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2 Principles of Solar Cells, LEDs and Diodes

Objectives

1. Understand semiconductor band theory and its relevance to semiconductor de-
vices.

2. Obtain a qualitative understanding of how bands depend on semiconductor mate-
rials.

3. Introduce the concept of the Fermi energy.
4. Introduce the concept of the mobile hole in semiconductors.
5. Derive the number of mobile electrons and holes in semiconductor bands.
6. Obtain expressions for the conductivity of semiconductor material based on the

electron and hole concentrations and mobilities.
7. Introduce the concepts of doped semiconductors and the resulting electrical char-

acteristics.
8. Understand the concept of excess, non-equilibrium carriers generated by either

illumination or by current flow due to an external power supply.
9. Introduce the physics of traps and carrier recombination and generation.

10. Introduce alloy semiconductors and the distinction between direct gap and indirect
gap semiconductors.

1.1 Introduction

A fundamental understanding of electron behaviour in crystalline solids is available using
the band theory of solids. This theory explains a number of fundamental attributes of
electrons in solids including:

(i) concentrations of charge carriers in semiconductors;
(ii) electrical conductivity in metals and semiconductors;

(iii) optical properties such as absorption and photoluminescence;
(iv) properties associated with junctions and surfaces of semiconductors and metals.

The aim of this chapter is to present the theory of the band model, and then to exploit
it to describe the important electronic properties of semiconductors. This is essential for a
proper understanding of p-n junction devices, which constitute both the photovoltaic (PV)
solar cell and the light-emitting diode (LED).

1.2 The Band Theory of Solids

There are several ways of explaining the existence of energy bands in crystalline solids.
The simplest picture is to consider a single atom with its set of discrete energy levels for
its electrons. The electrons occupy quantum states with quantum numbers n, l, m and s
denoting the energy level, orbital and spin state of the electrons. Now if a number N of
identical atoms are brought together in very close proximity as in a crystal, there is some
degree of spatial overlap of the outer electron orbitals. This means that there is a chance that
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any pair of these outer electrons from adjacent atoms could trade places. The Pauli exclusion
principle, however, requires that each electron occupy a unique energy state. Satisfying the
Pauli exclusion principle becomes an issue because electrons that trade places effectively
occupy new, spatially extended energy states. The two electrons apparently occupy the
same spatially extended energy state.

In fact, since outer electrons from all adjacent atoms may trade places, outer electrons
from all the atoms may effectively trade places with each other and therefore a set of
outermost electrons from the N atoms all appear to share a spatially extended energy state
that extends through the entire crystal. The Pauli exclusion principle can only be satisfied
if these electrons occupy a set of distinct, spatially extended energy states. This leads to
a set of slightly different energy levels for the electrons that all originated from the same
atomic orbital. We say that the atomic orbital splits into an energy band containing a set of
electron states having a set of closely spaced energy levels. Additional energy bands will
exist if there is some degree of spatial overlap of the atomic electrons in lower-lying atomic
orbitals. This results in a set of energy bands in the crystal. Electrons in the lowest-lying
atomic orbitals will remain virtually unaltered since there is virtually no spatial overlap of
these electrons in the crystal.

The picture we have presented is conceptually a very useful one and it suggests that
electrical conductivity may arise in a crystal due to the formation of spatially extended
electron states. It does not directly allow us to quantify and understand important details of
the behaviour of these electrons, however.

We need to understand the behaviour in a solid of the electrons that move about in the
material. These mobile charge carriers are crucially important in terms of the electrical
properties of devices. An electron inside an infinitely large vacuum chamber is a free
electron, but a mobile electron in a solid behaves very differently.

We can obtain a more detailed model as follows. The mobile electrons in a crystalline
semiconductor are influenced by the electric potential in the material. This potential has a
spatial periodicity on an atomic scale due to the crystal structure. For example, positively
charged atomic sites provide potential valleys to a mobile electron and negatively charged
atomic sites provide potential peaks or barriers. In addition, the semiconductor is finite in
its spatial dimensions and there will be additional potential barriers or potential changes at
the boundaries of the semiconductor material.

The quantitative description of these spatially extended electrons requires the use of
wavefunctions that include their spatial distribution as well as their energy and momentum.
These wavefunctions may be obtained by solving Schrödinger’s equation. The following
section presents a very useful band theory of crystalline solids and the results.

1.3 The Kronig–Penney Model

The Kronig–Penney model is able to explain the essential features of band theory.
First, consider an electron that can travel within a one-dimensional periodic potential

V(x). The periodic potential can be considered as a series of regions having zero potential
energy separated by potential energy barriers of height V0, as shown in Figure 1.1, forming
a simple periodic potential with period a + b. We associate a + b also with the lattice
constant of the crystal. Note that the electric potential in a real crystal does not exhibit the
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V (x)

V0

–b 0 a xa + b

Figure 1.1 Simple one-dimensional potential V(x) used in the Kronig–Penney model

idealized shape of this periodic potential; however, the result turns out to be relevant in
any case, and Schrödinger’s equation is much easier to solve starting from the potential of
Figure 1.1.

In order to obtain the electron wavefunctions relevant to an electron in the crystalline
solid, V(x) is substituted into the time-independent form of Schrödinger’s equation:

− �
2

2m

d2ψ(x)

dx2
+ V (x) = Eψ(x) (1.1)

where V(x) is the potential energy and E is total energy.
For 0 ≤ x ≤ a we have V = 0 and the general solution to Equation 1.1 yields:

ψ(x) = AeiKx + Be−iKx (1.2a)

where

E = �
2 K 2

2m
(1.2b)

For −b ≤ x ≤ 0 we have

ψ(x) = CeQx + De−Qx (1.3a)

where

V0 − E = �
2 Q2

2m
(1.3b)

Boundary conditions must be satisfied such that ψ(x) and dψ(x)
dx are continuous functions.

At x = 0, equating (1.2a) and (1.3a), we have

A + B = C + D (1.4a)
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and equating derivatives of (1.2a) and (1.3a),

i K (A − B) = Q(C − D) (1.4b)

An important additional constraint on the required wavefunctions results from the peri-
odicity of the lattice. The solution to Equation 1.1 for any periodic potential must also have
the form of a Bloch function:

ψ(x) = uk(x)eikx (1.5)

Here, k is the wavenumber of a plane wave. There are no restrictions on this wavenumber;
however, uk(x) must be a periodic function with the same periodicity as the lattice.

Consider two x-values separated by one lattice constant, namely x = −b and x = a. Now,
Equation 1.5 states that ψ (x + a + b) = ψ(x)eik(a+b). At x = −b this may be written as:

ψ(a) = ψ(−b)eik(a+b) (1.6)

The boundary conditions to satisfy ψ(x) and dψ(x)
dx being continuous functions at x = a

may now be written by substituting ψ from Equations 1.2 and 1.3 into Equation 1.6:

Aei K a + Be−i K a = (Ce−Qb + DeQb)eik(a+b) (1.7a)

and substituting the corresponding derivatives:

i K (Aei K a − Be−i K a) = Q(Ce−Qb + DeQb)eik(a+b) (1.7b)

Equations 1.4a, 1.4b, 1.7a and 1.7b constitute four equations with four unknowns A, B,
C and D. A solution exists only if the determinant of the coefficients of A, B, C and D is
zero (Cramer’s rule). This requires that

Q2 − K 2

2QK
sinh QB sin Ka + cosh Qb cos Ka = cos k(a + b) (1.7c)

This may be simplified if the limit b → 0 and V0 → ∞ is taken such that bV0 is constant
(see Problem 1.1). We now define

P = Q2ba

2

Since Q � K and Qb � 1 we obtain

cos ka = P
sin Ka

Ka
+ cos Ka (1.8)

Here k is the wavevector of the electron describing its momentum p = �k and

K = 1

�

√
2m E (1.9)

which means that K is a term associated with the electron’s energy.
Now, Equation 1.8 only has solutions if the righthand side of Equation 1.8 is between

−1 and +1, which restricts the possible values of Ka. The righthand side is plotted as a
function of Ka in Figure 1.2.
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Figure 1.2 Graph of righthand side of Equation 1.8 as a function of P for P = 2

Since K and E are related by Equation 1.9, these allowed ranges of Ka actually describe
energy bands (allowed ranges of E) separated by energy gaps (forbidden ranges of E). Ka
may be re-plotted on an energy axis, which is related to the Ka axis by the square root
relationship of Equation 1.9. It is convenient to view E on a vertical axis as a variable
dependent on k. Note that k = nπ

a for integer values of n at the edges of each energy band
where the left side of Equation 1.8 is equal to ±1. These critical values of k occur at the
boundaries of what are called Brillouin zones. A sketch of E versus k is shown in Figure
1.3, which clearly shows the energy bands and energy gaps.

Let us now plot the free electron graph for E versus k. Solving Equation 1.1 for a free
electron with V = 0 yields the solution

ψ(x) = Aeikx + Be−ikx

3π
a

0

E

–
2π
a

–
2π
a

3π
k

a
π
a

–
π
a

Figure 1.3 Plot of E versus k showing how k varies within each energy band and the existence
of energy bands and energy gaps. The vertical lines at k = n π

a are Brillouin zone boundaries
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Figure 1.4 Plot of E versus k comparing the result of the Kronig–Penney model to the free
electron parabolic result

where

E = �
2k2

2m
(1.10)

This parabolic E versus k relationship is plotted superimposed on the curves from Figure
1.3. The result is shown in Figure 1.4.

Taking the limit P → 0, and combining Equations 1.8 and 1.9, we obtain:

E = �
2k2

2m

which is identical to Equation 1.10. This means that the dependence of E on k in Figure1.4
approaches a parabola as expected if the amplitude of the periodic potential is reduced
to zero. In fact, the relationship between the parabola and the Kronig–Penney model is
evident if we look at the solutions to Equation 1.4 within the shaded regions in Figure
1.4 and regard them as portions of the parabola that have been broken up by energy gaps
and distorted in shape. For a weak periodic potential (small P) the solutions to Equation
1.4 would more closely resemble the parabola. We refer to Equation 1.10 as a dispersion
relation – it relates energy to the wavenumber of a particle.

At this point, we can draw some very useful conclusions based on the following result:
The size of the energy gaps increases as the periodic potential increases in amplitude in a
crystalline solid. Periodic potentials are larger in amplitude for crystalline semiconductors
that have small atoms since there are then fewer atomically bound electrons to screen
the point charges of the nuclei of the atoms. In addition, periodic potentials increase in
amplitude for compound semiconductors as the ionic character of the crystal bonding
increases. This will be illustrated in Section 1.10 for some real semiconductors.

To extend our understanding of energy bands we now need to turn to another picture of
electron behaviour in a crystal.
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1.4 The Bragg Model

Since electrons behave like waves, they will exhibit the behaviour of waves that undergo
reflections. Notice that in a crystal with lattice constant a, the Brillouin zone boundaries
occur at

k = nπ

a
= 2π

λ

which may be rearranged to obtain

2a = nλ

The well-known Bragg condition relevant to waves that undergo strong reflections when
incident on a crystal with lattice constant a is

2a sin θ = nλ

Now, if the electron is treated as a wave incident at θ = 90◦ then we have

2a = nλ

which is precisely the case at Brillouin zone boundaries. We therefore make the following
observation: Brillouin zone boundaries occur when the electron wavelength satisfies the
requirement for strong reflections from crystal lattice planes according to the Bragg con-
dition. The free electron parabola in Figure 1.4 is similar to the Kronig–Penney model in
the shaded regions well away from Brillouin zone boundaries; however, as we approach
Brillouin zone boundaries, strong deviations take place and energy gaps are observed.

There is therefore a fundamental connection between the Bragg condition and the forma-
tion of energy gaps. The electrons that satisfy the Bragg condition actually exist as standing
waves since reflections will occur equally for electrons travelling in both directions of the
x axis, and standing waves do not travel. Provided electrons have wavelengths not close
to the Bragg condition, they interact relatively weakly with the crystal lattice and behave
more like free electrons.

The E versus k dependence immediately above and below any particular energy gap is
contained in four shaded regions in Figure 1.4. For example, the relevant shaded regions
for Eg2 in Figure 1.4 are labelled a, b, c and d. These four regions are redrawn in Figure 1.5.
Energy gap Eg2 occurs at k = ± 2π

a . Since this is a standing wave condition with both
electron velocity and electron momentum p = �k equal to zero, Eg2 is redrawn at k = 0 in
Figure 1.5. Since we are only interested in relative energies, the origin of the energy axis
is moved for convenience, and we can arbitrarily redefine the origin of the energy axis.
Figure 1.5 is known as a reduced zone scheme.

1.5 Effective Mass

We now introduce the concept of effective mass m* to allow us to quantify electron
behaviour. Effective mass changes in a peculiar fashion near Brillouin zone boundaries,
and generally is not the same as the free electron mass m. It is easy to understand that the
effective acceleration of an electron in a crystal due to an applied electric field will depend
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Figure 1.5 Plot of E versus k in reduced zone scheme taken from regions a, b, c and d in
Figure 1.4

strongly on the nature of the reflections of electron waves off crystal planes. Rather than
trying to calculate the specific reflections for each electron, we instead modify the mass
of the electron to account for its observed willingness to accelerate in the presence of an
applied force.

To calculate m* we start with the free electron relationship

E = 1

2
mv2

g

where vg is the group velocity of the electron. Upon differentiation with respect to k,

dE

dk
= mvg

dvg

dk
(1.11)

Since p = �k = mvg we can write

vg

k
= dvg

dk
= �

m
(1.12)

Combining Equations 1.11 and 1.12 we obtain

dE

dk
= vg�

or

vg = 1

�

dE

dk
(1.13)

Note that the group velocity falls to zero at the Brillouin zone boundaries where the slope
of the E versus k graph is zero. This is consistent with the case of a standing wave.

Now, using Newton’s law,

F = dp

dt
= �

dk

dt
(1.14)
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From Equations 1.13 and 1.14, we can write

dvg

dt
= 1

�

d2 E

dkdt
= 1

�

d2 E

dk2

dk

dt
= F

�2

d2 E

dk2
(1.15)

If we assign m* to represent an effective electron mass, then Newton’s law tells us that

dvg

dt
= F

m∗

Upon examination Equation 1.15 actually expresses Newton’s law provided we define

m* = �
2

d2 E
dk2

(1.16)

Since d2 E
dk2 is the curvature of the plot in Figure 1.5, it is interesting to note that m* will

be negative for certain values of k. This may be understood physically: if an electron that
is close to the Bragg condition is accelerated slightly by an applied force it may then
move even closer to the Bragg condition, reflect more strongly off the lattice planes, and
effectively accelerate in the direction opposite to the applied force.

