Introducción a la Física Moderna - Edición 2024

Resultados Práctico 3: Dinámica relativista

Ejercicio 1 La masa consumida es $\simeq 1 \,\mathrm{kg}$, por lo que la fracción consumida es del orden de 10^{-4} .

Ejercicio 2 En todos los casos la imposibilidad de los procesos puede mostrarse observando que la conservación de la energía y del momento resultan incompatibles si se asume que todas las velocidades son menores o iguales que c.

Ejercicio 3

- (a) $M_0 = 2m_0\gamma(u)$
- (b) $K_1 = K_2 = \frac{3}{2}m_0c^2$
- (c) $K_1 = \frac{21}{2}m_0c^2, K_2 = 0$

Ejercicio 4

(a)
$$E_{\pi} = \frac{1}{2} m_{K^0} c^2$$
, = 249 MeV, $p_{\pi} c = \sqrt{m_{K^0}^2 / 4 - m_{\pi}^2} c$ = 209 MeV

(b) Obsérvese que S' (lab) se mueve con velocidad $-\vec{v}$ respecto a S (CM).

Energías: $E'_{\pi} = \gamma(0.5c)[E_{\pi} - (-0.5)cp_{\pi}]$, obteniéndose $408\,\mathrm{MeV}$ para el emitido en el mismo sentido, y $166.8\,\mathrm{MeV}$ para el emitido en sentido contrario.

Momentos: $cp'_{\pi} = \gamma(0.5c)[cp_{\pi} - (-0.5)E_{\pi}]$, obteniéndose los valores 385,1 MeV y -97.6 MeV, respectivamente.

Ejercicio 5

- (a) $\vec{u} = \pm \frac{3}{5}c\hat{j}$
- (c) $\theta = 24.2^{\circ}$

Ejercicio 6

- (a) Piense en términos de la conservación del momento.
- (b) Idem.
- (c) $K_{min}^{lab} = 4.01 \,\text{GeV}$
- (d) Razone en términos del gasto energético involucrado.

Ejercicio 7
$$\ddot{x} + k/m \frac{x}{\gamma(\dot{x})} = 0.$$

Ejercicio 8

El análisis se reduce al estudio del movimiento bajo una fuerza constante discutido en el teórico.