface»

ShoppingCartHome

findByPrimaryKey(...)
...

getItemCount(...)

«Interface»

ShoppingCart

setItemCount(...)
...getTotal(...)
setTotal(...)
...

«focalClass»

ShoppingCartImpl

«auxiliaryClass»

ContextObject
«auxiliaryClass»

RemoteObject

«auxiliaryClass»

HomeObject

Context

ShoppingCartHome

Shoppingcart
«call»

«call»

«call»

ShoppingCart

«auxiliaryClass»
ShoppingCart

ArtStoreClient

«call»

«call»

DBbroker

UML V1.4 draft February 2001 3-25

3.15 Model

3.14.5 Mapping

A subsystem symbol maps into a Subsystem with the given name. The mapping is analogous to
that of package symbols, with the following addition:

A symbol within a compartment of the large rectangle labeled ‘Specification Elements’ or
‘Realization Elements’ is mapped to a specification or realization element of the subsystem,
respectively. An operation signature string within a non-labeled compartment maps to an
operation of the subsystem. Note that a compartment may coincide with the whole rectangle.

A symbol, that is not an operation signature string, within a non-labeled compartment maps to
an element contained in the subsystem.

A dashed arrow with closed, hollow arrowhead from a symbol denoting a realization element to
a symbol denoting a specification element or an operation maps to a «realize» relationship
between the corresponding elements.

3.15 Model

3.15.1 Semantics

A model captures a view of a physical system. Hence, it is an abstraction of the physical system
with a certain purpose, e.g. to describe behavioral aspects of the physical system to a certain
category of stakeholders. A model contains all the model elements needed to represent a
physical system completely according to the purpose of this particular model. The model
elements in a model are organized into a package/subsystem hierarchy, where the top-most
package/subsystem represents the boundary of the physical system.

Different models of the same physical system show different aspects of the system. The pre-
defined stereotype «systemModel» can be applied to a model containing the entire set of
models for a physical system.

Relationships between elements in different models have no semantic impact on the contents of
the models because of the self-containment of models. However, they are useful for tracing
refinements and for keeping track of requirements between models.

Relationships between models express refinement, import, etc.

3.15.2 Notation

A model is notated using the ordinary package symbol with a small triangle in the upper right
corner of the large rectangle. Optionally, especially if contents of the model is shown within the
large rectangle, the triangle may be drawn to the right of the model name in the tab.

Relationships between models as well as relationships between elements in different models are
shown using the notation for the given kind of relationship. In particular, trace dependencies are
notated with a dashed line, with an optional open arrowhead, and the keyword «trace».

3-26 UML V1.4 draft February 2001

3 UML Notation

3.15.3 Presentation Options

A model may be notated as a package, using the ordinary package symbol with the keyword
«model» placed above the name of the model.

3.15.4 Example

Figure 3-14 Three views of a physical system, each represented by a model.

Figure 3-15 A «systemModel» containing an analysis model and a design model.

Figure 3-16 Two examples of containment hierarchies with models and subsystems shown using
branching lines. The left hierarchy is based on Model, whereas the right one is based on
Subsystem.

AnalysisUse Case Design
 Model Model Model

 «systemModel»

 Analysis Design
 Model Model

UML V1.4 draft February 2001 3-27

3.15 Model

3.15.5 Mapping

A model symbol maps to a Model with the given name. The mapping is analogous to that of
package symbols.

3-28 UML V1.4 draft February 2001

3 UML Notation

UML V1.4 draft February 2001 3-29

3.16 Constraint and Comment

3UML Notation
Part 4 - General Extension Mechanisms

The elements in this section are general purpose mechanisms that may be applied to any
modeling element. The semantics of a particular use depends on a convention of the user or an
interpretation by a particular constraint language or programming language; therefore, they
constitute an extensibility device for UML.

3.16 Constraint and Comment

3.16.1 Semantics

A constraint is a semantic relationship among model elements that specifies conditions and
propositions that must be maintained as true; otherwise, the system described by the model is
invalid (with consequences that are outside the scope of UML). Certain kinds of constraints
(such as an association “xor” constraint) are predefined in UML, others may be user-defined. A
user-defined constraint is described in words in a given language, whose syntax and
interpretation is a tool responsibility. A constraint represents semantic information attached to a
model element, not just to a view of it.

A comment is a text string (including references to human-readable documents) attached
directly to a model element. A comment can attach arbitrary textual information to any model
element of presumed general importance but it has no semantic force. Comments may be used
for explaining the reasons for decisions, among other things.

3.16.2 Notation

A constraint is shown as a text string in braces ({ }). There is an expectation that individual
tools may provide one or more languages in which formal constraints may be written. One
predefined language for writing constraints is OCL (see Chapter 6, Object Constraint Language
Specification); otherwise, the constraint may be written in natural language. Each constraint is
written in a specific language, although the language is not generally displayed on the diagram
(the tool must keep track of it, however).

For an element whose notation is a text string (such as an attribute, etc.), the constraint string
may follow the element text string in braces.

For a list of elements whose notation is a list of text strings (such as the attributes within a
class), a constraint string may appear as an element in the list. The constraint applies to all
succeeding elements of the list until another constraint string list element or the end of the list.
A constraint attached to an individual list element does not supersede the general constraint, but
may augment or modify individual constraints within the constraint string.

For a single graphical symbol (such as a class or an association path), the constraint string may
be placed near the symbol, preferably near the name of the symbol, if any.

3-30 UML V1.4 draft February 2001

3 UML Notation

For two graphical symbols (such as two classes or two associations), the constraint is shown as
a dashed arrow from one element to the other element labeled by the constraint string (in
braces). The direction of the arrow is relevant information within the constraint. The client (tail
of the arrow) is mapped to the first position and the supplier (head of the arrow) is mapped to
the second position in the constraint.

For three or more graphical symbols, the constraint string is placed in a note symbol and
attached to each of the symbols by a dashed line. This notation may also be used for the other
cases. For three or more paths of the same kind (such as generalization paths or association
paths), the constraint may be attached to a dashed line crossing all of the paths.

A comment is shown as a text string (not enclosed in braces) within a note icon. Syntax for
including comments within other elements (such as expressions or constraints) are not specified
by UML but may be provided by a tool as part of the expression syntax for a particular
language.

3.16.3 Example

Figure 3-17 Constraints and comment

3.16.4 Mapping

A constraint string is a string enclosed in braces ({ }).

The constraint string maps into the body expression in a Constraint element. The mapping
depends on the language of the expression, which is known to a tool but generally not displayed
on a diagram.

Member-of

Chair-of

{subset}Person Committee

Person Company

boss

{Person.employer =
Person.boss.employer}

employerworker employee

0..1

∗ ∗

∗

∗

∗ 0..1

1

Represents
an incorporated entity.

UML V1.4 draft February 2001 3-31

3.17 Element Properties

A constraint string following a list entry maps into a Constraint attached to the element
corresponding to the list entry.

A constraint string represented as a stand-alone list element maps into a separate Constraint
attached to each succeeding model element corresponding to subsequent list entries (until
superseded by another constraint or property string).

A constraint string placed near a graphical symbol must be attached to the symbol by a hidden
link by a tool operating in context. The tool must maintain the graphical linkage implicitly. The
constraint string maps into a Constraint attached to the element corresponding to the symbol.

A constraint string attached to a dashed arrow maps into a constraint attached to the two
elements corresponding to the symbols connected by the arrow.

A string enclosed in braces in a note symbol maps into a Constraint attached to the elements
corresponding to the symbols connected to the note symbol by dashed lines.

A string (not enclosed in braces) in a note attached to the symbol for an element maps into a
Comment attached to the corresponding element.

3.17 Element Properties

Many kinds of elements have detailed properties that do not have a visual notation. In addition,
users can define new element properties using the tagged value mechanism.

A string may be used to display properties attached to a model element. This includes
properties represented by attributes in the metamodel as well as both predefined and user-
defined tagged values.

3.17.1 Semantics

Note that we use property in a general sense to mean any value attached to a model element,
including attributes, associations, and tagged values. In this sense it can include indirectly
reachable values that can be found starting at a given element. Some kinds of properties would
have syntax within expressions (not specified by UML) but no explicit UML notation.

A tagged value is a keyword-value pair that may be attached to any kind of model element
(including diagram elements as well as semantic model elements). The keyword is called a tag.
Each tag represents a particular kind of property applicable to one or many kinds of model
elements. Both the tag and the value are encoded as strings. Tagged values are an extensibility
mechanism of UML permitting arbitrary information to be attached to models. It is expected
that most model editors will provide basic facilities for defining, displaying, and searching
tagged values as strings but will not otherwise use them to extend the UML semantics. It is
expected, however, that back-end tools such as code generators, report writers, and the like will
read tagged values to guide their semantics in flexible ways.

3.17.2 Notation

A property (either a metamodel attribute or a tagged value) is displayed as a comma-delimited
sequence of property specifications all inside a pair of braces ({ }).

3-32 UML V1.4 draft February 2001

3 UML Notation

A property specification has the form

name = value

where name is the name of a property (metamodel attribute or arbitrary tag) and value is an
arbitrary string that denotes its value. If the type of the property is Boolean, then the default
value is true if the value is omitted. That is, to specify a value of true you may include just the
keyword. To specify a value of false, you omit the name completely. Properties of other types
require explicit values. The syntax for displaying the value is a tool responsibility in cases
where the underlying model value is not a string or a number.

Note that property strings may be used to display built-in attributes as well as tagged values.

Boolean properties frequently have the form isName, where name is the name of some
condition that may be true or false. In these cases, the form “name” may usually appear by
itself, without a value, to mean “isName = true”. For example, {abstract} is the same as
{isAbstract = true}.

Tagged values can sometimes refer to other model elements (see “TaggedValue” on page 2-84).
In that case, the usual tagged value format is used except that the value is the name of the
model element that is referenced. Alternatively, it may be represented graphically using a
«taggedValue» relationship, which uses the dependency notation. The direction of the
dependency arrow is towards the referenced element. These two cases are illustrated in
Figure 3-18

Figure 3-18 Alternative notations for tagged values as references

«stereotype»

Scheduler
«stereotype»

M anager
{ «taggedValue» jobScheduler

: Scheduler [1] }

«m etaClass»

Class

«stereotype»

Scheduler

«stereotype»

M anager

«m etaClass»

Class

jobSchedu ler
[1]

«stereotype»«stereotype»

«taggedValue»

«stereotype»«stereotype»

UML V1.4 draft February 2001 3-33

3.18 Stereotypes

3.17.3 Presentation Options

A tool may present property specifications on separate lines with or without the enclosing
braces, provided they are marked appropriately to distinguish them from other information. For
example, properties for a class might be listed under the class name in a distinctive typeface,
such as italics or a different font family.

3.17.4 Style Guidelines

It is legal to use strings to specify properties that have graphical notations; however, such usage
may be confusing and should be used with care.

3.17.5 Example

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

{ abstract }

3.17.6 Mapping

Each term within a string maps to either a built-in attribute of a model element or a tagged
value (predefined or user-defined). A tool must enforce the correspondence to built-in
attributes.

3.18 Stereotypes

3.18.1 Semantics

A stereotype is, in effect, a new class of metamodel element that is introduced at modeling
time. It represents a subclass of an existing metamodel element with the same form (attributes
and relationships) but with a different intent. Generally a stereotype represents a usage
distinction. A stereotyped element may have additional constraints on it from the base
metamodel class. It may also have required tagged values that add information needed by
elements with the stereotype. It is expected that code generators and other tools will treat
stereotyped elements specially. Stereotypes represent one of the built-in extensibility
mechanisms of UML.

3.18.2 Notation

The general presentation of a stereotype is to use the symbol for the metamodel base element
but to place a keyword string above the name of the element (if any). The keyword string
(Section 3.9, “Keywords,” on page 3-12) is the name of the stereotype within matched
guillemets, which are the quotation mark symbols used in French and certain other languages
(for example, «foo»).

3-34 UML V1.4 draft February 2001

3 UML Notation

Note – A guillemet looks like a double angle-bracket, but it is a single character in most
extended fonts. Most computers have a Character Map utility. Double angle-brackets may be
used as a substitute by the typographically challenged.

The keyword string is generally placed above or in front of the name of the model element
being described. If multiple stereotypes are defined for the same model element, they are placed
vertically one below the other. The keyword string may also be used as an element in a list, in
which case it applies to subsequent list elements until another stereotype string replaces it, or an
empty stereotype string («») nullifies it. Note that a stereotype name should not be identical to
a predefined keyword applicable to the same element type.

To permit limited graphical extension of the UML notation as well, a graphic icon or a graphic
marker (such as texture or color) can be associated with a stereotype. The UML does not
specify the form of the graphic specification, but many bitmap and stroked formats exist (and
their portability is a difficult problem). The icon can be used in one of two ways:

1. It may be used instead of, or in addition to, the stereotype keyword string as part of the
symbol for the base model element that the stereotype is based on. For example, in a class
rectangle it is placed in the upper right corner of the name compartment. In this form, the
normal contents of the item can be seen.

2. The entire base model element symbol may be “collapsed” into an icon containing the
element name or with the name above or below the icon. Other information contained by the
base model element symbol is suppressed. More general forms of icon specification and
substitution are conceivable, but we leave these to the ingenuity of tool builders, with the
warning that excessive use of extensibility capabilities may lead to loss of portability among
tools.

If multiple stereotypes are defined, the graphical icons or markers are omitted.

UML avoids the use of graphic markers, such as color, that present challenges for certain
persons (the color blind) and for important kinds of equipment (such as printers, copiers, and
fax machines). None of the UML symbols require the use of such graphic markers. Users may
use graphic markers freely in their personal work for their own purposes (such as for
highlighting within a tool) but should be aware of their limitations for interchange and be
prepared to use the canonical forms when necessary.

The classification hierarchy of the stereotypes themselves can be displayed on a class diagram,
as described in Section 3.35, “Stereotype Declaration,” on page 3-59. This capability is not
required by many modelers who must use existing stereotypes but not define new kinds of
stereotypes.

UML V1.4 draft February 2001 3-35

3.18 Stereotypes

3.18.3 Examples

Figure 3-19 illustrates various notational forms of the stereotype notation. Note that the top four
shapes are alternatives of each other. The next one shows how a dependency can be stereotyped
and the bottom example illustrates a model element with multiple sterotypes.

Figure 3-19 Varieties of Stereotype Notation

3.18.4 Mapping

The use of a stereotype keyword maps into the stereotype relationship between the Element
corresponding to the symbol containing the name and the Stereotype of the given name. The
use of a stereotype icon within a symbol maps into the stereotype relationship between the
Element corresponding to the symbol containing the icon and the Stereotype represented by the
symbol. A tool must establish the connection when the symbol is created and there is no
requirement that an icon represent uniquely one stereotype. The use of a stereotype icon,
instead of a symbol, must be created in a context in which a tool implies a corresponding model
element and a Stereotype represented by the icon. The element and the stereotype have the
stereotype relationship.

PenTracker
«control»

PenTracker

«control»

PenTracker

PenTracker

JobManager Scheduler
«call»

location: Point

enable (Mode)

location: Point

enable (Mode)

location: Point

enable (Mode)

Lock

«control»

reqQueue: Queue

«semaphore»

3-36 UML V1.4 draft February 2001

3 UML Notation

UML V1.4 draft February 2001 3-37

3.19 Class Diagram

3UML Notation
Part 5 - Static Structure Diagrams

Class diagrams show the static structure of the model, in particular, the things that exist (such
as classes and types), their internal structure, and their relationships to other things. Class
diagrams do not show temporal information, although they may contain reified occurrences of
things that have or things that describe temporal behavior. An object diagram shows instances
compatible with a particular class diagram.

This section discusses classes and their variations, including templates and instantiated classes,
and the relationships between classes (association and generalization) and the contents of
classes (attributes and operations).

3.19 Class Diagram

A class diagram is a graph of Classifier elements connected by their various static relationships.
Note that a “class” diagram may also contain interfaces, packages, relationships, and even
instances, such as objects and links. Perhaps a better name would be “static structural diagram”
but “class diagram” is shorter and well established.

3.19.1 Semantics

A class diagram is a graphic view of the static structural model. The individual class diagrams
do not represent divisions in the underlying model.

3.19.2 Notation

A class diagram is a collection of static declarative model elements, such as classes, interfaces,
and their relationships, connected as a graph to each other and to their contents. Class diagrams
may be organized into packages either with their underlying models or as separate packages
that build upon the underlying model packages.

3.19.3 Mapping

A class diagram does not necessarily match a single semantic entity. A package within the static
structural model may be represented by one or more class diagrams. The division of the
presentation into separate diagrams is for graphical convenience and does not imply a
partitioning of the model itself. The contents of a diagram map into elements in the static
semantic model. If a diagram is part of a package, then its contents map into elements in the
same package (including possible references to elements accessed or imported from other
packages).

3-38 UML V1.4 draft February 2001

3 UML Notation

3.20 Object Diagram

An object diagram is a graph of instances, including objects and data values. A static object
diagram is an instance of a class diagram; it shows a snapshot of the detailed state of a system
at a point in time. The use of object diagrams is fairly limited, mainly to show examples of data
structures.

Tools need not support a separate format for object diagrams. Class diagrams can contain
objects, so a class diagram with objects and no classes is an “object diagram.” The phrase is
useful, however, to characterize a particular usage achievable in various ways.

3.21 Classifier

Classifier is the metamodel superclass of Class, DataType, and Interface. All of these have
similar syntax and are therefore all notated using the rectangle symbol with keywords used as
necessary. Because classes are most common in diagrams, a rectangle without a keyword
represents a class, and the other subclasses of Classifier are indicated with keywords. In the
sections that follow, the discussion will focus on Class, but most of the notation applies to the
other element kinds as semantically appropriate and as described later under their own sections.

3.22 Class

A class is the descriptor for a set of objects with similar structure, behavior, and relationships.
The model is concerned with describing the intension of the class, that is, the rules that define
it. The run-time execution provides its extension, that is, its instances. UML provides notation
for declaring classes and specifying their properties, as well as using classes in various ways.
Some modeling elements that are similar in form to classes (such as interfaces, signals, or
utilities) are notated using keywords on class symbols; some of these are separate metamodel
classes and some are stereotypes of Class. Classes are declared in class diagrams and used in
most other diagrams. UML provides a graphical notation for declaring and using classes, as
well as a textual notation for referencing classes within the descriptions of other model
elements.

3.22.1 Semantics

A class represents a concept within the system being modeled. Classes have data structure and
behavior and relationships to other elements.

The name of a class has scope within the package in which it is declared and the name must be
unique (among class names) within its package.

3.22.2 Basic Notation

A class is drawn as a solid-outline rectangle with three compartments separated by horizontal
lines. The top name compartment holds the class name and other general properties of the class
(including stereotype); the middle list compartment holds a list of attributes; the bottom list
compartment holds a list of operations.

UML V1.4 draft February 2001 3-39

3.22 Class

See “Name Compartment” on page 3-40 and “List Compartment” on page 3-41 for more
details.

References

By default a class shown within a package is assumed to be defined within that package. To
show a reference to a class defined in another package, use the syntax

Package-name::Class-name

as the name string in the name compartment. A full pathname can be specified by chaining
together package names separated by double colons (::).

3.22.3 Presentation Options

Either or both of the attribute and operation compartments may be suppressed. A separator line
is not drawn for a missing compartment. If a compartment is suppressed, no inference can be
drawn about the presence or absence of elements in it. Compartment names can be used to
remove ambiguity, if necessary (“List Compartment” on page 3-41).

Additional compartments may be supplied as a tool extension to show other predefined or user-
defined model properties (for example, to show business rules, responsibilities, variations,
events handled, exceptions raised, and so on). Most compartments are simply lists of strings.
More complicated formats are possible, but UML does not specify such formats; they are a tool
responsibility. Appearance of each compartment should preferably be implicit based on its
contents. Compartment names may be used, if needed.

Tools may provide other ways to show class references and to distinguish them from class
declarations.

A class symbol with a stereotype icon may be “collapsed” to show just the stereotype icon, with
the name of the class either inside the class or below the icon. Other contents of the class are
suppressed.

3.22.4 Style Guidelines

• Center class name in boldface.

• Center keyword (including stereotype names) in plain face within guillemets above class
name.

• For those languages that distinguish between uppercase and lowercase characters, capitalize
class names (i.e, begin them with an uppercase character).

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Show the names of abstract classes or the signatures of abstract operations in italics.

As a tool extension, boldface may be used for marking special list elements (for example, to
designate candidate keys in a database design). This might encode some design property
modeled as a tagged value, for example.

3-40 UML V1.4 draft February 2001

3 UML Notation

Show full attributes and operations when needed and suppress them in other contexts or
references.

3.22.5 Example

Figure 3-20 Class Notation: Details Suppressed, Analysis-level Details, Implementation-level Details

3.22.6 Mapping

A class symbol maps into a Class element within the package that owns the diagram. The name
compartment contents map into the class name and into properties of the class (built-in
attributes or tagged values). The attribute compartment maps into a list of Attributes of the
Class. The operation compartment maps into a list of Operations of the Class.

The property string {location=name} maps into an implementationLocation association to a
Component. The name is the name of the containing Component.

3.23 Name Compartment

3.23.1 Notation

The name compartment displays the name of the class and other properties in up to three
sections:

An optional stereotype keyword may be placed above the class name within guillemets, and/or
a stereotype icon may be placed in the upper right corner of the compartment. The stereotype
name must not match a predefined keyword.

Window

display ()

size: Area
visibility: Boolean

hide ()

Window

Window

+default-size: Rectangle
#maximum-size: Rectangle

+create ()

+display ()

+size: Area = (100,100)
#visibility: Boolean = true

+hide ()

-xptr: XWindow*

-attachXWindow(xwin:Xwindow*)

{abstract,
author=Joe,
status=tested}

UML V1.4 draft February 2001 3-41

3.24 List Compartment

The name of the class appears next. If the class is abstract, this can be indicated by italicizing
its name (for those languages that support italicization) or by placing the keyword abstract in a
property list below or after the name (e.g., Invoice {abstract}). Note that any explicit
specification of generalization status takes precedence over the name font.

A list of strings denoting properties (metamodel attributes or tagged values) may be placed in
braces below the class name. The list may show class-level attributes for which there is no
UML notation and it may also show tagged values. The presence of a keyword for a Boolean
type without a value implies the value true. For example, a leaf class shows the property
“{leaf}”.

The stereotype and property list are optional.

Figure 3-21 Name Compartment

3.23.2 Mapping

The contents of the name compartment map into the name, stereotype, and various properties of
the Class represented by the class symbol.

3.24 List Compartment

3.24.1 Notation

A list compartment holds a list of strings, each of which is the encoded representation of a
feature, such as an attribute or operation. The strings are presented one to a line with overflow
to be handled in a tool-dependent manner. In addition to lists of attributes or operations,
optional lists can show other kinds of predefined or user-defined values, such as
responsibilities, rules, or modification histories. UML does not define these optional lists. The
manipulation of user-defined lists is tool-dependent.

The items in the list are ordered and the order may be modified by the user. The order of the
elements is meaningful information and must be accessible within tools (for example, it may be
used by a code generator in generating a list of declarations). The list elements may be
presented in a different order to achieve some other purpose (for example, they may be sorted
in some way). Even if the list is sorted, the items maintain their original order in the underlying
model. The ordering information is merely suppressed in the view.

PenTracker

«controller»

{ leaf, author=”Mary Jones”}

3-42 UML V1.4 draft February 2001

3 UML Notation

An ellipsis (. . .) as the final element of a list or the final element of a delimited section of a
list indicates that additional elements in the model exist that meet the selection condition, but
that are not shown in that list. Such elements may appear in a different view of the list.

Group properties

A property string may be shown as a element of the list, in which case it applies to all of the
succeeding list elements until another property string appears as a list element. This is
equivalent to attaching the property string to each of the list elements individually. The property
string does not designate a model element. Examples of this usage include indicating a
stereotype and specifying visibility. Keyword strings may also be used in a similar way to
qualify subsequent list elements.

Compartment name

A compartment may display a name to indicate which kind of compartment it is. The name is
displayed in a distinctive font centered at the top of the compartment. This capability is useful
if some compartments are omitted or if additional user-defined compartments are added. For a
Class, the predefined compartments are named attributes and operations. An example of a
user-defined compartment might be requirements. The name compartment in a class must
always be present; therefore, it does not require or permit a compartment name.

3.24.2 Presentation Options

A tool may present the list elements in a sorted order, in which case the inherent ordering of the
elements is not visible. A sort is based on some internal property and does not indicate
additional model information. Example sort rules include:

• alphabetical order,

• ordering by stereotype (such as constructors, destructors, then ordinary methods),

• ordering by visibility (public, then package, then protected, then private), etc.

The elements in the list may be filtered according to some selection rule. The specification of
selection rules is a tool responsibility. The absence of items from a filtered list indicates that no
elements meet the filter criterion, but no inference can be drawn about the presence or absence
of elements that do not meet the criterion. However, the ellipsis notation is available to show
that invisible elements exist. It is a tool responsibility whether and how to indicate the presence
of either local or global filtering, although a stand-alone diagram should have some indication
of such filtering if it is to be understandable.

If a compartment is suppressed, no inference can be drawn about the presence or absence of its
elements. An empty compartment indicates that no elements meet the selection filter (if any).

Note that attributes may also be shown by composition (see Figure 3-45 on page 3-86).

UML V1.4 draft February 2001 3-43

3.24 List Compartment

3.24.3 Example

Figure 3-22 Stereotype Keyword Applied to Groups of List Elements

Figure 3-23 Compartments with Names

«constructor»
Rectangle(p1:Point, p2:Point)
«query»
area (): Real
aspect (): Real

«update»
move (delta: Point)
scale (ratio: Real)
. . .

. . .

Rectangle

p1:Point
p2:Point

bill no-shows

Reservation

operations

guarantee()
cancel ()
change (newDate: Date)

responsibilities

match to available rooms

exceptions

invalid credit card

3-44 UML V1.4 draft February 2001

3 UML Notation

3.24.4 Mapping

The entries in a list compartment map into a list of ModelElements, one for each list entry. The
ordering of the ModelElements matches the list compartment entries (unless the list
compartment is sorted in some way). In this case, no implication about the ordering of the
Elements can be made (the ordering can be seen by turning off sorting). However, a list entry
string that is a stereotype indication (within guillemets) or a property indication (within braces)
does not map into a separate ModelElement. Instead, the corresponding property applies to each
subsequent ModelElement until the appearance of a different stand-alone stereotype or property
indicator. The property specifications are conceptually duplicated for each list Element,
although a tool might maintain an internal mechanism to store or modify them together. The
presence of an ellipsis (“...”) as a list entry implies that the semantic model contains at least one
Element with corresponding properties that is not visible in the list compartment.

3.25 Attribute

Strings in the attribute compartment are used to show attributes in classes. A similar syntax is
used to specify qualifiers, template parameters, operation parameters, and so on (some of these
omit certain terms).

3.25.1 Semantics

Note that an attribute is semantically equivalent to a composition association; however, the
intent and usage is normally different.

The type of an attribute is a Classifier.

3.25.2 Notation

An attribute is shown as a text string that can be parsed into the various properties of an
attribute model element. The default syntax is:

visibility name : type-expression [multiplicity ordering] = initial-value { property-
string }

• Where visibility is one of:

+ public visibility

protected visibility

- private visibility

~ .package visibility

The visibility marker may be suppressed. The absence of a visibility marker
indicates that the visibility is not shown (not that it is undefined or public). A tool
should assign visibilities to new attributes even if the visibility is not shown. The
visibility marker is a shorthand for a full visibility property specification string.

UML V1.4 draft February 2001 3-45

3.25 Attribute

Visibility may also be specified by keywords (public, protected, private, package).
This form is used particularly when it is used as an inline list element that applies
to an entire block of attributes.

Additional kinds of visibility might be defined for certain programming languages,
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by a
tool-specific convention.