We can apply Equation 1.16 to the free electron case where E = �
2k2

2m and we immediately
see that m* = m as expected. In addition at the bottom or top of energy bands illustrated in
Figure 1.5, the shape of the band may be approximated as parabolic for small values of k and
hence a constant effective mass is often sufficient to describe electron behaviour for small
values of k. This will be useful when we calculate the number of electrons in an energy band.

1.6 Number of States in a Band

The curves in Figure 1.5 are misleading in that electron states in real crystals are discrete
and only a finite number of states exist within each energy band. This means that the curves
should be regarded as closely spaced dots that represent quantum states. We can determine
the number of states in a band by considering a semiconductor crystal of length L and
modelling the crystal as an infinite-walled potential box of length L with a potential of zero
inside the well. See Example 1.1.

Example 1.1

An electron is inside a potential box of length L with infinite walls and zero potential
in the box. The box is shown below.

V = 0

V = ∞ V = ∞

0 L x
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(a) Find the allowed energy levels in the box.
(b) Find the wavefunctions of these electrons.

Solution

(a) Inside the box, from Schrödinger’s equation, we can substitute V (x) = 0 and we
obtain

− �
2

2m

d2ψ(x)

dx2
= Eψ(x)

Solutions are of the form

ψ(x) = A exp
i
√

2m E

�
x + B exp

−i
√

2m E

�
x

In regions where V = ∞ the wavefunction is zero. In order to avoid discontinu-
ities in the wavefunction we satisfy boundary conditions at x = 0 and at x = L
and require that ψ (0) = 0 and ψ (L) = 0. These boundary conditions can be
written

0 = A + B or B = −A

and

0 = A exp
i
√

2m E

�
L + B exp

−i
√

2m E

�
L

= A

(
exp

i
√

2m E

�
L − exp

−i
√

2m E

�
L

)
= Csin

√
2m E

�
L

where C is a constant. Now sinθ is zero provided θ = nπ where n is an integer
and hence

√
2m E

�
L = nπ

A discrete set of allowed energy values is obtained by solving for E to obtain

En = n2π2
�

2

2mL2

(b) The corresponding wavefunctions may be found by substituting the allowed
energy values into Schrödinger’s equation and solving:

− �
2

2m

d2ψ(x)

dx2
= n2π2

�
2

2mL2
ψ(x)
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now

d2ψ(x)

dx2
= −n2π2

L2
ψ(x)

and hence

ψn(x) = A sin
(nπ

L
x
)

From Example 1.1 we obtain

ψn(x) = A sin
nπ

L
x (1.17)

where n is a quantum number, and

k = nπ

L
, n = 1, 2, 3 . . .

As n increases we will inevitably reach the k value corresponding to the Brillouin zone
boundary from the band model

k = π

a

This will occur when
nπ

L
= π

a

and therefore n = L
a . The maximum possible value of n now becomes the macroscopic

length of the semiconductor crystal divided by the unit cell dimension, which is simply the
number of unit cells in the crystal, which we shall call N. Since electrons have an additional
quantum number s (spin quantum number) that may be either 1

2 or − 1
2 , the maximum

number of electrons that can occupy an energy band becomes

n = 2N

Although we have considered a one-dimensional model, the results can readily be ex-
tended into two or three dimensions and we still obtain the same result. See Problem 1.3.

We are now ready to determine the actual number of electrons in a band, which will
allow us to understand electrical conductivity in semiconductor materials.

1.7 Band Filling

The existence of 2N electron states in a band does not determine the actual number of
electrons in the band. At low temperatures, the electrons will occupy the lowest allowed
energy levels, and in a semiconductor like silicon, which has 14 electrons per atom, several
low-lying energy bands will be filled. In addition, the highest occupied energy band will
be full, and then the next energy band will be empty. This occurs because silicon has an
even number of valence electrons per unit cell, and when there are N unit cells, there will
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(a) (b) (c)

Figure 1.6 The degree of filling of the energy bands in (a) semiconductors, (b) insulators and
(c) metals at temperatures approaching 0 K. Available electron states in the hatched regions
are filled with electrons and the energy states at higher energies are empty

be the correct number of electrons to fill the 2N states in the highest occupied energy band.
A similar argument occurs for germanium as well as carbon (diamond) although diamond
is an insulator due to its large energy gap.

Compound semiconductors such as GaAs and other III-V semiconductors as well as CdS
and other II-VI semiconductors exhibit the same result: The total number of electrons per
unit cell is even, and at very low temperatures in a semiconductor the highest occupied
band is filled and the next higher band is empty.

In many other crystalline solids this is not the case. For example group III elements Al,
Ga and In have an odd number of electrons per unit cell, resulting in the highest occupied
band being half filled since the 2N states in this band will only have N electrons to fill them.
These are metals. Figure 1.6 illustrates the cases we have described, showing the electron
filling picture in semiconductors, insulators and metals.

In Figure 1.6a the highest filled band is separated from the lowest empty band by an
energy gap Eg that is typically in the range from less than 1 eV to between 3 and 4 eV in
semiconductors. A completely filled energy band will not result in electrical conductivity
because for each electron with positive momentum p = �k there will be one having negative
momentum p = −�k resulting in no net electron momentum and hence no net electron
flux even if an electric field is applied to the material.

Electrons may be promoted across the energy gap Eg by thermal energy or optical energy,
in which case the filled band is no longer completely full and the empty band is no longer
completely empty, and now electrical conduction occurs.

Above this range of Eg lie insulators (Figure 1.6b), which typically have an Eg in the
range from about 4 eV to over 6 eV. In these materials it is difficult to promote electrons
across the energy gap.

In metals, Figure 1.6c shows a partly filled energy band as the highest occupied band. The
energy gap has almost no influence on electrical properties whereas occupied and vacant
electron states within this partly filled band are significant: strong electron conduction takes
place in metals because empty states exist in the highest occupied band, and electrons may
be promoted very easily into higher energy states within this band. A very small applied
electric field is enough to promote some electrons into higher energy states that impart a
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net momentum to the electrons within the band and an electron flow results, which results
in the high electrical conductivity in metals.

1.8 Fermi Energy and Holes

Of particular interest is the existence in semiconductors, at moderate temperatures such as
room temperature, of the two energy bands that are partly filled. The higher of these two
bands is mostly empty but a number of electrons exist near the bottom of the band, and the
band is named the conduction band because a net electron flux or flow may be obtained in
this band. The lower band is almost full; however, because there are empty states near the
top of this band, it also exhibits conduction and is named the valence band. The electrons
that occupy it are valence electrons, which form covalent bonds in a semiconductor such
as silicon. Figure 1.7 shows the room temperature picture of a semiconductor in thermal
equilibrium. An imaginary horizontal line at energy Ef, called the Fermi energy, represents
an energy above which the probability of electron states being filled is under 50%, and
below which the probability of electron states being filled is over 50%. We call the empty
states in the valence band holes. Both valence band holes and conduction band electrons
contribute to conductivity.

In a semiconductor we can illustrate the valence band using Figure 1.8, which shows a
simplified two-dimensional view of silicon atoms bonded covalently. Each covalent bond
requires two electrons. The electrons in each bond are not unique to a given bond, and
are shared between all the covalent bonds in the crystal, which means that the electron
wavefunctions extend spatially throughout the crystal as described in the Kronig–Penney
model. A valence electron can be thermally or optically excited and may leave a bond to
form an electron-hole pair (EHP). The energy required for this is the bandgap energy of the

conduction band

Ef (Fermi energy)

E

k

valence band

π
a

–
π
a

0

Figure 1.7 Room temperature semiconductor showing the partial filling of the conduction
band and partial emptying of the valence band. Valence band holes are formed due to electrons
being promoted across the energy gap. The Fermi energy lies between the bands. Solid lines
represent energy states that have a significant chance of being filled
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h

e
Si Si Si Si

Si Si Si Si

Si Si Si Si

Si Si Si Si

Figure 1.8 Silicon atoms have four covalent bonds as shown. Although silicon bonds are
tetrahedral, they are illustrated in two dimensions for simplicity. Each bond requires two
electrons, and an electron may be excited across the energy gap to result in both a hole in the
valence band and an electron in the conduction band that are free to move independently of
each other

semiconductor. Once the electron leaves a covalent bond a hole is created. Since valence
electrons are shared, the hole is likewise shared among bonds and is able to move through
the crystal. At the same time the electron that was excited enters the conduction band and
is also able to move through the crystal resulting in two independent charge carriers.

In order to calculate the conductivity arising from a particular energy band, we need to
know the number of electrons n per unit volume of semiconductor, and the number of holes
p per unit volume of semiconductor resulting from the excitation of electrons across the
energy gap Eg. In the special case of a pure or intrinsic semiconductor, we can write the
carrier concentrations as ni and pi such that ni = pi

1.9 Carrier Concentration

The determination of n and p requires us to find the number of states in the band that have
a significant probability of being occupied by an electron, and for each state we need to
determine the probability of occupancy to give an appropriate weighting to the state.

We will assume a constant effective mass for the electrons or holes in a given energy
band. In real semiconductor materials the relevant band states are either near the top of the
valence band or near the bottom of the conduction band as illustrated in Figure 1.7. In both
cases the band shape may be approximated by a parabola, which yields a constant curvature
and hence a constant effective mass as expressed in Equation 1.16.

In contrast to effective mass, the probability of occupancy by an electron in each en-
ergy state depends strongly on energy, and we cannot assume a fixed value. We use the
Fermi–Dirac distribution function, which may be derived from Boltzmann statistics as fol-
lows. Consider a crystal lattice having lattice vibrations, or phonons, that transfer energy
to electrons in the crystal. These electrons occupy quantum states that can also transfer
energy back to the lattice, and a thermal equilibrium will be established.
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Consider an electron in a crystal that may occupy lower and higher energy states Ee
1

and Ee
2 respectively, and a lattice phonon that may occupy lower and higher energy states

Ep
1 and Ep

2 respectively. Assume this electron makes a transition from energy Ee
1 to Ee

2 by
accepting energy from the lattice phonon while the phonon makes a transition from Ep

2 to
Ep

1 . For conservation of energy,

Ee
2 − Ee

1 = Ep
2 − Ep

1 (1.18)

The probability of these transitions occurring can now be analysed. Let p(Ee) be the
probability that the electron occupies a state having energy Ee. Let p(Ep) be the probability
that the phonon occupies an energy state having energy Ep. For a system in thermal
equilibrium the probability of an electron transition from Ee

1 to Ee
2 is the same as the

probability of a transition from Ee
2 to Ee

1, and we can write

p
(
Ep

2

)
p
(
Ee

1

)(
1 − p

(
Ee

2

)) = p
(
Ep

1

)
p
(
Ee

2

)(
1 − p

(
Ee

1

))
(1.19)

because the probability that an electron makes a transition from Ee
1 to Ee

2 is proportional to
the terms on the lefthand side in which the phonon at Ep

2 must be available and the electron at
Ee

1 must be available. In addition, the electron state at Ee
2 must be vacant because electrons,

unlike phonons, must obey the Pauli exclusion principle, which allows only one electron
per quantum state. Similarly the probability that the electron makes a transition from Ee

2 to
Ee

1 is proportional to the terms on the righthand side.
From Boltzmann statistics (see Appendix 3) for phonons or lattice vibrations we use the

Boltzmann distribution function:

p(E) ∝ exp

(
− E

kT

)
(1.20)

Combining Equations 1.19 and 1.20 we obtain

exp

(
− Ep

2

kT

)
p
(
Ee

1

)(
1 − p

(
Ee

2

)) = exp

(
− Ep

1

kT

)
p
(
Ee

2

)(
1 − p

(
Ee

1

))
which may be written

p
(
Ee

1

)(
1 − p

(
Ee

2

)) = exp

(
Ep

2 − Ep
1

kT

)
p
(
Ee

2

)(
1 − p

(
Ee

1

))
Using Equation 1.18 this can be expressed entirely in terms of electron energy levels as

p
(
Ee

1

)(
1 − p

(
Ee

2

)) = exp

(
Ee

2 − Ee
1

kT

)
p
(
Ee

2

)(
1 − p

(
Ee

1

))
Rearranging this we obtain

p
(
Ee

1

)
1 − p

(
Ee

1

) exp

(
Ee

1

kT

)
= p

(
Ee

2

)
1 − p

(
Ee

2

) exp

(
Ee

2

kT

)
(1.21)

The left side of this equation is a function only of the initial electron energy level and
the right side is only a function of the final electron energy level. Since the equation must
always hold and the initial and final energies may be chosen arbitrarily we must conclude
that both sides of the equation are equal to an energy-independent quantity, which can only
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be a function of the remaining variable T . Let this quantity be f (T). Hence using either the
left side or the right side of the equation we can write

p(E)

1 − p(E)
exp

(
E

kT

)
= f (T )

where E represents the electron energy level.
Solving for p(E) we obtain

p(E) = 1

1 + 1
f (T ) exp

(
E

kT

) (1.22)

We now formally define the Fermi energy Ef to be the energy level at which p (E) = 1
2

and hence

1

f (T )
exp

(
Ef

kT

)
= 1

or

1

f (T )
= exp

(−Ef

kT

)

Under equilibrium conditions the final form of the probability of occupancy at temper-
ature T for an electron state having energy E is now obtained by substituting this into
Equation 1.22 to obtain

F(E) = 1

1 + exp
( E−Ef

kT

) (1.23)

where F(E) is used in place of p(E) to indicate that this is the Fermi–Dirac distribution
function. This function is graphed in Figure 1.9.

