Máximo comúm divisor

Algoritmo de Euclides e Isualdad de Bézout

Antenion mente mos enforamos em estudian el concepto de divisibilidad y los divisores de um múmeno a EZ dado. Ahona, mos enfocanemos em estudian los divisores comumes de dos múmenos a, $b \in \mathbb{Z}$ dados.

Desimición: Dados a b EZ, dinemos que c EZ
es um divison comúm de a y b si
cla y clb.

Denotanemos por Div(a,5) al comjunto de divisores comumes de a 9 b.

Observaciones:

- (1) Div (a, b) ≠ Ø, 5a que 1/a g 1/b.
- (a) Div (a,b) = {divisones de a ¿n {divisones de b}.
- 3 Si b=0, emtomies Div(a,0)=3 divisones de a).

- @ c E Div (a, b) si y solamente si c E Div (a, b).
- 5) Si a=b=o, entonces Div(0,0) = Z. Em este caso, Div(0,0) es un conjunto infiniti
- © Si a≠0 0 b≠0, emtonces Div (a, b) es um conjunto fimito, y pon lo tanto tieme um elemento maximal.

Ejemplos:

⊕ Hallan los divisores comumes de a = 45 g
b = -40.

Divisones 4 $a: (\pm 1) \pm 3, (\pm 3), \pm 9, \pm 15, \pm 45$ Divisones 4 $b: (\pm 1) \pm 2, \pm 4, (\pm 3) \pm 8, \pm 10, \pm 20, \pm 4$

Div (45, -40) = { ± 1, ±5 {

(a) Hallan los divisones comumes de a=100 g

Divisones de 100: (£) ± 2 , ± 4 , ± 5 , ± 10 , ± 20 ± 25 , ± 50 , ± 100

Divisones de 441: (±1) ±3, ±7, ±9, ±21, ±49, ±147

Div (100, 441) = 3 ± 1 {.

De las obsenvaciones 3 9 0, se tieme el signiente 3 concepto:

Definición: Seam a, b E Z com a ≠ 0 a b ≠ 0.

Se define el <u>máximo común divisor de a g b</u>

demotado como m.c.d (a,b), como el elemento

maximal de Div(a,b). Es decin, d = m.c.d (a,b) si

1) d | a g d | b (d es un divisor común de a g b).

2) Si cla g c | b, entonces c ≤ d.

Em caso contrario, es decin si a=b=0, decimos que m.c.d.(0,0)=0.

· a, b ∈ Z som primos relativos (o coprimos)
si
m.c.d. (a, b) = 1.

Observaciones:

O Si a g b som primos, com a≠b, emtomies a g b som primos relativos.

Div (a,b) = 1 divisones de adol divisones de bd = $1 \pm l \pm alo 1 \pm l \pm bl$ = $3 \pm ll$.

de donde m.c.d. (a, b) = 1.

Ejemplos:

- 1 m.c.d. (45, -40) = 5.
- (2) m.c.d. (100, 441) = 1. 100 g 441 som primos relativos.

Existe uma mamena de hallan el m.c.d. (a, b) sim mecesidad de calcular los divisones de a g de b. Esto tieme que ven com las propiedades del comcepto de máximo comúm divisor.

Proposición (propie dades del m.c.d.): Seam a, b ∈ Z, com a ≠ 0 o b ≠ 0. Entonces, las siguientes afirmaciones se cumplen:

- (1) m.c.d. (a, b) = m.c.d. (b, a)
- (a) m.c.d.(a,b) = m.c.d.(a,-b) = m.c.d.(-a,b)= m.c.d.(-a,-b) = m.c.d.(|a|,|b|)
- 3 bla si y solamente si m.c.d. (a, b) = 161.
- (4) S; a≠0 entonces m.c.d. (a, 0) = 1a1.
- B m.c.d. (a, b) = m.c.d. (b, a-bx) ∀x∈ Z, dumbe a≠0 8 b≠0.

· Demostración:

Oy @ som comsecuencia dinecta de la definición de m.c.d.