• Where name is an identifier string that represents the name of the attribute.

• Where [multiplicity ordering] shows the multiplicity and the ordering of the attribute
(Section 3.44, “Multiplicity,” on page 3-77). The term may be omitted, in which case the
multiplicity is 1..1 (exactly one).

• The ordering property is meaningful if the multiplicity upper bound is greater than one. It
may be one of:

• (absent) — the values are unordered

• unordered — the values are unordered

• ordered — the values are ordered

• Where type-expression is either

• if it is a simple word, the name of a classifier, or

• a language-dependent string that maps into a ProgrammingLanguageDataType.

• Where initial-value is a language-dependent expression for the initial value of a newly
created object. The initial value is optional (the equal sign is also omitted). An explicit
constructor for a new object may augment or modify the default initial value.

• Where property-string indicates property values that apply to the element. The property
string is optional (the braces are omitted if no properties are specified).

A class-scope attribute is shown by underlining the name and type expression string; otherwise,
the attribute is instance-scope.

class-scope-attribute

The notation justification is that a class-scope attribute is an instance value in the executing
system, just as an object is an instance value, so both may be designated by underlining. An
instance-scope attribute is not underlined; that is the default.

There is no symbol for whether an attribute is changeable (the default is changeable). A
nonchangeable attribute is specified with the property “{frozen}”.

In the absence of a multiplicity indicator, an attribute holds exactly 1 value. Multiplicity may be
indicated by placing a multiplicity indicator in brackets after the classifier name, for example:

colors : Color [3]
points : Point [2..* ordered]

Note that a multiplicity of 0..1 provides for the possibility of null values: the absence of a
value, as opposed to a particular value from the range. For example, the following declaration
permits a distinction between the null value and the empty string:

3-46 UML V1.4 draft February 2001

3 UML Notation

name : String [0..1]

A stereotype keyword in guillemets precedes the entire attribute string, including any visibility
indicators. A property list in braces follows the rest of the attribute string.

3.25.3 Presentation Options

The type expression may be suppressed (but it has a value in the model).

The initial value may be suppressed, and it may be absent from the model. It is a tool
responsibility whether and how to show this distinction.

A tool may show the visibility indication in a different way, such as by using a special icon or
by sorting the elements by group.

A tool may show the individual fields of an attribute as columns rather than a continuous string.

If the type-expression string is not a word, then it is assumed to be expressed in the syntax of a
particular programming language, such as C++ or Smalltalk. This form is assumed if the string
is not a word. Specific tagged properties may be included in the string. The programming
language must be known from the general context of the diagram or a tool supporting it. In this
case, the type-expression maps into a ProgrammingLanguageDataType whose exrpession
attribute specifies the language name and the string representation of the data type in that
language.

Particular attributes within a list may be suppressed (see “List Compartment” on page 3-41).

3.25.4 Style Guidelines

Attribute names typically begin with a lowercase letter. Attribute names are in plain face.

3.25.5 Example

+size: Area = (100,100)
#visibility: Boolean = invisible
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindowPtr

3.25.6 Mapping

A string entry within the attribute compartment maps into an Attribute within the Class
corresponding to the class symbol. The properties of the attribute map in accord with the
preceding descriptions. If the visibility is absent, then no conclusion can be drawn about the
Attribute visibilities unless a filter is in effect (e.g., only public attributes shown). Likewise, if
the type or initial value are omitted. The omission of an underline always indicates an instance-
scope attribute. The omission of multiplicity denotes a multiplicity of 1.

UML V1.4 draft February 2001 3-47

3.26 Operation

Any properties specified in braces following the attribute string map into properties on the
Attribute. In addition, any properties specified on a previous stand-alone property specification
entry apply to the current Attribute (and to others).

3.26 Operation

Entries in the operation compartment are strings that show operations defined on classes. and
methods supplied by classes.

3.26.1 Semantics

An operation is a service that an instance of the class may be requested to perform. It has a
name and a list of arguments.

3.26.2 Notation

An operation is shown as a text string that can be parsed into the various properties of an
operation model element. The default syntax is:

visibility name (parameter-list) : return-type-expression { property-string }

• Where visibility is one of:

+ public visibility

protected visibility

- private visibility

~ package visibility

The visibility marker may be suppressed. The absence of a visibility marker
indicates that the visibility is not shown (not that it is undefined or public). The
visibility marker is a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private, package).
This form is used particularly when it is used as an inline list element that applies
to an entire block of operations.

Additional kinds of visibility might be defined for certain programming languages,
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by a
tool-specific convention.

• Where name is an identifier string.

• Where return-type-expression is a language-dependent specification of the implementation
type or types of the value returned by the operation. The the colon and the return-type are
omitted if the operation does not return a value (as for C++ void). A list of expressions may
be supplied to indicate multiple return values.

• Where parameter-list is a comma-separated list of formal parameters, each specified using
the syntax:

3-48 UML V1.4 draft February 2001

3 UML Notation

kind name : type-expression = default-value

• where kind is in, out, or inout, with the default in if absent.

• where name is the name of a formal parameter.

• where type-expression is the (language-dependent) specification of an
implementation type.

• where default-value is an optional value expression for the parameter, expressed
in and subject to the limitations of the eventual target language.

• Where property-string indicates property values that apply to the element. The property
string is optional (the braces are omitted if no properties are specified).

A class-scope operation is shown by underlining the name and type expression string. An
instance-scope operation is the default and is not marked.

An operation that does not modify the system state (one that has no side effects) is specified by
the property “{query}”; otherwise, the operation may alter the system state, although there is no
guarantee that it will do so.

The concurrency semantics of an operation are specified by a property string of the form
“{concurrency = name}, where name is one of the names: sequential, guarded, concurrent. As
a shorthand, one of the names may be used by itself in a property string to indicate the
corresponding concurrency value. In the absence of a specification, the concurrency semantics
are unspecified and must therefore be assumed to be sequential in the worst case.

The top-most appearance of an operation signature declares the operation on the class (and
inherited by all of its descendents). If this class does not implement the operation (i.e., does not
supply a method), then the operation may be marked as “{abstract}” or the operation signature
may be italicized to indicate that it is abstract. A subordinate appearance of the operation
signature without the {abstract} property indicates that the subordinate class implements a
method on the operation.

The actual text or algorithm of a method may be indicated in a note attached to the operation
entry.

If the objects of a class accept and respond to a given signal, an operation entry with the
keyword «signal» indicates that the class accepts the given signal. The syntax is identical to
that of an operation. The response of the object to the reception of the signal is shown with a
state machine. Among other uses, this notation can show the response of objects of a class to
error conditions and exceptions, which should be modeled as signals.

The specification of operation behavior is given as a note attached to the operation. The text of
the specification should be enclosed in braces if it is a formal specification in some language (a
semantic Constraint); otherwise, it should be plain text if it is just a natural-language
description of the behavior (a Comment).

A stereotype keyword in guillemets precedes the entire operation string, including any visibility
indicators. A property list in braces follows the entire operation string.

3.26.3 Presentation Options

The argument list and return type may be suppressed (together, not separately).

UML V1.4 draft February 2001 3-49

3.26 Operation

A tool may show the visibility indication in a different way, such as by using a special icon or
by sorting the elements by group.

The syntax of the operation signature string can be that of a particular programming language,
such as C++ or Smalltalk. Specific tagged properties may be included in the string.

A method body may be shown in a note attached to the operation entry within the compartment
(Figure 3-24 on page 49). The line is drawn to the string within the compartment. This
approach is useful mainly for showing small method bodies.

Figure 3-24 Note showing method body

3.26.4 Style Guidelines

Operation names typically begin with a lowercase letter. Operation names are in plain face. An
abstract operation may be shown in italics.

3.26.5 Example

Figure 3-25 Operation List with a Variety of Operations

report ()

BurglarAlarm

isTripped: Boolean = false

PoliceStation

1 station

*

{ if isTripped
then station.alert(self)}

alert (Alarm)

+create ()

+display (): Location
+hide ()

-attachXWindow(xwin:Xwindow*)

3-50 UML V1.4 draft February 2001

3 UML Notation

3.26.6 Mapping

A string entry within the operation compartment maps into an Operation or a Method within the
Class corresponding to the class symbol. The properties of the operation map in accordance
with the preceding descriptions. See the description of “Attribute” on page 3-44 for additional
details. Parameters without keywords map into Parameters with kind=in, otherwise according to
the keyword. Return value names may into Parameters with kind=return.

If the entry has the keyword «signal», then it maps into a Reception on the Class instead.

The topmost appearance of an operation specification in a class hierarchy maps into an
Operation definition in the corresponding Class or Interface. Interfaces do not have methods. In
a Class, each appearance of an operation entry maps into the presence of a Method in the
corresponding Class, unless the operation entry contains the {abstract} property (including use
of conventions such as italics for abstract operations). If an abstract operation entry appears
within a hierarchy in which the same operation has already been defined in an ancestor, it has
no effect but is not an error unless the declarations are inconsistent.

Note that the operation string entry does not specify the body of a method.

3.27 Nested Class Declarations

3.27.1 Semantics

A class declared within another class belongs to the namespace of the other class and may only
be used within it. This construct is primarily used for implementation reasons and for
information hiding.

3.27.2 Notation

A declaring class and a class in its namespace may be connected by a line, with an “anchor”
icon on the end connected to a declaring class (Figure 3-26 on page 51). An anchor icon is a
cross inside a circle.The contents of the package are declared within the class and belong to its
namespace.

3.27.3 Mapping

If Class B is attached to Class A by an “anchor” line with the “anchor” symbol on Class A, then
Class B is declared within the Namespace of Class A. That is, the relationship between Class A
and Class B is the namespace-ownedElement association.

UML V1.4 draft February 2001 3-51

3.28 Type and Implementation Class

Figure 3-26 Nested class declaration

3.28 Type and Implementation Class

3.28.1 Semantics

Classes can be stereotyped as Types or Implementation Classes (although they can be left
undifferentiated as well). A Type is used to specify a domain of objects together with
operations applicable to the objects without defining the physical implementation of those
objects. A Type may not include any methods, but it may provide behavioral specifications for
its operations. It may also have attributes and associations that are defined solely for the
purpose of specifying the behavior of the type’s operations.

An Implementation Class defines the physical data structure (for attributes and associations)
and methods of an object as implemented in traditional languages (C++, Smalltalk, etc.). An
Implementation Class is said to realize a Type if it provides all of the operations defined for the
Type with the same behavior as specified for the Type’s operations. An Implementation Class
may realize a number of different Types.

3.28.2 Notation

An undifferentiated class is shown with no stereotype. A type is shown with the stereotype
“«type»”. An implementation class is shown with the stereotype “«implementationClass»”. A
tool is also free to allow a default setting for an entire diagram, in which case all of the class
symbols without explicit stereotype indications map into Classes with the default stereotype.
This might be useful for a model that is close to the programming level.

The implementation of a type by a class is modeled as the Realization relationship, shown as a
dashed line with a solid triangular arrowhead (a dashed “generalization arrow”). This symbol
implies the realizing class provides at least all the operations of the Type, with conforming
behavior, but it does not imply inheritance of structure (attributes or associations). The

DeclaringClass

NestedClass

3-52 UML V1.4 draft February 2001

3 UML Notation

generalization hierarchy of a set of classes frequently parallels the generalization hierarchy of a
set of types that they realize, but this is not mandatory, as long as each class provides the
operations of the types that it realizes.

3.28.3 Example

Figure 3-27 Notation for Types and Implementation Classes

3.28.4 Mapping

A class symbol with a stereotype (including “type” and “implementationClass”) maps into a
Class with the corresponding stereotype. A class symbol without a stereotype maps into a Class
with the default stereotype for the diagram (if a default has been defined by the modeler or
tool); otherwise, it maps into a Class with no stereotype. The realization arrow between two
symbols maps into an Abstraction relationship, with the «realize» stereotype, between the
Classifiers corresponding to the two symbols. Realization is usually used between a class and
an interface, but may also be used between any two classifiers to show conformance of
behavior.

Set
«type»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

* elements

Object
«type»

HashTableSet
«implementationClass»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

1 body

HashTable
«implementationClass»

setTableSize(Integer)

UML V1.4 draft February 2001 3-53

3.29 Interfaces

3.29 Interfaces

3.29.1 Semantics

An interface is a specifier for the externally-visible operations of a class, component, or other
classifier (including subsystems) without specification of internal structure. Each interface often
specifies only a limited part of the behavior of an actual class. Interfaces do not have
implementation. They lack attributes, states, or associations; they only have operations. (An
interface may be the target of a one-way association, however, but it may not have an
association that it can navigate.) Interfaces may have generalization relationships. An interface
is formally equivalent to an abstract class with no attributes and no methods and only abstract
operations, but Interface is a peer of Class within the UML metamodel (both are Classifiers).

3.29.2 Notation

An interface is a Classifier and may be shown using the full rectangle symbol with
compartments and the keyword «interface». A list of operations supported by the interface is
placed in the operation compartment. The attribute compartment may be omitted because it is
always empty.

An interface may also be displayed as a small circle with the name of the interface placed
below the symbol. The circle may be attached by a solid line to classifiers that support it. This
indicates that the class provides all of the operations in the interface type (and possibly more).
The operations provided are not shown on the circle notation; use the full rectangle symbol to
show the list of operations. A class that uses or requires the operations supplied by the interface
may be attached to the circle by a dashed arrow pointing to the circle. The dashed arrow implies
that the class requires no more than the operations specified in the interface; the client class is
not required to actually use all of the interface operations.

The Realization relationship from a classifier to an interface that it supports is shown by a
dashed line with a solid triangular arrowhead (a “dashed generalization symbol”). This is the
same notation used to indicate realization of a type by an implementation class. In fact, this
symbol can be used between any two classifier symbols, with the meaning that the client (the
one at the tail of the arrow) supports at least all of the operations defined in the supplier (the
one at the head of the arrow), but with no necessity to support any of the data structure of the
supplier (attributes and associations).

3-54 UML V1.4 draft February 2001

3 UML Notation

3.29.3 Example

Figure 3-28 Shorthand Version of Interface Notation

Figure 3-29 Longhand Version of Interface Notation

3.29.4 Mapping

A class rectangle symbol with stereotype «interface», or a circle on a class diagram, maps into
an Interface element with the name given by the symbol. The operation list of a rectangle
symbol maps into the list of Operation elements of the Interface.

A dashed generalization arrow from a class symbol to an interface symbol, or a solid line
connecting a class symbol and an interface circle, maps into a an Abstraction dependency with
the «realize» stereotype between the corresponding Classfier and Interface elements. A
dependency arrow from a class symbol to an interface symbol maps into a Usage dependency
between the corresponding Classifier and Interface.

+create()
+login(UserName, Passwd)
+find(StoreId)
+getPOStotals(POSid)
+updateStoreTotals(Id,Sales)
+get(Item)

-storeId: Integer
-POSlist: List

Store

POSterminal

POSterminalHome

<<use>>

StoreHome

Store

POSterminal

+create()
+login(UserName, Passwd)
+find(StoreId)
+getPOStotals(POSid)
+updateStoreTotals(Id,Sales)
+get(Item)

-storeId: Integer
-POSlist: List

Store

POSterminal

POSterminalHome

<<use>>

StoreHome

POSterminal

+getPOStotals(POSid)
+updateStoreTotals(Id,Sales)
+get(Item)

<<interface>>
Store

UML V1.4 draft February 2001 3-55

3.30 Parameterized Class (Template)

3.30 Parameterized Class (Template)

3.30.1 Semantics

A template is the descriptor for a class with one or more unbound formal parameters. It defines
a family of classes, each class specified by binding the parameters to actual values. Typically,
the parameters represent attribute types; however, they can also represent integers, other types,
or even operations. Attributes and operations within the template are defined in terms of the
formal parameters so they too become bound when the template itself is bound to actual values.

A template is not a directly usable class because it has unbound parameters. Its parameters must
be bound to actual values to create a bound form that is a class. Only a class can be a superclass
or the target of an association (a one-way association from the template to another class is
permissible, however). A template may be a subclass of an ordinary class. This implies that all
classes formed by binding it are subclasses of the given superclass.

Parameterization can be applied to other ModelElements, such as Collaborations or even entire
Packages. The description given here for classes applies to other kinds of modeling elements in
the obvious way.

3.30.2 Notation

A small dashed rectangle is superimposed on the upper right-hand corner of the rectangle for
the class (or to the symbol for another modeling element). The dashed rectangle contains a
parameter list of formal parameters for the class and their implementation types. The list must
not be empty, although it might be suppressed in the presentation. The name, attributes, and
operations of the parameterized class appear as normal in the class rectangle; however, they
may also include occurrences of the formal parameters. Occurrences of the formal parameters
can also occur inside of a context for the class, for example, to show a related class identified
by one of the parameters.

3.30.3 Presentation Options

The parameter list may be comma-separated or it may be one per line.

Parameters are restricted attributes, shown as strings with the syntax

name : type = default-value

• Where name is an identifier for the parameter with scope inside the template.

• Where type is a string designating a Classifier for the parameter. If it is a simple word, it
must be the name of a Classifier. Otherwise it is a programming-language dependent string
that maps into a ProgrammingLanguageDataType according to the programming language (if
any) for the diagram context or specified in a support tool.

• Where default-value is a string designating an Expression for a default value that is used
when the corresponding argument is omitted in a Binding. The equal sign and expression
may be omitted, in which case there is no default value and the argument must be supplied
in a Binding.

3-56 UML V1.4 draft February 2001

3 UML Notation

If the type name is omitted, the parameter type is assumed to be Classifier. The value supplied
for an argument in a Binding must be the name of a Classifier (including a class or a data type).
Other parameter types (such as Integer) must be explicitly shown. The value supplied for an
argument in a Binding must be an actual instance value of the given kind.

3.30.4 Example

Figure 3-30 Template Notation with Use of Parameter as a Reference

3.30.5 Mapping

The addition of the template dashed box to a symbol causes the addition of the parameter
names in the list as ModelElements within the Namespace of the ModelElement corresponding
to the base symbol (or to the Namespace containing a ModelElement that is not itself a
Namespace). Each of the parameter ModelElements has the templateParameter association to
the base ModelElement.

3.31 Bound Element

3.31.1 Semantics

A template cannot be used directly in an ordinary relationship such as generalization or
association, because it has a free parameter that is not meaningful outside of a scope that
declares the parameter. To be used, a template’s parameters must be bound to actual values. The
actual value for each parameter is an expression defined within the scope of use. If the
referencing scope is itself a template, then the parameters of the referencing template can be

FArray

FArray<Point,3>

T,k:Integer

«bind» (Address,24)

T
k..k

AddressList

UML V1.4 draft February 2001 3-57

3.31 Bound Element

used as actual values in binding the referenced template. The parameter names in the two
templates cannot be assumed to correspond because they have no scope outside of their
respective templates.

3.31.2 Notation

A bound element is indicated by a text syntax in the name string of an element, as follows:

Template-name ‘<‘ value-list ‘>’

• Where value-list is a comma-delimited non-empty list of value expressions.

• Where Template-name is identical to the name of a template.

For example, VArray<Point,3> designates a class described by the template Varray.

The number and type of values must match the number and type of the template parameters for
the template of the given name.

The bound element name may be used anywhere that an element name of the parameterized
kind could be used. For example, a bound class name could be used within a class symbol on a
class diagram, as an attribute type, or as part of an operation signature.

Note that a bound element is fully specified by its template; therefore, its content may not be
extended. Declaration of new attributes or operations for classes is not permitted, for example,
but a bound class could be subclassed and the subclass extended in the usual way.

The relationship between the bound element and its template alternatively may be shown by a
Dependency relationship with the keyword «bind». The arguments are shown in parentheses
after the keyword. In this case, the bound form may be given a name distinct from the template.

3.31.3 Style Guidelines

The attribute and operation compartments are normally suppressed within a bound class,
because they must not be modified in a bound template.

3.31.4 Example

See Figure 3-30 on page 3-56.

3.31.5 Mapping

The use of the bound element syntax for the name of a symbol maps into a Binding dependency
between the dependent ModelElement (such as Class) corresponding to the bound element
symbol and the provider ModelElement (again, such as Class) whose name matches the name
part of the bound element without the arguments. If the name does not match a template
element or if the number of arguments in the bound element does not match the number of
parameters in the template, then the model is ill formed. Each argument position in the bound
element maps into a TemplateArgument bearing a binding link to the Binding dependency and

3-58 UML V1.4 draft February 2001

3 UML Notation

a modelElement link to the ModelElement that is implicitly substituted for the template
parameter in the corresponding position in the template definition. An explicitly drawn «bind»
dependency symbol mays to a Binding dependency with arguments as described above.

3.32 Utility

A utility is a grouping of global variables and procedures in the form of a class declaration.
This is not a fundamental construct, but a programming convenience. The attributes and
operations of the utility become global variables and procedures. A utility is modeled as a
stereotype of a classifier.

3.32.1 Semantics

The instance-scope attributes and operations of a utility are interpreted as global attributes and
operations. It is inappropriate for a utility to declare class-scope attributes and operations
because the instance-scope members are already interpreted as being at class scope.

3.32.2 Notation

A utility is shown as the stereotype «utility» of Class. It may have both attributes and
operations, all of which are treated as global attributes and operations.

3.32.3 Example

Figure 3-31 Notation for Utility

3.32.4 Mapping

This is not a special symbol. It simply maps into a Class element with the «utility» stereotype.

MathPak
«utility»

sin (Angle): Real

sqrt (Real): Real
random(): Real

cos (Angle): Real

UML V1.4 draft February 2001 3-59

3.33 Metaclass

3.33 Metaclass

3.33.1 Semantics

A metaclass is a class whose instances are classes.

3.33.2 Notation

A metaclass is shown as the stereotype «metaclass» of Class.

3.33.3 Mapping

This is not a special symbol. It simply maps into a Class element with the «metaclass»
stereotype.

3.34 Enumeration

3.34.1 Semantics

An Enumeration is a user-defined data type whose instances are a set of user-specified named
enumeration literals. The literals have a relative order but no algebra is defined on them.

3.34.2 Notation

An Enumeration is shown using the Classifier notation (a rectangle) with the keyword
«enumeration». The name of the Enumeration is placed in the upper compartment. An ordered
list of enumeration literals may be placed, one to a line, in the middle compartment. Operations
defined on the literals may be placed in the lower compartment. The lower and middle
compartments may be suppressed.

3.34.3 Mapping

Maps into an Enumeration with the given list of enumeration literals.

3.35 Stereotype Declaration

3.35.1 Semantics

A Stereotype is a user-defined metaelement whose structure matches an existing UML
metaelement (its “base class”). Because it is user defined, a stereotype declaration is an element
that appears at the “model” layer of the UML four-layer metamodeling hierarchy although it
conceptually belongs in the layer below, the metamodel layer.

3-60 UML V1.4 draft February 2001

3 UML Notation

3.35.2 Notation

Because stereotypes span two different metamodeling layers, a special notation is required to
clearly indicate the crossover between the two layers. Specifically, it is necessary to show how
a model-level element (the stereotype) relates to its metaelement (its UML base class). This is
denoted using a special stereotype of Dependency called «stereotype» as shown in Figure 3-32.

The Stereotype itself is shown using the Classifier notation (a rectangle) with the keyword
«stereotype» (Figure 3-32). The name of the Stereotype is placed in the upper compartment.
Constraints on elements described by the stereotype may be placed in a named compartment
called Constraints. Required tags may be placed in a named compartment called Tags.
Individual items (tags) in the list of are defined according to the following format:

tagDefinitionName : String [multiplicity]

where string can be either a string matching the name of a data type representing the type of
the values of the tag, or it is a reference to a metaclass or a stereotype. In the latter case, the
string has the form:

«metaclass» metaclassName

or

«stereotype» stereotypeName

where metaclassName is the name of the referenced metaclass and is the name of the
references stereotype. The multiplicity element is optional and conforms to standard rules for
specifying multiplicities. In case of a range specification, a lower bound of zero indicates an
optional tag.

UML V1.4 draft February 2001 3-61

3.35 Stereotype Declaration

Figure 3-32 Notational form for declaring a stereotype

In the example diagram in Figure 3-32, the stereotype Persistent is a stereotype of the UML
metaelement Class. TableName is an optional tag whose type is a model type called String
while SQLFile is a reference to an instance of Component in the model.

An icon can be defined for the stereotype, but its graphical definition is outside the scope of
UML and must be handled by an editing tool.

Class
«metaclass»

«stereotype»

Constraints
{TableName should not be
longer than 8 characters}

«stereotype»
Persistent

Tags

SQLFile : «metaclass» Component
TableName : String [0..1]

3-62 UML V1.4 draft February 2001

3 UML Notation

An alternative and usually more compact way of specifying stereotypes and tags using tables is
shown in Figure 3-33 and Figure 3-34, respectively.

Figure 3-33 Tabular form for specifiying stereotypes

Figure 3-34 Tabular form for specifying tags

Each row of the stereotype specification table in in Figure 3-33 defines one stereotype and each
row in the tag specification table in Figure 3-34 contains one tag definition.

The columns of the stereotype specification table are defined as follows:

• Stereotype - the name of the stereotype

• Base Class - the UML metamodel element that serves as the base for the stereotype

• Parent - the direct parent of the stereotype being defined (NB: if one exists, otherwise the
symbol “N/A” is used)

• Tags - a list of all tags of the tagged values that may be associated with this stereotype (or
N/A if none are defined)

• Constraints - a list of constraints associated with the stereotype

• Description - an informal description with possible explanatory comments

The columns of the tag specification table are defined as follows:

• Tag - the name of the tag

• Stereotype - the name of the stereotype which owns this tag, or “N/A” if it is a stand alone
tag

• Type - the name of the type of the values that can be associated with the tag

• Multiplicity - the maximum number of values that may be associated with one tag instance

• Description - an informal description with possible explanatory comments

Stereotype Base Class Parent Tags Constraints Description

Architectural
Element

Generalizeable
Element

N/A N/A N/A A generic stereotype
that is the parent of all
other stereotypes used
for architectural model-
ing

Capsule Class Architectural
Element

isDynamic self.isActive = true Indicates a class that is
used to model the
structural components
of an architecture spec-
ification

Tag Stereotype Type Multiplicity Description

isDynamic Capsule UML::Datatypes::Boolean 1 Used to identify if the associated cap-
sule class may be created and
destroyed dynamically

UML V1.4 draft February 2001 3-63

3.36 Powertype

In the case of both the stereotype specification table and the tag specification table, columns
that are not applicable may be omitted.

In the example stereotype specification table of Figure 3-34, two related stereotypes are
defined. The first row declares the stereotype ArchitecturalElement, which is a stereotype of
GeneralizeableElement, while the second row declares the stereotype Capsule, which is a
specialization of the ArchitecturalElement stereotype, but which applies only to instances of
Class (which is a subclass of GeneralizeableElement in the metamodel).

The equivalent declaration as the one table in Figure 3-34, less the constraints and the informal
descriptions, is shown graphically in Figure 3-35.

Figure 3-35 Graphical equivalent of the stereotype declarations shown in Figure 3-34

3.35.3 Mapping

A classifier with a stereotype «metaclass» maps into a UML metaelement and a classifier with
a stereotype «stereotype» maps into a Stereotype. The «stereotype» dependency maps to the
baseClass attribute definition of the stereotype. The constraints listed in the Constraints
compartment map to stereotype constraints and the items in the Tags compartment map to the
defined tags of the stereotype. Each item in the Tags list maps to a TagDefinition. The string
before the colon separator maps to the name of the tag definition while the string following the
colon maps to an instance of Name. If a multiplicity specification is included in the item, it
maps to the multiplicity attribute of the tag definition.

3.36 Powertype

3.36.1 Semantics

A Powertype is a user-defined metaelement whose instances are classes in the model.