F(E)

Ef
E

1.0

0.5

T1

T2

0 K

Figure 1.9 Plot of the Fermi–Dirac distribution function F(E), which gives the probability of
occupancy by an electron of an energy state having energy E. The plot is shown for two
temperatures T1 > T2 as well as for 0 K. At absolute zero, the function becomes a step function
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f (E)
1 0.5 0

Ef
Ev

Ec

k
Eg

E E

Figure 1.10 A semiconductor band diagram is plotted along with the Fermi–Dirac distribution
function. This shows the probability of occupancy of electron states in the conduction band as
well as the valence band. Hole energies increase in the negative direction along the energy axis.
The hole having the lowest possible energy occurs at the top of the valence band. This occurs
because by convention the energy axis represents electron energies and not hole energies. The
origin of the energy axis is located at Ev for convenience

F(E) is 0.5 at E = Ef provided T > 0 K, and at high temperatures the transition becomes
more gradual due to increased thermal activation of electrons from lower energy levels to
higher energy levels. Figure 1.10 shows F(E) plotted beside a semiconductor band diagram
with the energy axis in the vertical direction. The bottom of the conduction band is at Ec

and the top of the valence band is at Ev. At Ef there are no electron states since it is in the
energy gap; however, above Ec and below Ev the values of F(E) indicate the probability of
electron occupancy in the bands. In the valence band the probability for a hole to exist at
any energy level is 1 – F(E).

The distribution of available energy levels in an energy band is found by knowing the
density of states function D(E), which gives the number of available energy states per unit
volume over a differential energy range. It is needed in order to calculate the number of
carriers in an energy band. Knowing the probability of occupancy of the states in a band is
not sufficient; the density of available energy levels is also required. Once we have all this
information we can obtain the total number of electrons in a band by summing up all the
electrons in each energy level within the energy band. The probability of each energy level
being occupied by an electron is taken into account in the summation.

The density of states function may be derived by solving Schrödinger’s equation for an
infinite-walled potential box in which the wavefunctions (Equation 1.17) must be expressed
in three dimensions. In three dimensions, Schrödinger’s equation is:

− �
2

2m

(
d2

dx2
+ d2

dy2
+ d2

dz2

)
ψ(x, y, z) + V (x, y, z)ψ(x, y, z) = Eψ(x, y, z)

Consider a box of dimensions a, b and c in three-dimensional space in which V = 0
inside the box when 0 < x < a, 0 < y < b, 0 < z < c. Outside the box, assume V = ∞.
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Inside the box using Schrödinger’s equation:

− �
2

2m

(
d2

dx2
+ d2

dy2
+ d2

dz2

)
ψ(x, y, z) = Eψ(x, y, z) (1.24)

If we let ψ (x, y, z) = X (x)Y (y) Z (z) then upon substitution into Equation 1.24 and after
dividing by ψ(x, y, z) we obtain:

− �
2

2m

(
1

X (x)

d2 X (x)

dx2
+ 1

Y (y)

d2Y (y)

dy2
+ 1

Z (z)

d2 Z (z)

dz2

)
= E

Since each term contains an independent variable, we can apply separation of variables
and conclude that each term is equal to a constant that is independent of x, y and z.

Now, we have three equations

1

X (x)

d2 X (x)

dx2
= −C1 (1.25a)

1

Y (y)

d2Y (y)

dy2
= −C2 (1.25b)

and

1

Z (z)

d2 Z (z)

dz2
= −C3 (1.25c)

where

E = �
2

2m
(C1 + C2 + C3) (1.26)

The general solution to Equation 1.25a is

X (x) = A1 exp(ikx) + A2 exp(−ikx) (1.27)

To satisfy boundary conditions such that X (x) = 0 at x = 0 and at x = a we obtain

X (x) = A sin kx x

where

kx = nxπ

a

with nx a positive integer quantum number and

C1 =
(nxπ

a

)2

Repeating a similar procedure for Equations 1.25b and 1.25c, and using Equation 1.26
we obtain:

ψ(x, y, z) = X (x)Y (y)Z (z) = ABC sin(kx x) sin(ky y) sin(kzz)

and

E = �
2π2

2m

((nx

a

)2
+

(ny

b

)2
+

(nz

c

)2
)

(1.28)
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nz/c

ny /b

nx/a

Figure 1.11 Reciprocal space lattice. A cell in this space is shown, which is the volume
associated with one lattice point. The cell has dimensions 1

a , 1
b , 1

c and volume 1
abc . This space

may readily be transformed into k-space by multiplying each axis by a factor of 2π . It may also
readily be transformed into p-space (momentum space) by multiplying each axis by a factor
of h

If more than one electron is put into the box at zero kelvin the available energy states will
be filled such that the lowest energy states are filled first.

We now need to determine how many electrons can occupy a specific energy range in the
box. It is very helpful to define a three-dimensional space with coordinates nx

a ,
ny

b and nz
c . In

this three-dimensional space there are discrete points that are defined by these coordinates
with integer values of nx, ny and nz in what is referred to as a reciprocal space lattice,
which is shown in Figure 1.11. Note that reciprocal space is related to another important
conceptual space known as k-space by multiplying each axis of reciprocal space by a factor
of 2π .

From Equation 1.28 it is seen that an ellipsoidal shell in reciprocal space represents
an equal energy surface because the general form of this equation is that of an ellipsoid
in reciprocal space. The number of reciprocal lattice points that are contained inside the
positive octant of an ellipsoid having a volume corresponding to a specific energy E will be
the number of states smaller than E. The number of electrons is actually twice the number of
these points because electrons have an additional quantum number s for spin and s = ± 1

2 .
The positive octant of the ellipsoid is illustrated in Figure 1.12.

Rearranging Equation 1.28,

(nx

a

)2
+

(ny

b

)2
+

(nz

c

)2
= 2m E

�2π2
(1.29)

The number of reciprocal lattice points inside the ellipsoid is the volume of the ellipsoid
divided by the volume associated with each lattice point shown in Figure 1.11. The volume
of the ellipsoid is

V = 4

3
π (product of semi-axes of ellipsoid).
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nz/c

ny /b

nx/a

Figure 1.12 The positive octant of an ellipsoid of revolution in reciprocal space corresponding
to an equal energy surface. The number of electron states below this energy is twice the number
of reciprocal lattice points inside the positive octant of the ellipsoid

The semi-axis of length Lx along the nx
a direction is obtained by setting ny = nz = 0 and

solving for nx
a in Equation 1.29, and we obtain

Lx =
√

2m E

�2π2

By repeating this for each semi-axis we obtain:

V = 4

3
π

(
2m E

�2π2

) 3
2

Now if the volume of the ellipsoid is much larger than the volume associated with
one lattice point then, including spin, the number of electrons having energy less than E
approaches two times one-eighth of the volume of the ellipsoid (positive octant) divided by
the volume associated with one lattice point, or:

number of electrons =
2

(
1

8

)
4

3
π

(
2m E

�2π2

) 3
2

1

abc

We define n(E) to be the number of electrons per unit volume of the box and therefore

n (E) = 2

(
1

8

)
4

3
π

(
2m E

�2π2

) 3
2

We also define D(E) to be the density of states function where

D(E) = dn(E)

d(E)
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and finally we obtain

D(E) = π

2

(
2m

�2π2

) 3
2

E
1
2 (1.30)

This form of the density of states function is valid for a box having V = 0 inside the
box. In an energy band, however, V is a periodic function and the density of states function
must be modified. This is easy to do because rather than the parabolic E versus k dispersion
relation (Equation 1.10) for free electrons in which the electron mass is m, we simply use
the E versus k dependence for an electron near the bottom or top of an energy band as
illustrated in Figure 1.7, which may be approximated as parabolic for small values of k but
using the appropriate effective mass. It is important to remember that the density of states
function is based on a density of available states in k-space or reciprocal space, and that
for a certain range of k-values in k-space the corresponding range of energies along the
energy axis is determined by the slope of the E versus k graph. The slope of E versus k in
a parabolic band depends on the effective mass (see Section 1.5). Using Equation 1.10 the
relevant dispersion curve is now

E = �
2k2

2m*

As a result

d2 E

dk2
= �

2

m*

and the second derivative or curvature of the E versus k curve is constant as required.
As a result the density of states function in a conduction band is given by Equation 1.30,

provided the effective mass m* is used in place of m. The point E = 0 should refer to the
bottom of the band. We now have

D (E) = π

2

(
2m∗

�2π2

) 3
2

E
1
2 (1.31a)

Since Ev is defined as zero as in Figure 1.10 for convenience then the conduction band starts
at Ec = Eg and D(E − Eg) tells us the number of energy states available per differential
range of energy within the conduction band, and we obtain

D(E − Eg) = π

2

(
2m∗

e

�2π2

) 3
2

(E − Eg)
1
2 (1.31b)

The total number of electrons per unit volume in the band is now given by

n =
∫ Emax

Eg

D(E − Eg)F(E)dE (1.32)

where Emax is the highest energy level in the energy band that needs to be considered as
higher energy levels have a negligible chance of being occupied.

The integral may be solved analytically provided the upper limit of the integral is allowed
to be infinity. This is justifiable because the argument of the integrand is virtually zero above
Emax.
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From Equation 1.23, since E ≥ Eg and Eg − Ef � kT , we can use the Boltzmann
approximation:

F(E) � exp

[− (E − Ef)

kT

]
(1.33)

Hence from Equations 1.31, 1.32 and 1.33,

n = π

2

(
2m∗

e

�2π2

) 3
2

exp

[
− Ef

kT

] ∫ Emax

Eg

(E − Eg)
1
2 exp

[
− E

kT

]
dE

= π

2

(
2m∗

e

�2π2

) 3
2

exp

[
− Eg − Ef

kT

] ∫ ∞

0
(E)

1
2 exp

[
− E

kT

]
dE

From standard integral tables and because Ec = Eg we obtain

n0 = Nc exp

(−(Ec − Ef)

kT

)
(1.34a)

where

Nc = 2

(
2πm∗

ekT

h2

) 3
2

(1.34b)

Here m*
e is the effective mass of electrons near the bottom of the conduction band. The

subscript on n indicates that equilibrium conditions apply. The validity of Equation 1.34 is
maintained regardless of the choice of the origin on the energy axis since from Equation 1.34
the important quantity for determining the electron concentration is the energy difference
between the conduction band edge and the Fermi energy.

The same procedure may be applied to the valence band. In this case we calculate the
number of holes p in the valence band. The density of states function must be written as
D(–E) since from Figure 1.10 energy E is negative in the valence band and hole energy
increases as we move in the negative direction along the energy axis. We can use Equation
1.31a to obtain

D (−E) = π

2

(
2m*

�2π2

) 3
2

(−E)
1
2

The probability of the existence of a hole is 1 − F(E), and from Equation 1.23 if Ef − E �
kT we obtain

1 − F(E) ∼= exp

(
E − Ef

kT

)

and now

p =
∫ −Emax

0
D (−E) (1 − F (E)) dE

In an analogous manner to that described for the conduction band, we therefore obtain

p0 = Nv exp

(− (Ef − Ev)

kT

)
(1.35a)
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where

Nv = 2

(
2πm∗

hkT

h2

) 3
2

(1.35b)

and m*
h , the hole effective mass, is a positive quantity.

Equation 1.35 shows that the important quantity for the calculation of hole concentration
in Equation 1.16 is the energy difference between the Fermi energy and the valence band
edge. Again the subscript on p indicates that equilibrium conditions apply.

We can now determine the position of the Fermi level and will again set Ev = 0 for
convenience as illustrated in Figure 1.10. Since ni = pi for an intrinsic semiconductor we
equate Equations 1.34 and 1.35 and obtain

Nc exp

(−(Eg − Ef)

kT

)
= Nv exp

(−Ef

kT

)
or

Ef = Eg

2
+ kT

2
ln

Nv

Nc
(1.36)

The second term on the right side of Equation 1.36 is generally much smaller than Eg

2 and
we conclude that the Fermi energy lies approximately in the middle of the energy gap.

From Equations 1.34 and 1.35 we can also write the product

np = Nc Nv exp

(−Eg

kT

)
(1.37a)

and for an intrinsic semiconductor with ni = pi

ni = pi =
√

Nc Nv exp

(−Eg

2kT

)
(1.37b)

which is a useful expression for carrier concentration as it is independent of Ef.

Example 1.2

(a) Calculate ni = pi for silicon at room temperature and compare with the com-
monly accepted value.

(b) Calculate ni = pi for gallium arsenide at room temperature.

Solution

(a) Using Appendix 2 to obtain silicon values m∗
e = 1.08m and Eg = 1.11 eV,

Nc =2

(
2πm∗

ekT

h2

) 3
2

=2

(
2π× (1.08×9.11×10−31 kg)×(0.026×1.6×10−19 J)

(6.625×10−34 J s)2

) 3
2

= 2.84×1025 m−3 = 2.84×1019 cm−3
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and

Nv = 2

(
2πm∗

hkT

h2

) 3
2

= 2

(
2π×(0.56×9.11×10−31 kg)×(0.026×1.6×10−19J)

(6.625×10−34J s)2

) 3
2

= 1.06×1025 m−3 = 1.06×1019 cm−3

Now,

ni = pi =
√

Nc Nv exp

(−Eg

2kT

)
=

√
2.84×1019×1.06×1019

× exp

( −1.11 eV

2×0.026 eV

)
= 9.31×109cm−3

The commonly accepted value is ni = pi = 1.5×1010 cm−3. The discrepancy
relates mainly to three-dimensional aspects of the effective mass value, and the
method and temperature at which effective mass is measured. We will continue
to use the commonly accepted effective mass unless otherwise noted.

(b) For GaAs from Appendix 2, m∗
e = 0.067 and Eg = 1.42 eV. Hence

Nc = 2

(
2πm∗

e kT

h2

) 3
2

= 2

(
2π×(0.067×9.11×10−31 kg)×(0.026×1.6×10−19 J)

(6.625×10−34 J s)2

) 3
2

= 4.38×1023 m−3 = 4.38×1017 cm−3

and

Nv = 2

(
2πm∗

hkT

h2

) 3
2

= 2

(
2π × (0.48 × 9.11 × 10−31 kg) × (0.026 × 1.6 × 10−19 J)

(6.625 × 10−34 J s)2

) 3
2

= 8.4 × 1024 m−3 = 8.4 × 1018 cm−3

Now,

ni = pi =
√

Nc Nv exp

(−Eg

2kT

)
=

√
4.38×1017×8.4×1018 exp

( −1.42 eV

2 × 0.026 eV

)
= 2.65×106 cm−3

1.10 Semiconductor Materials

The relationship between carrier concentration and Eg has now been established and we can
look at examples of real semiconductors. A portion of the periodic table showing elements
from which many important semiconductors are made is shown in Figure 1.13, together
with a list of selected semiconductors and their energy gaps. Note that there are the group
IV semiconductors silicon and germanium, a number of III-V compound semiconductors
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Group IV IV IV IV III-V III-V III-V III-V III-V III-V II-VI II-VI
Element(s) C Si Ge Sn GaN AlP GaP AlAs GaAs InSb ZnSe CdTe
Energy gap (eV) 6 1.11 0.67 0 3.4 2.45 2.26 2.16 1.43 0.18 2.7 1.58

Group II III IV V VI
B C N O
Al Si P S

Zn Ga Ge As Se
Element

Cd In Sn Sb Te

Figure 1.13 A portion of the periodic table containing some selected semiconductors com-
posed of elements in groups II to VI

having two elements, one from group III and one from group V respectively, and a number of
II-VI compound semiconductors having elements from group II and group VI respectively.

