MATLAB CHEAT SHEET

Throughout this document x and y will be either row or column vectors and A will always be a matrix.

Basics	
clc	Clear command window
clear	Clear all variables
clf	Clear all plots
close all	Open help page for function
doc function	Comments
\% This is a comment	Abort the current operation
ctrl-c	Display 4 decimal places
format short	Display 15 decimal places
format long	Print text
disp('text' $)$	

Defining and Changing Variables

$\mathrm{a}=$	3		Define variable a to be 3
$\mathrm{x}=$	$[1,2,3]$		Set x to be the row vector $[1,2,3]$
$\mathrm{x}=$	$[1 ; 2 ; 3]$		Set x to be the column vector $[1,2,3]^{T}$
$\mathrm{~A}=$	$[1,2,3,4 ;$		Set A to be a 3×4 matrix
	$5,6,7,8 ;$		
	$9,10,11,12]$		
$\mathrm{x}(2)=7$		Change x from $[1,2,3]$ to $[1,7,3]$	
$\mathrm{A}(2,1)=0$		Change $A_{2,1}$ from 5 to 0	

Basic Arithmetic and Functions

$3 * 4,7+4,2-6,8 / 3$	multiply, add, subtract and divide
$3^{\wedge} 7$	Compute 3^{7}
$\operatorname{sqrt}(5)$	Compute $\sqrt{5}$
$\log (3)$	Compute $\ln (3)$
$\log 10(100)$	Compute $\log _{10}(100)$
$\operatorname{abs}(-5)$	Compute $\|-5\|$
$\sin (5 * \mathrm{pi} / 3)$	Compute $\sin (5 \pi / 3)$
$\mathrm{floor}(3.8)$	Compute $\lfloor 3.8\rfloor$

Constructing Matrices and Vectors	
zeros $(12,5)$	Make a 12×5 matrix of zeros
ones $(12,5)$	Make a 12×5 matrix of ones
eye(5)	Make a 5×5 identity matrix
eye(12, 5)	Make a 12×5 identity matrix
linspace $1.4,6.3,1004)$	Make a vector with 1004 ele- ments evenly spaced between
logspace $(1.4,6$ and 6.3	

Operations on Matrices and Vectors

3 * x	Multiply every element of x by 3
+ 2	Add 2 to every element of x
$x+y$	Element-wise addition of two vectors x and y
A * y	Product of a matrix and vector
A * B	Product of two matrices
A .* B	Element-wise product of two matrices
A ${ }^{\wedge} 3$	Square matrix A to the third power
A .^ 3	Every element of A to the third power
$\cos (\mathrm{A})$	Compute the cosine of every element of A
abs(A)	Compute the absolute values of every element of A
A'	Transpose of A
$\operatorname{inv}(\mathrm{A})$	Compute the inverse of A
$\operatorname{det}(\mathrm{A})$	Compute the determinant of A
eig(A)	Compute the eigenvalues of A
size(A)	Get the size of A

Entries of Matrices and Vectors

$\mathrm{x}(2: 12)$	The 2 ${ }^{\text {nd }}$ to the $12^{\text {th }}$ elements of x
$\mathrm{x}(2:$ end $)$	The 2
$\mathrm{x}(1: 3:$ end $)$	Every third element of x from the first to last
$\mathrm{A}(5,:)$	Get the $5^{\text {th }}$ row of A
$\mathrm{~A}(:, 5)$	Get the $5^{\text {th }}$ column of A
$\mathrm{~A}(5,1: 3)$	Get the first to third elements in the $5^{\text {th }}$ row

Plotting	
plot(x,y)	Plot y versus x (must be the same length)
$\log \log (x, y)$	Plot y versus x on a log-log scale (both axes have a logarithmic scale)
semilogx (x, y)	Plot y versus x with x on a log scale
semilogy (x, y)	Plot y versus x with y on a log scale
axis equal	Force the x and y axes to be scaled equally
title('A Title')	Add a title to the plot
xlabel('x label')	Add a label to the x axis
ylabel('y label')	Add a label to the y axis
legend('foo', 'bar')	Label 2 curves for the plot
grid	Add a grid to the plot
hold on	Multiple plots on single figure
figure	Start a new plot

Constants	
pi	$\pi=3.141592653589793$
NaN	Not a number (i.e. 0/0)
Inf	Infinity
realmax	Largest positive floating-point number $1.7977 \cdot 10^{308}$
realmin	Smallest 10^{-308}

MATLAB CHEAT SHEET

```
For loops
```

```
for k = 1:5
```

 disp(k);
 end

While loops

$\mathrm{k}=0$;
while k < 7
$\mathrm{k}=\mathrm{k}+1$;
end

Logicals

```
a = 10; % Assign a the value of 10
a == 5 % Test if a is equal to 5
    false
a == 10 % Test if a is equal to 10
        true
a >= 5 % Test if a is greater than or equal to 5
        true
a< 11 % Test if a is less than 11
        true
a ~= 4 % Test if a is not equal to 4
        true
    > 1 && a ~= 10 % Test if a is greater than 1 AND
        false % not equal to 10
a > 1 || a ~= 10 % Test if a is greater than 1 OR
    true % not equal to 10
```


Conditional Statements

```
if a > 10
    disp('Greater than 10');
elseif a == 5
    disp('a is 5');
else
    disp('Neither condition met');
end
```


Functions

```
function output = addNumbers(x, y)
    output = x + y;
end
addNumbers(10, -5)
```

 5

Function Handles

$f=a(x) \sin \left(x .^{\wedge} 2\right) . /(5 * x) ;$
f(pi/2)
0.0795
f([-pi/2, 0, pi/2])
-0.0795 NaN 0.0795

Plotting

```
x = linspace(-3*pi, 3*pi, 1000);
y1 = sin(x);
y2 = cos(x);
```

plot(x, y1, 'k-'); \% Plot sin(x) as a black line
hold on \% Now we can add another curve
plot(x, y2, 'r-'); \% Plot $\cos (x)$ as a red line
\% Set the axis limits
axis([-3*pi, 3*pi, -1.5, 1.5])
\% Add axis labels
xlabel('x');
ylabel('y');
\% Add a title
title('A plot of $\cos (x)$ and $\sin (x)$ ');
\% Add a legend
legend('sin(x)', 'cos(x)');