GeneralizeableElement
<<metaclass>>

Classifier
<<metaclass>>

Class
<<metac lass >>

Arc hitecturalElement
<<stereotype>>

Capsule
<<stereotype>>

<<stereotype>> <<stereotype>>

3-64 UML V1.4 draft February 2001

3 UML Notation

3.36.2 Notation

A Powertype is shown using the Classifier notation (a rectangle) with the stereotype keyword
«powertype». The name of the Powertype is placed in the upper compartment. Because the
elements are ordinary classes, attributes and operations on the powertype are usually not
defined by the user.

The instances of the powertype may be indicated by placing a dashed line across the parent
lines of the classes with the syntax
discriminatorName: powertypeName,
where the powertype name on the line implicitly defines a powertype if one is not explicitly
defined.

3.36.3 Mapping

Maps into a Class with the «powertype» stereotype with the given classes as instances.

3.37 Class Pathnames

3.37.1 Notation

Class symbols (rectangles) serve to define a class and its properties, such as relationships to
other classes. A reference to a class in a different package is notated by using a pathname for
the class, in the form:

package-name :: class-name

References to classes also appear in text expressions, most notably in type specifications for
attributes and variables. In these places a reference to a class is indicated by simply including
the name of the class itself, including a possible package name, subject to the syntax rules of
the expression.

UML V1.4 draft February 2001 3-65

3.38 Accessing or Importing a Package

3.37.2 Example

Figure 3-36 Pathnames for Classes in Other Packages

3.37.3 Mapping

A class symbol whose name string is a pathname represents a reference to the Class with the
given name inside the package with the given name. The name is assumed to be defined in the
target package; otherwise, the model is ill formed. A Relationship from a symbol in the current
package (i.e., the package containing the diagram and its mapped elements) to a symbol in
another package is part of the current package.

3.38 Accessing or Importing a Package

3.38.1 Semantics

An element may reference an element contained in a different package. On the package level,
the «access» dependency indicates that the contents of the target package may be referenced by
the client package or packages recursively embedded within it. The target references must have
visibility sufficient for the referents: public visibility for an unrelated package, public or
protected visibility for a descendant of the target package, or any visibility for a package nested
inside the target package (an access dependency is not required for the latter case). A package
nested inside the package making the access gets the same access.

Note that an access dependency does not modify the namespace of the client or in any other
way automatically create references; it merely grants permission to establish references. Note
also that a tool could automatically create access dependencies for users if desired when
references are created.

An import dependency grants access and also loads the names with appropriate visibility in the
target namespace into the accessing package (i.e., a pathname is not necessary to reference
them). Such names are not automatically reexported, however; a name must be explicitly
reexported (and may be given a new name and visibility at the same time).

Banking::CheckingAccount

Deposit

time: DateTime::Time
amount: Currency::Cash

3-66 UML V1.4 draft February 2001

3 UML Notation

3.38.2 Notation

The access dependency is displayed as a dependency arrow from the referencing (client)
package to the target (supplier) package containing the target of the references. The arrow has
the stereotype keyword «access». This dependency indicates that elements within the client
package may legally reference elements within the supplier. The references must also satisfy
visibility constraints specified by the supplier. Note that the dependency does not automatically
create any references. It merely grants permission for them to be established.

The import dependency has the same notation as the access dependency except it has the
stereotype keyword «import».

3.38.3 Example

Figure 3-37 Access Dependency Among Packages

3.38.4 Mapping

This is not a special symbol. It maps into a Permission dependency with the stereotype
«access» or «import» between the two packages.

Banking::CheckingAccount

CheckingAccount

Banking

«acess»

Customers

UML V1.4 draft February 2001 3-67

3.39 Object

3.39 Object

3.39.1 Semantics

An object represents a particular instance of a class. It has identity and attribute values. A
similar notation also represents a role within a collaboration because roles have instance-like
characteristics.

3.39.2 Notation

The object notation is derived from the class notation by underlining instance-level elements, as
explained in the general comments in “Type-Instance Correspondence” on page 3-15.

An object shown as a rectangle with two compartments.

The top compartment shows the name of the object and its class, all underlined, using the
syntax:

objectname : classname

The classname can include a full pathname of enclosing package, if necessary. The package
names precede the classname and are separated by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype for the class may be shown textually (in guillemets above the name string) or as
an icon in the upper right corner. The stereotype for an object must match the stereotype for its
class.

To show multiple classes that the object is an instance of, use a comma-separated list of
classnames. These classnames must be legal for multiple classification (i.e., only one
implementation class permitted, but multiple types permitted).

To show the presence of an object in a particular state of a class, use the syntax:

objectname : classname ‘[‘ statename-list ‘]’

The list must be a comma-separated list of names of states that can legally occur concurrently.

The second compartment shows the attributes for the object and their values as a list. Each
value line has the syntax:

attributename : type = value

The type is redundant with the attribute declaration in the class and may be omitted.

The value is specified as a literal value. UML does not specify the syntax for literal value
expressions; however, it is expected that a tool will specify such a syntax using some
programming language.

3-68 UML V1.4 draft February 2001

3 UML Notation

The flow relationship between two values of the same object over time can be shown by
connecting two object symbols by a dashed arrow with the keyword «become». If the flow
arrow is on a collaboration diagram, the label may also include a sequence number to show
when the value changes. Similarly, the keyword «copy» can be used to show the creation of one
object from another object value.

3.39.3 Presentation Options

The name of the object may be omitted. In this case, the colon should be kept with the class
name. This represents an anonymous object of the given class given identity by its
relationships.

The class of the object may be suppressed (together with the colon).

The attribute value compartment as a whole may be suppressed.

Attributes whose values are not of interest may be suppressed.

Attributes whose values change during a computation may show their values as a list of values
held over time. In an interactive tool, they might even change dynamically. An alternate
notation is to show the same object more than once with a «becomes» relationship between
them.

3.39.4 Style Guidelines

Objects may be shown on class diagrams. The elements on collaboration diagrams are not
objects, because they describe many possible objects. They are instead roles that may be held
by object. Objects in class diagrams serve mainly to show examples of data structures.

3.39.5 Variations

For a language such as Self in which operations can be attached to individual objects at run
time, a third compartment containing operations would be appropriate as a language-specific
extension.

UML V1.4 draft February 2001 3-69

3.40 Composite Object

3.39.6 Example

Figure 3-38 Objects

3.39.7 Mapping

In an object diagram, or within an ordinary class diagram, an object symbol maps into an
Object of the Class (or Classes) given by the classname part of the name string. The attribute
list in the symbol maps into a set of AttributeLinks attached to the Object, with values given by
the value expressions in the attribute list in the symbol. If a list of states in brackets follows the
class name, then this maps into a ClassifierInState with the named Class as its type and the
named States as the states. The ClassfierInState classifies the Object.

3.40 Composite Object

3.40.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. This is an
instance of a composite class, which implies the composition aggregation between the class and
its parts. A composite object is similar to (but simpler and more restricted than) a collaboration;
however, it is defined completely by composition in a static model. See Section 3.48,
“Composition,” on page 3-84.

3.40.2 Notation

A composite object is shown as an object symbol. The name string of the composite object is
placed in a compartment near the top of the rectangle (as with any object). The lower
compartment holds the parts of the composite object instead of a list of attribute values.
(However, even a list of attribute values may be regarded as the parts of a composite object, so
there is not a great difference.) It is possible for some of the parts to be composite objects with
further nesting.

triangle: Polygon

center = (0,0)
vertices = ((0,0),(4,0),(4,3))
borderColor = black
fillColor = white

triangle: Polygon

triangle

:Polygon

scheduler

3-70 UML V1.4 draft February 2001

3 UML Notation

3.40.3 Example

Figure 3-39 Composite Objects

3.40.4 Mapping

A composite object symbol maps into an Object of the given Class with composition links to
each of the Objects and Links corresponding to the class box symbols and to association path
symbols directly contained within the boundary of the composite object symbol (and not
contained within another deeper boundary).

3.41 Association

Binary associations are shown as lines connecting two classifier symbols. The lines may have a
variety of adornments to show their properties. Ternary and higher-order associations are shown
as diamonds connected to class symbols by lines.

3.42 Binary Association

3.42.1 Semantics

A binary association is an association among exactly two classifiers (including the possibility of
an association from a classifier to itself).

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves

UML V1.4 draft February 2001 3-71

3.42 Binary Association

3.42.2 Notation

A binary association is drawn as a solid path connecting two classifier symbols (both ends may
be connected to the same classifier, but the two ends are distinct). The path may consist of one
or more connected segments. The individual segments have no semantic significance, but may
be graphically meaningful to a tool in dragging or resizing an association symbol. A connected
sequence of segments is called a path.

In a binary association, both ends may attach to the same classifier. The links of such an
association may connect two different instances from the same classifier or one instance to
itself. The latter case may be forbidden by a constraint if necessary.

The end of an association where it connects to a classifier is called an association end. Most of
the interesting information about an association is attached to its ends.

The path may also have graphical adornments attached to the main part of the path itself. These
adornments indicate properties of the entire association. They may be dragged along a segment
or across segments, but must remain attached to the path. It is a tool responsibility to determine
how close association adornments may approach an end so that confusion does not occur. The
following kinds of adornments may be attached to a path.

association name

Designates the (optional) name of the association.

It is shown as a name string near the path (but not near enough to an end to be confused with a
rolename). The name string may have an optional small black solid triangle in it. The point of
the triangle indicates the direction in which to read the name. The name-direction arrow has no
semantics significance, it is purely descriptive. The classifiers in the association are ordered as
indicated by the name-direction arrow.

Note – There is no need for a name direction property on the association model; the ordering of
the classifiers within the association is the name direction. This convention works even with n-
ary associations.

A stereotype keyword within guillemets may be placed above or in front of the association
name. A property string may be placed after or below the association name.

association class symbol

Designates an association that has class-like properties, such as attributes, operations, and other
associations. This is present if, and only if, the association is an association class. It is shown as
a class symbol attached to the association path by a dashed line.

The association path and the association class symbol represent the same underlying model
element, which has a single name. The name may be placed on the path, in the class symbol, or
on both (but they must be the same name).

3-72 UML V1.4 draft February 2001

3 UML Notation

Logically, the association class and the association are the same semantic entity; however, they
are graphically distinct. The association class symbol can be dragged away from the line, but
the dashed line must remain attached to both the path and the class symbol.

3.42.3 Presentation Options

When two paths cross, the crossing may optionally be shown with a small semicircular jog to
indicate that the paths do not intersect (as in electrical circuit diagrams).

3.42.4 Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and
curved segments. The choice of a particular set of line styles is a user choice.

3.42.5 Options

Xor-association

An xor-constraint indicates a situation in which only one of several potential associations may
be instantiated at one time for any single instance. This is shown as a dashed line connecting
two or more associations, all of which must have a classifier in common, with the constraint
string “{xor}” labeling the dashed line. Any instance of the classifier may only participate in
one of the associations at one time. Each rolename must be different. (This is simply a
predefined use of the constraint notation.)

UML V1.4 draft February 2001 3-73

3.42 Binary Association

3.42.6 Example

Figure 3-40 Association Notation

3.42.7 Mapping

An association path connecting two class symbols maps to an Association between the
corresponding Classifiers. If there is an arrow on the association name, then the Class
corresponding to the tail of the arrow is the first class and the Classifier corresponding to the
head of the arrow is the second Classifier in the ordering of ends of the Association; otherwise,
the ordering of ends in the association is undetermined. The adornments on the path map into
properties of the Association as described above. The Association is owned by the package
containing the diagram.

Person

Manages

Job
Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job

Account

Person

Corporation

{Xor}

salary

3-74 UML V1.4 draft February 2001

3 UML Notation

3.43 Association End

3.43.1 Semantics

An association end is simply an end of an association where it connects to a classifier. It is part
of the association, not part of the classifier. Each association has two or more ends. Most of the
interesting details about an association are attached to its ends. An association end is not a
separable element, it is just a mechanical part of an association.

3.43.2 Notation

The path may have graphical adornments at each end where the path connects to the classifier
symbol. These adornments indicate properties of the association related to the classifier. The
adornments are part of the association symbol, not part of the classifier symbol. The end
adornments are either attached to the end of the line, or near the end of the line, and must drag
with it. The following kinds of adornments may be attached to an association end.

multiplicity

Specified by a text syntax. Multiplicity may be suppressed on a particular association or for an
entire diagram. In an incomplete model the multiplicity may be unspecified in the model itself.
In this case, it must be suppressed in the notation. See Section 3.44, “Multiplicity,” on
page 3-77.

ordering

If the multiplicity is greater than one, then the set of related elements can be ordered or
unordered. If no indication is given, then it is unordered (the elements form a set). Various
kinds of ordering can be specified as a constraint on the association end. The declaration does
not specify how the ordering is established or maintained. Operations that insert new elements
must make provision for specifying their position either implicitly (such as at the end) or
explicitly. Possible values include:

• unordered - the elements form an unordered set. This is the default and need not be shown
explicitly.

• ordered - the elements of the set have an ordering, but duplicates are still prohibited. This
generic specification includes all kinds of ordering. This may be specified by the keyword
syntax “{ordered}”.

An ordered relationship may be implemented in various ways; however, this is normally
specified as a language-specified code generation property to select a particular
implementation. An implementation extension might substitute the data structure to hold the
elements for the generic specification “ordered.”

At implementation level, sorting may also be specified. It does not add new semantic
information, but it expresses a design decision:

UML V1.4 draft February 2001 3-75

3.43 Association End

• sorted - the elements are sorted based on their internal values. The actual sorting rule is best
specified as a separate constraint.

qualifier

A qualifier is optional, but not suppressible. See Section 3.45, “Qualifier,” on page 3-79.

navigability

An arrow may be attached to the end of the path to indicate that navigation is supported toward
the classifier attached to the arrow. Arrows may be attached to zero, one, or two ends of the
path. To be totally explicit, arrows may be shown whenever navigation is supported in a given
direction. In practice, it is often convenient to suppress some of the arrows and just show
exceptional situations. See “Presentation Options” on page 3-39 for details.

aggregation indicator

A hollow diamond is attached to the end of the path to indicate aggregation. The diamond may
not be attached to both ends of a line, but it need not be present at all. The diamond is attached
to the class that is the aggregate. The aggregation is optional, but not suppressible.

If the diamond is filled, then it signifies the strong form of aggregation known as composition.
See Section 3.48, “Composition,” on page 3-84.

rolename

A name string near the end of the path. It indicates the role played by the class attached to the
end of the path near the rolename. The rolename is optional, but not suppressible.

interface specifier

The name of a Classifier with the syntax:

‘:’ classifiername, . . .

It indicates the behavior expected of an associated object by the related instance. In other
words, the interface specifier specifies the behavior required to enable the association. In this
case, the actual classifier usually provides more functionality than required for the particular
association (since it may have other responsibilities).

The use of a rolename and interface specifier are equivalent to creating a small collaboration
that includes just an association and two roles, whose structure is defined by the rolename and
attached classifier on the original association. Therefore, the original association and classifiers
are a use of the collaboration. The original classifier must be compatible with the interface
specifier (which can be an interface or a type, among other kinds of classifiers).

If an interface specifier is omitted, then the association may be used to obtain full access to the
associated class.

3-76 UML V1.4 draft February 2001

3 UML Notation

changeability

If the links are changeable (can be added, deleted, and moved), then no indicator is needed. The
property {frozen} indicates that no links may be added, deleted, or moved from an object
(toward the end with the adornment) after the object is created and initialized. The property
{addOnly} indicates that additional links may be added (presumably, the multiplicity is
variable); however, links may not be modified or deleted.

visibility

Specified by a visibility indicator (‘+’, ‘#’, ‘-’ or explicit property name such as {public}) in
front of the rolename. Specifies the visibility of the association traversing in the direction
toward the given rolename. See “Attribute” on page 3-44 for details of visibility specification.

Other properties can be specified for association ends, but there is no graphical syntax for them.
To specify such properties, use the constraint syntax near the end of the association path (a text
string in braces). Examples of other properties include mutability.

3.43.3 Presentation Options

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by
merging the aggregation end into a single segment. This requires that all of the adornments on
the aggregation ends be consistent. This is purely a presentation option, there are no additional
semantics to it.

Various options are possible for showing the navigation arrows on a diagram. These can vary
from time to time by user request or from diagram to diagram.

• Presentation option 1: Show all arrows. The absence of an arrow indicates navigation is not
supported.

• Presentation option 2: Suppress all arrows. No inference can be drawn about navigation.
This is similar to any situation in which information is suppressed from a view.

• Presentation option 3: Suppress arrows for associations with navigability in both directions,
show arrows only for associations with one-way navigability. In this case, the two-way
navigability cannot be distinguished from no-way navigation; however, the latter case is
normally rare or nonexistent in practice. This is yet another example of a situation in which
some information is suppressed from a view.

3.43.4 Style Guidelines

If there are multiple adornments on a single association end, they are presented in the following
order, reading from the end of the path attached to the classifier toward the bulk of the path:

• qualifier

• aggregation symbol

• navigation arrow

UML V1.4 draft February 2001 3-77

3.44 Multiplicity

Rolenames and multiplicity should be placed near the end of the path so that they are not
confused with a different association. They may be placed on either side of the line. It is
tempting to specify that they will always be placed on a given side of the line (clockwise or
counterclockwise), but this is sometimes overridden by the need for clarity in a crowded layout.
A rolename and a multiplicity may be placed on opposite sides of the same association end, or
they may be placed together (for example, “* employee”).

3.43.5 Example

Figure 3-41 Various Adornments on Association Roles

3.43.6 Mapping

The adornments on the end of an association path map into properties of the corresponding role
of the Association. In general, implications cannot be drawn from the absence of an adornment
(it may simply be suppressed) but see the preceding descriptions for details. The interface
specifier maps into the “specification” rolename in the AssociationEnd-Classifier association.

3.44 Multiplicity

3.44.1 Semantics

A multiplicity item specifies the range of allowable cardinalities that a set may assume.
Multiplicity specifications may be given for roles within associations, parts within composites,
repetitions, and other purposes. Essentially a multiplicity specification is a subset of the open
set of nonnegative integers.

Polygon Point
Contains

{ordered}

3..∗1

GraphicsBundle

color
texture
density

1

1

-bundle

+vertex

3-78 UML V1.4 draft February 2001

3 UML Notation

3.44.2 Notation

A multiplicity specification is shown as a text string comprising a comma-separated sequence
of integer intervals, where an interval represents a (possibly infinite) range of integers, in the
format:

lower-bound .. upper-bound

where lower-bound and upper-bound are literal integer values, specifying the closed (inclusive)
range of integers from the lower bound to the upper bound. In addition, the star character (*)
may be used for the upper bound, denoting an unlimited upper bound. In a parameterized
context (such as a template), the bounds could be expressions but they must evaluate to literal
integer values for any actual use. Unbound expressions that do not evaluate to literal integer
values are not permitted.

If a single integer value is specified, then the integer range contains the single integer value.

If the multiplicity specification comprises a single star (*), then it denotes the unlimited
nonnegative integer range, that is, it is equivalent to 0..* (zero or more).

A multiplicity of 0..0 is meaningless as it would indicate that no instances can occur.

Expressions in some specification language can be used for multiplicities, but they must resolve
to fixed integer ranges within the model (i.e., no dynamic evaluation of expressions, essentially
the same rule on literal values as most programming languages).

3.44.3 Style Guidelines

Preferably, intervals should be monotonically increasing. For example, “1..3,7,10” is preferable
to “7,10,1..3”.

Two contiguous intervals should be combined into a single interval. For example, “0..1” is
preferable to “0,1”.

3.44.4 Example

0..1

1

0..*

*

1..*

1..6

1..3,7..10,15,19..*

UML V1.4 draft February 2001 3-79

3.45 Qualifier

3.44.5 Mapping

A multiplicity string maps into a Multiplicity value with one or more MultiplicityRanges.
Duplications or other nonstandard presentation of the string itself have no effect on the
mapping. Note that Multiplicity is a value and not an object. It cannot stand on its own, but is
the value of some element property.

3.45 Qualifier

3.45.1 Semantics

A qualifier is an attribute or list of attributes whose values serve to partition the set of instances
associated with an instance across an association. The qualifiers are attributes of the
association.

3.45.2 Notation

A qualifier is shown as a small rectangle attached to the end of an association path between the
final path segment and the symbol of the classifier that it connects to. The qualifier rectangle is
part of the association path, not part of the classifier. The qualifier rectangle drags with the path
segments. The qualifier is attached to the source end of the association. An instance of the
source classifier, together with a value of the qualifier, uniquely select a partition in the set of
target classifier instances on the other end of the association (i.e., every target falls into exactly
one partition).

The multiplicity attached to the target end denotes the possible cardinalities of the set of target
instances selected by the pairing of a source instance and a qualifier value. Common values
include:

• “0..1” (a unique value may be selected, but every possible qualifier value does not
necessarily select a value).

• “1” (every possible qualifier value selects a unique target instance; therefore, the domain of
qualifier values must be finite).

• “*” (the qualifier value is an index that partitions the target instances into subsets).

The qualifier attributes are drawn within the qualifier box. There may be one or more attributes
shown one to a line. Qualifier attributes have the same notation as classifier attributes, except
that initial value expressions are not meaningful.

It is permissible (although somewhat rare), to have a qualifier on each end of a single
association.

3.45.3 Presentation Options

A qualifier may not be suppressed (it provides essential detail whose omission would modify
the inherent character of the relationship).

3-80 UML V1.4 draft February 2001

3 UML Notation

A tool may use a lighter line for qualifier rectangles than for class rectangles to distinguish
them clearly.

3.45.4 Style Guidelines

The qualifier rectangle should be smaller than the attached class rectangle, although this is not
always practical.

3.45.5 Example

Figure 3-42 Qualified Associations

3.45.6 Mapping

The presence of a qualifier box on an end of an association path maps into a list of qualifier
attributes on the corresponding Association Role. Each attribute entry string inside the qualifier
box maps into an Attribute.

3.46 Association Class

3.46.1 Semantics

An association class is an association that also has class properties (or a class that has
association properties). Even though it is drawn as an association and a class, it is really just a
single model element.

3.46.2 Notation

An association class is shown as a class symbol (rectangle) attached by a dashed line to an
association path. The name in the class symbol and the name string attached to the association
path are redundant and should be the same. The association path may have the usual
adornments on either end. The class symbol may have the usual contents. There are no
adornments on the dashed line.

Square

Chessboard

rank:Rank
file:File

Person

Bank

account #

∗
0..1 1

1

UML V1.4 draft February 2001 3-81

3.46 Association Class

3.46.3 Presentation Options

The class symbol may be suppressed. It provides subordinate detail whose omission does not
change the overall relationship. The association path may not be suppressed.

3.46.4 Style Guidelines

The attachment point should not be near enough to either end of the path that it appears to be
attached to, the end of the path, or to any of the association end adornments.

Note that the association path and the association class are a single model element and have a
single name. The name can be shown on the path, the class symbol, or both. If an association
class has only attributes, but no operations or other associations, then the name may be
displayed on the association path and omitted from the association class symbol to emphasize
its “association nature.” If it has operations and other associations, then the name may be
omitted from the path and placed in the class rectangle to emphasize its “class nature.” In
neither case are the actual semantics different.

3.46.5 Example

Figure 3-43 Association Class

3.46.6 Mapping

An association path connecting two class boxes connected by a dashed line to another class box
maps into a single AssociationClass element. The name of the AssociationClass element is
taken from the association path, the attached class box, or both (they must be consistent if both
are present). The Association properties map from the association path, as specified previously.
The Class properties map from the class box, as specified previously. Any constraints or
properties placed on either the association path or attached class box apply to the
AssociationClass itself; they must not conflict.

Person

Manages

Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job
salary

3-82 UML V1.4 draft February 2001

3 UML Notation

3.47 N-ary Association

3.47.1 Semantics

An n-ary association is an association among three or more classifiers (a single classifier may
appear more than once). Each instance of the association is an n-tuple of values from the
respective classifier. A binary association is a special case with its own notation.

Multiplicity for n-ary associations may be specified, but is less obvious than binary multiplicity.
The multiplicity on a role represents the potential number of instance tuples in the association
when the other N-1 values are fixed.

An n-ary association may not contain the aggregation marker on any role.

3.47.2 Notation

An n-ary association is shown as a large diamond (that is, large compared to a terminator on a
path) with a path from the diamond to each participant class. The name of the association (if
any) is shown near the diamond. Role adornments may appear on each path as with a binary
association. Multiplicity may be indicated; however, qualifiers and aggregation are not
permitted.

An association class symbol may be attached to the diamond by a dashed line. This indicates an
n-ary association that has attributes, operations, and/or associations.

3.47.3 Style Guidelines

Usually the lines are drawn from the points on the diamond or the midpoint of a side.

UML V1.4 draft February 2001 3-83

3.47 N-ary Association

3.47.4 Example

This example shows the record of a team in each season with a particular goalkeeper. It is
assumed that the goalkeeper might be traded during the season and can appear with different
teams.

Figure 3-44 Ternary association that is also an association class

3.47.5 Mapping

A diamond attached to some number of class symbols by solid lines maps into an N-ary
Association whose AssociationEnds are attached to the corresponding Classes. The ordering of
the Classifiers in the Association is indeterminate from the diagram. If a class box is attached
to the diamond by a dashed line, then the corresponding Classifier supplies the classifier
properties for an N-ary AssociationClass.

PlayerTeam

Year

Record

goals for
goals against
wins
losses

goalkeeper

∗

∗

∗

season

team

ties

3-84 UML V1.4 draft February 2001

3 UML Notation

3.48 Composition

3.48.1 Semantics

Composite aggregation is a strong form of aggregation which requires that a part instance be
included in at most one composite at a time and that the composite object has sole
responsibility for the disposition of its parts. The multiplicity of the aggregate end may not
exceed one (it is unshared). See “AssociationEnd” on page 2-22 in the Semantics chapter for
further details.

The composite in a composition “projects” its identity onto the parts in the relationship. In
other words, each part object in an object model can be identified with a unique composite
object. It keeps its own identity as its primary identity. The point is that it can also be identified
as being part of a unique composite. Composition is transitive. If object A is part of object B
which is part of object C, then object A is also part of object C. A part may be identified with
several composite objects in this way, each at a different level of detail.

The parts of a composition may include classes and associations (they may be formed into
AssociationClasses if necessary). The meaning of an association in a composite object is that
any tuple of objects connected by a single link must all belong to the same container object. In
other words, the composite object projects its identity onto each link corresponding to the part
end of a composition aggregation. If an association and two classes it relates are all related as
parts to the same class as composite, a link that is an instance of the association is identified
with an object that is an instance of the composite class; the objects connected by the link are
also identified with the composite object; and they must all be associated with the same
composite object.

3.48.2 Notation

Composition may be shown by a solid filled diamond as an association end adornment.
Alternately, UML provides a graphically-nested form that is more convenient for showing
composition in many cases.

Instead of using binary association paths using the composition aggregation adornment,
composition may be shown by graphical nesting of the symbols of the elements for the parts
within the symbol of the element for the whole. A nested class-like element may have a
multiplicity within its composite element. The multiplicity is shown in the upper right corner of
the symbol for the part. If the multiplicity mark is omitted, then the default multiplicity is many.
This represents its multiplicity as a part within the composite classifier. A nested element may
have a rolename within the composition; the name is shown in front of its type in the syntax:

rolename ‘:’ classname

This represents its rolename within its composition association to the composite.

Alternately, composition is shown by a solid-filled diamond adornment on the end of an
association path attached to the element for the whole. The multiplicity may be shown in the
normal way.

UML V1.4 draft February 2001 3-85

3.48 Composition

Note that attributes are, in effect, composition relationships between a classifier and the
classifiers of its attributes.

An association drawn entirely within a border of the composite is considered to be part of the
composition. Any instances on a single link of it must be from the same composite. An
association drawn such that its path breaks the border of the composite is not considered to be
part of the composition. Any instances on a single link of it may be from the same or different
composites.