A number of interesting observations may now be made. In group IV crystals, the bonding
is purely covalent. Carbon (diamond) is an insulator because it has an energy gap of 6 eV.
The energy gap decreases with atomic size as we look down the group IV column from
C to Si to Ge and to Sn. Actually Sn behaves like a metal. Since its energy gap is very
small, it turns out that the valence band and conduction band effectively overlap when
a three-dimensional model of the crystal is considered rather than the one-dimensional
model we have discussed. This guarantees some filled states in the conduction band and
empty states in the valence band regardless of temperature. Sn is properly referred to as a
semi-metal (its conductivity is considerably lower than metals like copper or silver). We
can understand this group IV trend of decreasing energy gaps since the periodic potential
of heavy elements will be weaker than that of lighter elements due to electron screening as
described in Section 1.3.

As with group IV materials, the energy gaps of III-V semiconductors decrease as we go
down the periodic table from AlP to GaP to AlAs to GaAs and to InSb. The energy gaps of
II-VI semiconductors behave in the same manner as illustrated by ZnSe and CdTe. Again,
electron screening increases for heavier elements.

If we compare the energy gaps of a set of semiconductors composed of elements from the
same row of the periodic table but with increasingly ionic bonding such as Ge, GaAs and
ZnSe, another trend becomes clear: Energy gaps increase as the degree of ionic character
becomes stronger. The degree of ionic bond character increases the magnitude of the
periodic potential and hence the energy gap.

The carrier concentration as a function of temperature according to Equation 1.18 is
plotted for three semiconductors in Figure 1.14. Increasing energy gaps result in lower
carrier concentrations at a given temperature.

1.11 Semiconductor Band Diagrams

The semiconductors in Figure 1.10 crystallize in either cubic or hexagonal structures. Fig-
ure 1.15a shows the diamond structure of silicon, germanium (and carbon), which is cubic.
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Ge

–25°C 25°C T 125°C 225°C

Si

GaAs

1.5 × 1010 cm–3

1016
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1000/T (K–1)

3 2.5 2

ni
(cm–3)

Figure 1.14 Plot of commonly accepted values of n as a function of 1
T for intrinsic germanium

(Eg = 0.7 eV ), silicon (Eg = 1.1 eV ), and gallium arsenide (Eg = 1.43 eV )

Figure 1.15b shows the zincblende structure of a set of III-V and II-VI semiconductors,
which is also cubic. Figure 1.15c shows the hexagonal structure of some additional com-
pound semiconductors.

These three structures have features in common. Each atom has four nearest neighbours
in a tetrahedral arrangement. Some crystals exhibit distortions from the ideal 109.47-degree
tetrahedral bond angle; however, since all the compounds have directional covalent bonding
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Figure 1.15 (a) The diamond unit cell of crystal structures of C, Si and Ge. The cubic unit
cell contains eight atoms. Each atom has four nearest neighbours in a tetrahedral arrangement.
Within each unit cell, four atoms are arranged at the cube corners and at the face centres in
a face-centred cubic (FCC) sublattice, and the other four atoms are arranged in another FCC
sublattice that is offset by a translation along one quarter of the body diagonal of the unit cell.
(b) The zincblende unit cell contains four ‘A’ atoms (black) and four ‘B’ atoms (white). The ‘A’
atoms form an FCC sublattice and the ‘B’ atoms form another FCC sublattice that is offset by a
translation along one quarter of the body diagonal of the unit cell. (c) The hexagonal wurtzite
unit cell contains six ‘A’ atoms and six ‘B’ atoms. The ‘A’ atoms form a hexagonal close-packed
(HCP) sublattice and the ‘B’ atoms form another HCP sublattice that is offset by a translation
along the vertical axis of the hexagonal unit cell. Each atom is tetrahedrally bonded to four
nearest neighbours. A vertical axis in the unit cell is called the c-axis
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to some degree, bond angles do not vary widely. Both the cubic (111) planes and the wurtzite
(1000) planes normal to the c-axis have close-packed hexagonal atomic arrangements.

The energy gap and effective mass values for a given semiconductor are not sufficient in-
formation for optoelectronic applications. We need to re-examine the energy band diagrams
for real materials in more detail.

The Kronig–Penney model involves several approximations. A one-dimensional periodic
potential instead of a three-dimensional periodic potential is used. The periodic potential
is simplified, and does not actually replicate the atomic potentials in real semiconductor
crystals. For example, silicon has a diamond crystal structure with silicon atoms as shown
in Figure 1.15a. Not only are three dimensions required, but also there is more than one
atom per unit cell.

In addition charges associated with individual atoms in compound semiconductors de-
pend on the degree of ionic character in the bonding. This will affect the detailed shape of
the periodic potential. Also effects of electron shielding have not been accurately modelled.
There are also other influences from electron spin and orbital angular momentum that
influence energy bands in real crystals.

E versus k diagrams for various directions in a semiconductor crystal are often pre-
sented since the one-dimensional periodic potentials vary with direction. Although three-
dimensional modelling is beyond the scope of this book the results for cubic crystals of
silicon, germanium, gallium arsenide, gallium phosphide, gallium nitride and cadmium
telluride as well as for wurtzite GaN are shown in Figure 1.16a–g. For cubic crystals these
figures show the band shape for an electron travelling in the [111] crystal direction on the
left side and for the [100] direction on the right side. It is clear that the periodic poten-
tial experienced by an electron travelling in various directions changes: the value of a in
uk(x) = uk(x + a) appropriate for use in the Bloch function (Equation 1.5) for the [100]
direction is the edge length of the cubic unit cell of the crystal. For the [111] direction
a must be modified to be the distance between the relevant atomic planes normal to the
body diagonal of the unit cell. For wurtzite crystals the two directions shown are the [0001]
direction along the c-axis and the 〈1100〉 directions along the a-axes.

Note that there are multiple valence bands that overlap or almost overlap with each
other rather than a single valence band. These are sub-bands for holes, which are due to
spin–orbit interactions that modify the band state energies for electrons in the valence band.
The sub-bands are approximately parabolic near their maxima. Because the curvatures of
these sub-bands vary, they give rise to what are referred to as heavy holes and light holes
with m* as described by Equation 1.16. There are also split-off bands with energy maxima
below the valence band edge.

1.12 Direct Gap and Indirect Gap Semiconductors

In Figure 1.16 the conduction bands generally exhibit two energy minima rather than one
minimum. Each local minimum can be approximated by a parabola whose curvature will
determine the effective mass of the relevant electrons.

Referring to Figure 1.16c, we can see that the bandgap of GaAs is 1.43 eV where the
valence band maximum and conduction band minimum coincide at k = 0. This occurs
because the overall minimum of the conduction band is positioned at the same value of
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Figure 1.16 Band structures of selected semiconductors. (a) silicon, (b) germanium, (c)
GaAs, (d) GaP, (e) cubic GaN, (f) CdTe and (g) wurtzite GaN. Note that GaN is normally
wurtzite. Cubic GaN is not an equilibrium phase at atmospheric pressure;however, it can be
prepared at high pressure and it is stable once grown. Note that symbols are used to describe
various band features. � denotes the point where k = 0. X and L denote the Brillouin zone
boundaries in the 〈100〉 and 〈111〉 directions respectively in a cubic semiconductor. In (g) kx

and kz denote the a and c directions respectively in a hexagonal semiconductor. See Figure
1.15c. Using the horizontal axes to depict two crystal directions saves drawing an additional
figure; it is unnecessary to show the complete drawing for each k-direction since the positive
and negative k-axes for a given k-direction are symmetrical. There are also energy gaps shown
that are larger than the actual energy gap; the actual energy gap is the smallest gap. These
band diagrams are the result of both measurements and modelling results. In some cases
the energy gap values differ slightly from the values in Appendix 2. (a–d) Reprinted from
Levinstein, M., Rumyantsev, S., and Shur, M., Handbook Series on Semiconductor Parameters
vol. 1. ISBN 9810229348. Copyright (1996) with permission from World Scientific, London.
(e, g) Reprinted from Morkoc, H., Handbook of Nitride Semiconductors and Devices, Vol. 1,
ISBN 978-3-527-40837-5. Copyright (2008) WILEY-VCH Verlag GmbH & Co. KGaA Weinheim.
(f) Reprinted from Chadov, S., et al., Tunable multifunctional topological insulators in ternary
Heusler compounds, Nature Materials 9, 541–545. Copyright (2010) with permission from
Nature Publishing Group. DOI: doi:10.1038/nmat2770
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Figure 1.16 (Continued)
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Figure 1.16 (Continued)

k as the valence band maximum and this results in a direct gap semiconductor. In Figure
1.16 GaAs, GaN and CdTe are direct gap semiconductors. In contrast to GaAs, silicon in
Figure 1.16a has a valence band maximum at a different value of k than the conduction band
minimum. That means that the energy gap of 1.1 eV is not determined by the separation
between bands at k = 0, but rather by the distance between the overall conduction band
minimum and valence band maximum. This results in an indirect gap semiconductor.
Another indirect gap semiconductor in Figure 1.16 is the III-V material GaP.
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The distinction between direct and indirect gap semiconductors is of particular signifi-
cance for photovoltaic and LED devices because processes involving photons occur in both
cases, and photon absorption and generation properties differ considerably between these
two semiconductor types.

An electron-hole pair (EHP) may be created if a photon is absorbed by a semiconductor
and causes an electron in the valence band to be excited into the conduction band. For
example, photon absorption in silicon can occur if the photon energy matches or exceeds
the bandgap energy of 1.11 eV. Since silicon is an indirect gap semiconductor, however,
there is a shift along the k axis for the electron that leaves the top of the valence band and
then occupies the bottom of the conduction band. In Section 1.3 we noted that p = �k
and therefore a shift in momentum results. The shift is considerable as seen in Figure 1.16a,
and it is almost the distance from the centre of the Brillouin zone at k = 0 to the zone
boundary at k = π

a yielding a momentum shift of

�p � �
π

a
(1.38)

During the creation of an EHP both energy and momentum must be conserved. Energy is
conserved since the photon energy �ω satisfies the condition �ω = Eg. Photon momentum
p = h

λ
is very small, however, and is unable to provide momentum conservation. This is

discussed further in Section 4.2. This means that a lattice vibration, or phonon, is required
to take part in the EHP generation process. The magnitudes of phonon momenta cover a
wide range in crystals and a phonon with the required momentum may not be available to
the EHP process. This limits the rate of EHP generation, and photons that are not absorbed
continue to propagate through the silicon.

If electromagnetic radiation propagates through a semiconductor we quantify absorp-
tion using an absorption coefficient α, which determines the intensity of radiation by the
exponential relationship

I (x)

I0
= e−αx

where I0 is the initial radiation intensity and I(x) is the intensity after propagating through
the semiconductor over a distance x. Efficient crystalline silicon solar cells are generally
at least �100 μm thick for this reason due to their relatively low absorption coefficient. In
contrast, GaAs (Figure 1.16c), is a direct gap semiconductor and has a much higher value of
α (see Section 4.2). The thickness of GaAs required for sunlight absorption is only �1 μm.
The value of α is an important parameter in PV semiconductors since sunlight that is not
absorbed will not contribute to electric power generation. It is interesting to note that in
spite of this difficulty silicon has historically been the most important solar cell material
owing to its large cost advantage over GaAs.

In LEDs the process is reversed. EHPs recombine and give rise to photons, which
are emitted as radiation. The wavelength range of this radiation may be in the infrared,
the visible, or the ultraviolet parts of the electromagnetic spectrum, and is dependent on
the semiconductor energy gap. Silicon is a poor material for LEDs because for an EHP
recombination to create a photon, one or more phonons need to be involved to achieve
momentum conservation. The probability for this to occur is therefore much smaller and
competing mechanisms for electron-hole pair recombination become important. These are
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known as non-radiative recombination events (see Section 1.19). In contrast to silicon,
GaAs can be used for high-efficiency LEDs and was used for the first practical LED
devices due to its direct gap.

1.13 Extrinsic Semiconductors

The incorporation of very small concentrations of impurities, referred to as doping, allows
us to create semiconductors that are called extrinsic to distinguish them from intrinsic
semiconductors, and we can control both the electron and hole concentrations over many
orders of magnitude.

Consider the addition of a group V atom such as phosphorus to a silicon crystal as shown
together with a band diagram in Figure 1.17. This results in an n-type semiconductor. The
phosphorus atom substitutes for a silicon atom and is called a donor; it introduces a new
spatially localized energy level called the donor level Ed.

Because phosphorus has one more electron than silicon this donor electron is not required
for valence bonding, is only loosely bound to the phosphorus, and can easily be excited
into the conduction band. The energy required for this is Ec − Ed and is referred to as the
donor binding energy. If the donor electron has entered the conduction band, it is no longer
spatially localized and the donor becomes a positively charged ion. The donor binding
energy may be calculated by considering the well-known hydrogen energy quantum states
in which the ionization energy for a hydrogen atom is given by

ERydberg = −mq4

8ε2
0 h2

= 13.6 eV (1.39)

Figure 1.17 The substitution of a phosphorus atom in silicon (donor atom) results in a
weakly bound extra electron occupying new energy level Ed that is not required to complete
the covalent bonds in the crystal. It requires only a small energy Ec − Ed to be excited into
the conduction band, resulting in a positively charged donor ion and an extra electron in the
conduction band
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and the Bohr radius given by

a0 = 4πε0 �
2

mq2
= 0.529 Å (1.40)

Now, two variables in Equations 1.39 and 1.40 must be changed. Whereas the hydrogen
electron moves in a vacuum, the donor is surrounded by semiconductor atoms, which
requires us to modify the dielectric constant from the free space value ε0 to the appropriate
value for silicon by multiplying by the relative dielectric constant εr. In addition the free
electron mass m must be changed to the effective mass m*

e . This results in a small binding
energy from Equation 1.39 compared to the hydrogen atom, and a large atomic radius from
Equation 1.40 compared to the Bohr radius. For n-type dopants in silicon the measured
values of binding energy are approximately 0.05 eV compared to 13.6 eV for the Rydberg
constant, and an atomic radius is obtained that is an order of magnitude larger than the
Bohr radius of approximately 0.5 Å. Since the atomic radius is now several lattice constants
in diameter, we can justify the use of the bulk silicon constants we have used in place of
vacuum constants.

