Resolución del examen de cálculo 26/7/2014

Ejercicios de M.O.

Ejercicio 1. Sean $a \in \mathbb{R}$ y $z_0 \in \mathbb{C}$...

respuesta: una circunferencia si y solo si $|z_0|^2 - a > 0$.

Ejercicio 2. Para $n \in \mathbb{N}$ se definen

$$a_n = \int_0^{\frac{\pi}{4}} \frac{\cos x - \sin x}{(\sin x + \cos x)^{n+1}} dx$$
 y $b_n = \frac{1}{n} - a_n$

respuesta: (I) diverge y (II) converge.

Ejercicio 3. Sean $f(x)=(x-1)^3+e^{-2x}-x,\ a\in\mathbb{R}...$ respuesta: un máximo, a=1 y $b=\frac{1}{3}$.

Ejercicio 4. Sea

$$F(x) = \int_{\pi}^{x} \frac{e^{t}}{3 + \sin t} dt$$

respuesta: $3e^{-\pi}$.

Ejercicio 5. Consideremos las series,

(I)
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{\sqrt{n^3 - 1}} \quad \text{y} \quad \text{(II)} \quad \sum_{n=0}^{+\infty} (-1)^n \operatorname{sen}\left(\frac{1}{n}\right)$$

respuesta: (I) converge absolutamente y (II) converge.

Ejercicios de desarrollo

Ejercicio 1. a) Sea $F: \mathbb{R} \to \mathbb{R}$ tal que

$$F(x) = \int_{a}^{x} f(t) dt$$

Al ser f una función continua, en virtud del teorema fundamental del cálculo, F resulta derivable en \mathbb{R} y F'(x) = f(x), $\forall x \in \mathbb{R}$. Para probar que G es derivable basta observar que $G(x) = F(\alpha(x))$ pues entonces G es composición de funciones derivables y por lo tanto es derivable en \mathbb{R} . Para calcular la derivada de G aplicamos la regla de la cadena: $G'(x) = (F \circ \alpha)'(x) = F'(\alpha(x))\alpha'(x) = f(\alpha(x))\alpha'(x)$.

b) i) Si, para $x \neq 0$, hacemos el cambio de variable $w = \frac{t}{x}, \ dw = \frac{1}{x} \, dt$ y

$$F(x) = x \int_0^{\frac{1}{x}} f(w) \, dw$$

Al ser f continua y $\alpha(x) = \frac{1}{x}$ derivable para todo $x \neq 0$, de la parte anterior tenemos que

$$\int_0^{\frac{1}{x}} f(w) \, dw$$

es una función derivable para todo $x \neq 0$ y entonces F es producto de funciones derivables por lo que resulta derivable para todo $x \neq 0$. Además, de la regla de derivación del producto de funciones resulta,

$$F'(x) = \int_0^{\frac{1}{x}} f(w) \, dw + x f\left(\frac{1}{x}\right) \left(-\frac{1}{x^2}\right) = \int_0^{\frac{1}{x}} f(w) \, dw - \left(\frac{1}{x}\right) f\left(\frac{1}{x}\right)$$

ii) Para $x \neq 0$, $f(u) = \frac{\sin u}{1+u^2}$ es una función continua por lo tanto de la parte anterior deducimos que F es derivable para todo $x \neq 0$. Estudiamos entonces la derivabilidad en x = 0. F es derivable en x = 0 si y solo si existe y es finito el siguiente límite:

$$\lim_{x \to 0} \frac{F(x) - F(0)}{x} = \lim_{x \to 0} \frac{F(x)}{x} = \lim_{x \to 0} \int_0^{\frac{1}{x}} f(u) \, du$$