Note that the notation for composition resembles the notation for collaboration. A composition
may be thought of as a collaboration in which all of the participants are parts of a single
composite object.

Note that nested notation is not the correct way to show a class declared within another class.
Such a declared class is not a structural part of the enclosing class but merely has scope within
the namespace of the enclosing class, which acts like a package toward the inner class. Such a
namescope containment may be shown by placing a package symbol in the upper right corner
of the class symbol. A tool can allow a user to click on the package symbol to open the set of
elements declared within it. The “anchor notation” (a cross in a circle on the end of a line) may
also be used on a line between two class boxes to show that the class with the anchor icon
declares the class on the other end of the line.

3.48.3 Design Guidelines

Note that a class symbol is a composition of its attributes and operations. The class symbol may
be thought of as an example of the composition nesting notation (with some special layout
properties). However, attribute notation subordinates the attributes strongly within the class;
therefore, it should be used when the structure and identity of the attribute objects themselves is
unimportant outside the class.

3-86 UML V1.4 draft February 2001

3 UML Notation

3.48.4 Example

Figure 3-45 Different Ways to Show Composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

scrollbar:Slider

Header Panel

2 1 1

Window

Slider

2

title:Header
1

body:Panel
1

1
11

UML V1.4 draft February 2001 3-87

3.49 Link

3.48.5 Mapping

A class box with an attribute compartment maps into a Class with Attributes. Although
attributes may be semantically equivalent to composition on a deep level, the mapped model
distinguishes the two forms.

A solid diamond on an association path maps into the aggregation-composition property on the
corresponding Association Role.

A class box with contained class boxes maps into a set of composition associations; that is, one
composition association between the Class corresponding to the outer class box and each of the
Classes corresponding to the enclosed class boxes. The multiplicity of the composite end of
each association is 1. The multiplicity of each constituent end is 1 if not specified explicitly;
otherwise, it is the value specified in the corner of the class box or specified on an association
path from the outer class box boundary to an inner class box.

3.49 Link

3.49.1 Semantics

A link is a tuple (list) of object references. Most commonly, it is a pair of object references. It
is an instance of an association.

3.49.2 Notation

A binary link is shown as a path between two instances. In the case of a link from an instance
to itself, it may involve a loop with a single instance. See “Association” on page 3-70 for
details of paths.

A rolename may be shown at each end of the link. An association name may be shown near the
path. If present, it is underlined to indicate an instance. Links do not have instance names, they
take their identity from the instances that they relate. Multiplicity is not shown for links
because they are instances. Other association adornments (aggregation, composition,
navigation) may be shown on the link ends.

A qualifier may be shown on a link. The value of the qualifier may be shown in its box.

Implementation stereotypes

A stereotype may be attached to the link end to indicate various kinds of implementation. The
following stereotypes may be used:

«association» association (default, unnecessary to specify except for
emphasis)

«parameter» method parameter

3-88 UML V1.4 draft February 2001

3 UML Notation

N-ary link

An n-ary link is shown as a diamond with a path to each participating instance. The other
adornments on the association, and the adornments on the association ends, have the same
possibilities as the binary link.

3.49.3 Example

Figure 3-46 Links

3.49.4 Mapping

Within an object diagram, each link path maps to a Link between the Instances corresponding
to the connected class boxes. If a name is placed on the link path, then it is an instance of the
given Association (and the rolenames must match or the diagram is ill formed).

3.50 Generalization

3.50.1 Semantics

Generalization is the taxonomic relationship between a more general element (the parent) and a
more specific element (the child) that is fully consistent with the first element and that adds
additional information. It is used for classes, packages, use cases, and other elements.

«local» local variable of a method

«global» global variable

«self» self link (the ability of an instance to send a message to
itself)

downhillSkiClub:Club Joe:Person

Jill:Person

Chris:Person

member

member

member

treasurer

officer

president

officer

UML V1.4 draft February 2001 3-89

3.50 Generalization

3.50.2 Notation

Generalization is shown as a solid-line path from the child (the more specific element, such as
a subclass) to the parent (the more general element, such as a superclass), with a large hollow
triangle at the end of the path where it meets the more general element.

A generalization path may have a text label called a discriminator that is the name of a partition
of the children of the parent. The child is declared to be in the given partition. The absence of
a discriminator label indicates the “empty string” discriminator which is a valid value (the
“default” discriminator).

Generalization may be applied to associations as well as to classes. To notate generalization
between associations, a generalization arrow may be drawn from a child association path to a
parent association path. This notation may be confusing because lines connect other lines. An
alternative notation is to represent each association as an association class and to draw the
generalization arrow between the rectangles for the association classes, as with other classifiers.
This approach can be used even if an association does not have any additional attributes,
because a degenerate association class is a legal association.

The existence of additional children in the model that are not shown on a particular diagram
may be shown using an ellipsis (. . .) in place of a child.

Note – This does not indicate that additional children may be added in the future. It indicates
that additional children exist right now, but are not being seen. This is a notational convention
that information has been suppressed, not a semantic statement.

Predefined constraints may be used to indicate semantic constraints among the children. A
comma-separated list of keywords is placed in braces either near the shared triangle (if several
paths share a single triangle) or near a dotted line that crosses all of the generalization lines
involved. The following keywords (among others) may be used (the following constraints are
predefined):

overlapping An element may have two or more children from the set
as ancestors. An instance may be a direct or indirect
instance of two or more of the children.

disjoint No element may have two children in the set as ancestors.
No instance may be a direct or indirect instance of tow of
the children.

complete All children have been specified (whether or not shown).
No additional children are expected.

incomplete Some children have been specified, but the list is known
to be incomplete. There are additional children that are
not yet in the model. This is a statement about the model
itself. Note that this is not the same as the ellipsis, which
states that additional children exist in the model but are
not shown on the current diagram.

3-90 UML V1.4 draft February 2001

3 UML Notation

The discriminator must be unique among the attributes and association roles of the given
parent. Multiple occurrences of the same discriminator name are permitted and indicate that the
children belong to the same partition.

The use of multiple classification or dynamic classification affects the dynamic execution
semantics of the language, but is not usually apparent from a static model.

3.50.3 Presentation Options

A group of generalization paths for a given parent may be shown as a tree with a shared
segment (including the triangle) to the child, branching into multiple paths to each child.

If a text label is placed on a generalization triangle shared by several generalization paths to
children, the label applies to all of the paths. In other words, all of the children share the given
properties.

3.50.4 Example

Figure 3-47 Styles of Displaying Generalizations

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .

UML V1.4 draft February 2001 3-91

3.50 Generalization

Figure 3-48 Generalization with Discriminators and Constraints, Separate Target Style

Figure 3-49 Generalization with Shared Target Style

3.50.5 Mapping

Each generalization path between two element symbols maps into a Generalization between the
corresponding GeneralizableElements. A generalization tree with one arrowhead and many tails
maps into a set of Generalizations, one between each element corresponding to a symbol on a

Vehicle

WindPowered
Vehicle

MotorPowered
Vehicle

Land
Vehicle

Water
Vehicle

venue

venuepower
power

SailboatTruck

{overlapping} {overlapping}

Tree

Oak Elm

{disjoint, incomplete}

Birch

species

3-92 UML V1.4 draft February 2001

3 UML Notation

tail and the single GeneralizableElement corresponding to the symbol on the head. That is, a
tree is semantically indistinguishable from a set of distinct arrows, it is purely a notational
convenience.

Any property string attached to a generalization arrow applies to the Generalization. A property
string attached to the head line segment on a generalization tree represents a (duplicated)
property on each of the individual Generalizations.

The presence of an ellipsis (“...”) as a child node of a given parent indicates that the semantic
model contains at least one child of the given parent that is not visible on the current diagram.
Normally, this indicator will be maintained automatically by an editing tool.

3.51 Dependency

3.51.1 Semantics

A dependency indicates a semantic relationship between two model elements (or two sets of
model elements). It relates the model elements themselves and does not require a set of
instances for its meaning. It indicates a situation in which a change to the target element may
require a change to the source element in the dependency.

3.51.2 Notation

A dependency is shown as a dashed arrow between two model elements. The model element at
the tail of the arrow (the client) depends on the model element at the arrowhead (the supplier).
The arrow may be labeled with an optional stereotype and an optional individual name.

It is possible to have a set of elements for the client or supplier. In this case, one or more arrows
with their tails on the clients are connected the tails of one or more arrows with their heads on
the suppliers. A small dot can be placed on the junction if desired. A note on the dependency
should be attached at the junction point.

UML V1.4 draft February 2001 3-93

3.51 Dependency

The following kinds of Dependency are predefined and may be indicated with keywords. Note
that some of these correspond to actual metamodel classes and others to stereotypes of
metamodel classes. All of these are shown as dashed arrows with keywords in guillemets. The
name column shows the name of the metamodel class or the informal name of the class with the
given keyword stereotype.

3.51.3 Presentation Options

Note: The connection between a note or constraint and the element it applies to is shown by a
dashed line without an arrowhead. This is not a Dependency.

Keyword Name Description

access Access The granting of permission for one package to reference
the public elements owned by another package (subject to
appropriate visibility). Maps into a Permission with the
stereotype access.

bind Binding A binding of template parameters to actual values to
create a nonparameterized element. See Section 3.31,
“Bound Element,” on page 3-56 for more details. Maps
into a Binding.

derive Derivation A computable relationship between one element and
another (one more than one of each). Maps into an
Abstraction with the stereotype derivation.

import Import The granting of permission for one package to reference
the public elements of another package, together with
adding the names of the public elements of the supplier
package to the client package. Maps into a Permission
with the stereotype import.

refine Refinement A historical or derivation connection between two
elements with a mapping (not necessarily complete)
between them. A description of the mapping may be
attached to the dependency in a note. Various kinds of
refinement have been proposed and can be indicated by
further stereotyping. Maps into an Abstraction with the
stereotype refinement.

trace Trace A historical connection between two elements that
represent the same concept at different levels of meaning.
Maps into an Abstraction with the stereotype trace.

use Usage A situation in which one element requires the presence of
another element for its correct implementation or
functioning. May be stereotyped further to indicate the
exact nature of the dependency, such as calling an
operation of another class, granting permission for access,
instantiating an object of another class, etc. Maps into a
Usage. If the keyword is one of the stereotypes of Usage
(call, create, instantiate, send) then it maps into a Usage
with the given stereotype.

3-94 UML V1.4 draft February 2001

3 UML Notation

3.51.4 Example

Figure 3-50 Various Dependencies Among Classes

Figure 3-51 Dependencies Among Packages

«friend»
ClassA ClassB

ClassC

«instantiate»

«call»

ClassD

operationZ()
«friend»

ClassD ClassE

«refine» ClassC combines
two logical classes

Controller

Diagram
Elements

Domain
Elements

Graphics
Core

«access»

«access»

«access»

«access»

«access»

UML V1.4 draft February 2001 3-95

3.52 Derived Element

3.51.5 Mapping

A dashed arrow maps into the appropriate kind of Dependency (based on keywords) between
the Elements corresponding to the symbols attached to the ends of the arrow. The stereotype
and the name (if any) attached to the arrow are the stereotype and name of the Dependency.

3.52 Derived Element

3.52.1 Semantics

A derived element is one that can be computed from another one, but that is shown for clarity
or that is included for design purposes even though it adds no semantic information.

3.52.2 Notation

A derived element is shown by placing a slash (/) in front of the name of the derived element,
such as an attribute or a rolename.

3.52.3 Style Guidelines

The details of computing a derived element can be specified by a dependency with the
stereotype «derive». Usually it is convenient in the notation to suppress the dependency arrow
and simply place a constraint string near the derived element, although the arrow can be
included when it is helpful.

3-96 UML V1.4 draft February 2001

3 UML Notation

3.52.4 Example

Figure 3-52 Derived Attribute and Derived Association

3.52.5 Mapping

The presence of a derived adornment (a leading “/” on the symbol name) on a symbol maps into
the attachment of the “derived” tag to the corresponding Element.

3.53 InstanceOf

3.53.1 Semantics

Shows the connection between an instance and its classifier.

3.53.2 Notation

Shown as a dashed arrow with its tail on the instance and its head on the classifier. The arrow
has the keyword «instanceOf».

3.53.3 Mapping

Maps into an instance relationship from the instance to the classifier.

Person

birthdate
/age{age = currentDate - birthdate}

Company

Person

Department

WorksForDepartment

/WorksForCompany

{ Person.employer=Person.department.employer }

∗

∗
∗

1

1

1
employer

employer
department

UML V1.4 draft February 2001 3-97

3.54 Use Case Diagram

3UML Notation
Part 6 - Use Case Diagrams

A use case diagram shows the relationship among use cases within a system or other semantic
entity and their actors.

3.54 Use Case Diagram

3.54.1 Semantics

Use case diagrams show actors and use cases together with their relationships. The use cases
represent functionality of a system or a classifier, like a subsystem or a class, as manifested to
external interactors with the system or the classifier.

3.54.2 Notation

A use case diagram is a graph of actors, a set of use cases, possibly some interfaces, and the
relationships between these elements. The relationships are associations between the actors and
the use cases, generalizations between the actors, and generalizations, extends, and includes
among the use cases. The use cases may optionally be enclosed by a rectangle that represents
the boundary of the containing system or classifier.

3-98 UML V1.4 draft February 2001

3 UML Notation

3.54.3 Example

Figure 3-53 Use Case Diagram

3.54.4 Mapping

A set of use case ellipses with connections to actor symbols maps to a set of UseCases and
Actors corresponding to the use case and actor symbols, respectively. The optional rectangle
maps onto either a Model with the stereotype «useCaseModel» containing the set of UseCases
and Actors, or to a Classifier, like Subsystem or Class, containing the set of UseCases. An
interface in the diagram is mapped onto an Interface in the Model, and the connection between
the interface and the actor or use case icons is mapped onto a realization Dependency (an
Abstraction dependency being stereotyped «realize») between the Classifiers. Each
generalization arrow maps onto a Generalization in the model, and each line between an actor
symbol and a use case ellipse maps to an Association between the corresponding Classifiers. A
dashed arrow with the keyword «include» or «extend» maps to an Include or Extend
relationship between UseCases.

Customer

Supervisor

SalespersonPlace

Establish
credit

Check

Telephone Catalog

Fill orders

Shipping Clerk

status

order

UML V1.4 draft February 2001 3-99

3.55 Use Case

3.55 Use Case

3.55.1 Semantics

A use case is a kind of classifier representing a coherent unit of functionality provided by a
system, a subsystem, or a class as manifested by sequences of messages exchanged among the
system (subsystem, class) and one or more outside interactors (called actors) together with
actions performed by the system (subsystem, class).

An extension point is a reference to one location within a use case at which action sequences
from other use cases may be inserted. Each extension point has a unique name within a use
case, and a description of the location within the behavior of the use case.

3.55.2 Notation

A use case is shown as an ellipse containing the name of the use case. An optional stereotype
keyword may be placed above the name and a list of properties included below the name. As a
classifier, a use case may also have compartments displaying attributes and operations.

Extension points may be listed in a compartment of the use case with the heading extension
points. The description of the locations of the extension point is given in a suitable form,
usually as ordinary text, but can also be given in other forms, like the name of a state in a state
machine, or a precondition or a postcondition.

The behavior of a use case can be described in several different ways, depending on what is
convenient: often plain text is used, but state machines, and operations and methods are
examples of other ways of describing the behavior of the use case. Sequence diagrams can be
used for describing the interaction between use cases and their actors.

3.55.3 Presentation Options

The name of the use case may be placed below the ellipse. The name of an abstract use case
may be shown in italics.

The ellipse may contain or suppress compartments presenting the attributes, the operations, and
the extension points of the use case.

3.55.4 Style Guidelines

Use case names should follow capitalization and punctuation guidelines used for Classifiers in
the model.

3.55.5 Mapping

A use case symbol maps to a UseCase with the given name. An extension point maps into an
ExtensionPoint within the UseCase.

3-100 UML V1.4 draft February 2001

3 UML Notation

3.56 Actor

3.56.1 Semantics

An actor defines a coherent set of roles that users of an entity can play when interacting with
the entity. An actor may be considered to play a separate role with regard to each use case with
which it communicates.

3.56.2 Notation

The standard stereotype icon for an actor is a “stick man” figure with the name of the actor
below the figure.

3.56.3 Presentation Options

An actor may also be shown as a class rectangle with the keyword «actor», with the usual
notation for all compartments. Other icons which convey the kind of actor may also be used to
denote an actor.

3.56.4 Style Guidelines

Actor names should follow capitalization and punctuation guidelines used for types and classes
in the model.

3.56.5 Mapping

An actor symbol maps to an Actor with the given name. The names of abstract actors may be
shown in italics

3.57 Use Case Relationships

3.57.1 Semantics

There are several standard relationships among use cases or between actors and use cases.

• Association – The participation of an actor in a use case, i.e. instances of the actor and
instances of the use case communicate with each other. This is the only relationship between
actors and use cases.

• Extend – An extend relationship from use case A to use case B indicates that an instance of
use case B may be augmented (subject to specific conditions specified in the extension) by
the behavior specified by A. The behavior is inserted at the location defined by the extension
point in B which is referenced by the extend relationship.

• Generalization – A generalization from use case C to use case D indicates that C is a
specialization of D.

UML V1.4 draft February 2001 3-101

3.57 Use Case Relationships

• Include – An include relationship from use case E to use case F indicates that an instance of
the use case E will also contain the behavior as specified by F. The behavior is included at
the location which defined in E.

3.57.2 Notation

An association between an actor and a use case is shown as a solid line between the actor and
the use case. It may have end adornments such as multiplicity.

An extend relationship between use cases is shown by a dashed arrow with an open arrow-head
from the use case providing the extension to the base use case. The arrow is labeled with the
keyword «extend». The condition of the relationship is optionally presented close to the key-
word.

An include relationship between use cases is shown by a dashed arrow with an open arrow-head
from the base use case to the included use case. The arrow is labeled with the keyword
«include».

A generalization between use cases is shown by a generalization arrow, i.e. a solid line with a
closed, hollow arrow head pointing at the parent use case.

The relationship between a use case and its external interaction sequences is usually defined by
an invisible hyperlink to sequence diagrams. The relationship between a use case and its
realization may be shown as dashed arrow with the keyword «representedClassifier» to
collaborations, but may also be defined as invisible hyperlinks.

3-102 UML V1.4 draft February 2001

3 UML Notation

3.57.3 Example

Figure 3-54 Use Case Relationships

3.57.4 Mapping

A path between use case and/or actor symbols maps into the corresponding relationship
between the corresponding Elements, as described above.

3.58 Actor Relationships

3.58.1 Semantics

There is one standard relationship among actors and one between actors and use cases.

• Association – The participation of an actor in a use case, i.e. instances of the actor and
instances of the use case communicate with each other. This is the only relationship between
actors and use cases.

• Generalization – A generalization from an actor A to an actor B indicates that an instance of
A can communicate with the same kinds of use-case instances as an instance of B.

3.58.2 Notation

An association between an actor and a use case is shown as a solid line between the actor and
the use case.

additional requests :

Order
Product

Supply
Arrange

«include»«include»«include»

Request
Catalog

«extend»Extension points

Payment
Customer Data

after creation of the order

Salesperson

Place Order

1 * the salesperson asks for
the catalog

UML V1.4 draft February 2001 3-103

3.58 Actor Relationships

An generalization between actors is shown by a generalization arrow, i.e. a solid line with a
closed, hollow arrow head. The arrow head points at the more general actor.

3.58.3 Example

Figure 3-55 Actor Relationships

3.58.4 Mapping

A generalization between two actor symbols and an association between actor symbol and a use
case symbol maps into the corresponding relationship between the corresponding Elements, as
described above.

Establish
Credit

Place
Order

Salesperson

Supervisor

1 *

1 *

3-104 UML V1.4 draft February 2001

3 UML Notation

UML V1.4 draft February 2001 3-105

3.59 Collaboration

3UML Notation
Part 7 - Interaction Diagrams

The description of behavior involves two aspects: 1) the structural description of the
participants and 2) the description of the communication patterns. The structure of Instances
playing roles in a behavior and their relationships is called a Collaboration. The
communication pattern performed by Instances playing the roles to accomplish a specific
purpose is called an Interaction. The two aspects of behavior are often described together on a
single diagram, but at times it is useful to describe the structural aspects separately.

Interaction diagrams come in two forms based on the same underlying information, specified by
a Collaboration and possibly by an Interaction, but each form emphasizes a particular aspect of
it. The two forms are sequence diagrams and collaboration diagrams. A sequence diagram
shows the explicit sequence of communications and is better for real-time specifications and for
complex scenarios. A collaboration diagram shows an Interaction organized around the roles in
the Interaction and their relationships. It does not show time as a separate dimension, so the
sequence of communications and the concurrent threads must be determined using sequence
numbers.

3.59 Collaboration

3.59.1 Semantics

Behavior is implemented by ensembles of Instances that exchange Stimuli within an overall
interaction to accomplish a task. To understand the mechanisms used in a design, it is important
to see only those Instances and their cooperation involved in accomplishing a purpose or a
related set of purposes, projected from the larger system of which they are part of. Such a static
construct is called a Collaboration.

A Collaboration includes an ensemble of ClassifierRoles and AssociationRoles that define the
participants needed for a given set of purposes. Instances conforming to the ClassifierRoles
play the roles defined by the ClassifierRoles, while Links between the Instances conform to
AssociationRoles of the Collaboration. ClassifierRoles and AssociationRoles define a usage of
Instances and Links, and the Classifiers and Associations declare all required properties of
these Instances and Links.

An Interaction is defined in the context of a Collaboration. It specifies the communication
patterns between the roles in the Collaboration. More precisely, it contains a set of partially
ordered Messages, each specifying one communication, e.g. what Signal to be sent or what
Operation to be invoked, as well as the roles to be played by the sender and the receiver,
respectively.

A CollaborationInstanceSet references an ensemble of Instances that jointly perform the task
specified by the CollaborationInstanceSet’s Collaboration. These Instances play the roles
defined by the ClassifierRoles of the Collaboration, i.e. the Instances have all the properties
declared by the ClassifierRoles (the Instance are said to conform to the ClassifierRoles). The
Stimuli sent between the Instances when performing the task are participating in the
InteractionInstanceSet of the CollaborationInstanceSet. These Stimuli conform to the Messages

3-106 UML V1.4 draft February 2001

3 UML Notation

in one of the Interactions of the Collaboration. Since an Instance can participate in several
CollaborationInstanceSets at the same time, all its communications are not necessarily
referenced by only one InteractionInstanceSet. They can be interleaved.

A Collaboration may be attached to an Operation or a Classifier, like a UseCase, to describe the
context in which their behavior occurs, i.e. what roles Instances play to perform the behavior
specified by the Operation or the UseCase. A Collaboration is used for describing the
realization of an Operation or a Classifier. A Collaboration which describes a Classifier, like a
UseCase, references Classifiers and Associations in general, while a Collaboration describing
an Operation includes the arguments and local variables of the Operation, as well as ordinary
Associations attached to the Classifier owning the Operation. The Interactions defined within
the Collaboration specify the communication pattern between the Instances when they perform
the behavior specified in the Operation or the UseCase. These patterns are presented in
sequence diagrams or collaboration diagrams. A Collaboration may also be attached to a Class
to define the static structure of the Class, i.e. how attributes, parameters etc. cooperate with
each other.

A parameterized Collaboration represents a design construct that can be used repeatedly in
different designs. The participants in the Collaboration, including the Classifiers and
Relationships, can be parameters of the generic Collaboration. The parameters are bound to
particular ModelElements in each instantiation of the generic Collaboration. Such a
parameterized Collaboration can capture the structure of a design pattern (note that a design
pattern involves more than structural aspects). Whereas most Collaborations can be anonymous
because they are attached to a named ModelElement, Collaboration patterns are free standing
design constructs that must have names.

A Collaboration may be expressed at different levels of granularity. A coarse-grained
Collaboration may be refined to produce another Collaboration that has a finer granularity.

3.60 Sequence Diagram

3.60.1 Semantics

A sequence diagram presents an Interaction, which is a set of Messages between
ClassifierRoles within a Collaboration, or an InteractionInstanceSet, which is a set of Stimuli
between Instances within a CollaborationInstanceSet to effect a desired operation or result.

3.60.2 Notation

A sequence diagram has two dimensions: 1) the vertical dimension represents time and 2) the
horizontal dimension represents different instances. Normally time proceeds down the page.
(The dimensions may be reversed, if desired.) Usually only time sequences are important, but in
real-time applications the time axis could be an actual metric. There is no significance to the
horizontal ordering of the instances.

The different kinds of arrows used in sequence diagrams are described in “Message and
Stimulus” on page 3-115, below. These are the same kinds as in collaboration diagrams; see
Section 3.72.

UML V1.4 draft February 2001 3-107

3.60 Sequence Diagram

Note that much of this notation is drawn directly from the Object Message Sequence Chart
notation of Buschmann, Meunier, Rohnert, Sommerlad, and Stal, which is itself derived with
modifications from the Message Sequence Chart notation.

3.60.3 Presentation Options

The horizontal ordering of the lifelines is arbitrary. Often call arrows are arranged to proceed in
one direction across the page; however, this is not always possible and the ordering does not
convey information.

The axes can be interchanged, so that time proceeds horizontally to the right and different
objects are shown as horizontal lines.

Various labels (such as timing constraints, descriptions of actions during an activation, and so
on) can be shown either in the margin or near the transitions or activations that they label.

Timing constraints may be expressed using time expressions on message or stimuli names. The
functions sendTime (the time at which a stimulus is sent by an instance) and receiveTime (the
time at which a stimulus is received by an instance) may applied to stimuli names to yield a
time. The set of time functions is open-ended, so that users can invent new ones as needed for
special situations or implementation distinctions (such as elapsedTime, executionStartTime,
queuedTime, handledTime, etc.)

Construction marks of the kind found in blueprints can be used to indicate a time interval to
which a constraint may be attached (see bottom right of Figure 3-56 on page 108). This notation
is visually appealing but it is ambiguous if the arrow is horizontal, because the send time and
the receive time cannot be distinguished. In many cases the transmission time is negligible, so
the ambiguity is harmless, but a tool must nevertheless map such a notation unambiguously to
an expression on message or stimuli names (as shown in the examples in the left of the
diagram) before the information is placed in the semantic model. (A tool may adopt defaults for
this mapping.) Similarly, a tool might permit the time function to be elided and use the stimulus
name to denote the time of stimulus sending or receipt within a timing expression (such as
“b.receiveTime - a.sendTime < 1 sec.” in Figure 3-56), but again this is only a surface notation
that must be mapped to a proper time expression in the semantic model).

3-108 UML V1.4 draft February 2001

3 UML Notation

3.60.4 Example

Simple sequence diagram with concurrent objects.

Figure 3-56 Simple Sequence Diagram with Concurrent Objects (denoted by boxes with thick borders).

caller exchange

a: lift receiver

b: dial tone

c: dial digit

{b.receiveTime

{c.receiveTime

. . .

d: route

{d.receiveTime

receiver

phone ringsringing tone

answer phone

stop ringingstop tone

The call is
routed through
the network.

At this point
the parties
can talk.

- a.sendTime < 1 sec.}

- b.sendTime < 10 sec.}

- d.sendTime < 5 sec.}

 < 1 sec.

UML V1.4 draft February 2001 3-109

3.60 Sequence Diagram

Figure 3-57 Sequence Diagram with Focus of Control, Conditional, Recursion,
Creation, and Destruction.

[x>0] foo(x)

[x<0] bar(x)

doit(z)
doit(w)

more()

ob1:C1

ob2:C2

ob3:C3 ob4:C4

op()

3-110 UML V1.4 draft February 2001

3 UML Notation

3.60.5 Mapping

This section summarizes the mapping for the sequence diagram and the elements within it,
some of which are described in subsequent sections.

Figure 3-58 A summary of the UML constructs used in the section below.