Consider now the substitution of a group III atom such as aluminium for a silicon atom
as illustrated in Figure 1.18. This creates a p-type semiconductor. The aluminium atom
is called an acceptor and it introduces a new spatially localized energy level called the
acceptor level Ea. Because aluminium has one fewer electron than silicon it can accept an
electron from another valence bond elsewhere in the silicon, which results in a hole in the
valence band. The energy required for this is Ea − Ev and is referred to as the acceptor
binding energy. If an electron has been accepted, the resulting hole is no longer spatially

Figure 1.18 The substitution of an aluminium atom in silicon (acceptor atom) results in an
incomplete valence bond for the aluminium atom. An extra electron may be transferred to fill
this bond from another valence bond in the crystal. The spatially localized energy level now
occupied by this extra electron at Ea is slightly higher in energy than the valence band. This
transfer requires only a small energy Ea − Ev and results in a negatively charged acceptor ion
and an extra hole in the valence band
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localized and the acceptor becomes a negatively charged ion. The binding energy may be
estimated in a manner analogous to donor binding energies.

The introduction of either donors or acceptors influences the concentrations of charge
carriers, and we need to be able to calculate these concentrations. The position of the Fermi
level changes when dopant atoms are added, and it is no longer true that n = p; however,
the Fermi–Dirac function F(E) still applies. A very useful expression becomes the product
of electron and hole concentrations in a given semiconductor. For intrinsic material, we
have calculated ni pi and we obtained Equation 1.37a; however, Equations 1.34 and 1.35
are still valid and we can also conclude that

n0 p0 = n2
i = p2

i = Nc Nv exp

(−Eg

kT

)
(1.41)

which is independent of Ef, and therefore is also applicable to extrinsic semiconductors.
Here n0 and p0 refer to the equilibrium carrier concentrations in the doped semiconductor.

We now examine the intermediate temperature condition where the following apply:

(a) The ambient temperature is high enough to ionize virtually all the donors or acceptors.
(b) The concentration of the dopant is much higher than the intrinsic carrier concentration

because the ambient temperature is not high enough to directly excite a large number
of electron-hole pairs.

Under these circumstances, there are two cases. For donor doping in an n-type semicon-
ductor we can conclude that

n0 � Nd (1.42)

and combining Equations 1.41 and 1.42 we obtain

p0 = n2
i

Nd
(1.43)

where Nd is the donor concentration in donor atoms per unit volume of the semiconductor.
For acceptor doping in a p-type semiconductor we have

p0 � Na (1.44)

and we obtain

n0 = n2
i

Na
(1.45)

The Fermi energy levels will change upon doping, and may be calculated from Equations
1.34 and 1.35. In the case of n-type silicon the Fermi level will lie closer to the conduction
band. In the case of p-type silicon the Fermi level will lie closer to the valence band (see
Figure 1.19). In Example 1.3 we calculate some specific values of the Fermi energy position.

Consider n-type silicon at room temperature. The mobile electrons in the n-type silicon
are called majority carriers, and the mobile holes are called minority carriers. We can also
consider p-type silicon with mobile holes called majority carriers and mobile electrons
called minority carriers.
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Figure 1.19 The band diagrams for n-type silicon with a donor doping concentration of
1 × 1017 cm−3 and p-type silicon with an acceptor doping concentration of 1 × 1017 cm−3.
Note that the Fermi energy rises to the upper part of the energy gap for n-type doping and
drops to the lower part of the energy gap for p-type doping

Example 1.3

Assume a silicon sample at room temperature.

(a) Calculate the separation between Ec and Ef for n-type silicon having a phos-
phorus impurity concentration of 1 × 1017 cm−3. Find both electron and hole
concentrations.

(b) Calculate the separation between Ec and Ef for p-type silicon having an alu-
minium impurity concentration of 1 × 1017 cm−3. Find both electron and hole
concentrations.

Solution

(a) Using the intermediate temperature approximation n0
∼= 1 × 1017 cm−3. From

example 1.2 ni = 1.5 × 1010 cm3 and hence

p0 = n2
i

n0
= (1.5 × 1010 cm−3)2

1 × 1017 cm−3
= 2.25 × 103 cm−3

and

n0 = Nc exp

(− (Ec − Ef )

kT

)
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Solving for Ec − Ef ,

Ec − Ef = kT ln
Nc

n0
= 0.026 eV ln

(
2.84 × 1019 cm−3

1 × 1017 cm−3

)
= 0.15 eV

0

Ec

.15

Ef

Ev

Eg = 1.1 eVeV

(b) Using the intermediate temperature approximation, p0
∼= 1 × 1017 cm−3 and

hence

n0 = n2
i

p0
= (1.5 × 1010 cm−3)2

1 × 1017 cm−3
= 2.25 × 103 cm−3

and

p0 = Nv exp

(− (Ef − Ev)

kT

)
Solving for Ef − Ev

Ef − Ev = kT ln
Nv

n0
= 0.026 eV ln

(
1.06 × 1019 cm−3

1 × 1017 cm−3

)
= 0.12 eV

0.12

Ec

Ef

Ev

Eg = 1.1 eVeV

At low ambient temperatures, the dopant atoms are not necessarily ionized. In this case
there will be a combination of neutral and ionized dopant atoms. At high ambient tempera-
tures, the intrinsic electron-hole pair concentration may be significant and may exceed the
doping concentration. In this case the semiconductor carrier concentrations can be similar
to intrinsic material. These cases are illustrated in Figure 1.20. Of particular technological
importance is the intermediate temperature region since the carrier concentrations are rel-
atively independent of temperature and therefore semiconductor devices can operate over
wide temperature ranges without significant variation in carrier concentrations.
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Figure 1.20 Carrier concentration as a function of temperature for an n-type extrinsic semi-
conductor. In the high-temperature region behaviour is intrinsic-like. In the intermediate-
temperature region carrier concentration is controlled by the impurity concentration and virtu-
ally all the dopant atoms are ionized. At low temperatures there is not enough thermal energy
to completely ionize the dopant atoms

1.14 Carrier Transport in Semiconductors

The electrical conductivity of semiconductors is controlled by the concentrations of both
holes and electrons as well as their ability to flow in a specific direction under the influence
of an electric field. The flow of carriers is limited by scattering events in which carriers
having a high instantaneous velocity frequently scatter off lattice vibrations (phonons),
defects and impurities, and we can denote a scattering time or characteristic mean time
between scattering events for this, referred to as τ . The resulting net flow velocity or
drift velocity of a stream of carriers is much lower than their instantaneous velocity. The
experimental evidence for this is summarized by Ohm’s law, or

J = σε

which is a collision-limited flow equation that relates the current flow to the applied electric
field. To understand this we consider Figure 1.21 showing the flow of carriers in a solid
cylinder of cross-sectional area A in the x direction.

If the carrier concentration is n and each carrier carrying charge q moves a distance dx in
time dt then the amount of charge dQ passing across a given plane in the cylinder in time
dt is dQ = nqAdx . The carrier drift velocity is given by v̄ = dx

dt , and we can conclude that
the current is

I = dQ

dt
= nqAdx

dt
= nqAv̄
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A

x
dx

I

Figure 1.21 Current (I) flows along a solid semiconductor rod of cross-sectional area A

We also define the current density J = I
A and hence we obtain Ohm’s law or

J = nq v̄ = σε

This is known as the drift current and it requires the existence of an electric field.
The application of an electric field can also be viewed using energy band diagrams.

The well-known electrostatic relationship between electric field and electric potential and
energy is given by

ε(x) = −dV

dx
= 1

q

dE

dx
(1.46)

which states that an electric field causes a gradient in electric potential V and in addition
an electric field causes a gradient in the potential energy E of a charged particle having
charge q.

We can represent the conduction and valence bands in an applied electric field by showing
the situation where the conduction and valence bands are separated by the energy gap. In
Figure 1.7 this occurs at k = 0. We introduce spatial dependence by using the x-axis to
show the position in the x direction of the semiconductor as in Figure 1.22. If there is no
applied field the bands are simply horizontal lines. If a constant electric field is present the
energy bands must tilt since from Equation 1.46 there will be a constant gradient in energy
and the carriers in each band will experience a force F of magnitude qε in the directions
shown and will travel so as to lower their potential energies. The Fermi energy does not tilt,
since the electric field does not change the thermodynamic equilibrium.

We can now describe the flow of electrons. Since v̄ ∝ ε we write v̄ = με where μ is the
carrier mobility, and we also conclude from Ohm’s law that σ = nqμ.

In order to confirm the validity of Ohm’s law we can start with Newton’s law of motion
for an electron in an electric field

F

m*
= − qε

m*
= dv̄

dt

The treatment of carrier collisions requires adding the well-known damping term v̄
τ

where τ

is the scattering time that results in a terminal velocity. This can be pictured by the example
of a terminal velocity reached by a ping-pong ball falling in air. We now have

F

m*
= − qε

m*
= dv̄

dt
+ v̄

τ
(1.47)
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Figure 1.22 Spatial dependence of energy bands in an intrinsic semiconductor. If there is no
electric field (a) the bands are horizontal and electron and hole energies are independent of
location within the semiconductor. If an electric field ε is present inside the semiconductor
the bands tilt. For an electric field pointing to the right (b), electrons in the conduction band
experience a force to the left, which decreases their potential energy. Holes in the valence
band experience a force to the right, which decreases their potential energy. This reversed
direction for hole energies is described in Figure 1.10

We can demonstrate the validity of the equation in steady state where dv̄
dt = 0 and hence

v̄ = qτε

m*

and

μ = qτ

m*

which are consistent with Ohm’s law.
In addition, we can examine the case where ε = 0. Now from Equation 1.47 we obtain

dv̄

dt
+ v̄

τ
= 0

which has solution v̄ (t) = v̄ (0) exp
(− t

τ

)
. Carrier drift velocity will decay upon removal

of the electric field with characteristic time constant equal to the scattering time τ .
In order to consider the contribution of both electrons and holes, we write the total drift

current as

Jdrift = Jn + Jp = q(nμn + pμp)ε (1.48)

where

μn = qτ

m∗
n

and

μp = qτ

m∗
p
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Figure 1.23 Dependence of drift velocity on electric field for a semiconductor

Separate mobility values μn and μp are needed for electrons and holes since they flow

in different bands and may have different effective masses m*
n and m*

p respectively. The
valence band has negative curvature, and Equation 1.16 shows that valence band electrons
have negative effective mass; however, to ensure that μh is a positive quantity we define
the effective mass of holes m*

h to be a positive quantity equal in magnitude to this negative
effective mass.

The validity of Ohm’s law has a limit. If the electric field is large, carrier velocity will
usually saturate, as shown in Figure 1.23 and will no longer be linearly proportional to
the electric field. This occurs because energetic electrons transfer more energy to lattice
vibrations. The magnitude of the electric field that results in saturation effects depends on
the semiconductor.

Mobility values for a range of semiconductors are shown in Appendix 2. These are
tabulated for intrinsic materials at room temperature; however, defects and impurities as
well as higher temperatures have a substantial effect on mobility values since they decrease
scattering times. Both undesirable impurities as well as intentionally introduced dopant
atoms will cause scattering times and mobility values to decrease.

1.15 Equilibrium and Non-Equilibrium Dynamics

The carrier concentrations we have been discussing until now are equilibrium concentra-
tions, and are in thermodynamic equilibrium with the semiconductor material. In equilib-
rium, both EHP generation and EHP recombination occur simultaneously; however, the net
EHP concentration remains constant. We can express this using rate constants defined as
follows:

G th = thermal EHP generation rate (EHP cm−3 s−1)

R = EHP recombination rate (EHP cm−3 s−1)

In equilibrium G th = R.
It is easy to cause a non-equilibrium condition to exist in a semiconductor. For example,

we can illuminate the semiconductor with photons whose energy exceeds its energy gap of
the semiconductor. We can also cause electric current to flow through the semiconductor
by attaching two or more electrodes to the semiconductor and then connecting them across
a voltage source.
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In an ideal direct gap semiconductor the value of R depends on carrier concentrations.
If, for example, the electron concentration n is doubled, R will double since the probability
for an electron to reach a hole has doubled. If both n and p are doubled then R will
increase by a factor of four since the hole concentration has also doubled. We can state
this mathematically as R ∝ np. We remove subscripts on carrier concentrations when
non-equilibrium conditions are present.

If a steady optical generation rate Gop is abruptly added to the thermal generation rate
by illumination that begins at time t = 0, the total generation rate increases to G th + Gop.
This will cause the EHP generation rate to exceed the recombination rate and carrier
concentrations will exceed the equilibrium concentrations and will become time dependent.
We shall designate δn(t) and δp (t) to be the time-dependent carrier concentrations in excess
of equilibrium concentrations n0 and p0.

Consider a direct gap n-type semiconductor in which n0 � p0. We shall also stipulate
that δn(t) � n0, which states that the excess carrier concentration is small compared to
the equilibrium majority carrier concentration. This is referred to as the low-level injection
condition. We can approximate n to be almost constant and essentially independent of the
illumination. Hence the rate of increase of p is determined by the optical generation rate
as well as a hole recombination rate term that is linearly proportional to δp(t) and we can
write the simple differential equation:

dδp(t)

dt
= Gop − δp(t)

τp
(1.49)

The solution to this is

δp(t) = �p

[
1 − exp

(−t

τp

)]
(1.50)

which is sketched in Figure 1.24.
After a time t � τp, a steady-state value of excess carrier concentration �p exists. If

Equation 1.50 is substituted into Equation 1.49 we obtain

�p = Gopτp (1.51a)

The time constant τp for this process is called the recombination time. Recombination
time is often the same as the minority carrier lifetime but should not be confused with
the scattering time of Section 1.14, which is generally orders of magnitude shorter than
the recombination time. From Equation 1.50, if we know the optical generation rate and

Figure 1.24 Plot of excess hole concentration as a function of time. A constant optical gener-
ation rate starts at t = 0 and continues indefinitely
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the characteristic recombination time for a semiconductor, we can calculate the steady-
state excess minority carrier concentration. There is also a small steady-state change in the
majority carrier concentration because �n = �p; however, this is neglected in low-level
injection since �n � n0. Note that τp ∝ 1

n0
.

