Primer parcial - 2 de mayo de 2016 Duración: 4 horas

N° de lista	Cédula	Apellido y nombre	Salón

Múltiple Opción

20 puntos.

En cada pregunta hay una sola opción correcta.

Respuesta correcta: 4 puntos Respuesta incorrecta: -1 punto No responde: 0 puntos

Respuestas

1	2	3	4	5

- 1) Sea $A = \left\{ \frac{m}{n} : 0 < m < n, \ m, n \in \mathbb{N} \right\}.$
 - A) A está acotado superiormente, tiene supremo, pero no tiene máximo.
 - B) A no está acotado superiormente, por lo tanto no tiene supremo.
 - C) A tiene supremo, que es máximo.
 - D) A no está acotado superiormente, no tiene máximo, pero tiene supremo.
 - E) A está acotado superiormente, pero no tiene supremo.
- 2) Sea la sucesión a_n definida como:

$$a_0 = 1$$

$$a_n = \frac{3}{n} a_{n-1}, \quad \forall n \ge 1.$$

- A) a_n converge, y por lo tanto está acotada superiormente e inferiormente.
- B) a_n está acotada superiormente e inferiormente, pero no converge.
- C) a_n converge, pero no está acotada superiormente.
- D) a_n es creciente y acotada superiormente, por lo tanto converge.
- E) a_n es creciente y no está acotada superiormente, por lo tanto diverge a $+\infty$.
- 3) Sea $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = \frac{x^3}{3} + \frac{x^2}{2} 6x + 4$. Sea I el intervalo cerrado de longitud máxima, que contiene al 0, en el cual f es invertible, y sea g la función inversa de f en I.
 - A) $I = [-3, 2] \text{ y } g'(4) = \frac{1}{12}.$
 - B) $I = [-1, 4] \text{ y } g'(4) = \frac{1}{12}$.
 - C) f no es inyectiva en ningún intervalo que contenga al 0.
 - D) $I = [-1, 4] \text{ y } g'(4) = -\frac{1}{6}$.
 - E) I = [-3, 2] y $g'(4) = -\frac{1}{6}$.

- 4) El polinomio $P(z) = z^4 2z^3 + 6z^2 8z + 8$ tiene una raiz con parte real nula. Considere sus raíces en \mathbb{C} .
 - A) Una de ellas tiene módulo menor que 1 y las otras módulo mayor que 1.
 - B) Todas tienen módulo mayor que 1.
 - C) Todas tienen módulo menor que 1.
 - D) Dos de ellas tienen módulo menor que 1 y las otras módulo mayor que 1.
 - E) Existe al menos una con módulo igual a 1.
- 5) Sin intervención humana, una población de bacterias se duplicaría cada hora. Para controlar dicha población, cada hora se elimina una proporción $p \in (0,1)$ de la población existente. Sea a_n la cantidad de bacterias en la hora n.
 - A) Si $p = \frac{1}{4}$, $\{a_n\}$ permanece constante.
 - B) Si $p > \frac{1}{2}$, $\{a_n\}$ es monótona estrictamente decreciente.
 - C) Si $p < \frac{1}{2}$, $\{a_n\}$ está acotada.
 - D) Si $p = \frac{3}{4}$, $\{a_n\}$ es monótona creciente.
 - E) $\forall p \in (0,1), \{a_n\}$ es monótona decreciente.

Desarrollo

20 puntos.

Considere que ningún resultado será tomado como válido si no está debidamente justificado.

Sea $f: \mathbb{R} \to \mathbb{R}$ tal que:

$$f(x) = \begin{cases} e^{x^2} - 2 & \text{si } x < 0\\ x^3 + x - 1 & \text{si } 0 \le x \le 1\\ |\sin(x)| & \text{si } x > 1 \end{cases}$$

- a) I) Enuncie y demuestre el Teorema de Bolzano.
 - II) Demuestre que f tiene una raíz en el intervalo [0,1], demuestre que es única y determínela con un error menor o igual a $\frac{1}{8}$.
- b) I) Defina $\lim_{x\to +\infty} f(x) = L$.
 - II) Determine si f es continua y derivable en a, para $a = 0, 1, \frac{\pi}{2}, \pi$. En los casos en que f sea derivable en a, halle f'(a).
 - III) Realice una representación gráfica de f que incluya el estudio de raíces, crecimiento, extremos relativos y límites en $-\infty$ y $+\infty$.