Sequence diagram

A sequence diagram maps into an Interaction and an underlying Collaboration or an
InteractionInstanceSet and an underlying CollaborationInstanceSet depending on whether the
diagram shows Instances or ClassifierRoles. An Interaction specifies a sequence of
communications; it contains a collection of partially ordered Messages, each specifying a
communication between a sender role and a receiver role. A CollaborationInstanceSet
references a collection of Instances that conform to the ClassifierRoles in the Collaboration
owning the Interaction. These Instances communicate by dispatching Stimuli that conform to
the Messages in the Interaction. The CollaborationInstanceSet has an InteractionInstanceSet
that references these Stimuli. A sequence diagram presents either a collection of object symbols

Collaboration

ClassifierRole AssociationRole Interaction

AssociationEndRole Message

1..*
*

*

1

*

2..*

0..1

*

1..*

Instance Link

StimulusLinkEnd

2..*

1

*

* 1 1

*

*

0..1

Action
0..1

*

Action
0..1

*

CollaborationInstanceSet

InteractionInstanceSet

*

UML V1.4 draft February 2001 3-111

3.60 Sequence Diagram

and arrows mapping to Instances and Stimuli, or a collection of classifier-role symbols and
arrows mapping to ClassifierRoles and Messages. The Instances and Stimuli conform to the
ClassifierRoles and Messages.

The sequence diagram presents either a Collaboration or a CollaborationInstanceSet. In the
former case, the classifier box with its lifeline maps onto a ClassifierRole in the Collaboration,
and the arrows map onto the Messages in one of the Collaboration’s Interactions. The name
strings in the boxes map onto the names of the ClassifierRoles, while the classifier names map
onto the ClassifierRole’s base Classifiers. The AssociationRoles among the ClassifierRoles are
not shown on the sequence diagram. They must be obtained in the model from a
complementary collaboration diagram or other means.

If the sequence diagram presents a CollaborationInstanceSet, each object box with its lifeline
maps into an Instance which conforms to a ClassifierRole in the CollaborationInstanceSet’s
Collaboration. The name field maps into the name of the Instance, the role name into the
ClassifierRole’s name, and the class field maps into the names of the Classifiers being the base
Classifiers of the ClassifierRole. An arrow maps into a Stimulus connected to two Instances:
the sender and the receiver. The Link used for the communication of the Stimulus plays the role
specified by the AssociationRole connected to the Message. Unless the correct Link can be
determined from a complementary collaboration diagram or other means, the Stimulus is either
not attached to a Link (not a complete model), or it is attached to an arbitrary Link or to a
dummy Link between the Instances conforming to the AssociationRole implied by the two
ClassifierRoles due to the lack of complete information.

The name of the Operation to be invoked or Signal to be sent is mapped onto the name of the
Operation or Signal associated by the Action connected to the Message. Different alternatives
exists for showing the arguments of the Stimulus. If references to the actual Instances being
passed as arguments are shown, these are mapped onto the arguments of the Stimulus. If the
argument expressions are shown instead, these are mapped onto the Arguments of the Action
connected to the dispatching Action. Finally, if the types of the arguments are shown together
with the name of the Operation or the Signal, these are mapped onto the parameter types of the
Operation or the Attribute types of the Signal, respectively. A timing label placed on the level
of an arrow endpoint maps into the name of the corresponding Message or Stimulus. A
constraint placed on the diagram maps into a Constraint on the entire Interaction.

An arrow with the arrowhead pointing to an object symbol or role symbol within the frame of
the diagram maps into a Stimulus (Message) dispatched by a CreateAction. The interpretation is
that an Instance is created by dispatching the Stimulus. If the target of the arrow is a classifier-
role symbol, the Instance will conform to the ClassifierRole. (Note, that the diagram does not
necessarily show from which Classifier the Instance originates; only that the newly created
Instance conform to the ClassifierRole.) After the creation of the Instance, it may immediately
start interacting with other Instances. This implies that the creation method (constructor,
initializer) of the Instance dispatches these Stimuli. If an object termination symbol (“X”) is the
target of an arrow, the arrow maps into a Stimulus which will cause the receiving Instance to be
removed. If the object termination symbol appears in the diagram without an incoming arrow, it
maps into a TerminateAction.

The order of the arrows in the diagram maps onto pairs of associations between the Stimuli
(Messages). A predecessor relationship is established between Stimuli (Messages)
corresponding to successive arrows in the vertical sequence. In case of concurrent arrows

3-112 UML V1.4 draft February 2001

3 UML Notation

preceding an arrow, the corresponding Stimulus (Message) has a collection of predecessors.
Moreover, each Stimulus (Message) has an activator association to the Stimulus (Message)
corresponding to the incoming arrow of the activation.

Procedural sequence diagram

On a procedural sequence diagram (one with focus of control and calls), subsequent arrows on
the same lifeline map into Stimuli (Messages) obeying the predecessor association. An arrow to
the head of a focus of control region establishes a nested activation. The arrow maps into a
Stimulus (Message) with the dispatching Action being a CallAction. The Stimulus holds the
sender and receiver Instance, as well as the argument Instances, to be supplied in the invocation
and references the target Operation to be invoked. The expressions that evaluate to the
arguments of the Operation are the argument Expressions on the CallAction connected to the
Stimulus, In the case the arrow maps onto a Message the sender and the receiver are specified
by the sender and receiver ClassifierRoles of the Message. The sender and receiver Instances of
a Stimulus conform to these ClassifierRoles. Any condition or iteration expression attached to
the arrow become recurrence values of the dispatching Action. All arrows departing the nested
activation map into Stimuli (Messages) with an activation Association to the Stimulus
(Message) corresponding to the arrow at the head of the activation. A return arrow departing
the end of the activation maps into a Stimulus (Message) with:

• an activation Association to the Stimulus (Message) corresponding to the arrow at the head
of the activation, and

• a predecessor association to the previous Stimulus (Message) within the same activation, i.e.
the last Stimulus (Message) being sent in the activation.

A return must be the final Stimulus (Message) within a predecessor chain. It is not the
predecessor of any Stimulus (Message).

3.61 Object Lifeline

3.61.1 Semantics

In a sequence diagram an object lifeline denotes an Instance playing a specific role. Arrows
between the lifelines denote communication between the Instances playing those roles. Within
a sequence diagram the existence and duration of the Instance in a role is shown, but the
relationships among the Instances are not shown. The role is specified by a ClassifierRole; it
describes the properties of an Instance playing the role and describes the relationships an
Instance in that role has to other Instances.

3.61.2 Notation

An Instance is shown as a vertical dashed line called the “lifeline.” The lifeline represents the
existence of the Instance at a particular time. If the Instance is created or destroyed during the
period of time shown on the diagram, then its lifeline starts or stops at the appropriate point;
otherwise, it goes from the top to the bottom of the diagram. An object symbol is drawn at the
head of the lifeline. If the Instance is created during the diagram, then the arrow, which maps
onto the Stimulus that creates the Instance, is drawn with its arrowhead on the object symbol. If

UML V1.4 draft February 2001 3-113

3.61 Object Lifeline

the Instance is destroyed during the diagram, then its destruction is marked by a large “X,”
either at the arrow mapping to the Stimulus that causes the destruction or (in the case of self-
destruction) at the final return arrow from the destroyed Instance. An Instance that exists when
the transaction starts is shown at the top of the diagram (above the first arrow), while an
Instance that exists when the transaction finishes has its lifeline continue beyond the final
arrow.

The lifeline may split into two or more concurrent lifelines to show conditionality. Each
separate track corresponds to a conditional branch in the communication. The lifelines may
merge together at some subsequent point.

3.61.3 Presentation Options

In some cases, it is necessary to link sequence diagrams to each other, e.g. it might not be
possible to put all lifelines in one diagram, or a sub-sequence is included in several diagrams;
hence, it is convenient to put the common sub-sequence in a separate diagram which is
referenced from the other diagrams. In these cases, the cut between the diagrams can be
expressed in one of the diagrams with a dangling arrow leaving a lifeline but not arriving at
another lifeline, and in the other diagram it is expressed with a dangling arrow arriving at a
lifeline from nowhere. In both cases, it is recommended to attach a note stating which diagram
the sequence originates from or continues in. This is purely notational. The different diagrams
show different parts of the underlying Interaction.

3.61.4 Example

See also Figure 3-57 on page 3-109.

Figure 3-59 The flow shown in the sequence diagram to the left continues in the diagram to the right.

bar(x)

doit(w)

ob3:C3 ob4:C4

[x<0] bar(x)

ob1:C1

Diagram 1
Diagram 2

The flow
continues in
Diagram 2.

The flow
originates in
Diagram 1.

3-114 UML V1.4 draft February 2001

3 UML Notation

3.61.5 Mapping

See “Mapping” on page 3-110.

3.62 Activation

3.62.1 Semantics

An activation (focus of control) shows the period during which an Instance is performing an
Action either directly or through a subordinate procedure. It represents both the duration of the
performance of the Action in time and the control relationship between the activation and its
callers (stack frame).

3.62.2 Notation

An activation is shown as a tall thin rectangle whose top is aligned with its initiation time and
whose bottom is aligned with its completion time. The Action being performed may be labeled
in text next to the activation symbol or in the left margin, depending on style. Alternately, the
incoming arrow may indicate the Action, in which case it may be omitted on the activation
itself. In procedural flow of control, the top of the activation symbol is at the tip of an incoming
arrow (the one that initiates the action) and the base of the symbol is at the tail of a return
arrow.

In the case of concurrent Instances each with their own threads of control, an activation shows
the duration when each Instance is performing an Operation or transition in a state machine.
Operations by other Instances are not relevant. If the distinction between direct computation
and indirect computation (by a nested procedure) is unimportant, the entire lifeline may be
shown as an activation.

In the case of procedural code, an activation shows the duration during which a procedure is
active in the Instance or a subordinate procedure is active, possibly in some other Instances. In
other words, all of the active nested procedure activations may be seen at a given time. In the
case of a recursive call to an Instance with an existing activation, the second activation symbol
is drawn slightly to the right of the first one, so that they appear to “stack up” visually.
(Recursive calls may be nested to an arbitrary depth.)

3.62.3 Example

See Figure 3-56 on page 108 and Figure 3-57 on page 3-109.

3.62.4 Mapping

See “Mapping” on page 3-110.

UML V1.4 draft February 2001 3-115

3.63 Message and Stimulus

3.63 Message and Stimulus

3.63.1 Semantics

A Stimulus is a communication between two Instances that conveys information with the
expectation that action will ensue. A Stimulus will cause an Operation to be invoked, raise a
Signal, or cause an Instance to be created or destroyed.

A Message is a specification of Stimulus, i.e. it specifies the roles that the sender and the
receiver Instances must conform to, as well as the Action which will, when executed, dispatch
a Stimulus that conforms to the Message.

3.63.2 Notation

In a sequence diagram a Stimulus as well as a Message is shown as a horizontal solid arrow
from the lifeline of one Instance or ClassifierRole to the lifeline of another Instance or
ClassifierRole. In case of a Stimulus from an Instance to itself, the arrow may start and finish
on the same lifeline. The arrow is labeled with the name of the Operation to be invoked or the
name of the Signal. Its argument values or argument expressions may be presented, as well.

The arrow may also be labeled with a sequence number to show the sequence of the Stimulus
(Message) in the overall interaction. However, sequence numbers are often omitted in sequence
diagrams, as the physical location of the arrow shows the relative sequences, but they are
necessary in collaboration diagrams. Sequence numbers are useful on both kinds of diagrams
for identifying concurrent threads of control. A arrow may also be labeled with a condition
and/or iteration expression.

3.63.3 Presentation options

The following arrowhead variations may be used to show different kinds of communications:

filled solid arrowhead

Procedure call or other nested flow of control. The entire nested sequence is
completed before the outer level sequence resumes. The arrowhead may be used to
denote ordinary procedure calls, but it may also be used to denote concurrently
active instances when one of them sends a Signal and waits for a nested sequence of
behavior to complete before it continues.

stick arrowhead

Asynchronous communication, i.e. no nesting of control. The sender dispatches the
Stimulus and immediately continues with the next step in the execution.1

dashed arrow with stick arrowhead

Return from procedure call.

3-116 UML V1.4 draft February 2001

3 UML Notation

Variation:

In a procedural flow of control, the return arrow may be omitted (it is implicit at the
end of an activation). It is assumed that every call has a paired return after any
subordinate stimuli. The return value can be shown on the initial arrow. For
nonprocedural flow of control (including parallel processing and asynchronous
messages) returns should be shown explicitly.

Variation:

Normally message arrows are drawn horizontally. This indicates the duration
required to send the stimulus is “atomic,” i.e. it is brief compared to the granularity
of the interaction and that nothing else can “happen” during the transmission of the
stimulus. This is the correct assumption within many computers. If the stimulus
requires some time to arrive, during which something else can occur (such as a
stimulus in the opposite direction), then the arrow may be slanted downward so that
the arrowhead is below the arrow tail.

Variation: Branching

A branch is shown by multiple arrows leaving a single point, each possibly labeled
by a condition. Depending on whether the conditions are mutually exclusive, the
construct may represent conditionality or concurrency.

Variation: Iteration

A connected set of arrows may be enclosed and marked as an iteration. For a
generic sequence diagram, the iteration indicates that the dispatch of a set of stimuli
can occur multiple times. For a procedure, the continuation condition for the
iteration may be specified at the bottom of the iteration. If there is concurrency,
then some arrows in the diagram may be part of the iteration and others may be
single execution. It is desirable to arrange a diagram so that the arrows in the
iteration can be enclosed together easily.

Variation:

A lifeline may subsume an entire set of objects on a diagram representing a high-
level view.

Variation:

A distinction may be made between a period during which an Instance has a live
activation and a period in which the activation is actually computing. The former
(during which it has control information on a stack but during which control resides

1.UML 1.3 and previous versions included a half-stick arrowhead notation in
addition to the stick arrowhead notation. This notation has been removed because
the semantic distinction between the two was subtle and confusing.

UML V1.4 draft February 2001 3-117

3.64 Transition Times

in something that it called) is shown with the ordinary double line. The latter
(during which it is the top item on the stack) may be distinguished by shading the
region.

3.63.4 Example

See Figure 3-57 on page 3-109.

3.63.5 Mapping

See “Mapping” on page 3-110.

3.64 Transition Times

3.64.1 Semantics

A Message may specify several different times, e.g. a sending time and a receiving time. These
are formal names that may be used within Constraint expressions. The set of different kinds of
times is open-ended so that users can invent new ones as needed for special situations, such as
elapsedTime and startExecutionTime. These expressions may be used in Constraints to
designate specific time constraints valid for the Message.

3.64.2 Notation

A transition instance (such as a Stimulus or Message in a sequence diagram, a collaboration
diagram, or a Transition in a state machine) may be given a name. A timing constraint is
formed as an expression based on the name of the transition. For example, if the name of a
Stimulus is stim, its send-time is expressed by stim.sendTime (), and its receive-time by
stim.receiveTime (). The timing constraint may be shown in the left margin aligned with the
arrow (on a sequence diagram) or near the tail of the arrow (on a collaboration diagram).
Constraints may be specified by placing Boolean expressions, possibly including time
expressions, in braces on the sequence diagram.

3.64.3 Presentation Options

When it is clear from the context, the name of a Message or the name of a Stimulus may itself
be used to denote the time at which the transition started. In cases where the performance of the
transition is not instantaneous, the time at which the transition is ended may be indicated by the
same name with a prime sign appended to the name.

3.64.4 Example

See Figure 3-56 on page 3-108.

3-118 UML V1.4 draft February 2001

3 UML Notation

3.64.5 Mapping

See “Mapping” on page 3-110.

UML V1.4 draft February 2001 3-119

3.65 Collaboration Diagram

3UML Notation

3.65 Collaboration Diagram

3.65.1 Semantics

A collaboration diagram presents either a Collaboration, which contains a set of roles
to be played by Instances, as well as their required relationships given in a particular
context, or it presents a CollaborationInstanceSet with a collection of Instances and
their relationships. The diagram may also present an Interaction
(InteractionInstanceSet), which defines a set of Messages (Stimuli) specifying the
interaction between the Instances playing the roles within a Collaboration to achieve
the desired result.

A Collaboration is used for describing the realization of an Operation or a Classifier. A
Collaboration which describes a Classifier, like a UseCase, references Classifiers and
Associations in general, while a Collaboration describing an Operation includes the
arguments and local variables of the Operation, as well as ordinary Associations
attached to the Classifier owning the Operation.

3.65.2 Notation

A collaboration diagram shows a graph of either Instances linked to each other, or
ClassifierRoles and AssociationRoles; it may also include the communication stated by
an Interaction or InteractionInstanceSet.

Because collaboration diagrams often are used to help design procedures, they
typically show navigability using arrowheads on the lines representing Links or
AssociationRoles. (An arrowhead on a line between boxes indicates a Link or
AssociationRole with one-way navigability. An arrow next to a line indicates Stimuli
or Message flowing in the given direction. Obviously such an arrow cannot point
backwards over a one-way line.)

The order of the interaction is described with a sequence of numbers, usually starting
with number 1. For a procedural flow of control, the subsequent communication
numbers are nested in accordance with call nesting. For a nonprocedural sequence of
interactions among concurrent instances, all the sequence numbers are at the same
level (that is, they are not nested).

A collaboration diagram without any interaction shows the context in which
interactions can occur. It might be used to show the context for a single Operation or
even for all of the Operations of a Class or group of Classes.

A collection of standard constraints may be used to show whether an Instance or a
Link is created or destroyed during the execution:

• Instances and Links created during the execution may be designated as {new}.

• Instances and Links destroyed during the execution may be designated as
{destroyed}.

3-120 UML V1.4 draft February 2001

3 UML Notation

• Instances and Links created during the execution and then destroyed may be
designated as {transient}.

These changes in life state are derivable from the detailed interaction among the
Instances, they are provided as notational conveniences.

Collaboration Instance

A collaboration diagram given at instance level shows a CollaborationInstanceSet, i.e.
a collection of object boxes and lines mapping to Instances and Links, respectively.
These instances conform to the ClassifierRoles and AssociationRoles of the
CollaborationInstanceSet’s Collaboration. The diagram may also include arrows
attached to the lines that correspond to Stimuli communicated over the Links. The
diagram shows the Instances relevant to the realization of an Operation or Classifier,
including Instances indirectly affected or accessed during the performance. The
diagram also shows the Links among the Instances, including transient ones
representing procedure arguments, local variables, and self links. Individual attribute
values are usually not shown explicitly. If Stimuli must be sent to attribute values, the
Attributes should be modeled using Associations instead.

Collaboration

A collaboration diagram given at specification level shows a Collaboration, i.e. the
roles defined within a Collaboration. Together, these roles form a realization of the
attached Operation or Classifier of the Collaboration. The diagram contains a
collection of class boxes and lines corresponding to ClassifierRoles and
AssociationRoles in the Collaboration. In this case the arrows attached to the lines map
onto Messages.

UML V1.4 draft February 2001 3-121

3.65 Collaboration Diagram

3.65.3 Example

Figure 3-60 Collaboration Diagram at instance level, presenting Objects, Links, and Stimuli
referenced by a CollaborationInstanceSet and its InteractionInstanceSet.

Figure 3-61 Collaboration Diagram at specification level, presenting the ClassifierRoles and the
AssociationRoles that belong to the Collaboration.

:Controller

wire: Wire

1: displayPositions(window)

left: Bead

wire

redisplay()
:Window

i-1 i

right: Bead

1.1.1b: r1:=position()1.1.1a: r0 := position()

1.1.2: create(r0,r1)

window

«parameter»window

1.1*[i:=1..n]: drawSegment(i) :Line {new}
«local» line

1.1.3: display(window)

1.1.3.1: add(self)

 contents {new}

«self»

/ Teacher : Person

: Faculty
given course *

/ Student : Person

student *

: Course

tutor 1

taken course *

participant *lecturer 1faculty member *

faculty 1

3-122 UML V1.4 draft February 2001

3 UML Notation

Figure 3-62 Collaboration Diagram presenting a CollaborationInstanceSet in which some of the
Objects play the same role. The instances conform to the Collaboration shown in
Figure 3-61 on page 3-121.

3.65.4 Mapping

A collaboration diagram maps either to a Collaboration, possibly together with an
Interaction, or to a CollaborationInstanceSet possibly together with its
InteractionInstanceSet. The mapping of each kind of icon is described in Section 3.69,
“Collaboration Roles,” on page 3-129, below. The mapping of the stereotypes is
explained in Section 3.49.

3.66 Pattern Structure

3.66.1 Semantics

A Collaboration can be used to specify the implementation of design constructs. For
this purpose, it is necessary to specify its context and interactions. It is also possible to
view a Collaboration as a single entity from the “outside.” For example, this could be
used to identify the presence of design patterns within a system design. A pattern is a
parameterized Collaboration, i.e. a Collaboration template. In each use of the pattern,
actual Classifiers are substituted for the parameters in the pattern definition.

Note that patterns as defined in Design Patterns by Gamma, Helm, Johnson, and
Vlissides include much more than structural descriptions. UML describes the structural
aspects and some behavioral aspects of design patterns; however, UML notation does
not include other important aspects of patterns, such as usage trade-offs or examples.
These must be expressed by other means, such as in text or tables.

tutor / Teacher : Person

/ Student : Person

1: namesOfTeachers()

studentTeachers ()

1.1*[i:=1..n]: lecturer()

: Course

1.i.1: name ()

lecturer / Teacher : Person

UML V1.4 draft February 2001 3-123

3.66 Pattern Structure

A Collaboration can be defined in terms of other, so-called subordinate,
Collaborations. Each role in the former Collaboration, the so-called superordinate
Collaboration, is either a new role which is defined in the superordinate Collaboration
or it is a role defined in one or several of the subordinate Collaborations and reused in
the definition of the superordinate Collaboration. In the latter case, the role is often
renamed so it better suits the purpose of the superordinate Collaboration. If so, the
original names of the roles are shown within curly brackets after the name used within
the superordinate Collaboration (see Figure 3-67 below).

3.66.2 Notation

A use of a Collaboration is shown as a dashed ellipse containing the name of the
Collaboration. A dashed line is drawn from the collaboration symbol to each of the
symbols denoting Classifiers that participate in the Collaboration. Each line is labeled
by the role of the participant. The roles correspond to the names of elements within the
context for the Collaboration; such names in the Collaboration are treated as
parameters that are bound to specify elements on each occurrence of the pattern within
a model. Therefore, a collaboration symbol can show the use of a design pattern
together with the actual Classifiers and Associations that occur in that particular use of
the pattern.

Figure 3-63 Use of a Collaboration.

As a Collaboration is a GeneralizableElement, it may have Generalization relationships
to other Collaborations. In this way it is possible to define one Collaboration to be a
specialization of another Collaboration. It is depicted by the ordinary Generalization
arrow from the dashed ellipse representing the child Collaboration to the icon of the
parent Collaboration. The roles of the child Collaborations may be specializations of
roles in the parent Collaboration. This is shown by redefining the role name of the
parent collaboration in the child collaboration

Observer

SlidingBarIcon
Observer

CallQueue Subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

Observer.reading = length (Subject.queue)

capacity: Integer

Observer.range = (0 .. Subject.capacity)

3-124 UML V1.4 draft February 2001

3 UML Notation

Figure 3-64 Specialization of a Collaboration. As the Subject role of the Supervisor
collaboration is a specialization (an extension) of the Subject role defined in the
Observer collaboration, the ManagedQueue class is used instead of the CallQueue
class as the base of the Subject role.

A dashed arrow with a stick arrowhead is used to show that a Collaboration is a
realization of an Operation or a Classifier. This relationship can also be presented in
textual form within the Collaboration symbol.

Figure 3-65 The relationship between a Collaboration and the element it is realizing can be
shown either as a dashed arrow with a stick arrowhead from the Collaboration to
the realized element, or in text.

The usual convention is used to show a CollaborationInstanceSet, i.e it is shown as a
dashed ellipse with the name underlined. The Instances and the Links that participate
in the CollaborationInstanceSet are connected to the ellipse with dashed lines. The
name of the role an instance is playing is shown close to the line and the instance.

In some cases it is convenient to show the static structure of a Collaboration within the
collaboration icon (the dashed ellipse).

Observer SlidingBarIcon

Observer

CallQueue

Subject

Supervisor Controller

Manager

ManagedQueue

Subject

Window

display (...)

representedOperation:
alternative notation Window:: display

RealizeDisplayOperation

RealizeDisplayOperation

UML V1.4 draft February 2001 3-125

3.66 Pattern Structure

Figure 3-66 The static structure of a Collaboration shown within the collaboration icon.

It is possible to denote that a Collaboration is defined in terms of other Collaborations
in two different ways, either using dashed ellipses showing the Collaborations and
their relationships, or using ordinary collaboration diagrams. The former way has the
advantage that it explicitly shows the relationship between the Collaborations, while
the latter shows the structure of the new Collaboration.

Figure 3-67 The ComponentFramework Collaboration uses two occurrences of the Proxy
Collaboration and two occurrences of the Container Collaboration. Note that each
role in the Component Framework corresponds to a role in two of the used
Collaborations.

Observer

/Observer : SlidingBarIcon/Subject : CallQueue

Proxy

Component Framework

Proxy OriginalClient

«usedCollaboration»

Proxy

Proxy OriginalClient

Factory

Component

Component

Container

ElementContainer

Container

ElementContainer

Client Object

Remote
Object

Service
Container

«usedCollaboration»«usedCollaboration»

«usedCollaboration»

3-126 UML V1.4 draft February 2001

3 UML Notation

3.66.3 Mapping

A collaboration usage symbol maps into a Collaboration. For each class symbol and
lines attached by an dashed line to the pattern occurrence symbol, the corresponding
Classifier or Association is bound to the template parameter that is the base association
target of the ClassifierRole or AssociationRole in the Collaboration template with the
name equal to the name on the dashed line.

A dashed arrow with a closed hollow arrowhead from a Collaboration symbol to a
Classifier or to an Operation is mapped onto the representedClassifier and onto the
representedOperation association of the Collaboration, respectively.

A collaboration usage symbol with its name underlined is mapped onto a
CollaborationInstanceSet. The object box symbols and the lines attached to the ellipse
by dashed lines are mapped onto Instances and Links, respectively.

3.67 Collaboration Contents

The contents of a Collaboration is a collection of roles specifying how Instances and
Links cooperate within a given context for a particular purpose, such as performing an
Operation or a Use case. A Collaboration is a fragment of a larger complete model that
is intended for a particular purpose.

3.67.1 Semantics

A Collaboration diagram shows either a Collaboration or a CollaborationInstanceSet.
In the former case, the diagram shows one or more roles together with their contents,
relationships, and neighbor roles, plus additional relationships and Classes as needed.
When the diagram shows a CollaborationInstanceSet, it shows instances participating
in the CollaborationInstanceSet, playing the roles defined in the Collaboration. To use
a Collaboration, each role must be bound to an actual Classifier (or collection of
Classifiers, if multiple classification is used) that (jointly) support the Features
required by the role. The additional elements express additional requirements that
cannot be modeled with roles, such as Generalizations between roles.

3.67.2 Notation

A collaboration diagram presents a graph of class boxes or object boxes together with
connecting lines. These icons map onto ClassifierRoles and AssociationRoles, or
Instance, and Links, respectively (see Section 3.69, “Collaboration Roles,” on
page 3-129, below).

However, a collaboration diagram may also contain other elements, like different kinds
of Classifiers, Generalizations and Constraints, to express additional information.
These elements are shown using their ordinary icons.

UML V1.4 draft February 2001 3-127

3.67 Collaboration Contents

Figure 3-68 A collaboration diagram showing a Collaboration with a Constraint as a
constraining element of the Collaboration.

Figure 3-69 A collaboration diagram showing different roles, together with two additional
Generalization relationships as constraining elements.

3.67.3 Mapping

The mapping of roles and instances are described in Section 3.69, “Collaboration
Roles”, below. Any constraining element, like a generalization arrow, is mapped onto
its usual model element, such as Generalization. These elements a referenced by the
Collaboration as its constraining elements.