The same argument can be applied to a p-type semiconductor, and we would obtain the
increase in minority carrier concentration thus:

�n = Gopτn (1.51b)

Electron-hole recombination may also occur via indirect processes in indirect gap semi-
conductors such as silicon. This is discussed in section 1.19.

1.16 Carrier Diffusion and the Einstein Relation

Free carriers that are produced in a spatially localized part of a semiconductor are able to
diffuse and thereby move to other parts of the material. The carrier diffusion process is
functionally similar to the diffusion of atoms in solids. At sufficiently high temperatures
atomic diffusion occurs, which is described as net atomic motion from a region of higher
atomic concentration to a region of lower atomic concentration. This occurs due to random
movements of atoms in a concentration gradient. There is no preferred direction to the
random movement of the atoms; however, provided the average concentration of atoms is
not uniform, the result of random movement is for a net flux of atoms to exist flowing from
a more concentrated region to a less concentrated region. Fick’s first law applies to the
diffusion process for atoms as presented in introductory materials science textbooks, and
is also applicable to electrons.

As with atomic diffusion, the driving force for carrier diffusion is the gradient in electron
concentration. For free electrons diffusing along the x-axis, Fick’s first law applies and it
can be written

φn(x) = −Dn
dn(x)

dx
(1.52)

where φn is the flux of electrons (number of electrons per unit area per second) flowing
along the x-axis due to a concentration gradient of electrons. The negative sign in Equation
1.52 indicates that diffusion occurs in the direction of decreasing electron concentration.
For holes, Fick’s first law becomes

φp(x) = −Dp
dp(x)

dx
(1.53)

Since the flow of charged particles constitutes an electric current, we can describe
diffusion currents due to holes or electrons. These are distinct from drift currents described
in Section 1.14 because no electric field is involved. Equations 1.52 and 1.53 may be
rewritten as currents:

Jn(x)diffusion = q Dn
dn(x)

dx
(1.54a)

Jp(x)diffusion = −q Dp
dp(x)

dx
(1.54b)
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Note that there is no negative sign in the case of electrons because electrons carry a negative
charge that cancels out the negative sign in Fick’s first law.

An interesting situation occurs when both diffusion and drift currents flow. An electric
field is present as well as a carrier concentration gradient. The total current densities from
Equations 1.48 and 1.54 become

Jn(x)drift+diffusion = qμnn(x)ε(x) + q Dn
dn(x)

dx
(1.55a)

and

Jp(x)drift+diffusion = qμp p(x)ε(x) − q Dp
dp(x)

dx
(1.55b)

In semiconductor diodes, both drift and diffusion occur and it is important to become
familiar with the situation where drift and diffusion currents coexist in the same part of the
semiconductor.

One way to establish an electric field is to have a gradient in doping level by spa-
tially varying the doping concentration in the semiconductor. Consider the example in
Figure 1.25. The dopant concentration varies across a semiconductor sample that is in ther-
mal equilibrium. On the left side, the semiconductor is undoped, and an acceptor dopant
gradually increases in concentration from left to right. This causes the Fermi energy to
occupy lower positions in the energy gap until it is close to the valence band on the right

 

                                              

 
 

 

  
high hole concentration 

low hole concentration 

drift 

diffusion

Semiconductor sample 

Increasing acceptor concentration 

Figure 1.25 The energy bands will tilt due to a doping gradient. Acceptor concentration
increases from left to right in a semiconductor sample. This causes a built-in electric field, and
the hole concentration increases from left to right. The field causes hole drift from left to right,
and there is also hole diffusion from right to left due to the concentration gradient
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side of the sample. The Fermi energy does not tilt because it is a thermodynamic quantity
and the sample is in equilibrium; however, the valence and conduction bands do tilt as
shown.

There will now be a high concentration of holes in the valence band on the right side
of the semiconductor, which decreases to a low hole concentration on the left side. Hole
diffusion will therefore occur in the negative-x direction. At the same time, the tilting of
the energy bands means that an electric field is present in the sample. This is known as
a built-in electric field since it is caused by a spatial concentration variation within the
semiconductor material rather than by the application of an applied voltage. The built-in
field causes a hole drift current to flow in the positive-x direction. Since the semiconductor
is in equilibrium, these two hole currents cancel out and the net hole current flow will be
zero. A similar argument can be made for the electrons in the conduction band and the net
electron current will also be zero.

A useful relationship between mobility and diffusivity can now be derived. Since the net
current flow illustrated in Figure 1.25 is zero in equilibrium we can write for hole current

Jp(x)drift+diffusion = qμp p(x)ε(x) − q Dp
dp(x)

dx
= 0 (1.56)

From Equations 1.46 and 1.56 we have

qμp p(x)
1

q

dE

dx
− q Dp

dp(x)

dx
= 0

We now calculate p(x). Since the valence band energy Ev is now a function of x we can
rewrite Equation 1.35 as

p(x) = Nv exp

(− (Ef − Ev(x))

kT

)
(1.57)

and we obtain

μp Nv exp

(− (Ef − Ev(x))

kT

)
d Ev(x)

dx
− q Dp

Nv

kT
exp

(− (Ef − Ev(x))

kT

)
d Ev(x)

dx
= 0

which simplifies to

Dp

μp
= kT

q
(1.58a)

and a similar derivation may be applied to electrons yielding

Dn

μn
= kT

q
(1.58b)

Equation 1.58 is known as the Einstein relation. At a given temperature this tells us that
mobility and diffusivity are related by a constant factor, which is not unexpected since both
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quantities express the degree of ease with which carriers move in a semiconductor under a
driving force.

1.17 Quasi-Fermi Energies

If a semiconductor is influenced by incident photons or an applied electric current the
semiconductor is no longer in equilibrium. This means that we cannot use Equations 1.34
and 1.35 to determine carrier concentrations. In addition Fermi energy Ef is no longer a
meaningful quantity since it was defined for a semiconductor in equilibrium in Section
1.8 and the Fermi–Dirac distribution function of Figure 1.9 is also based on equilibrium
conditions.

For convenience, we define two new quantities, Fn and Fp, known as the quasi-Fermi
energy for electrons and the quasi-Fermi energy for holes, respectively. The quantities may
be used even if a semiconductor is not in equilibrium and there are excess carriers. Fn and
Fp are defined for a semiconductor with excess carriers from the following equations:

n = Nc exp

(− (Ec − Fn)

kT

)
(1.59a)

and

p = Nv exp

(−(Fp − Ev)

kT

)
(1.59b)

Note the similarity between Equation 1.59 and Equations 1.34 and 1.35. Subscripts for n
and p are absent in Equation 1.59 because these carrier concentrations are not necessarily
equilibrium values. It follows that if the semiconductor is in equilibrium, the electron and
hole quasi-Fermi energies become equal to each other and identical to the Fermi energy.
The electron and hole quasi-Fermi levels in an n-type semiconductor will behave very
differently upon excess carrier generation, as shown in Figure 1.26. This is examined in
Example 1.4.

Figure 1.26 The quasi-Fermi levels Fn and Fp for an n-type semiconductor with excess carriers
generated by illumination. Note the large change in Fp due to illumination and note that Fn is
almost the same as the value of Ef before illumination
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Example 1.4

An n-type silicon sample has a donor concentration of 1 × 1017 cm−3. In Exam-
ple 1.3a we obtained n0 = 1 × 1017 cm−3, p0 = 2.25 × 103 cm−3 and Ec − Ef =
0.15 eV. We now illuminate this sample and introduce a uniform electron-hole pair
generation rate of Gop = 5 × 1020 cm−3 s−1. Assume a carrier lifetime of 2 × 10−6 s.

(a) Calculate the resulting electron and hole concentrations.
(b) Calculate the quasi-Fermi energy levels.

Solution

(a)

�p = Gopτp = 5 × 1020 cm−3 s−1 × 2 × 10−6 s = 1 × 1015 cm−3

and

�n = Gopτn = 5 × 1020 cm−3 s−1 × 2 × 10−6 s = 1 × 1015 cm−3

Hence

p = p0 + �p = 2.25 × 103 cm−3 + 1 × 1015 cm−3 ∼= 1 × 1015 cm−3

and

n = n0 + �n = 1 × 1017 cm−3 + 1 × 1015 cm−3 = 1.01 × 1017 cm−3

Therefore the carrier concentrations may be strongly affected by the illumination:
the hole concentration increases by approximately 12 orders of magnitude from
a very small minority carrier concentration to a much larger value dominated by
the excess hole concentration.

The electron concentration, however, only increases slightly (by 1%) due to
the illumination since it is a majority carrier. This is therefore an example of
low-level injection since the majority carrier concentration is almost unchanged.

(b) The quasi-Fermi level for holes may be found from:

p = Nv exp

(−(Fp − Ev)

kT

)

Solving for Fp − Ev we obtain

Fp − Ev = kT ln

(
Nv

p

)
= 0.026 eV ln

(
1.06 × 1019 cm−3

1 × 1015 cm−3

)
= 0.24 eV

The quasi-Fermi level for electrons may be found from

n = Nc exp

(− (Ec − Fn)

kT

)
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Solving for Ec − Fn we obtain

Ec − Fn = kT ln

(
Nc

n

)
= 0.026 eV ln

(
2.84 × 1019 cm−3

1.01 × 1015 cm−3

)
= 0.27 eV

0.27 eV

0.24 eV

Ec

Fp

Ev

Fn    Ef ≅

Note that with illumination Fn is almost identical to the original value of
Ef but Fp moves significantly lower. This is a consequence of the large excess
carrier concentration compared to the equilibrium hole concentration. If a similar
problem were solved for a p-type semiconductor then with illumination Fn would
move significantly higher and Fp would remain almost identical to the original
value of Ef.

The separation between Fn and Fp is a measure of the product of excess carrier concen-
trations divided by the product of equilibrium carrier concentrations since from Equations
1.59 and 1.41 we have

np = Nc Nv exp

(
Fn − Fp − Eg

kT

)
= n0 p0 exp

(
Fn − Fp

kT

)
(1.60a)

and hence

Fn − Fp = kT ln

(
np

n0 p0

)
(1.60b)

1.18 The Diffusion Equation

We have introduced carrier recombination as well as carrier diffusion separately; however,
carriers in semiconductors routinely undergo both diffusion and recombination simultane-
ously.

In order to describe this, consider a long semiconductor bar or rod in Figure 1.27 in
which excess holes are generated at x = 0 causing an excess of holes �p to be maintained
at x = 0. The excess hole concentration drops off to approach an equilibrium concentration
at the other end of the rod. The excess holes will diffuse to the right and if an electric
field is present there will also be a drift current component. Some of these holes recombine
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Figure 1.27 A solid semiconductor rod of cross-sectional area A has a hole current Ip(x)
flowing in the positive x direction. Due to recombination the hole current is dependent on x.
At surfaces x = a and x = b, Ip(x) changes due to the recombination that occurs between these
of the rod surfaces within volume Adx

with electrons during this process. We can consider a slice of width dx as shown in
Figure 1.27. The hole current Ip (x = a) will be higher than the hole current Ip (x = b) due
to the rate of recombination of holes in volume Adx between x = a and x = b. Volume
Adx contains Adxδp(x) excess holes. Since δp(x)

τp
is the recombination rate this may be

expressed mathematically:

Ip (x = a) − Ip (x = b) = −q Adx
δp(x)

τp
(1.61)

This may be rewritten as

Ip (x = a) − Ip (x = b)

dx
= −qA

δp(x)

τp

or

dIp(x)

dx
= −qA

δp(x)

τp

In terms of current density we have

dJp(x)

dx
= −q

δp(x)

τp
(1.62a)

and applying the same procedure to electrons we obtain

dJn(x)

dx
= −q

δn(x)

τn
(1.62b)

If the current is entirely due to the diffusion of carriers, we rewrite the expression for
diffusion current from Equation 1.54 for excess carriers δp(x):

Jp(x)diffusion = −q Dp
dδp(x)

dx
(1.63)
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Substituting this into Equation 1.62a we obtain

d2δp(x)

dx2
= δp(x)

Dpτp
(1.64a)

This is known as the steady state diffusion equation for holes, and the corresponding
equation for electrons is:

d2δn(x)

dx2
= δn(x)

Dnτn
(1.64b)

The general solution to Equation 1.64a is

δp(x) = A exp

(
−x√
Dpτp

)
+ B exp

(
x√

Dpτp

)
(1.65a)

However, considering our boundary conditions, the function must decay to zero for large
values of x and therefore B = 0 yielding

δp(x) = �p exp

(
−x√
Dpτp

)

which may be written

δp(x) = �p exp

(−x

Lp

)
(1.65b)

where

Lp = √
Dpτp

is known as the diffusion length. The latter determines the position on the x-axis where
carrier concentrations are reduced by a factor of e, as shown in Figure 1.28.

Figure 1.28 Plot of excess hole concentration in a semiconductor as a function of x in a
semiconductor rod where both diffusion and recombination occur simultaneously. The decay
of the concentration is characterized by a diffusion length Lp
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Figure 1.29 Hole current density as a function of x for a semiconductor rod with excess
carriers generated at x = 0

The hole current density at any point x may be determined by substituting Equation 1.65b
into Equation 1.63, and we obtain

Jp(x)diffusion = q
Dp

Lp
�p exp

(−x

Lp

)

This may also be written

Jp(x)diffusion = q
Dp

Lp
δp(x)

which shows that both current density and hole concentration have the same exponential
form. Figure 1.29 plots current density Jp(x)diffusion as a function of x. Both diffusion and
recombination occur simultaneously, which lowers the diffusion current exponentially as
x increases. This is reasonable since the number of holes that have not recombined drops
exponentially with x and therefore Lp also represents the position on the x-axis where
current density Jp(x) is reduced by a factor of e.