3 Supom samos primero que bla. Luego, clanamente 161 es el máximo divisor comúm de b 3 a, es decin, m.c.d. (a, 6) = 161.

Ahona, supomgamos que m.c.J. (a, b) = 161. Lueso, 161 | a. Empanticular, bla.

- 9 Es immediato de la definición de m.c.d.
- ⑤ Seam d = m.c.d.(a,b) y d' = m.c.d.(b, a x b), com $x ∈ \mathbb{Z}$ fijo.

Como dla g dlb, se tieme que dl(a-xb). Luego, des un divison comúm de b g a-bx, Le donde d≤d'.

Pon otno ludo, d'15 5 d' | (a-xb), se tieme que d' | [(a-xb) + xb], es decin, d' la. Entonces, d' es um divison comúm de a 5 b, pon lo cual d' s d.

Pon lo tando, d= d'.

(5)

Ejemplos: Sim hallan to Jos los divisores de los múmeros involucidos hallan el máximo comúm divisor de:

1 a = 45 y b = -40:

· 45 = (-1)(-40) + 5, mc.d.(45, -40) = m c.d.(-40, 5) Como 5 | (-40), se tieme pon las propie pades

Vistas que m. c.d. (-40, 5) = 5. Pon lo tanto, m.c.d. (45, -40) = 5.

a = 441 g b = 100:

· 441 = 4-100 + 41, mcd (441, 100) = m.c. d. (100, 41).

 $\cdot 100 = 2.41 + 18$

m.c.d. (100, 41) = m.c.J. (41, 18).

.41 = 2.18 + 5

m. c. J. (41, 18) = m. c. J. (18, 5).

-18 = 3.5 + 3

m. c.d. (18, 5) = m. c.d. (5, 3)

. 5 = 1.3 + 2,

m.c.d.(5,3) = m.c.d.(3,2)

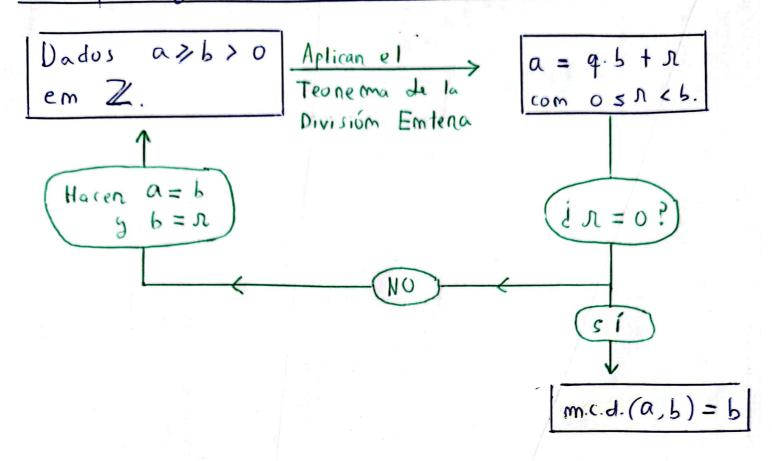
 $, \quad 3 = 1 \cdot \lambda + 1$

m.c.d.(3,2) = m.c.d.(2,1) = 1.

 \implies m.c.d. $(441,100) = \cdots = m.c.d. (2,1) = 1.$

El procedimiento para hallan el máximo comúm divisor mostrado en los ejemplos anteriones se comore como Algoritmo de Euclides.