/Observer:SlidingBarIcon

/Subject:CallQueue

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

capacity: Integer

:Window

color: Color
location: Area

{Observer.reading = length (Subject.queue)
and
Observer.range = (0..Subject.capacity)}

/ Generator : PrintDevice

1: print (info)

: LaserPrinter : LinePrinter

printer 1

3-128 UML V1.4 draft February 2001

3 UML Notation

3.68 Interactions

A collaboration of Instances interacts to accomplish a purpose (such as performing an
Operation) by exchanging Stimuli. These may include both sending Signals and
invocations of Operations, as well as more implicit interaction through conditions and
time events. A specific pattern of communication exchanges to accomplish a specific
purpose is called an Interaction. The collection of Stimuli sent between the Instances
that participate in a CollaborationInstanceSet when they perform the task of the
Collaboration is called an InteractionInstanceSet.

3.68.1 Semantics

An Interaction is a behavioral specification that comprises a sequence of
communications exchanged among a set of Instances within a Collaboration to
accomplish a specific purpose, such as the implementation of an Operation. To specify
an Interaction, it is first necessary to specify a Collaboration; that is, to establish the
roles that interact and their relationships. Then, the possible interaction sequences are
specified. These can be specified in a single description containing conditionals
(branches or conditional signals), or they can be specified by supplying multiple
descriptions, each describing a particular path through the possible execution paths.

One communication is specified with a Message; it specifies the sender and the
receiver roles, as well as the Action that will cause the communication to take place.
The Action specifies what kind of communication that should take place, such as
sending a Signal or invoking an Operation, together with a sequence of expressions
that determine the arguments to be supplied. The Action may also contain a recurrence
expression stating a condition or an iteration of the performance of the Action.

When the Action is performed, a Stimulus is dispatched conforming to the Message.
The Stimulus contains references to the sender and the receiver Instances playing the
sender role and the receiver role of the Message, as well as a sequence of references to
Instances being the result of evaluating the argument expressions of the dispatching
Action. An InteractionInstanceSet is a collection of Stimuli that conform to the
Messages of an Interaction, i.e. the Stimuli are sent between the Instances participating
an a CollaborationInstanceSet when they perform the task defined by the
Collaboration.

3.68.2 Notation

Interactions are shown as sequence diagrams or as collaboration diagrams. Both
diagram formats show the execution of collaborations. However, sequence diagrams do
not show the relationships between the Instances or the Attribute values of the
Instances; therefore, they do not fully show the context aspect of a Collaboration.
Sequence diagrams do show the behavioral aspect of Collaborations explicitly,
including the time sequence of Stimuli and explicit representation of method
activations. Sequence diagrams are described in “Part 7 - Interaction Diagrams” on
page 3-105. Collaboration diagrams show the full context of an interaction, including
the Instances and their relationships relevant to a particular interaction. The sequencing
of the Stimuli is done using sequence numbers, since distributing them along a time

UML V1.4 draft February 2001 3-129

3.69 Collaboration Roles

axis, like in Sequence diagrams, is not possible in this kind of diagram. (In fact, in
some cases it is convenient to use sequence numbers in combination with a time axis.)
The contents of collaboration diagrams are described in the following section.

3.68.3 Mapping

The mapping of roles and instances are described below, while the mapping of
messages and stimuli are described in Section 3.72, “Message and Stimulus”.

3.68.4 Example

See Section 3.65, “Collaboration Diagram” for examples of Interactions and
InteractionInstanceSets and their Collaborations and CollaborationInstanceSets,
respectively.

3.69 Collaboration Roles

3.69.1 Semantics

A ClassifierRole defines a role to be played by an Instance within a Collaboration. The
role describes the kind of Instance that may play the role, such as required Operations
and Attributes, and describes its relationships to Instances playing other roles. The
relationships to other roles are defined by AssociationRoles. These describe the
required Links between the Instances, i.e. a subset of the existing Links.

3.69.2 Notation

A ClassifierRole is shown using a class rectangle symbol. Normally, only the name
compartment is shown, but the attribute and operation compartments may also be
shown when needed. The name compartment contains the string:

‘/’ ClassifierRoleName ‘:’ ClassifierName [‘,’ ClassifierName]*

The name of the Classifier (or Classifiers if multiple classification is used) can include
a full pathname of enclosing Packages, if necessary. A tool will normally permit
shortened pathnames to be used when they are unambiguous. The Package names
precede the Classifier name and are separated by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype may be shown textually (in guillemets above the name string) or as an
icon in the upper right corner. A ClassifierRole representing a set of Instances can
include a multiplicity indicator (such as “*”) in the upper right corner of the class box.

An AssociationRole is shown with the usual association line. The name string of the
AssociationRole follows the same syntax as for the ClassifierRole. If the name is
omitted, a line connected to ClassifierRole symbols denotes an AssociationRole. The
information attached to the ends of the AssociationRole, i.e. to the
AssociationEndRoles, are shown using the same notation as for AssociationEnds.

3-130 UML V1.4 draft February 2001

3 UML Notation

An Instance playing the role defined by a ClassifierRole is depicted by an object box,
normally without an attribute compartment. The name of the Instance is shown as a
string:

ObjectName ‘/’ ClassifierRoleName ‘:’ ClassifierName [‘,’ ClassifierName]*

i.e. it starts with the name of the Instance, followed by the complete name of the
ClassifierRole, all underlined. If the attribute compartment is shown, it contains the
names of the Attributes required by an Instance playing the role. If some Attributes are
required to have certain values, this is shown in the same way as in object diagrams, i.e
the name of the attribute followed by an equal sign and the relevant values.

A Link is shown by a line between object boxes. It name string follows the syntax of
an Object playing a specific role.

3.69.3 Presentation options

The name of a ClassifierRole may be omitted. In this case, the colon is kept together
with the Classifier name. The role name may be omitted only if there is only one role
to be played by Instances of the base Classifier in the Collaboration.

The name of the Classifier may be omitted together with the colon.

At least one of the Classifier name (together with the colon) or the ClassifierRole name
(together with the slash) must be present to denote a ClassifierRole. Otherwise, the
rectangle denotes an ordinary Classifier or Instance depending on whether the name is
underlined or not.

If the role is to be played by an Instance originating from multiple Classifiers, the
names of the Classifiers are shown in a comma separated list after the colon.

In an object box the Instance name, the role name and / or the classifier name may be
omitted. However, the colon should be kept in front of the classifier name, and the
slash should be kept in front of the role name. The notation used is the same for
Instances in general, with the possible addition of the name of the ClassifierRole which
the Instance conforms to.

Note, the name of an Instance is always underlined, whereas the name of a Classifier
(including ClassifierRole) is never underlined. Furthermore, an un-named line between
icons representing Instances is always a Link, and between icons representing
Classifiers (except ClassifierRoles) it is always an Association.

UML V1.4 draft February 2001 3-131

3.69 Collaboration Roles

These tables summarize the different combinations of names:

3.69.4 Example

See figures in Section 3.65, “Collaboration Diagram”.

3.69.5 Mapping

A classifier role rectangle maps onto one ClassifierRole. The role name is the name of
the ClassifierRole and the sequence of classifier names are the names of the base
Classifiers. An association role line maps onto an AssociationRole attached to the
ClassifierRoles corresponding to the rectangles at the end points of the line.

An object symbol maps onto an Instance whose name is the object part of the name
string. The Classifiers of the Instance are those named according to the sequence of
names in the class part of the string (or children of these Classifiers). The Instance
conforms to the ClassifierRole, whose name is the role part of the string.

Table 3-1 Syntax of Object names

syntax explanation

: C un-named Instance originating from the Classifier
C

/ R un-named Instance playing the role R

/ R : C un-named Instance originating from the Classifier
C playing the role R

O / R an Instance named O playing the role R

O : C an Instance named O originating from the
Classifier C

O / R : C an Instance named O originating from the
Classifier C playing the role R

O an Instance named O

Table 3-2 Syntax of role names

syntax explanation

/ R a role named R

: C an un-named role with the base Classifier C

/ R : C a role named R with the base Classifier C

3-132 UML V1.4 draft February 2001

3 UML Notation

A Collaboration can also be used for describing the internal structure of a Classifier. In
such case, the names of the roles are the same as the names of the attributes of the
Classifier. In this way, the connection between the roles and the Attributes they
represent are established. (The base of the roles are not enough for uniquely
identifying this mapping, since several Attributes may have the same type.)

3.70 Multiobject

3.70.1 Semantics

A multiobject represents a set of Instance on the “many” end of an Association. This is
used to show Operations and Signals that address the entire set, rather than a single
Instance in it. The underlying static model is unaffected by this grouping. This
corresponds to an Association with multiplicity “many” used to access a set of
associated Instances.

3.70.2 Notation

A multiobject is shown as two rectangles in which the top rectangle is shifted slightly
vertically and horizontally to suggest a stack of rectangles. A message arrow to the
multiobject symbol indicates a Stimulus to the set of Instances (for example, a
selection Operation to find an individual Object).

To perform an Operation on each Instance in a set of associated Instances requires two
Stimuli: 1) an iteration to the multiobject to extract Links to the individual Instances
and then 2) a Stimulus sent to each individual Instance using the (temporary) Link.
This may be elided on a diagram by combining the arrows into a single arrow that
includes an iteration and an application to each individual Instance. The target
rolename takes a “many” indicator (*) to show that many individual Links are implied.
Although this may be written as a single Stimulus, in the underlying model (and in any
actual code) it requires the two layers of structure (iteration to find Links,
communication using each Link) mentioned previously.

An Instance from the set is shown as a normal object symbol, but it may be attached to
the multiobject symbol using a composition Link to indicate that it is part of the set. A
communication arrow to the simple object symbol indicates a Stimulus to an individual
Instance.

Typically a selection Stimulus to a multiobject returns a reference to an individual
Instance, to which the original sender then sends a Stimulus.

UML V1.4 draft February 2001 3-133

3.71 Active object

3.70.3 Example

Figure 3-70 Multiobject

3.70.4 Mapping

A multi-object symbol maps to a collection of Instances in which each Instance
conforms to the ClassifierRole and this role has the multiplicity “many” (or whatever
is explicitly specified). In other respects, it maps the same as an object symbol. (The
stereotype is explained in Section 3.49.)

3.71 Active object

An active object is one that owns a thread of control and may initiate control activity.
A passive object is one that holds data, but does not initiate control. However, a
passive object may send Stimuli in the process of processing a request that it has
received. In a collaboration diagram, a ClassifierRole that is an active class represents
the active objects that occur during execution.

3.71.1 Semantics

An active object is an Instance that owns a thread of control. Processes and tasks are
traditional kinds of active objects.

3.71.2 Notation

A role for an active object is shown as a rectangle with a heavy border. Frequently,
active object roles are shown as composites with embedded parts.

The property keyword {active} may also be used to indicate an active object.

servers
:Server

:Server
aServer «local»

client

1: aServer:=find(specs)

2: process(request)

3-134 UML V1.4 draft February 2001

3 UML Notation

3.71.3 Example

Figure 3-71 Composite Active Object

3.71.4 Mapping

An active object symbol maps as an object symbol does, with the addition that the
class of the object has the active property set.

job

:FactoryJobMgr

:FactoryScheduler

currentJob : TransferJob

:Factory Manager

1: start(job)

A2,B2 / 2: completed(job)

«local» job

:Oven:Robot

1 / A1: start(job)
1 / B1: start(job)

A2: completedB2: completed

UML V1.4 draft February 2001 3-135

3.72 Message and Stimulus

3.72 Message and Stimulus

3.72.1 Semantics

In a collaboration diagram a Stimulus is a communication between two Instances that
conveys information with the expectation that action will ensue. A Stimulus will cause
an Operation to be invoked, raise a Signal, or an Instance to be created or destroyed.

A Message is a specification of Stimulus, i.e. it specifies the roles that the sender and
the receiver Instances should conform to, as well as the Action which will, when
executed, dispatch a Stimulus that conforms to the Message.

3.72.2 Notation

Messages and Stimuli are shown as labeled arrows placed near an AssociationRole or
a Link, respectively. The meaning is that the Link is used for transportation of the
Stimulus to the target Instance. The arrow points along the line in the direction of the
receiving Instance.

Control flow type

The following arrowhead variations may be used to show different kinds of
communications:

filled solid arrowhead

Procedure call or other nested flow of control. The entire nested sequence is
completed before the outer level sequence resumes. The arrowhead may be used to
denote ordinary procedure calls, but it may also be used to denote concurrently
active instances when one of them sends a Signal and waits for a nested sequence of
behavior to complete before it continues.

stick arrowhead

Asynchronous communication, i.e. no nesting of control. The sender dispatches the
Stimulus and immediately continues with the next step in the execution.

dashed arrow with stick arrowhead

Return from a procedure call. The return arrow may be suppressed as it is implicit
at the end of an activation.

other variations

Other kinds of control may be shown, such as “balking” or “time-out;” however,
these are treated as extensions to the UML core.

3-136 UML V1.4 draft February 2001

3 UML Notation

A half stick arrowhead can be used to show asynchronous communication. This
alternative is included for backwards compatibility. UML 1.3 and previous
versions, included both half stick arrowhead and stick arrowhead with a very small
(and not well-understood) distinction.

Arrow label

In the following the term Message is used, but the text applies to Stimulus, as well.

The label has the following syntax:

predecessor sequence-expression return-value := message-name argument-list

The label indicates the Message being sent, its arguments and return values, and the
sequencing of the Message within the larger interaction, including call nesting,
iteration, branching, concurrency, and synchronization.

Predecessor

The predecessor is a comma-separated list of sequence numbers followed by a slash
(‘/’):

sequence-number ‘,’ . . . ‘/’

The clause is omitted if the list is empty.

Each sequence-number is a sequence-expression without any recurrence terms. It must
match the sequence number of another Message.

The meaning is that the Message is not enabled until all of the communications whose
sequence numbers appear in the list have occurred. Therefore, the list of predecessors
represents a synchronization of threads.

Note that the Message corresponding to the numerically preceding sequence number is
an implicit predecessor and need not be explicitly listed. All of the sequence numbers
with the same prefix form a sequence. The numerical predecessor is the one in which
the final term is one less. That is, number 3.1.4.5 is the predecessor of 3.1.4.6.

Sequence expression

The sequence-expression is a dot-separated list of sequence-terms followed by a colon
(‘:’).

sequence-term ‘.’ . . . ‘:’

Each term represents a level of procedural nesting within the overall interaction. If all
the control is concurrent, then nesting does not occur. Each sequence-term has the
following syntax:

[integer | name] [recurrence]

UML V1.4 draft February 2001 3-137

3.72 Message and Stimulus

The integer represents the sequential order of the Message within the next higher level
of procedural calling. Messages that differ in one integer term are sequentially related
at that level of nesting. Example: Message 3.1.4 follows Message 3.1.3 within
activation 3.1. The name represents a concurrent thread of control. Messages that differ
in the final name are concurrent at that level of nesting. Example: Message 3.1a and
Message 3.1b are concurrent within activation 3.1. All threads of control are equal
within the nesting depth.

The recurrence represents conditional or iterative execution. This represents zero or
more Messages that are executed depending on the conditions involved. The choices
are:

‘*’ ‘[’ iteration-clause ‘]’ an iteration

‘[’ condition-clause ‘]’ a branch

An iteration represents a sequence of Messages at the given nesting depth. The
iteration clause may be omitted (in which case the iteration conditions are unspecified).
The iteration-clause is meant to be expressed in pseudocode or an actual programming
language, UML does not prescribe its format. An example would be: *[i := 1..n].

A condition represents a Message whose execution is contingent on the truth of the
condition clause. The condition-clause is meant to be expressed in pseudocode or an
actual programming language; UML does not prescribe its format. An example would
be: [x > y].

Note that a branch is notated the same as an iteration without a star. One might think
of it as an iteration restricted to a single occurrence.

The iteration notation assumes that the Messages in the iteration will be executed
sequentially. There is also the possibility of executing them concurrently. The notation
for this is to follow the star by a double vertical line (for parallelism): *||.

Note that in a nested control structure, the recurrence is not repeated at inner levels.
Each level of structure specifies its own iteration within the enclosing context.

Signature

A signature is a string that indicates the name, the arguments, and the return value of
an Operation or a Reception. The signature of a Message is derived from (is the same
as) the signature of the Operation attached to the Message's dispatching Action, or the
Reception for the Signal attached to the action. These have the following properties.

Return-value

This is a list of names that designates the values returned at the end of the
communication within the subsequent execution of the overall interaction. These
identifiers can be used as arguments to subsequent Messages. If the Message does not
return a value, then the return value and the assignment operator are omitted.

Message-name

3-138 UML V1.4 draft February 2001

3 UML Notation

This is the name of the Operation to be applied on the receiver, or the Signal which is
sent to the receiver.

Argument list

This is a comma-separated list of arguments (actual parameters) enclosed in
parentheses. The parentheses can be used even if the list is empty. Each argument is
either a reference to an Instance, or an expression in pseudocode or an appropriate
programming language (UML does not prescribe). The expressions may use return
values of previous messages (in the same scope) and navigation expressions starting
from the source Instance (that is, Attributes of it and Links from it and paths reachable
from them).

3.72.3 Presentation Options

Instead of text expressions for arguments and return values, data tokens may be shown
near a message label. A token is a small circle labeled with the argument expression or
return value name. It has a small arrow on it that points along the Message (for an
argument) or opposite the Message (for a return value). Tokens represent arguments
and return values. The choice of text syntax or tokens is a presentation option.

The syntax of Messages may instead be expressed in the syntax of a programming
language, such as C++ or Smalltalk. All of the expressions on a single diagram should
use the same syntax, however.

A return flow, may be explicitly shown with a dashed arrow.

3.72.4 Example

See Figure 3-60 on page 3-121 for examples within a diagram.

Samples of control message label syntax:

2: display (x, y) simple Message

1.3.1: p:= find(specs) nested call with return value

4 [x < 0] : invert (x, color) conditional Message

A3,B4/ C3.1*: update () synchronization with other threads, iteration

3.72.5 Mapping

An arrow symbol maps either onto a Message or a Stimulus. If the arrow is attached to
a line corresponding to an AssociationRole, it maps onto a Message, with the
ClassifierRoles corresponding to the end-points of the line as the sender and the
receiver roles. If the line corresponds to a Link, the arrow maps onto a Stimulus, with
the Instances corresponding to the end-points of the line as the sender and the receiver
Instances. The line is the communication connection or the communication link of the
Message or the Stimulus, respectively.

UML V1.4 draft February 2001 3-139

3.73 Creation/Destruction Markers

The control flow type sets the corresponding properties:

• solid arrowhead: a synchronous operation invocation

• stick arrowhead: an asynchronous operation invocation

• dashed arrow with stick arrowhead: return from an synchronous operation
invocation

The predecessor expression, together with the sequence expression, determines the
predecessor and activation (caller) relationships of a Message or a Stimulus. The
predecessors of a Message (Stimulus) are those Messages (Stimuli) corresponding to
the sequence numbers in the predecessor list as well as the Message (Stimulus)
corresponding to the immediate preceding sequence number as the Message
(Stimulus), i.e. 1.2.2 is the one preceding 1.2.3. The caller is the ClassifierRole
(Instance) receiving the Message (Stimulus) whose sequence number is truncated by
one position, i.e. 1.2 is the caller of 1.2.3. The thread-of-control name maps onto a
Classifier stereotyped thread, i.e. an active class.

The return of a value maps into a Message from the called Instance to the caller with
the dispatching Action being a ReturnAction. Its predecessor is the final Message
within the procedure. Its activation is the Message that called the procedure.

The recurrence expression, the iteration clause, and the condition clause determine the
recurrence value in the Action attached to the Message.

The operation name and the form of the signature determine the Operation attached to
the CallAction associated with the Message. Similarly for a Signal and SendAction.
The arguments of the signature determine the arguments associated with the
CallAction and SendAction, respectively

In a procedural interaction, each arrow symbol also maps into a second Message
representing the return flow, unless the return flow is explicitly shown. This Message
has an activation Association to the original call Message. Its associated Action is a
ReturnAction bearing the return values as arguments (if any).

3.73 Creation/Destruction Markers

3.73.1 Semantics

During the execution of an interaction some Instances and Links are created and some
are destroyed. The creation and destruction of elements can be marked.

3.73.2 Notation

An Instance or a Link that is created during an interaction has the standard constraint
new attached to it. An Instance or a Link that is destroyed during an interaction has the
standard constraint destroyed attached. These constraints may be used even if the
element has no name. Both constraints may be used together, but the standard
constraint transient may be used in place of new destroyed.

3-140 UML V1.4 draft February 2001

3 UML Notation

3.73.3 Presentation options

Tools may use other graphic markers in addition to or in place of the keywords. For
example, each kind of lifetime might be shown in a different color. A tool may also
use animation to show the creation and destruction of elements and the state of the
system at various times.

3.73.4 Example

See Figure 3-60 on page 3-121.

3.73.5 Mapping

Creation or destruction indicators map either into CreateActions, DestroyActions, or
TerminateActions in the corresponding ClassifierRoles. The former two Actions
dispatch the Stimuli that cause the changes. These status indicators are merely
summaries of the total actions.

UML V1.4 draft February 2001 3-141

3.74 Statechart Diagram

3UML Notation
Part 9 - Statechart Diagrams

A statechart diagram can be used to describe the behavior of instances of a model element such
as an object or an interaction. Specifically, it describes possible sequences of states and actions
through which the element instances can proceed during its lifetime as a result of reacting to
discrete events (e.g., signals, operation invocations).

The semantics and notation described in this chapter are substantially those of David Harel’s
statecharts with modifications to make them object-oriented. His work was a major advance on
the traditional flat state machines. Statechart notation also implements aspects of both Moore
machines and Mealy machines, traditional state machine models.

3.74 Statechart Diagram

3.74.1 Semantics

Statechart diagrams represent the behavior of entities capable of dynamic behavior by
specifying its response to the receipt of event instances. Typically, it is used for describing the
behavior of class instances, but statecharts may also describe the behavior of other entities such
as use-cases, actors, subsystems, operations, or methods.

3.74.2 Notation

A statechart diagram is a graph that represents a state machine. States and various other types
of vertices (pseudostates) in the state machine graph are rendered by appropriate state and
pseudostate symbols, while transitions are generally rendered by directed arcs that inter-connect
them. States may also contain subdiagrams by physical containment or tiling. Note that every
state machine has a top state which contains all the other elements of the entire state machine.
The graphical rendering of this top state is optional.

The association between a state machine and its context does not have a special notation.

An example statechart diagram for a simple telephone object is depicted in Figure 3-72 on page
3-142.

3-142 UML V1.4 draft February 2001

3 UML Notation

Figure 3-72 State Diagram

3.74.3 Mapping

A statechart diagram maps into a StateMachine. That StateMachine may be owned by an
instance of a model element capable of dynamic behavior, such as classifier or a behavioral
feature, which provides the context for that state machine. Different contexts may apply
different semantic constraints on the state machine.

3.75 State

3.75.1 Semantics

A state is a condition during the life of an object or an interaction during which it satisfies some
condition, performs some action, or waits for some event. A composite state is a state that, in
contrast to a simple state, has a graphical decomposition. (Composite states and their notation
are described in more detail in Section 3.76.) Conceptually, an object remains in a state for an
interval of time. However, the semantics allow for modeling “flow-through” states which are
instantaneous, as well as transitions that are not instantaneous.

A state may be used to model an ongoing activity. Such an activity is specified either by a
nested state machine or by a computational expression.

DialTone
Dialing

Talking
Ringing

Busy

dial digit(n)

connected

callee answers

Idle

busy

lift
receiver

caller
hangs up

callee
hangs up

Active

dial digit(n)

/get dial tone

do/ play busy
tone

do/ play ringing
tone/enable speech

/disconnect

do/ play dial tone

Pinned

callee
answers

Connecting

dial digit(n)[valid]

Timeout
do/ play message

dial digit(n)[invalid]

/connectInvalid
do/ play message

[incomplete]after (15 sec.)

after (15 sec.)

UML V1.4 draft February 2001 3-143

3.75 State

3.75.2 Notation

A state is shown as a rectangle with rounded corners (Figure 3-73 on page 3-144). Optionally,
it may have an attached name tab. The name tab is a rectangle, usually resting on the outside of
the top side of a state and it contains the name of that state. It is normally used to keep the
name of a composite state that has concurrent regions, but may be used in other cases as well
(the Process state in Figure 3-78 on page 3-152 illustrates the use of the name tab).

A state may be optionally subdivided into multiple compartments separated from each other by
a horizontal line. They are as follows:

• Name compartment

This compartment holds the (optional) name of the state, as a string. States without names
are anonymous and are all distinct. It is undesirable to show the same named state twice in
the same diagram, as confusion may ensue. Name compartments should not be used if a
name tab is used and vice versa.

• Internal transitions compartment

This compartment holds a list of internal actions or activities that are performed while the
element is in the state.

The action label identifies the circumstances under which the action specified by the action
expression will be invoked. The action expression may use any attributes and links that are in
the scope of the owning entity. For list items where the action expression is empty, the
backslash separator is optional.

A number of action labels are reserved for various special purposes and, therefore, cannot be
used as event names. The following are the reserved action labels and their meaning:

• entry

This label identifies an action, specified by the corresponding action expression, which is
performed upon entry to the state (entry action)

• exit

This label identifies an action, specified by the corresponding action expression, that is
performed upon exit from the state (exit action)

• do

This label identifies an ongoing activity (“do activity”) that is performed as long as the
modeled element is in the state or until the computation specified by the action expression is
completed (the latter may result in a completion event being generated).

• include

This label is used to identify a submachine invocation. The action expression contains the
name of the submachine that is to be invoked. Submachine states and the corresponding
notation are described in Section 3.82, “Submachine States,” on page -157.

3-144 UML V1.4 draft February 2001

3 UML Notation

In all other cases, the action label identifies the event that triggers the corresponding action
expression. These events are called internal transitions and are semantically equivalent to self
transitions except that the state is not exited or re-entered. This means that the corresponding
exit and entry actions are not performed. The general format for the list item of an internal
transition is:

event-name ‘(’ comma-separated-parameter-list ‘)’ ‘[’ guard-condition‘]’ ‘/’
 action-expression

Each event name may appear more than once per state if the guard conditions are different. The
event parameters and the guard conditions are optional. If the event has parameters, they can be
used in the action expression through the current event variable.

3.75.3 Example

Figure 3-73 State

3.75.4 Mapping

A state symbol maps into a State. See “Composite States” on page 3-145 for further details on
which kind of state.

The name string in the symbol maps to the name of the state. Two symbols with the same name
map into the same state. However, each state symbol with no name (or an empty name string)
maps into a distinct anonymous State.

A list item in the internal transition compartment maps into a corresponding Action associated
with a state. An “entry” list item (i.e., an item with the “entry” label) maps to the “entry” role,
an “exit” list item maps to the “exit” role, and a “do” item maps to the “doActivity” role. (The
mapping of “include” items is discussed in Section 3.82, “Submachine States,” on page -157.)

A list item with an event name maps to a Transition associated with the “internal” role relative
to the state. The action expression maps into the ActionSequence and Guard for the Transition.
The event name and arguments map into an Event corresponding to the event name and
arguments. The Event plays the role of a trigger to the Transition.

Typing Password

help / display help

entry / set echo invisible
exit / set echo normal
character / handle character

UML V1.4 draft February 2001 3-145

3.76 Composite States

3.76 Composite States

3.76.1 Semantics

A composite state is decomposed into two or more concurrent substates (called regions) or into
mutually exclusive disjoint substates. A given state may only be refined in one of these two
ways. Naturally, any substate of a composite state can also be a composite state of either type.

A newly-created object takes it’s topmost default transition, originating from the topmost initial
pseudostate. An object that transitions to its outermost final state is terminated.