1.19 Traps and Carrier Lifetimes

Carrier lifetimes in many semiconductors including indirect gap silicon are really deter-
mined by trapping processes instead of ideal direct gap electron-hole recombination. Traps
are impurity atoms or native point defects such as vacancies, dislocations or grain bound-
aries. There are also surface traps due to the defects that inherently occur at semiconductor
surfaces, and interface traps that form at a boundary between two different material regions
in a semiconductor device.

In all cases, traps are physical defects capable of trapping conduction band electrons
and/or valence band holes and affecting carrier concentrations, carrier flow and recom-
bination times. This is different from a normal electron-hole pair recombination process
because a specific defect is involved. After being trapped a carrier may again be released to
the band it originated from or it may subsequently recombine at the trap with a carrier of the
opposite sign that also gets attracted to the same trap. This is known as trap-assisted carrier
recombination and is one of the most important phenomena that limits the performance of
both direct and indirect gap semiconductors used for solar cells and LEDs.
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Intentionally introduced n-type and p-type dopants actually are traps, and are referred
to as shallow traps because they are only separated from either a conduction band or a
valence band by a small energy difference that may be overcome by thermal energy. This
means that the trap is easy to ionize and the carrier is very likely to be released from the
trap. Also since dopants are normally ionized, they do not trap carriers of the opposite sign.
For example, phosphorus in silicon is an n-type dopant. Once it becomes a positive ion
after donating an electron to the conduction band it has a small but finite probability of
recapturing a conduction band electron. Since it spends almost all its time as a positive ion,
it has essentially no chance of capturing a hole, which is repelled by the positive charge,
and therefore shallow traps generally do not cause trap-assisted carrier recombination.

The traps that we must pay careful attention to are deep traps, which exist near the
middle of the bandgap. These traps are highly effective at promoting electron-hole pair
recombination events. Since their energy levels are well separated from band edges, carriers
that are trapped are not easily released. Imagine a deep trap that captures a conduction band
electron and is then negatively charged. In this state the negatively charged trap cannot
readily release its trapped electron and may therefore attract a positive charge and act as an
effective hole trap. Once the hole is trapped it recombines with the trapped electron and the
trap is effectively emptied and is again available to trap another conduction band electron.
In this manner, traps become a new conduit for electrons and holes to recombine. If the
deep trap density is high the average trap-assisted recombination rate is high.

The analysis of deep trap behaviour requires that we know the probabilities of the trap
being filled or empty. This may be understood in equilibrium conditions by knowing the
trap energy level and comparing it to the Fermi energy level. If the trap energy level Et

is above Ef then the trap is more likely to be empty than full. If Et is below Ef it is more
likely to be filled. The terms ‘filled’ and ‘empty’ refer specifically to electrons because the
Fermi–Dirac function describes the probability that an electron fills a specific energy level.
If we wish to describe the probabilities for a trap to be occupied by holes, we must subtract
these probabilities from 1.

We will simplify the treatment of traps by focusing on a very specific situation. Consider
a trap at the Fermi energy and near mid-gap in a semiconductor. Both Et and Ef will be
at approximately the middle of the energy gap. The ionization energy of the trap for either
a trapped electron or a trapped hole is approximately Eg

2 , as illustrated in Figure 1.30.
The probability that the trap is empty or filled is 50% since it is at the Fermi energy. The
captured electron may be re-released back to the conduction band, or it may be annihilated
by a hole at the trap.

There is a simple argument for assuming the trap is likely to exist at the Fermi level and
near mid-gap. At the surface of a semiconductor, approximately half the bonds normally
formed will be broken or incomplete. This gives rise to electrons that are only held by half
the atoms that they usually are associated with in the interior of a perfect crystal. These

electron

hole
Ef  = Et (trap level)

Ec
Eg/2

Eg/2
Ev

Figure 1.30 A trap level at the Fermi energy near mid-gap
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Figure 1.31 Surface traps at the surface of a p-type semiconductor comprise electrons held
in dangling bonds. The energy needed to release these electrons is approximately Eg

2 . Since
there are large numbers of dangling bond states, some being occupied and some not being
occupied by electrons, the Fermi energy becomes pinned at this energy

dangling bonds therefore comprise electrons that are likely to lie at approximately mid-gap
because the energy required to excite them into the conduction band is only approximately
half as large as the energy Eg required to remove an electron from the complete covalent
bond of the relevant perfect crystal.

Now consider a large number of such dangling bonds at a semiconductor surface. Some
of these dangling bonds will have lost electrons and some of them will not. Since the Fermi
level exists between the highest filled states and the lowest empty state, the Fermi level
tends to fall right onto the energy level range of these traps. The Fermi energy gets pinned
to this trap energy at ∼= Eg

2 . Figure 1.31 shows the pinning of a Fermi level due to surface
traps in a p-type semiconductor. Notice that at the semiconductor surface the surface traps
determine the position of the Fermi energy rather than the doping level. An electric field is
established in the semiconductor normal to the surface and band bending occurs as shown.

If the semiconductor had been n-type instead of p-type, then the same reasoning would
still pin the Fermi energy to mid-gap; however, the band bending would occur in the
opposite direction and the resulting electric field would point in the opposite direction, as
illustrated in Figure 1.32.

Since traps are often formed from defects other than free surfaces that also involve
incomplete bonding like a vacancy, a dislocation line, a grain boundary or an interface
between two layers, this simple picture is very useful and will be used in the context of the
p-n junction to explain recombination processes in subsequent sections of this book.

There is a velocity associated with excess minority carriers at a semiconductor surface
or an interface between a semiconductor and another material. For example in Figure 1.31,
which shows a p-type semiconductor, assume that there are excess electrons δn(x) in the
conduction band. The conduction band excess electron concentration decreases towards the

Ec
Ef

Ev

Et

Figure 1.32 Surface traps at the surface of an n-type semiconductor causing the Fermi level
to be trapped at approximately mid-gap. An electric field opposite in direction to that of Figure
1.28 is formed in the semiconductor
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surface. This causes electrons to diffuse towards the surface, where they recombine. The
diffusion of electrons towards the surface can be expressed as an electron flux

ϕ = −Dn
dδn

dx

Flux has units of particles per unit area per unit time. Since we can equivalently define a
flux as the product of concentration and velocity, we can write

ϕ = −Dn
dδn

dx
= Snδn (1.66a)

where Sn is the surface recombination velocity of the electrons, and we evaluate δn and dδn
dx

at the semiconductor surface. Note that if Sn = 0, we can conclude that dδn
dx is zero, there is

no band bending and surface states do not form a charged layer. Conversely if Sn → ∞ then
δn = 0 at the surface, which implies that carriers very rapidly recombine at the surface. A
similar situation exists at the surface or at an interface of an n-type semiconductor in which
holes may recombine and we obtain

ϕ = −Dp
dδp

dx
= Spδp (1.66b)

In both Equations 1.66a and 1.66b we assume that the excess carrier concentrations are
much larger than the equilibrium minority carrier concentrations.

1.20 Alloy Semiconductors

An important variation in semiconductor compositions involves the use of partial sub-
stitutions of elements to modify composition. One example is the partial substitution of
germanium in silicon that results in a range of new semiconductors of composition Si1−xGex,
which are known as alloy semiconductors. The germanium atoms randomly occupy lattice
sites normally occupied by silicon atoms, and the crystal structure of silicon is maintained.
Note that Si and Ge are both in the group IV column of the periodic table and therefore have
chemical similarities in terms of valence electrons and types of bonding. This means that
provided no additional dopant impurities are introduced into the alloy semiconductor, alloy
material with characteristics of an intrinsic semiconductor can be achieved. Of interest in
semiconductor devices is the opportunity to modify the optical and electrical properties
of the semiconductor. Since germanium has a smaller bandgap than silicon, adding ger-
manium decreases bandgap as x increases. In addition, the average lattice constant of the
new compound will increase since germanium is a larger atom than silicon. Since both
germanium and silicon have the same diamond crystal structure, the available range of x is
from 0 to 1 and the indirect bandgaps of the alloy compositions Si1−xGex therefore range
between 1.11 eV and 0.067 eV as x varies from 0 to 1 respectively.

Of more relevance to p-n junctions for solar cells and LEDs, alloy semiconductors may
also be formed from compound semiconductors. For example Ga1−xInxN is a ternary, or
three-component, alloy semiconductor in which a fraction of the gallium atoms in wurtzite
GaN is replaced by indium atoms. The indium atoms randomly occupy the crystalline sites
in GaN that are normally occupied by gallium atoms. Since In and Ga are both group
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III elements, the substitution does not act as either an acceptor or a donor. The direct
bandgap decreases as x increases. For x = 0, Eg = 3.4 eV and for x = 1, Eg = 0.77 eV.

There are many other III-V alloy semiconductors. In Ga1−xAlxAs alloys the bandgap
varies from 1.43 to 2.16 eV as x goes from 0 to 1. In this system, however, the bandgap
is direct in the case of GaAs, but indirect in the case of AlAs. There is a transition from
direct to indirect bandgap at x ∼= 0.38. We can understand this transition if we consider
the two conduction band minima in GaAs shown in Figure 1.16c. One minimum forms a
direct energy gap with the highest energy levels in the valence band; however, the second
minimum forms an indirect gap. When x ∼= 0.38 these two minima are at the same energy
level. For x < 0.38 the alloy has a direct gap because the global conduction band minimum
forms the direct gap. For x > 0.38 the global conduction band minimum is the minimum
that forms the indirect gap.

A number of III-V alloy systems are illustrated in Figure 1.33a. An additional set of
III-V nitride semiconductors is shown in Figure 1.33b, and a set of II-VI semiconductors
is included in Figure 1.33c.

Figure 1.33 Bandgap versus lattice constant for (a) phosphide, arsenide and antimonide
III-V semiconductors; (b) nitride and other III-V semiconductors neglecting bowing (see
Figure 5.20); (c) sulphide, selenide and telluride II-VI semiconductors and phosphide, ar-
senide and antimonide III-V semiconductors. (a–b) Reprinted from E. Fred Schubert, Light-
Emitting Diodes, 2e ISBN 978-0-521-86538-8. Copyright (2006) with permission from E. Fred
Schubert. (c) Adapted from http://www.tf.uni-kiel.de/matwis/amat/semitech_en/ Copyright
Prof. Dr. Helmut Föll, Technische Fakultät, Universität Kiel
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To cover ranges of composition in the III-V alloy system, quaternary alloys may be
formed such as (AlxGa1−x)yIn1−yP. The use of ternary and quaternary semiconductor alloys
in solar cells and LEDs will be discussed in Chapters 4 and 5.

1.21 Summary

1.1. The band theory of solids permits an understanding of electrical and optical properties
including electrical conductivity in metals and semiconductors, optical absorption and
luminescence, and properties of junctions and surfaces of semiconductors and metals.

1.2. The band theory of solids requires the use of wavefunctions to describe the spatial dis-
tribution, energy and momentum of electrons. Schrödinger’s equation may be solved
to obtain these wavefunctions by employing a suitable potential energy function in
this equation.

1.3. In the Kronig–Penney model a periodic potential leads to energy bands, energy gaps
and Brillouin zones by solving Schrödinger’s equation for electrons in a periodic
potential. The size of the energy gaps increases as the amplitude of the periodic
potential increases. As the ionic character of the bonding in the semiconductor
increases the energy gap increases. As the size of the atoms decreases the energy gap
increases.

1.4. The Bragg model identifies Brillouin zone boundaries as satisfying the Bragg con-
dition for strong reflection. This condition is 2a = nλ. The reduced zone scheme,
which shows only the first Brillouin zone, simplifies the representation of energy
bands and energy gaps.

1.5. The effective mass m* is used to quantify electron behaviour in response to an applied
force. The effective mass depends on the band curvature. Effective mass is constant
if the band shape can be approximated as parabolic.

1.6. The number of states in a band n can be determined based on the number of unit cells
N in the semiconductor sample. The result n = 2N is obtained for a one-dimensional,
two-dimensional or three-dimensional case.

1.7. The filling of bands in semiconductors and insulators is such that the highest filled
band is full and the lowest empty band is empty at low temperatures. In metals
the highest filled band is only partly filled. Semiconductors have smaller bandgaps
(Eg = 0 to 4 eV) than insulators (Eg > 4 eV).

1.8. The Fermi energy Ef is defined as the energy level at which an electron state has
a 50% probability of occupancy at temperatures above 0 K. A hole can be created
when an electron from the valence band is excited to the conduction band. The hole
can move independently from the electron.

1.9. Carrier concentration in an energy band is determined by (i) finding the probability
of occupancy of the states in a band using the Fermi–Dirac distribution function
F(E), and (ii) finding the density of states function D(E) for an energy band. Then
the integral over the energy range of the band of the product of D(E) and F(E) will
determine the number of carriers in the band. In the conduction band the equilibrium
electron concentration is n0 and in the valence band the equilibrium hole concentration
is p0. The product n0 p0 is a constant that is independent of the Fermi energy.
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1.10. A range of semiconductor materials includes group IV semiconductors, group III-V
semiconductors and group II-VI semiconductors as listed in order of increasing ionic
character. Bandgap energies decrease for larger atoms that are lower down on the
periodic table.

1.11. Most important semiconductor crystals have lattices that are diamond, zincblende
or hexagonal structures. These structures lead to complex band diagrams. The band
shapes in E versus k plots depend on crystallographic directions. In addition there
are sub-bands in the valence band that correspond to distinct hole effective masses.
Bandgaps may be direct or indirect. Conduction bands generally exhibit two min-
ima where one minimum corresponds to a direct gap transition and one minimum
corresponds to an indirect gap transition.

1.12. Photon momentum is very small and direct gap transitions in semiconductors are
favourable for photon creation and absorption. In indirect gap transitions the involve-
ment of lattice vibrations or phonons is required. The absorption coefficient α is
higher for direct gap semiconductors and lower for indirect gap semiconductors for
photons above Eg in energy. Whereas indirect gap silicon has an effective absorption
depth of ∼=100 μm for sunlight the corresponding absorption depth in GaAs is only
∼= 1 μm.