Entonces,

$$\lim_{x \to 0^+} \frac{F(x)}{x} = \int_0^{+\infty} f(u) \, du$$

У

$$\lim_{x \to 0^{-}} \frac{F(x)}{x} = \int_{0}^{-\infty} f(u) \, du$$

Por lo tanto, F es derivable en x = 0 si y solo si

$$\int_0^{+\infty} f(u) \, du = \int_0^{-\infty} f(u) \, du < +\infty$$

Para ver que las impropias anteriores coinciden hacemos el cambio de variable y=-u, entonces dy=-du y

$$\int_0^x f(u) \, du = \int_0^x \frac{\sin u}{1 + u^2} \, du = -\int_0^{-x} \frac{\sin(-y)}{1 + y^2} \, dy = \int_0^{-x} \frac{\sin y}{1 + y^2} \, dy$$

ya que sen $(-y) = -\operatorname{sen} y$ y luego basta tomar límite cuando $x \to +\infty$. Estudiamos ahora la convergencia de esta serie:

$$\left| \int_{0}^{x} \frac{\sin u}{1+u^{2}} du \right| \leq \int_{0}^{x} \frac{1}{1+u^{2}} du = arctg u \Big|_{0}^{x} = arctg x$$

entonces.

$$\int_0^{+\infty} \frac{\sin u}{1 + u^2} \, du$$

converge v además

$$\left| \int_0^{+\infty} \frac{\sin u}{1+u^2} \, du \right| \leq \frac{\pi}{2}$$

es decir

$$|F'(0)| \le \frac{\pi}{2}$$

Ejercicio 2. Una pareja de sub conjuntos no vacíos de \mathbb{R} , (A, B), que verifican i) y ii) tiene el nombre de par de clases contiguas de reales (PCC).

Como $a \leq b$, para todo $a \in A$ y para todo $b \in B$, A está acotado superiormente por todo elemento de B y al ser A sub conjunto no vacío de \mathbb{R} , A tiene supremo, $\sup(A)$. De forma análoga se prueba que B tiene ínfimo, $\inf(B)$.

Supongamos que $\sup(A) > \inf(B)$, entonces $\sup(A)$ no es cota inferior de B por lo tanto existe $b_0 \in B$ tal que $b_0 < \sup(A)$ entonces b_0 no es cota superior de A por lo que existe $a_0 \in A$ tal que $b_0 < a_0$ lo cual contradice i). Debe ser entonces $\sup(A) \leq \inf(B)$.

Supongamos ahora que $\sup(A) < \inf(B)$. Entonces existe $\varepsilon > 0$ tal que $\sup(A) + \varepsilon \le \inf(B)$. Por otro lado, de ii) tenemos que, dado $\varepsilon > 0$, existen $a_0 \in A$ y $b_0 \in B$ tales que $a_0 + \varepsilon > b_0$ por lo tanto sería $b_0 < \inf(B)$ lo que contradice la definición de ínfimo. Debe ser entonces $\sup(A) = \inf(B)$.

b) $A \neq \emptyset$: si n = 1, $x = 0 \in A$. Tenemos que $A = \{a_n : n \in \mathbb{N}, n \neq 0\}$, siendo $a_n = \frac{n-1}{n}$, para $n \neq 0$. Es fácil ver que A está acotado $(A \subset [0,1])$ por lo que tiene supremo. La sucesión $(a_n)_{n \in \mathbb{N}}$ crece a 1 y entonces $\sup(A) = 1$.

 $B \neq \emptyset$: si n = 1, $x = 2 \in B$. Tenemos que $B = \{b_n : n \in \mathbb{N}, n \neq 0\}$, siendo $b_n = 1 + \frac{1}{n}$, para $n \neq 0$. Es fácil ver que B está acotado $(B \subset [1, 2])$ por lo que tiene ínfimo. La sucesión $(b_n)_{n \in \mathbb{N}}$ decrece a 1 y entonces ínf(B) = 1.

La afirmación i) es inmediata ya que $a < 1, \forall a \in A \text{ y } b > 1, \forall b \in B.$

La afirmación ii) se deduce de que $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n = 1$, entonces es claro que, dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $a_{n_0} + \varepsilon > b_{n_0}$.