Each region of a state may have initial pseudostates and final states. A transition to the
enclosing state represents a transition to the initial pseudostate. A transition to a final state
represents the completion of activity in the enclosing region. Completion of activity in all
concurrent regions represents completion of activity by the enclosing state and triggers a
completion event on the enclosing state. Completion of the top state of an object corresponds to
its termination.

3.76.2 Notation

An expansion of a state shows its internal state machine structure. In addition to the (optional)
name and internal transition compartments, the state may have an additional compartment that
contains a region holding a nested diagram. For convenience and appearance, the text
compartments may be shrunk horizontally within the graphic region.

An expansion of a state into concurrent substates is shown by tiling the graphic region of the
state using dashed lines to divide it into regions. Each region is a concurrent substate. Each
region may have an optional name and must contain a nested state diagram with disjoint states.
The text compartments of the entire state are separated from the concurrent substates by a solid
line. It is also possible to use a tab notation to place the name of a concurrent state. The tab
notation is more space efficient.

An expansion of a state into disjoint substates is shown by showing a nested state diagram
within the graphic region.

An initial pseudostate is shown as a small solid filled circle. In a top-level state machine, the
transition from an initial pseudostate may be labeled with the event that creates the object;
otherwise, it must be unlabeled. If it is unlabeled, it represents any transition to the enclosing
state. The initial transition may have an action.

A final state is shown as a circle surrounding a small solid filled circle (a bull’s eye). It
represents the completion of activity in the enclosing state and it triggers a transition on the
enclosing state labeled by the implicit activity completion event (usually displayed as an
unlabeled transition), if such a transition is defined.

In some cases, it is convenient to hide the decomposition of a composite state. For example, the
state machine inside a composite state may be very large and may simply not fit in the
graphical space available for the diagram. In that case, the composite state may be represented
by a simple state graphic with a special “composite” icon, usually in the lower right-hand
corner. This icon, consisting of two horizontally placed and connected states, is an optional

3-146 UML V1.4 draft February 2001

3 UML Notation

visual cue that the state has a decomposition that is not shown in this particular statechart
diagram (Figure 3-75 on page 146). Instead, the contents of the composite state are shown in a
separate diagram. Note that the “hiding” here is purely a matter of graphical convenience and
has no semantic significance in terms of access restrictions.

3.76.3 Examples

Figure 3-74 Sequential Substates

Figure 3-75 Composite State with hidden decomposition indicator icon

Start

entry/ start dial tone

Partial Dial

entry/number.append(n)

digit(n)

digit(n)

[number.isValid()]

Dialing

exit/ stop dial tone

HiddenComposite

entry/ start dial tone
exit/ stop dial tone

UML V1.4 draft February 2001 3-147

3.77 Events

Figure 3-76 Concurrent Substates

3.76.4 Mapping

A state symbol maps into a State. If the symbol has no subdiagrams in it, it maps into a
SimpleState. If it is tiled by dashed lines into regions, then it maps into a CompositeState with
the isConcurrent value true; otherwise, it maps into a CompositeState with the isConcurrent
value false. A region maps into a CompositeState with the isRegion value true and the
isConcurrent value false.

An initial pseudostate symbol map into a Pseudostate of kind initial. A final state symbol maps
to a final state.

3.77 Events

3.77.1 Semantics

An event is a noteworthy occurrence. For practical purposes in state diagrams, it is an
occurrence that may trigger a state transition. Events may be of several kinds (not necessarily
mutually exclusive).

Lab1 Lab2

Term

lab done

project done

Passed

Incomplete

Project

Final pass

Test

Failed
fail

lab
done

Taking Class

3-148 UML V1.4 draft February 2001

3 UML Notation

• A designated condition becoming true (described by a Boolean expression) results in a
change event instance. The event occurs whenever the value of the expression changes from
false to true. Note that this is different from a guard condition. A guard condition is
evaluated once whenever its event fires. If it is false, then the transition does not occur and
the event is lost. R

• The receipt of an explicit signal from one object to another results in a signal event instance.
It is denoted by the signature of the event as a trigger on a transition.

• The receipt of a call for an operation implemented as a transition by an object represents a
call event instance.

• The passage of a designated period of time after a designated event (often the entry of the
current state) or the occurrence of a given date/time is a TimeEvent. .

The event declaration has scope within the package it appears in and may be used in state
diagrams for classes that have visibility inside the package. An event is not local to a single
class.

3.77.2 Notation

A signal or call event can be defined using the following format:

event-name ‘(‘ comma-separated-parameter-list ‘)

A parameter has the format:

parameter-name ‘:’ type-expression

A signal can be declared using the «signal» keyword on a class symbol in a class diagram. The
parameters are specified as attributes. A signal can be specified as a subclass of another signal.
This indicates that an occurrence of the subevent triggers any transition that depends on the
event or any of its ancestors.

An elapsed-time event can be specified with the keyword after followed by an expression that
evaluates (at modeling time) to an amount of time, such as “after (5 seconds)” or after (10
seconds since exit from state A).” If no starting point is indicated, then it is the time since the
entry to the current state. Other time events can be specified as conditions, such as when (date
= Jan. 1, 2000).

A condition becoming true is shown with the keyword when followed by a Boolean expression.
This may be regarded as a continuous test for the condition until it is true, although in practice
it would only be checked on a change of values.

Signals can be declared on a class diagram with the keyword «signal» on a rectangle symbol.
These define signal names that may be used to trigger transitions. Their parameters are shown
in the attribute compartment. They have no operations. They may appear in a generalization
hierarchy.

UML V1.4 draft February 2001 3-149

3.77 Events

3.77.3 Example

Figure 3-77 Signal Declaration

3.77.4 Mapping

A class box with stereotype «signal» maps into a Signal. The name and parameters are given by
the name string and the attribute list of the box. Generalization arrows between signal class
boxes map into Generalization relationships between the Signal.

The usage of an event string expression in a context requiring an event maps into an implicit
reference of the Event with the given name. It is an error if various uses of the same name
(including any explicit declarations) do not match.

UserInput
device

Mouse

location

Button
Keyboard
Character

character

InputEvent

time

Control Graphic

PunctuationAlphanumericSpace

Mouse Mouse
Button
Down

Button
Up

«signal»

«signal»

«signal» «signal»

«signal» «signal» «signal»

«signal» «signal»

«signal»

«signal»

Character Character

3-150 UML V1.4 draft February 2001

3 UML Notation

3.78 Simple Transitions

3.78.1 Semantics

A simple transition is a relationship between two states indicating that an instance in the first
state will enter the second state and perform specific actions when a specified event occurs
provided that certain specified conditions are satisfied. On such a change of state, the transition
is said to “fire.” The trigger for a transition is the occurrence of the event labeling the
transition. The event may have parameters, which are accessible by the actions specified on the
transition as well as in the corresponding exit and entry actions associated with the source and
target states respectively. Events are processed one at a time. If an event does not trigger any
transition, it is discarded. If it can trigger more than one transition within the same sequential
region (i.e., not in different concurrent regions), only one will fire. If these conflicting
transitions are of the same priority, an arbitrary one is selected and triggered.

3.78.2 Notation

A transition is shown as a solid line originating from the source state and terminated by an
arrow on the target state. It may be labeled by a transition string that has the following general
format:

event-signature ‘[’ guard-condition ‘]’ ‘/’ action-expression

The event-signature describes an event with its arguments:

event-name ‘(’ comma-separated-parameter-list ‘)’

The guard-condition is a Boolean expression written in terms of parameters of the triggering
event and attributes and links of the object that owns the state machine. The guard condition
may also involve tests of concurrent states of the current machine, or explicitly designated
states of some reachable object (for example, “in State1” or “not in State2”). State names may
be fully qualified by the nested states that contain them, yielding pathnames of the form
“State1::State2::State3.” This may be used in case same state name occurs in different
composite state regions of the overall machine.

The action-expression is executed if and when the transition fires. It may be written in terms of
operations, attributes, and links of the owning object and the parameters of the triggering event,
or any other features visible in it’s scope. The corresponding action must be executed entirely
before any other actions are considered. This model of execution is referred to as run-to-
completion semantics. The action expression may be an action sequence comprising a number
of distinct actions including actions that explicitly generate events, such as sending signals or
invoking operations. The details of this expression are dependent on the action language chosen
for the model.

Transition times

Names may be placed on transitions to designate the times at which they fire. See “Transition
Times” on page 3-117.

UML V1.4 draft February 2001 3-151

3.79 Transitions to and from Concurrent States

3.78.3 Example

right-mouse-down (location) [location in window] / object := pick-object (location);
object.highlight ()

The event may be any of the standard event types. Selecting the type depends on the syntax of
the name (for time events, for example); however, SignalEvents and CallEvents are not
distinguishable by syntax and must be discriminated by their declaration elsewhere.

3.78.4 Mapping

A transition string and the transition arrow that it labels together map into a Transition and its
attachments. The arrow connects two state symbols. The Transition has the corresponding
States as its source (the state at the tail) and destination (the state at the head) States in
associations to the Transition.

The event name and parameters map into an Event element, which may be a SignalEvent, a
CallEvent, a TimeExpression (if it has the proper syntax), or a ChangeEvent (if it is expressed
as a Boolean expression). The event is attached as a “trigger” role in the association to the
transition.

The guard condition maps into a Guard element attached to the Transition. Note that a guard
condition is distinguished graphically from a change event specification by being enclosed in
brackets.

An action expression maps into an Action attached as an “effect” role relative to the Transition.

3.79 Transitions to and from Concurrent States

A concurrent transition may have multiple source states and target states. It represents a
synchronization and/or a splitting of control into concurrent threads without concurrent
substates.

3.79.1 Semantics

A concurrent transition is enabled when all the source states are occupied. After a compound
transition fires, all its destination states are occupied.

3.79.2 Notation

A concurrent transition includes a short heavy bar (a synchronization bar, which can represent
synchronization, forking, or both). The bar may have one or more arrows from states to the bar
(these are the source states). The bar may have one or more arrows from the bar to states (these
are the destination states). A transition string may be shown near the bar. Individual arrows do
not have their own transition strings.

3-152 UML V1.4 draft February 2001

3 UML Notation

3.79.3 Example

Figure 3-78 Concurrent Transitions

3.79.4 Mapping

A bar with multiple transition arrows leaving it maps into a fork pseudostate. A bar with
multiple transition arrows entering it maps into a join pseudostate. The transitions
corresponding to the incoming and outgoing arrows attach to the pseudostate as if it were a
regular state. If a bar has multiple incoming and multiple outgoing arrows, then it maps into a
join connected to a fork pseudostate by a single transition with no attachments.

3.80 Transitions to and from Composite States

3.80.1 Semantics

A transition drawn to the boundary of a composite state is equivalent to a transition to its initial
point (or to a complex transition to the initial point of each of its concurrent regions, if it is
concurrent). The entry action is always performed when a state is entered from outside.

A transition from a composite state indicates a transition that applies to each of the states within
the state region (at any depth). It is “inherited” by the nested states. Inherited transitions can be
masked by the presence of nested transitions with the same trigger.

3.80.2 Notation

A transition drawn to a composite state boundary indicates a transition to the composite state.
This is equivalent to a transition to the initial pseudostate within the composite state region.
The initial pseudostate must be present. If the state is a concurrent composite state, then the
transition indicates a transition to the initial pseudostate of each of its concurrent substates.

Transitions may be drawn directly to states within a composite state region at any nesting
depth. All entry actions are performed for any states that are entered on any transition. On a
transition within a concurrent composite state, transition arrows from the synchronization bar
may be drawn to one or more concurrent states. Any other concurrent regions start with their
default initial pseudostate.

Process

Setup Cleanup

A1 A2

B2B1

UML V1.4 draft February 2001 3-153

3.80 Transitions to and from Composite States

A transition drawn from a composite state boundary indicates a transition of the composite
state. If such a transition fires, any nested states are forcibly terminated and perform their exit
actions, then the transition actions occur and the new state is established.

Transitions may be drawn directly from states within a composite state region at any nesting
depth to outside states. All exit actions are performed for any states that are exited on any
transition. On a transition from within a concurrent composite state, transition arrows may be
specified from one or more concurrent states to a synchronization bar; therefore, specific states
in the other regions are irrelevant to triggering the transition.

A state region may contain a history state indicator shown as a small circle containing an ‘H.’
The history indicator applies to the state region that directly contains it. A history indicator may
have any number of incoming transitions from outside states. It may have at most one outgoing
unlabeled transition. This identifies the default “previous state” if the region has never been
entered. If a transition to the history indicator fires, it indicates that the object resumes the state
it last had within the composite region. Any necessary entry actions are performed. The history
indicator may also be ‘H*’ for deep history. This indicates that the object resumes the state it
last had at any depth within the composite region, rather than being restricted to the state at the
same level as the history indicator. A region may have both shallow and deep history
indicators.

3.80.3 Presentation options

Stubbed transitions

Nested states may be suppressed. Transitions to nested states are subsumed to the most specific
visible enclosing state of the suppressed state. Subsumed transitions that do not come from an
unlabeled final state or go to an unlabeled initial pseudostate may (but need not) be shown as
coming from or going to stubs. A stub is shown as a small vertical line (bar) drawn inside the
boundary of the enclosing state. It indicates a transition connected to a suppressed internal state.
Stubs are not used for transitions to initial or from final states.

Note that events should be shown on transitions leading into a state, either to the state boundary
or to an internal substate, including a transition to a stubbed state. Normally events should not
be shown on transitions leading from a stubbed state to an external state. Think of a transition
as belonging to its source state. If the source state is suppressed, then so are the details of the
transition. Note also that a transition from a final state is summarized by an unlabeled transition
from the composite state contour (denoting the implicit event “action complete” for the
corresponding state).

3.80.4 Example

See Figure 3-77 on page 3-149 and Figure 3-78 on page 3-152 for examples of composite
transitions. The following are examples of stubbed transitions and the history indicator.

3-154 UML V1.4 draft February 2001

3 UML Notation

Figure 3-79 Stubbed Transitions

Figure 3-80 History Indicator

3.80.5 Mapping

An arrow to any state boundary, nested or not, maps into a Transition between the
corresponding States and similarly for transitions directly to history states.

A history indicator maps into a Pseudostate of kind shallowHistory or deepHistory.

A C

A C

B
D

E

F

p s

t

B

r

p

r

D

W

W

may be abstracted as

u

s

s

A C

H

A1

A2

interrupt

resume

UML V1.4 draft February 2001 3-155

3.81 Factored Transition Paths

A stubbed transition does not map into anything in the model. It is a notational elision that
indicates the presence of transitions to additional states in the model that are not visible in the
diagram.

3.81 Factored Transition Paths

3.81.1 Semantics

By definition, a transition connects exactly two vertices in the state machine graph. However,
since some of these vertices may be pseudostates—which are transient in nature—there is a
need for describing chains of transitions that may be executed in the context of a single run-to-
completion step. Such a transition is known as a compound transition.

As a practical measure, it is often useful to share segments of a compound transition. For
example, two or more distinct compound transitions may come together and continue via a
common path, sharing its action, and possibly terminating on the same target state. In other
cases, it may be useful to split a transition into separate mutually exclusive (i.e., non-
concurrent) paths.

Both of these examples of graphical factoring in which some transitions are shared resulting in
simplified diagrams. However, factoring is also useful for modeling dynamically adaptive
behavior. An example of this occurs when a single event may lead to any of a set of possible
target states, but where the final target state is only determined as the result of an action
(calculation) performed after the triggering of the compound transition.

Note that the splitting and joining of paths due to factoring is different from the splitting and
joining of concurrent transitions described in Section 3.79. The sources and targets of these
factored transitions are not concurrent.

3.81.2 Notation

Two or more transitions emanating from different non-concurrent states or pseudostates can
terminate on a common junction point. This allows their respective compound transitions to
share the path that emanates from that junction point. A junction point is represented by a small
black circle. Alternatively, it may be represented by a diamond shape (see “Decisions” on page
3-164).

Two or more guarded transitions emanating from the same junction point represent a static
branch point. Normally, the guards are mutually exclusive. This is equivalent to a set of
individual transitions, one for each path through the tree, whose guard condition is the “and” of
all of the conditions along the path. Note that the semantics of static branches is that all the
outgoing guards are evaluated before any transition is taken.

Two or more guarded transitions emanating from a common dynamic choice point are used to
model dynamic choices. In this case, the guards of the outgoing transitions are evaluated at the
time the choice point has been reached. The value of these guards may be a function of some
calculations performed in the actions of the incoming transition (s). A dynamic choice point is
represented by a small white circle (reminiscent of a small state icon).

3-156 UML V1.4 draft February 2001

3 UML Notation

3.81.3 Examples

In Figure 3-81 a single junction point is used to merge and split transitions. Regardless of
whether the junction point was reached from state State0 or from state State1, the outgoing
paths are the same for both cases.

If the state machine in this example is in state State1 and b is less than 0 when event e1 occurs,
the outgoing transition will be taken only if one of the three downstream guards is true. Thus,
if a is equal to 6 at that point, no transition will be triggered.

Figure 3-81 Junction points

In the dynamic choice point example in Figure 3-82, the decision on which branch to take is
only made after the transition from State1 is taken and the choice point is reached. Note that the
action associated with that incoming transition computes a new value for a. This new value can
then be used to determine the outgoing transition to be taken. The use of the predefined
condition[else] is recommended to avoid run-time errors.

Figure 3-82 Dynamic choice points

[a < 0]

State1

State2 State3 State4

e1[b < 0]e2[b < 0]

State0

[a = 5]

[a > 7]

[a < 0]

State1

State2 State3 State4

e1[b < 0]/a := f(m)

[a = 5]

[else]

UML V1.4 draft February 2001 3-157

3.82 Submachine States

3.82 Submachine States

3.82.1 Semantics

A submachine state represents the invocation of a state machine defined elsewhere. It is similar
to a macro call in the sense that it represents a (graphical) shorthand that implies embedding of
a complex specification within another specification. The submachine must be contained in the
same context as the invoking state machine.

In the general case, an invoked state machine can be entered at any of its substates or through
its default (initial) pseudostate. Similarly, it can be exited from any substate or as a result of the
invoked state machine reaching its final state or by an “inherited” or “group” transition that
applies to all substates in the submachine.

The non-default entry and exits are specified through special stub states.

3.82.2 Notation

The submachine state is depicted as a normal state with the appropriate “include” declaration
within its internal transitions compartment (see Section 3.75, “State,” on page -142). The
expression following the include reserved word is the name of the invoked submachine.

Optionally, the submachine state may contain one or more entry stub states and one or more
exit stub states. The notation for these is similar to that used for stub ends of stubbed
transitions, except that the ends are labeled. The labels represent the names of the
corresponding substates within the invoked submachine. A pathname may be used if the
substate is not defined at the top level of the invoked submachine. Naturally, this name must be
a valid name of a state in the invoked state machine.

If the submachine is entered through its default pseudostate or if it is exited as a result of the
completion of the submachine, it is not necessary to use the stub state notation for these cases.
Similarly, a stub state is not required if the exit occurs through an explicit “group” transition
that emanates from the boundary of the submachine state (implying that it applies to all the
substates of the submachine).

Submachine states invoking the same submachine may occur multiple times in the same state
diagram with different entry and exit configurations and with different internal transitions and
exit and entry action specifications in each case.

3-158 UML V1.4 draft February 2001

3 UML Notation

3.82.3 Example

The following diagram shows a fragment from a statechart diagram in which a submachine (the
FailureSubmachine) is invoked in a particular way. The actual submachine is presumably
defined elsewhere and is not shown in this diagram. Note that the same submachine could be
invoked elsewhere in the same statechart diagram with different entry and exit configurations.

Figure 3-83 Submachine State

In the above example, the transition triggered by event “error1” will terminate on state “sub1”
of the FailureSubmachine state machine. Since the entry point does not contain a path name,
this means that “sub1” is defined at the top level of that submachine. In contrast, the transition
triggered by “error2” will terminate on the “sub12” substate of the “sub1”substate (as indicated
by the path name), while the “error3” transition implies taking of the default transition of the
FailureSubmachine.

The transition triggered by the event “fixed1” emanates from the “subEnd” substate of the
submachine. Finally, the transition emanating from the edge of the submachine state is taken as
a result of the completion event generated when the FailureSubmachine reaches its final state.

3.82.4 Mapping

A submachine state in a statechart diagram maps directly to a SubmachineState in the
metamodel. The name following the “include” reserved action label represents the state
machine indicated by the “submachine” attribute. Stub states map to the Stub State concept in
the metamodel. The label on the diagram corresponds to the pathname represented by the
“referenceState” attribute of the stub state.

Handle Failure

include / FailureSubmachine

sub1 sub1::sub12

subEnd

error2/error1/

error3/

fixed1/

UML V1.4 draft February 2001 3-159

3.83 Synch States

3.83 Synch States

3.83.1 Semantics

A synch state is for synchronizing concurrent regions of a state machine. It is used in
conjunction with forks and joins to insure that one region leaves a particular state or states
before another region can enter a particular state or states. The firing of outgoing transitions
from a synch state can be limited by specifying a bound on the difference between the number
of times outgoing and incoming transitions have fired.

3.83.2 Notation

A synch state is shown as a small circle with the upper bound inside it. The bound is either a
positive integer or an asterisk (’*’) for unlimited. Synch states are drawn on the boundary
between two regions when possible.

3.83.3 Example

Figure 3-84 Synch states

Build

Install
Electricity

Build House

Inspect
Install

Foundation

Frame

In Foundation

Install
Electricity
In Frame

Put On
Roof

Install
Electricity
Outside

Install
Walls

**

3-160 UML V1.4 draft February 2001

3 UML Notation

3.83.4 Mapping

A synch state circle maps into a SynchState, contained by the least common containing state of
the regions it is synchronizing. The number inside it maps onto the bound attribute of the synch
state. A star (’*’) inside the synch state circle maps to a value of Unlimited for the bound
attribute.

UML V1.4 draft February 2001 3-161

3.84 Activity Diagram

3UML Notation
Part 10 - Activity Diagrams

3.84 Activity Diagram

3.84.1 Semantics

An activity graph is a variation of a state machine in which the states represent the performance
of actions or subactivities and the transitions are triggered by the completion of the actions or
subactivities. It represents a state machine of a procedure itself.

3.84.2 Notation

An activity diagram is a special case of a state diagram in which all (or at least most) of the
states are action or subactivity states and in which all (or at least most) of the transitions are
triggered by completion of the actions or subactivities in the source states. The entire activity
diagram is attached (through the model) to a classifier, such as a use case, or to a package, or to
the implementation of an operation. The purpose of this diagram is to focus on flows driven by
internal processing (as opposed to external events). Use activity diagrams in situations where
all or most of the events represent the completion of internally-generated actions (that is,
procedural flow of control). Use ordinary state diagrams in situations where asynchronous
events occur.

3-162 UML V1.4 draft February 2001

3 UML Notation

3.84.3 Example

Figure 3-85 Activity Diagram

Get
Cups

Put Coffee
in Filter Add Water

to Reservoir

[found coffee]

[no coffee]Find
Beverage

Get cans
of cola

[no cola]

[found cola]

Put Filter
in Machine

Turn on
Machine

Person::Prepare Beverage

Brew coffee

Pour Coffee

Drink

/coffeePot.turnOn

light goes out

UML V1.4 draft February 2001 3-163

3.85 Action state

3.84.4 Mapping

An activity diagram maps into an ActivityGraph.

3.85 Action state

3.85.1 Semantics

An action state is a shorthand for a state with an entry action and at least one outgoing
transition involving the implicit event of completing the entry action (there may be several such
transitions if they have guard conditions). Action states should not have internal transitions,
outgoing transitions based on explicit events, or exit actions, use normal states for this situation.
Transitions leaving an action state should not include an event signature. Such transitions are
implicitly triggered by the completion of the action in the state. The transitions may include
guard conditions and actions. The normal use of an action state is to model a step in the
execution of an algorithm (a procedure) or a workflow process.

3.85.2 Notation

An action state is shown as a shape with straight top and bottom and with convex arcs on the
two sides. The action-expression is placed in the symbol. The action expression need not be
unique within the diagram.

3.85.3 Presentation options

The action may be described by natural language, pseudocode, or programming language code.
It may use only attributes and links of the owning object.

Note that action state notation may be used within ordinary state diagrams; however, they are
more commonly used with activity diagrams, which are special cases of state diagrams.

3.85.4 Example

Figure 3-86 Action States

3.85.5 Mapping

An action state symbol maps into an ActionState with the action-expression mapped to the
entry action of the State. The State is normally anonymous.

matrix.invert (tolerance:Real) drive to work

3-164 UML V1.4 draft February 2001

3 UML Notation

3.86 Subactivity state

3.86.1 Semantics

A subactivity state invokes an activity graph. When a subactivity state is entered, the activity
graph “nested” in it is executed as any activity graph would be. The subactivity state is not
exited until the final state of the nested graph is reached, or when trigger events occur on
transitions coming out of the subactivity state. Since states in activity graphs do not normally
have trigger events, subactivity states are normally exited when their nested graph is finished. A
single activity graph may be invoked by many subactivity states.

3.86.2 Notation

A subactivity state is shown in the same way as an action state with the addition of an icon in
the lower right corner depicting a nested activity diagram. The name of the subactivity is placed
in the symbol. The subactivity need not be unique within the diagram.

This notation is applicable to any UML construct that supports “nested” structure. The icon
must suggest the type of nested structure.

3.86.3 Example

Figure 3-87 Subactivity States

3.86.4 Mapping

A subactivity state symbol maps into a SubactivityState. The name of the subactivity maps to a
submachine link between the SubactivityState and an ActivityGraph of that name. The
SubactivityState is normally anonymous.

3.87 Decisions

3.87.1 Semantics

A state diagram (and by derivation an activity diagram) expresses a decision when guard
conditions are used to indicate different possible transitions that depend on Boolean conditions
of the owning object. UML provides a shorthand for showing decisions and merging their
separate paths back together. Each possible outcome should appear on one of the outgoing
transitions. A predefined guard denoted “else” may be defined for at most one outgoing
transition. This transition is enabled if all the guards labeling the other transitions are false.

Build Product Fill Order

UML V1.4 draft February 2001 3-165

3.88 Call States

3.87.2 Notation

A decision may be shown by labeling multiple output transitions of an action with different
guard conditions.

The icon provided for a decision is the traditional diamond shape, with one incoming arrow and
with two or more outgoing arrows, each labeled by a distinct guard condition with no event
trigger.

The same icon can be used to merge decision branches back together, in which case it is called
a merge. A merge has two or more incoming arrows and one outgoing arrow.

Note that a chain of decisions may be part of a complex transition, but only the first segment in
such a chain may contain an event trigger label. All segments may have guard expressions. The
transition coming from a merge may not have a trigger label or guard expressions.

3.87.3 Example

Figure 3-88 Decision and merge

3.87.4 Mapping

A decision symbol maps into a Pseudostate of kind junction. Each label on an outgoing arrow
maps into a Guard on the corresponding Transition leaving the Pseudostate. A merge symbol
maps also maps into a Pseudostate of kind junction.

3.88 Call States

3.88.1 Semantics

A call state is an action state that has exactly one call action as its entry action. It is useful in
object flow modeling to reduce notational ambiguity over which action is taking input or
providing output.

Calculate
total cost

[cost < $50] Charge
customer’s
account

Get
authorization

[cost ≥ $50]

3-166 UML V1.4 draft February 2001

3 UML Notation

3.88.2 Notation

A call state is shown in the same way as an action state, except that the name of the operation
of the call action is put in the symbol, along with the name of the classifier that hosts the
operation in parentheses under it.

3.88.3 Example

Figure 3-89 Call states and the operations they invoke

3.88.4 Mapping

The top name maps into the operation of the call action contained in the entry action of the call
state. The name in parentheses maps into the classifier hosting the operation.