1.13. Pure semiconductors are known as intrinsic semiconductors. The incorporation of
low levels of impurity atoms in a semiconductor leads to extrinsic semiconductors,
in which the electron concentration n0 and hole concentration p0 are controlled
by the impurity type and concentration. Donor impurities donate electrons to the
conduction band in n-type semiconductors, and acceptor impurities donate holes to
the valence band in p-type semiconductors. New shallow energy levels arise within
the energy gap, which are called donor and acceptor levels. Carrier concentrations are
temperature dependent; however, over a wide intermediate temperature range carrier
concentrations are relatively constant as a function of temperature. Minority carriers
refer to the carriers having a low concentration in a specific semiconductor region,
and majority carriers refer to the carriers having a significantly higher concentration
in the same region.

1.14. Carriers move through semiconductors in an electric field ε by a drift process, which is
characterized by a drift velocity v̄ and mobility μ. Drift current density is given by J =
σε, which is an expression of Ohm’s law. The understanding of Ohm’s law is based
on the concept of a terminal velocity due to scattering events having a characteristic
scattering time τ , which depends on impurities, defects and temperature. At high
electric fields drift velocity will eventually saturate.

1.15. Carrier concentrations are not necessarily at equilibrium levels. Photons or applied
electric fields can give rise to non-equilibrium excess carrier concentrations, which
will return to equilibrium concentrations once equilibrium conditions are restored.
Electron-hole pair (EHP) generation and recombination processes Gth or Gop and R
define the resulting rate of generation and recombination. Under equilibrium condi-
tions G th = R where R ∝ np. The minority carrier lifetime time constants τ n or τ p

characterize the recombination times of minority carriers.
1.16. Carriers diffuse in semiconductors due to a concentration gradient. The diffusion

coefficients Dn and Dp determine the diffusion current Jn and Jp respectively. The
net current flow must include both drift and diffusion current. In equilibrium the net
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current is zero; however, drift and diffusion currents may be non-zero. The Einstein
relation is derived from the requirements for equilibrium conditions and allows Dn

and Dp to be derived from μn and μp.
1.17. In non-equilibrium conditions the Fermi energy is not defined; however, quasi-Fermi

energies Fn and Fp may be defined to characterize changes in carrier concentrations
due to excess carrier generation.

1.18. Combining the concepts of carrier recombination and carrier diffusion the diffusion
equation leads to the calculation of diffusion length Ln = √

Dnτn and Lp = √
Dpτp

and shows that carrier concentration decays exponentially as a function of distance
from a region of excess carrier generation.

1.19. Traps can have a large effect on carrier lifetimes. The most important traps are deep
traps that are at or near mid-gap. A high density of such traps occurs at semiconductor
interfaces and defects. This is due to dangling bonds at surfaces and defects. Fermi
level pinning occurs at or near midgap due to dangling bonds. Surface recombination
velocity is a measure of the rate of recombination at semiconductor surfaces.

1.20. The bandgap and direct/indirect nature of a semiconductor can be altered by alloying.
Alloying may also change the lattice constant. Industrially important alloy semicon-
ductors exist composed from group IV elements, group III-V elements and group
II-VI elements. Ternary and quaternary compound semiconductors are important for
solar cells and LEDs.
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Problems

1.1 Derive the following relationships in the Kronig–Penney model:
(a) Obtain Equation 1.7c from Equations 1.4a, 1.4b, 1.7a and 1.7b.
(b) Obtain Equation 1.8 from Equation 1.7c. Take the limit b → 0 and V0 → ∞ such

that bV0 is constant.
Use the definition

P = Q2ba

2

1.2 Using the Kronig–Penney model in Equation 1.8:
(a) If P = 2 and a = 2.5 Å find the energy range for the two lowest energy bands and

the energy gap between them.
(b) Repeat (a) if P = 0.2.
(c) Demonstrate that the energy bands reduce to free electron states as P→0.

1.3 In Section 1.6 we showed that the number of states in an energy band is n = 2N for
a one-dimensional semiconductor. Show that the number of states in an energy band
in a three-dimensional semiconductor is still n = 2N where N is the number of unit
cells in the three-dimensional semiconductor.
Hint: Consider a semiconductor in the form of a rectangular box having Nx, Ny and Nz

unit cells along the x, y and z axes. Assume an infinite walled box with V = 0 inside
the box. Use the allowed energy values for an electron in Equation 1.28. Include spin.

1.4 A rectangular semiconductor crystal has dimensions 2 × 2 × 1 mm. The unit cell is
cubic and has edge length of 2 Å. Find the number of states in one band of this
semiconductor.

1.5 A rectangular silicon semiconductor bar of length 12 cm and cross-section 1 × 5 mm
is uniformly doped n-type with concentration Nd = 5 × 1016 cm−3.
(a) Assuming all donors are ionized, calculate the room temperature current flow if

contacts are made on the two ends of the bar and 10 V is applied to the bar.
(b) Find the electric field in the bar for the conditions of (a).
(c) What fraction of the current flows in the form of hole current for the conditions

of (a)?
(d) Find the resistivity of the silicon.
(e) If the silicon were replaced by gallium phosphide and the doping was still Nd =

5 × 1016 cm−3 repeat (a), (b) and (c).
(f) If the silicon temperature was increased to 120◦C, repeat (a), (b) and c). Assume

that carrier mobility and bandgap are not affected by the increase in temperature.
1.6 Now, instead of being uniformly doped, the bar of Problem 1.5 is doped with a linearly

increasing donor doping concentration, such that the left end of the bar (LHS) is doped
with a concentration of 1 × 1016 cm−3 and the right end of the bar (RHS) is doped
with a concentration of 1 × 1017 cm−3.
(a) Determine the doping level at three points in the bar:

(i) at 3 cm from the LHS;
(ii) at the midpoint;

(iii) at 9 cm from the LHS.
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(b) Assuming equilibrium conditions (no applied voltage) find the built-in electric
field in the bar at each of positions (i), (ii) and (iii). Hint: Find the gradient in the
doping about each point.

(c) Find the electron drift current flowing in the bar at positions (i), (ii) and (iii).
(d) Explain how the bar can be in equilibrium given the existence of these electric

fields and drift currents.
(e) Find the Fermi level relative to the top of the valence band for each of positions

(i), (ii) and (iii).
(f) Sketch the band diagram as a function of position in equilibrium along the length

of the bar showing the location of the Fermi energy.
1.7 A square silicon semiconductor sheet 50 cm2 in area and 0.18 mm in thickness is

uniformly doped with both acceptors (Na = 5 × 1016 cm−3) and donors (Nd = 2 ×
1016 cm−3).
(a) Assuming all donors and acceptors are ionized, calculate the room tempera-

ture current flow if the silicon is contacted by metal contact strips that run the
full length of two opposing edges of the sheet and 10 V is applied across the
contacts.

(b) Repeat (a) but assume that the sheet is 100 cm2 in area instead of 50 cm2. Does
the current change with area? Explain.

(c) Is the recombination time τ important for the measurement of current flow?
Explain carefully what role recombination plays in the calculation.

1.8 An undoped silicon semiconductor sheet 50 cm2 in area and 0.18 mm thick is illumi-
nated over one entire surface and an electron-hole pair generation rate of 1021 cm−3 s−1

is achieved uniformly throughout the material.
(a) Determine the separation of the quasi-Fermi levels. The carrier lifetime is

2 × 10−6 s.
(b) Calculate the room temperature current flow if the silicon is contacted by narrow

metal contact strips that run the full length of two opposing edges of the sheet
and 10 V is applied across the contacts under illumination conditions. The carrier
lifetime is 2 × 10−6 s.

(c) Explain how a higher/lower recombination time would affect the answer to (b).
How does the recombination time of 2 × 10−6 s compare with the transit time of
the carriers, which is the time taken by the carriers to traverse the silicon sheet from
one side to the other side? This silicon sheet is functioning as a photoconductive
device since its conductivity depends on illumination. If the transit time is small
compared to the recombination time then gain can be obtained since more than
one carrier can cross the photoconductive sheet before a recombination event
takes place on average. Gains of 100 or 1000 may be obtained in practice in
photoconductors. How long a recombination time would be required for a gain of
10 to be achieved?

1.9 A sample of n-type silicon is doped to achieve EF at 0.3 eV below the conduction
band edge at room temperature.
(a) Find the doping level.
(b) The n-type silicon sample is in the form of a square cross-section bar at room

temperature and it carries a current of 3 × 10−8 Å along its length. If the bar is
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10 cm long and has a voltage difference of 100 V end-to-end, find the cross-section
dimension of the bar.

1.10 A silicon sample is uniformly optically excited such that its quasi-Fermi level for
electrons Fn is 0.419 eV above its quasi-Fermi level for holes Fp. The silicon is
n-type with donor concentration ND = 1 × 1014 cm−3. Find the optical generation
rate.

1.11 An n-type silicon wafer is 5.0 mm thick and is illuminated uniformly over its surface
with blue light, which is absorbed very close to the silicon surface. Assume that a
surface generation rate of holes of 3 × 1018 cm−2 s−1 is obtained over the illuminated
surface, and that the excess holes are generated at the silicon surface.
(a) Calculate the hole concentration as a function of depth assuming a hole lifetime

of 2 × 10−6 s. Assume that the hole lifetime is independent of depth.
(b) Calculate the hole diffusion current as a function of depth.
(c) Calculate the recombination rate of holes as a function of depth.
(d) Explain the difference between the surface generation rate of holes and the re-

combination rate of holes near the surface. These two rates have different units.
Your explanation should refer to the distinction between the units employed.

1.12 Find:
(a) The n-type doping level required to cause silicon at room temperature to have

electrical conductivity 100 times higher than intrinsic silicon at room temperature.
(b) The p-type doping level required to cause silicon at room temperature to have

p-type conductivity 100 times higher than intrinsic silicon at room temperature.
1.13 Intrinsic silicon is uniformly illuminated with 1014 photons cm−2 s−1 at its surface.

Assume that each photon is absorbed very near the silicon surface, and generates one
electron-hole pair.
(a) Find the flux of electrons at a depth of 3 μm. Make and state any necessary

assumptions.
(b) Find the total excess electron charge stored in the silicon, assuming the silicon

sample is very thick.
1.14 If the Fermi energy in an n-type silicon semiconductor at 300◦C is 0.08 eV below the

conduction band, and the donor level is 0.02 eV below the conduction band, then find
the probability of ionization of the donors.

1.15 In a hypothetical semiconductor with effective masses of electrons and holes the same
as silicon, and Eg as in silicon, the conductivity of a rod of the material (measuring
1 mm in diameter and 40 mm in length) from end to end is measured as 4 × 1012 ohms
at 300 K.
(a) If the electron mobility is five times larger than the hole mobility in this material

then find the electron mobility. Make and state any necessary assumptions.
(b) Find the current flow due to the holes only in the rod if a voltage of 10 V is applied

across the ends of the rod. Make and state any necessary assumptions.
1.16 An intrinsic, planar, room-temperature silicon sample is exposed to a steady flux of

light at its surface. The electron concentration as a result of this is measured to be
100 times higher than ni, the intrinsic equilibrium concentration, at a depth of 100 μm
below the silicon surface. You may use the low-level injection approximation.
(a) Assuming that the light is all absorbed very near the silicon surface, and that every

incident photon excites one EHP, find the total photon flux.
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(b) Find the quasi-Fermi level for electrons relative to the Fermi level without the flux
of light at a depth of 100 μm.

1.17 A famous experiment that involves both the drift and the diffusion of carriers in a semi-
conductor is known as the Haynes–Shockley experiment. Search for the experimental
details of this experiment and answer the following:
(a) Make a sketch of the semiconductor sample used in the experiment as well as

the location and arrangement of electrodes and the required voltages and currents
as well as the connections of electrodes for the appropriate measurements to be
made.

(b) Sketch an example of the time dependence of the output of the experiment.
(c) Explain how the Einstein relation can be verified using these data.

1.18 A silicon sample is uniformly optically excited such that its quasi-Fermi level for
electrons Fn is 0.419 eV above its quasi-Fermi level for holes Fp. The silicon is
n-type with donor concentration Nd = 1 × 1017 cm−3. Find the optical generation
rate.

1.19 A flash of light at time t = 0 is uniformly incident on all parts of a p-type silicon sample
with doping of 5 × 1017 cm−3. The resulting EHP concentration is 2 × 1016 EHP cm−3.
Find the time-dependent electron and hole concentrations for time t greater that
zero.

1.20 Carriers are optically generated at an intrinsic silicon surface. The generation rate is
2 × 1019 EHP/cm2 s. Assume that all the photons are absorbed very close to the silicon
surface. Find the diffusion current of electrons just below the surface, and state clearly
the assumptions you used to obtain the result.

1.21 A silicon sample is doped with 6 × 1016 donors cm−3 and Na acceptors cm−3. If Ef

lies 0.4 eV below Ef in intrinsic silicon at 300 K, find the value of Na.
1.22 Electric current flows down a silicon rod 1 cm in length and 0.3 mm in diameter. The

silicon is n-type with Na = 1 × 1017 cm−3. A potential difference of 10 V is applied to
the rod end-to-end. How many electrons drift through the rod in 60 seconds?

1.23 Find the energy difference between Fn (quasi-Fermi level for electrons) and Ef if illu-
mination were not present, for a silicon sample in equilibrium containing 1015 donors
cm−3. Assume room temperature. The bar is uniformly optically excited such that
1018 EHP/cm3 s are generated.

1.24 (a) Find the surface recombination velocity of electrons at a p-type silicon semicon-
ductor surface having the following parameters:

p0 = 1 × 1017 cm−3

δn = 1 × 1016 cm−3 at the surface.

Use the diffusion constant for silicon in Appendix 2. Make and state any necessary
assumptions.

(b) Sketch a band diagram as a function of distance x from the semiconductor surface
to a few diffusion lengths away from the surface.

(c) Repeat (a) and (b) for a GaAs semiconductor with the same parameters.
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1.25 (a) Find the surface recombination velocity of holes at an n-type silicon semiconductor
surface having the following parameters:

n0 = 1 × 1016 cm−3

δp = 1 × 1017 cm−3 at the surface.

Use the diffusion constant for silicon in Appendix 2. Make and state any necessary
assumptions.

(b) Sketch a band diagram as a function of distance x from the semiconductor surface
to a few diffusion lengths away from the surface.

(c) Repeat (a) and (b) for a GaAs semiconductor with the same parameters.
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