Cálculo 1 Segundo parcial, 1 de Diciembre de 2015 Solución

MÚLTIPLE OPCIÓN

Soluciones

Versión	Ej1	Ej2	Ej3	Ej4	Ej5	Ej6	Ej7	Ej8
1	В	С	E	В	D	D	В	A
2	A	Е	С	Е	D	В	С	С
3	A	E	С	D	E	С	В	E
4	D	D	В	С	Е	D	A	A

Desarrollo

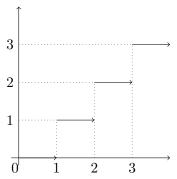
Ejercicio 1.

- 1. Ver teórico.
- 2. El c del teorema de valor medio para integrales no es único. Consideremos por ejemplo la función $f(x) = 1 \,\forall x \in [a, b]$. Entonces tenemos que:

$$\int_a^b f(x) dx = \int_a^b 1 dx = b - a$$

Dado que $f(x) = 1 \forall x \in [a, b]$, tenemos que el teorema de valor medio se cumple tomando cualquier $c \in [a, b]$.

3. Si f no es continua, el teorema de la primera parte no se cumple. Consideremos por ejemplo la función parte entera, cuyo gráfico se muestra a continuación:



Si tomamos el intervalo [1, 3], tenemos que:

$$\int_{1}^{3} f(x) \, dx = 3$$

Por lo tanto, para que se cumpla el teorema de valor medio, debería existir un $c \in [1,3]$ tal que

$$f(c) = \frac{\int_1^3 f(x) \, dx}{3 - 1} = \frac{3}{2}$$

Sin embargo, si $c \in [1,2)$ entonces f(c) = 1, si $c \in [2,3)$ entonces f(c) = 2 y si c = 3 entonces f(c) = 3. Por lo tanto, no existe $c \in [1,3]$ que verifique el teorema de valor medio.

Ejercicio 2.

- 1. Ver teórico.
- 2. Ver teórico.
- 3. Probaremos que la serie es absolutamente convergente y por lo tanto convergente. Dado que b_n está acotada, tenemos que existe un K > 0 tal que $|b_n| \le K \, \forall \, n$. Entonces:

$$0 \le |a_n b_n| = |a_n||b_n| = a_n|b_n| \le Ka_n$$

donde la segunda igualdad se cumple porque $(a_n)_{n\geq 0}$ es de términos positivos. Ahora, como la serie de a_n converge, la serie de Ka_n también converge, y entonces la serie de $|a_nb_n|$ converge por comparación. Así, la serie es absolutamente convergente, y por lo tanto convergente.