3.89 Swimlanes

3.89.1 Semantics

Actions and subactivities may be organized into swimlanes. Swimlanes are used to organize
responsibility for actions and subactivities. They often correspond to organizational units in a
business model.

3.89.2 Notation

An activity diagram may be divided visually into “swimlanes,” each separated from
neighboring swimlanes by vertical solid lines on both sides. The relative ordering of the
swimlanes has no semantic significance. Each action is assigned to one swimlane. Transitions
may cross lanes. There is no significance to the routing of a transition path.

Invert

(Matrix)

Drive

(Person)

Matrix

Invert()

Person

Drive(to : Place)

UML V1.4 draft February 2001 3-167

3.89 Swimlanes

3.89.3 Example

Figure 3-90 Swimlanes in Activity Diagram

3.89.4 Mapping

A swimlane maps into a Partition of the States in the ActivityGraph. A state symbol in a
swimlane causes the corresponding State to belong to the corresponding Partition.

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order

3-168 UML V1.4 draft February 2001

3 UML Notation

3.90 Action-Object Flow Relationships

3.90.1 Semantics

Actions operate by and on objects. These objects either have primary responsibility for
initiating an action, or are used or determined by the action. Actions usually specify calls sent
between the object owning the activity graph, which initiates actions, and the objects that are
the targets of the actions.

3.90.2 Notation

Object responsible for an action

In sequence diagrams, the object responsible for performing an action is shown by drawing a
lifeline and placing actions on lifelines. See “Sequence Diagram” on page 3-106. Activity
diagrams do not show the lifeline, but each action specifies which object performs its operation.
These objects may also be related to the swimlane in some way. The actions within a swimlane
can all be handled by the same object or by multiple objects.

Object flow

Objects that are input to or output from an action may be shown as object symbols. A dashed
arrow is drawn from an action state to an output object, and a dashed arrow is drawn from an
input object to an action state. The same object may be (and usually is) the output of one action
and the input of one or more subsequent actions.

The control flow (solid) arrows must be omitted when the object flow (dashed) arrows supply a
redundant constraint. In other words, when a state produces an output that is input to a
subsequent state, that object flow relationship implies a control constraint.

Object in state

Frequently the same object is manipulated by a number of successive actions or subactivities. It
is possible to show one object with arrows to and from all of the relevant actions and
subactivities, but for greater clarity, the object may be displayed multiple times on a diagram.
Each appearance denotes a different point during the object’s life. To distinguish the various
appearances of the same object, the state of the object at each point may be placed in brackets
and appended to the name of the object (for example, PurchaseOrder[approved]). This
notation may also be used in collaboration and sequence diagrams.

UML V1.4 draft February 2001 3-169

3.90 Action-Object Flow Relationships

3.90.3 Example

Figure 3-91 Actions and Object Flow

3.90.4 Mapping

An object flow symbol maps into an ObjectFlowState whose incoming and outgoing
Transitions correspond to the incoming and outgoing arrows. The Transitions have no
attachments. The classifier name and (optional) state name of the object flow symbol map into
a Class or a ClassifierInState corresponding to the name(s). Solid and dashed arrows both map
to transitions.

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order

Order
[entered]

Order
[filled]

Order
[delivered]

Order
[placed]

3-170 UML V1.4 draft February 2001

3 UML Notation

3.91 Control Icons

The following icons provide explicit symbols for certain kinds of information that can be
specified on transitions. These icons are not necessary for constructing activity diagrams, but
many users prefer the added impact that they provide.

3.91.1 Notation

Signal receipt

The receipt of a signal may be shown as a concave pentagon that looks like a rectangle with a
triangular notch in its side (either side). The signature of the signal is shown inside the symbol.
A unlabeled transition arrow is drawn from the previous action state to the pentagon and
another unlabeled transition arrow is drawn from the pentagon to the next action state. A
dashed arrow may be drawn from an object symbol to the notch on the pentagon to show the
sender of the signal; this is optional.

Signal sending

The sending of a signal may be shown as a convex pentagon that looks like a rectangle with a
triangular point on one side (either side). The signature of the signal is shown inside the
symbol. A unlabeled transition arrow is drawn from the previous action state to the pentagon
and another unlabeled transition arrow is drawn from the pentagon to the next action state. A
dashed arrow may be drawn from the point on the pentagon to an object symbol to show the
receiver of the signal, this is optional.

UML V1.4 draft February 2001 3-171

3.91 Control Icons

Figure 3-92 Symbols for Signal Receipt and Sending

Deferred events

A frequent situation is when an event that occurs must be “deferred” for later use while some
other action or subactivity is underway. (Normally an event that is not handled immediately is
lost.) This may be thought of as having an internal transition that handles the event and places
it on an internal queue until it is needed or until it is discarded. Each state specifies a set of
events that are deferred if they occur during the state and are not used to trigger a transition. If
an event is not included in the set of deferrable events for a state, and it does not trigger a
transition, then it is discarded from the queue even if it has already occurred. If a transition
depends on an event, the transition fires immediately if the event is already on the internal
queue. If several transitions are possible, the leading event in the queue takes precedence.

A deferrable event is shown by listing it within the state followed by a slash and the special
operation defer. If the event occurs, it is saved and it recurs when the object transitions to
another state, where it may be deferred again. When the object reaches a state in which the
event is not deferred, it must be accepted or lost. The indication may be placed on a composite
state or its equivalents, submachine and subactivity states, in which case it remains deferrable
throughout the composite state. A contained transition may still be triggered by a deferrable
event, whereupon it is removed from the queue.

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out

coffeePot

3-172 UML V1.4 draft February 2001

3 UML Notation

It is not necessary to defer events on action states, because these states are not interruptible for
event processing. In this case, both deferred and undeferred events that occur during the state
are deferred until the state is completed. This means that the timing of the transition will be the
same regardless of the relative order of the event and the state completion, and regardless of
whether events are deferred.

Figure 3-93 Deferred Event

3.91.2 Mapping

A signal receipt symbol maps into a state with no actions or internal transitions. Its specified
event maps to a trigger event on the outgoing transition between it and the following state.

A signal send symbol maps into a SendAction on the incoming transition between it and the
previous state.

A deferred event attached to a state maps into a deferrableEvent association from the State to
the Event.

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out / defer

Get Cups

light goes out

light goes out / defer

UML V1.4 draft February 2001 3-173

3.92 Synch States

3.92 Synch States

The SynchState notation may be omitted in Activity Diagrams when a SynchState has one
incoming and one outgoing transition, and an unlimited bound. The semantics and mapping are
the same as if the synch state circles were included, as defined for state machine notation.

Figure 3-94 Synchronizing parallel activities

3.93 Dynamic Invocation

3.93.1 Semantics

The actions of an action state or the activity graph of a subactivity state may be executed more
than once concurrently. The number of concurrent invocations is determined at runtime by a
concurrency expression, which evaluates to a set of argument lists, one argument list for each
invocation.

3.93.2 Notation

If the dynamic concurrency of an action or subactivity state is not always exactly one, its
multiplicity is shown in the upper right corner of the state. Otherwise, nothing is shown.

3.93.3 Mapping

A multiplicity string in the upper right corner of an action or subactivity state maps to the same
value in the dynamicMultiplicity attribute of the state. The presence of a multiplicity string also
maps to a value of true for the isDynamic attribute of the state. If no multiplicity is present, the
value of the isDynamic attribute is false.

Build

Install
Electricity

Build House

Inspect
Install

Foundation

Frame

In Foundation

Install
Electricity
In Frame

Put On
Roof

Install
Electricity

Outside

Install
Walls

3-174 UML V1.4 draft February 2001

3 UML Notation

3.94 Conditional Forks

In Activity Diagrams, transitions outgoing from forks may have guards. This means the region
initiated by a fork transition might not start, and therefore is not required to complete at the
corresponding join. The usual notation and mapping for guards may be used on the transition
outgoing from a fork.

UML V1.4 draft February 2001 3-175

3.95 Component Diagram

3UML Notation
Part 11 - Implementation Diagrams

Implementation diagrams show aspects of physical implementation, including the structure of
components and the run-time deployment system. They come in two forms: 1) component
diagrams show the structure of components, including the classifiers that specify them and the
artifacts that implement them; and 2) deployment diagrams show the structure of the nodes on
which the components are deployed. These diagrams can also be applied in a broader way to
business modeling where the components represent business procedures and artifacts, and the
deployment nodes represent the organization units and resources (human and otherwise) of the
business.

3.95 Component Diagram

3.95.1 Semantics

A component diagram shows the dependencies among software components, including the
classifiers that specify them (e.g., implementation classes) and the artifacts that implement them
(e.g., source code files, binary code files, executable files, scripts).

A component diagram has only a type form, not an instance form. To show component
instances, use a deployment diagram (possibly a degenerate one without nodes).

3.95.2 Notation

A component diagram is a graph of components connected by dependency relationships.
Components may also be connected to components by physical containment representing
composition relationships.

Classifiers that specify components can be connected to them by physical containment or by a
«reside» relationship, which is an instance of the metaassociation between Component and
ModelElement. Likewise, artifacts that specify components can be connected to them by
physical containment or by an «implement» relationship, which is an instance of the
metaassociation between Component and Artifact.

A diagram containing component types may be used to show static dependencies, such as
compiler dependencies between programs, which are shown as dashed arrows (dependencies)
from a client component to a supplier component that it depends on in some way. The kinds of
dependencies are implementation-specific and may be shown as stereotypes of the
dependencies.

Although a component does not have its own features (e.g., attributes, operations), it acts as a
container for other classifiers that are defined with features. Components typically expose a set
of interfaces, which represent the services provided by the elements that reside on the
component. The diagram may show these interfaces and calling dependencies among
components, using dashed arrows from components to interfaces on other components.

3-176 UML V1.4 draft February 2001

3 UML Notation

3.95.3 Example

Figure 3-95 Component Diagram

<<EJBEntity>>
Catalog

CatalogHome

Catalog

CatalogPK

<<EJBSession>>
ShoppingSession

ShoppingSessionHome

ShoppingSession

CatalogInfo

<<file>>
CatalogJAR

<<focus>>
Catalog

<<auxiliary>>
CatalogPK

<<auxiliary>>
CatalogInfo

CatalogHome

Catalog

<<EJBEntity>>
ShoppingCart

ShoppingCartHome

ShoppingCart

UML V1.4 draft February 2001 3-177

3.96 Deployment Diagram

Figure 3-96 Component Diagram Showing Relationships with Classifiers and Artifacts

3.95.4 Mapping

A component diagram maps to a static model whose elements include Components. The
physical containment of a Classifier by a Component represents a «reside» relationship, which
is an instance of the metaassociation between Component and ModelElement. The physical
containment of an Artifact by a Component represents an «implement» relationship, which is an
instance of the metaassociation between Component and Artifact.

3.96 Deployment Diagram

3.96.1 Semantics

Deployment diagrams show the configuration of run-time processing elements and the software
components, processes, and objects that execute on them. Software component instances
represent run-time manifestations of software code units. Components that do not exist as run-
time entities (because they have been compiled away) do not appear on these diagrams, they
should be shown on component diagrams.

<<ejbEntity>>
Catalog

<<auxiliary>>
CatalogInfo

<<focus>>
Catalog

<<reside>> <<reside>>

<<auxiliary>>
CatalogPK

<<reside>>

<<file>>
CatalogJAR

<<implement>>

3-178 UML V1.4 draft February 2001

3 UML Notation

For business modeling, the run-time processing elements include workers and organizational
units, and the software components include procedures and documents used by the workers and
organizational units.

3.96.2 Notation

A deployment diagram is a graph of nodes connected by communication associations. Nodes
may contain component instances. This indicates that the component runs or executes on the
node. Components may contain instances of classifiers, which indicates that the instance resides
on the component. Components are connected to other components by dashed-arrow
dependencies (possibly through interfaces). This indicates that one component uses the services
of another component. A stereotype may be used to indicate the precise dependency, if needed.

The deployment type diagram may also be used to show which components may reside on
which nodes, by using dashed arrows with the stereotype «deploy» from the component symbol
to the node symbol or by graphically nesting the component symbol within the node symbol.

Migration of component instances from node instance to node instance or objects from
component instance to component instance may be shown using the «become» stereotype of the
dependency relationship. In this case the component instance or object is resident on its node
instance or component instance only part of the entire time.

Note that a process is just a special kind of object (see Active Object).

UML V1.4 draft February 2001 3-179

3.96 Deployment Diagram

3.96.3 Example

Figure 3-97 Deployment Diagram

3.96.4 Mapping

A deployment diagram maps to a static model whose elements include Nodes. It is not
particularly distinguished in the model.

:DBServer

videoStoreServer:AppServer

<<Container>>
 VideoStoreApplication

:Client

<<browser>>
:OpenSourceBrowser

<<Session>>
ShoppingSession

<<Focus>>
ShoppingSession

<<Entity>>
Catalog

<<Focus>>
Catalog

<<Entity>>
ShoppingCart

<<Focus>>
ShoppingCart

<<database>>
:VideoStoreDB

3-180 UML V1.4 draft February 2001

3 UML Notation

3.97 Node

3.97.1 Semantics

A node is a physical object that represents a processing resource, generally, having at least a
memory and often processing capability as well. Nodes include computing devices but also
human resources or mechanical processing resources. Nodes may be represented as types and as
instances. Run time computational instances, both objects and component instances, may reside
on node instances.

3.97.2 Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube. A node type has a
type name:

node-type

A node instance has a name and a type name. The node may have an underlined name string in
it or below it. The name string has the syntax:

name ‘:’ node-type

The name is the name of the individual node (if any). The node-type says what kind of a node
it is. Either or both elements are optional; if the node-type is omitted, then so is the colon.

Dashed arrows with the keyword «deploy» show the capability of a node type to support a
component type. Alternatively, this may be shown by nesting component symbols inside the
node symbol.

Component instances and objects may be contained within node instance symbols. This
indicates that the items reside on the node instances.

Nodes may be connected by associations to other nodes. An association between nodes
indicates a communication path between the nodes. The association may have a stereotype to
indicate the nature of the communication path (for example, the kind of channel or network).

3.97.3 Example

This example shows two nodes containing components, where a «become» flow shows the
backupBroker migrating from the backupServer to the primaryServer while the other
components remain in place.

UML V1.4 draft February 2001 3-181

3.98 Component

Figure 3-98 Node and Component Instances

3.97.4 Mapping

A node maps to a Node.

A «deploy» arrow or the nesting of a component symbol within a node symbol maps into a
residence metassociation between Component and Node. The nesting of a component-instance
symbol within a node-instance symbol maps to a residence metaassociation between the
ComponentInstance and the NodeInstance.

3.98 Component

3.98.1 Semantics

A component represents a modular, deployable, and replaceable part of a system that
encapsulates implementation and exposes a set of interfaces.

backupServer:AppServer

backupBroker
:BondBroker

:QuoteService
<<database>>
:AccountsDB

primaryServer:AppServer

primaryBroker
:BondBroker

:QuoteService

<<database>>
:AccountsDB

<<become>>

3-182 UML V1.4 draft February 2001

3 UML Notation

A component is typically specified by one or more classifiers that reside on the component. A
subset of these classifiers explicitly define the component’s external interfaces. A component
conforms to the interfaces that it exposes, where the interfaces represent services provided by
elements that reside on the component. A component may be implemented by one or more
artifacts, such as binary, executable, or script files. A component may be deployed on a node.

3.98.2 Notation

A component is shown as a rectangle with two small rectangles protruding from its side. A
component type has a type name:

component-type

A component instance has a name and a type. The name of the component and its type may be
shown as an underlined string either within the component symbol or above or below it, with
the syntax:

component-name ‘:’ component-type

Either or both elements are optional. If the component-type is omitted, then so is the colon.

Objects that reside on a component instance are shown as nested inside the component instance
symbol. By analogy, classes that are implemented by a component may be shown as nested
within it; this indicates residence and not ownership.

Elements that reside on a component are shown nested inside the component symbol. The
visibility of a resident element to other components may be shown using the same notation as
for the visibility of the contents of a package (prepending a visibility symbol to the name of the
package). The meaning of the visibility depends on the nature of the component. For a source-
language component (such as program text), it would control the accessibility of source-
language constructs. For a run-time code component (such as executable code), it would control
the ability of code in other components to call or otherwise access code in the component.

UML V1.4 draft February 2001 3-183

3.98 Component

3.98.3 Example

The example shows a component with interfaces and also a component that contains objects at
run time.

Figure 3-99 Components

3.98.4 Mapping

A component symbol maps to a Component.

The graphical nesting of an element (other than a component symbol) in a component symbol
maps to an ElementResidence metaassociation class between ModelElement and the
Component. Graphical nesting of a component symbol in another component symbol maps to a
composition association. The graphical nesting of an instance symbol in a component instance
symbol maps to a residence metaassociation between Instance and ComponentInstance.

<<Entity>>
030303zak:Order

OrderHome

Order

OrderPK

<<Session>>
ShoppingSession

ShoppingSessionHome

ShoppingSession

OrderInfo

<<focus>>
:Order

<<auxiliary>>
:OrderPK

<<auxiliary>>
:OrderInfo

OrderHome

Order

3-184 UML V1.4 draft February 2001

3 UML Notation

UML V1.4 draft February 2001 3-185

3UML Notation

Index

Page numbers in italics indicate figures.

() See parentheses
{ } See braces
[] See square brackets
< > See angle brackets
« » See guillemets
: See colon
:: See double colon
. See dot
.. See double dot
. . . See ellipsis
+ See plus sign
– See minus sign
* See star
/ See slash
See pound sign
= See equal sign
-> See right arrow

A

abstract40
abstract class 41
abstract operation 48
access19, 65, 66, 93
accessing a package 65
action expression 150
action state 163, 163
action-object flow relationships 168
activation 112, 114
active object 133, 134
activity diagram 161, 162, 167, 169
activity graph 161
activity state 163, 164, 169
actor 98, 100, 102
actor relationship 102, 103
addOnly (keyword) 76

adornment77
on association 71
order 76

after (keyword) 148
aggregation 75
angle bracket

for binding argument 57
argument list 138
arrow

dashed
for constraint 30
for dependency 92
for extend 101
for flow relationship 68
for include 101
for instance of 96
for object flow 168
for realization 51
for return 115

solid
for call 115
for generalization 89
for message 115
for navigation 76
for transition 150

association 70, 73
association (keyword) 87
association class 71, 80, 81
association end 71, 74, 77
association name 71, 73
association role 129
attribute 40, 41, 43, 44

in object 67

3 UML Notation

3–186 UML V1.4 draft February 2001

B

bar
for stub state 157
for stubbed transition 153
for synchronization, fork, join 151

become (keyword) 68
behavior

of operation as note 48
binary association 70
bind (keyword) 93
binding 56, 56
boldface

for class name 39
for compartment name 42
for special list element 39

Boolean property 32
bound element 56, 56
braces

for constraint 29, 30
for property string 31, 41, 44

branch 109, 162, 164, 165, 165, 166
branch point 155
bull’s eye

for final state 145

C

call 112
call event 148
chain of transitions 155
changeability 76
circle

bull’s eye
for final state 145

filled
for initial state 145

for history state 153
for interface 53
for junction 155
for synch state 159

class 38, 40
declared in another class 85

class diagram 37
class in state 67
class scope40

attribute 45
operation 48

classifier 38
classifier role 129
collaboration 119, 126

specialization124
collaboration diagram 119, 121, 121, 122
collaboration role 129
collaboration use123
colon

for return type 47
for sequence expression 136
for type 44, 48, 55, 64, 67, 75, 84, 129, 180, 182

comment 29, 30
communication association 100, 102
compartment 41

name 42, 43
special 39

complete (keyword) 89
complex transition 151, 152
component176, 181, 183

on node 181
component diagram 175, 176
composite object 69, 70
composite state 145, 159
composition 69, 70, 84, 86
concurrency

of operation 48
concurrent lifelines 113
concurrent substate 145
concurrent substates147
concurrent thread134
concurrent transition152
condition event 148
conditional fork 174
conditional, See branch
constant

enumeration 59
constraint 29, 30, 96

as list element 29
constraint language 29
context 119
control flow icon 135
control flow type 139
control icons 170
copy (keyword) 68
creation 109, 112, 119, 139
cross

for destruction 113
cube

for node 180

D

decision, See branch
decomposition indicator icon146
defer (keyword) 171
deferred event 171, 172
dependency 92, 94

package94
subsystem 22

deployment diagram 177, 179
derivation 93
derive (keyword) 93
derived element 95, 96
design pattern 122
destination state 151
destroyed (keyword) 119
destruction109, 112, 119, 139

UML V1.4 draft February 2001 3–187

diamond
filled

for composition 84
for aggregation 75
for branch or merge 165
for merge 155
for n-ary association 82

discriminator 89, 90, 91
disjoint (keyword) 89
disjoint generalization 91
disjoint substate 145
do activity 143
dog-eared rectangle

for note 14
dot

for navigation 13
for sequence expression 136

double colon
for pathname 39, 64

double dot
for integer range 78

dynamic choice point 155, 156
dynamic concurrency 173

E

elapsed-time event 148
element property 31
ellipse

dashed
for collaboration 123

for use case 99
ellipsis

for generalization 89, 92
for missing element 42

else (keyword) 156
entry action 143
entry stub state 157
enumeration 59
enumeration literal 59
equal sign

for attribute value 67
for default value 48, 55
for initial value 44
for tagged value 32

event 147
event signature 150
examples section 5
exit action 143
exit stub state 157
expression 12
extend 100, 102
extensibility mechanism 31, 33
extension mechanisms 29
extension point 99
extension points compartment 99

F

facade (stereotype) 17

factored transition path 155
feature 41
final state 145
flow relationship 68
focus of control 109, 112, 114
font usage 9
fork of control 151
framework (stereotype) 17
frozen (keyword) 45, 76

G

generalization 88, 90, 91
constraints on 89
use case 100

global (keyword) 88
graphic constructs 7
graphic marker 34
group property 42
guard condition 150
guillemets

for keyword 12
for stereotype 33, 41

H

hidden element 42
history indicator 154
history state 153
hyperlink 8

I

icon
for stereotype 34, 35, 41

icons 7
implementation class 52

and type 51
implementation diagram 175
import 19, 65, 93
imported element 18
importing a package 65
include 102, 143

a use case 101
include (keyword) 157
incomplete (keyword) 89
incomplete generalization 91
initial state 145
initial value

of attribute 45
input event icon 170
instance 15, 96

of classifier 96
instance level collaboration 120, 122
instantiable subsystem 20
interaction 128
interface 23, 24, 53

on subsystem 22
interface specifier 75
internal transition compartment 143

3 UML Notation

3–188 UML V1.4 draft February 2001

invisible hyperlink 8
italics

for abstract class 41
for abstract operation 48

iteration indicator 137

J

join of control 151
junction 155
junction point 156

K

keyword 12

L

label 11
lifeline 107, 108, 109, 112
line 71

dashed
for association class 80
for lifeline 112

solid
for actor-use case 101
for association 71
for association class 80
for communication association 102

link 87, 88, 121
list compartment 41, 43
literal

of enumeration type 59
local (keyword) 88

M

many 78
mapping section 6
merge 165, 166
message 108, 115, 121, 135
message label 136
message name 137
Message Sequence Chart notation 107
metaclass 59
method 49
minus sign

for private visibility 44
model 25, 26
model management 17
model organization 17
model tree 26
multiobject 132, 133
multiplicity 77

of association 77
of association end 74
of attribute 45
of qualified association 79
on dynamic concurrency 173

N

name 10
name compartment 40, 41, 143
named compartment 42, 43
n-ary association 82
navigability 75
navigation arrow 76
nested class 51
nested state 145
nesting

for composition 84, 86
new (keyword) 119
node 179, 180, 181
notation section 5
note 14, 30

O

object 67, 69, 108, 109, 129, 168
lifeline 112
playing role 130

object diagram 38
object flow 168, 169
object in state 168
Object Message Sequence Chart notation 107
object name syntax 131
object role 121
OCL 29
OCL expression 13
operation 40, 41, 43, 47, 49
ordered (keyword) 74
ordering 45, 74
output event icon 170
overlapping (keyword) 89, 91

P

package 17, 19, 66
package tree 19
parameter (keyword) 87
parameter list 47
parameterized class 55
parentheses

for argument list 13
for parameter list 47, 144, 150

participation (in a use case) 100, 102
path 8, 64

for association 71
path (symbol) 7, 8
pathname 64, 65
pattern 122, 123
pentagon

for signal receipt 170
for signal sending 170

plus sign
for containment tree 17
for public visibility 44

pound sign
for protected visibility 44

powertype 63

UML V1.4 draft February 2001 3–189

predecessor 112, 136
presentation options 5, 8
private (keyword) 44
procedural sequence diagram 112
pronged rectangle

for component 182
property 31
property string 32, 42
protected (keyword) 44
public (keyword) 44

Q

qualified association 80
qualifier 75, 79, 80
query 48

R

range 78
realization 22, 23, 24, 124

of interface by classifier 53
realization element 20, 23, 24
realization relationship 51
rectangle

dashed
for template parameters 55

dog-eared
for note 14

pronged
for component 182

rounded ends
for action state 163
for state 143
for subactivity state 164

solid
for active class 133
for association class 80
for class 38
for object 67
for qualifier 79

stacked
for multiobject 132

tabbed
for package 17

thin
for activation lifeline 114

recurrence 137
recursion 109
reference to another package 39
refine (keyword) 93
refinement 93
return type expression 47
return value 137
right arrow

for special operation 13
role 15
role name syntax 131
rolename 73, 75

S

self (keyword) 88
semantics section 5
sequence diagram 106, 108, 109, 110
sequence expression 136
sequence number 119, 121, 136
sequential substate 145, 146
signal 148

declaration 148, 149
signal receipt icon 170, 171
signal sending icon 170, 171
signature 137
simple transition 150
slash

for action expression 150
for derived element 95
for predecessor 136
for role 129

sorted (keyword) 74
source state 151
specification element 20, 23, 24
specification level collaboration 120, 121
square brackets

for attribute multiplicity 44, 45
for condition clause 137
for guard condition 144, 150
for selection 13
for state 67, 168

star
for iteration indicator 137
for multiplicity 78

state 142, 144
composite 159
of object 67

state diagram 142
statechart diagram 141
static structure diagrams 37
stereotype 33, 35, 59

as list element 43
class 40
object 67

stick arrowhead
for control flow 115

stick man figure
for use case 100

stimulus 115, 135
string 7, 9, 11
stub (stereotype) 17
stub state 157
stubbed transition 153, 154
style guidelines 5
subactivity state 164, 164
submachine invocation 143
submachine state 157, 158
substate 145
subsystem 20, 21, 22, 22, 23, 24

tree 26
suppressed element 42
swimlane 166, 167
synch state 159, 159, 173, 173

3 UML Notation

3–190 UML V1.4 draft February 2001

synchronization 159
synchronization bar 151, 162
system boundary 97
systemModel (stereotype) 25, 26

T

tabbed rectangle
for package 17

tagged value 31
taxonomic relationship 88
template 55, 56
tiling (a state) 145
time dimension 106
time event 148
time expression 117, 150
time interval 107, 108
timing constraint 107, 108, 117
tools, interactive 8
topLevel (stereotype) 17
trace (keyword) 93
transient (keyword) 120
transition 150

chain 155
complex 151, 152
constraint 150
name 117
simple 150
string 150
stubbed 153
time 117
to composite state 152

triangle
for generalization 89
for realization 51

two-dimensional symbols 7
type 52

and implementation class 51

type (Class) 180
type-instance correspondence 15

U

underlining
for class scope 45, 48
for instances 15
for object 67, 130

unlimited multiplicity 78
unordered (keyword) 74
usage dependency 93
use (keyword) 93
use case 98, 99, 102
use case diagram 97, 98
use case relationship 100, 102
utility (keyword) 58, 58

V

visibility
of association 76
of attribute 44
of operation 47
of package element 17

W

when (keyword) 148

X

X
for destruction 113

xor association 72, 73