del algonitmo de Euclides. Descripción semenal



Volvamos al ejemplo antenion, donde tememos las signientes ignaldades:

$$441 = 4 \cdot 100 + 41$$

$$100 = 2 \cdot 41 + 18$$

$$41 = 2 \cdot 18 + 5$$

$$18 = 3 \cdot 5 + 3$$

$$5 = 1 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$1 = 3 - 1 \cdot 2$$

$$= 3 - 1 \cdot (5 - 1 \cdot 3)$$

$$= -1 \cdot 5 + 2 \cdot (18 - 3 \cdot 5)$$

$$= 2 \cdot 18 + (-7) \cdot 5$$

$$= 2 \cdot 18 + (-7) \cdot (41 - 2 \cdot 18)$$

$$= (-7) \cdot 41 + 16 \cdot 18$$

$$= (-7) \cdot 41 + 16 \cdot (100 - 2 \cdot 41)$$

$$= 16 \cdot 100 + (-39) \cdot 41$$

$$= 16 \cdot 100 + (-39) \cdot (441 - 4 \cdot 100)$$

$$= (-39) \cdot 441 + 172 \cdot 100$$

Pon lo tanto, vemos que 1= m.c.d. (441, 100) puede escribin como combinación limpal emtena de 441 y 100

Escaneado con CamScanner

El procedimiento emphado en el ejemplo anterior para hollar dicha combinación se comore como algoritmo de Euclides extendido o por sustitución. Se puede aplipar para cualquier par de enteros a > 6 > 0. Este hecho está basado en el siguiente resultado.

Teonema de Bézout: Seam a, b $\in \mathbb{Z}$ com a, b >0. Entonces, m.c.d. (a, s) = min | x a + y b $\in \mathbb{Z}^+$ / x, y $\in \mathbb{Z}^+$ |

Em panticular, existem xo, go E Z tales que

m.c.d. (a, b) = x0 a + 5. b.

Igualdad de Bézout

· <u>Demostración</u>: (omsidenamos el comjunto S={xa+yb \in Z' / x,y \in Z'.

Es decin, S es el comjunto de las combinaciones lineales entenas positivas de a 9 b.

(1) S≠Ø ya que b=0.a+1.b∈Z+

Oy 0 => S poser um elemento minial

(usamos el Jual del Primcipio

del Elemento Maximal).

(2) S está acotado infenionmente (pon 0). 9

Sea d:= mim S. Veamos que d=mc. 1. (a.b).

des un divison común de a g b:

Sean x, g. E Z tales que d= x. a + g. b.

Pon otro lado, pon el teonema de la división

entena, existem q, n E Z tales que

a = q.d+n com o s n < d.

Luego, $\alpha = q \cdot (x_0 + y_0 + y_0) + \Lambda$ $\Omega = (1 - q \cdot x_0) + (-y_0) + \Lambda$

Como n < d, se tieme que $n \not \leq S$, it domine $n \leq 0$. Pon otho lado, $n \gg 0$, pon lo cual mos que da n = 0.

Se sigue em tom res que dla.

De mamena amálosa se puede proban que dlb.

Pon lo tamto, d E Div (a,b).

- · Como des on divisor comúm de a y b, tenemos que m.c.d.(a, b) Zd.
- · m c. d. (a, b) | a, m.c. J. (a, b) | b => m.c. J (a, b) | d.

Lurgo, m.c.d. (a, b) & d.

Pon lo tamto, m.c.d. (ab) = d.

Aplicacionnes de la isualdad de Bézout:

Jean a, b EZ com a = 0 g b = 0. Las siguientes propie da des se cumplem:

- (1) e | a y e | b (⇒) e | cm.c.d. (a, b)
- (2) a y b som copnimos si y solamente si existem x, y. E Z tales que x, a + y. b = 1.
- 3) m.c. J. (a, b) = m.c. J. (a, c) = 1 => m.c. J. (a, b) = 1.
- @ m∈Z => m.c.J. (ma, mb) = |m1 m.c.d. (a, b).
- Sea d∈ Zt tal que d/a y d/b (pon lo cual a, b∈Z). Emtonces,

d = m.c.d.(a,b) si y solamente si $m.c.d.\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

6) Lema de Euclides: Si a y b som copnimos y CEZ/ es tal que a 16 c, entomors a c.

· Demostración:

O Pon la isvaldad de Bézout, existem x, y e EZ tales que m.r.s. (9,5) = x, a + y, b.

Como e la 5 elb, se tieme que e divide a cualquien combinación limeal entena de a 5 b. de donde e (x.a + 5.b).

Es decin, elm.c.d. (a,b).

2) Supomgamos primero que a 5 b som coprimos.
es decin, m.c.d. (a,b) = 1. Pon la igualdad de
Bézout, existem xo e g. en Z tales que

1 = x, a + g.b.

Ahona supomgamos que 1 = x.a + g.b.

pana algumos xo, g. E Z. Sea c um divison

comúm de a g b. Emtomers c divide a cualquien

combinacióm limeal emtena de a g b. Em panticulan,

c | (x.a + g.b). Es decin, c | 1, pon lo cual c = ±1.

Se tieme emtomers que m.c.d. (a, b) = 1.

(3) m.c.d. (a, b) = 1 ⇒) existem xo, yo ∈ Z takes que
1 = xo a + yo b.

 $m.c.d.(a,c)=1 \Rightarrow existem xi, y' \in \mathbb{Z}$ tales que 1 = x : a + y : c

Lugo,

 $\begin{aligned} 1 &= 1 \cdot 1 = (x_0 + y_0 + y_0)(x_0^2 + y_0^2) \\ &= x_0 x_0^2 a_0^2 + x_0 y_0^2 a_0 + x_0^2 y_0^2 a_0 + y_0 y_0^2 b_0 \\ &= (x_0 x_0^2 a_0^2 + x_0^2 y_0^2 a_0^2 + x_0^2 y_0^2)(b_0) \end{aligned}$

Pon la pante Q, tememos que m.r. J. (a, bc) = 1..

4) Sea d=m.c.d. (a,b). Tememos que dla g dlb. Lugo, Imid | ma g Imid Imb., es decir, Imid es um divison comúm de ma g mb. Entonces,

|m| d = (m.c. J. (ma, m L) (*)

Pon otho lado, pon la igualdad de Bézout existem xo, yo ∈ Z tales que

1 = x.a + y. 5.

Asi, Imid = xolmla + yolmlb = (±xol(ma) + (±yol(mb)). Vermos em tomies que

|m|d ∈ S= { x(ma) + 5 (ms) ∈ Z+ /x, 5 ∈ Z }.

(13)

m.c.d. (ma, mb) < |mld (**)

nemos fimalmente que

Imld = mcd (may mb).

5) Supomgamos primero que d=m.c.d. (a.b). Por la parte (d), se tieme que

 $d. m.(d. \left(\frac{a}{d}, \frac{b}{d}\right) = m.c.d. \left(\frac{d.a}{d}, \frac{d.b}{d}\right) = m.c.d. \left(\frac{a.b}{a}\right) = d$

 $d\left(m.c.d.\left(\frac{a}{J},\frac{b}{d}\right)=1\right)=0.$

Como $d \neq 0$, obtenemos m.c.d. $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

Ahona supomgamos que m.c.d. $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$. Multiplicando esta isualdad pon d. obtememos que $d = d \cdot 1 = d \cdot m.c.d. \left(\frac{a}{d}, \frac{b}{d}\right) = m.c.d. \left(\frac{da}{d}, \frac{d}{d}\right) = m.c.d. \left(\frac{a}{d}, \frac{b}{d}\right) = m.c.d. \left(\frac{a}{d}, \frac{b}{d}\right)$

pante (9)

Entonces, m.c.d. (a, b) = d.

(19)

Pon otro lado, m.c.d. (a, b) = 1 => existem x, g. €2/ tales que 1 = x, a + 5. b.

Tememos lo signiente:

$$1 = x_0 + y_0 = x_0 =$$

Pon lo tamto, a/c.

Algumes aplicaciones a primalidad (pruebas de irracionalidad):

Comencemos com algumas aplicaciones del nesultado amtenion para el caso em el que se tiemem múmenos pnimos imvoluchados.

Conolanio: Las signiemtes comdiciones som equivalentes pana todo pEN com pZd.

(a) p es primo.

(b) Ya, b∈Z/, plab => pla o plb.