
Distributed Computing (1988) 3:19 22

�9 Springer-Verlag 1988

Distributed election in complete networks

M.Y. Chan ~ and F.Y.L. Chin 2
1 Computer Science Program, University of Texas at Dallas, Richardson, TX 75083-0688, USA
2 Computer Studies, University of Hong Kong, Pokfulam Road, Hong Kong

M.Y. Chan received her
Ph.D. in 1988 from the Univer-
sity of Hong Kong, and her
M.S. and B.A. degrees in com-
puter science from the Universi-
ty of California, San Diego in
1980 and 1981, respectively. She
is currently an Assistant Profes-
sor at the University of Texas
at Dallas.

Francis Y.L. Chin (S'71-
M'76-SM'85) received the B.Sc.
degree in engineering science
from the University of Toronto,
Toronto, Canada, in 1972, and
the M.S., M.A., and Ph.D. de-
grees in electrical engineering
and computer science from
Princeton University, New Jer-
sey, in 1974, 1975, and 1976, re-
spectively. Since 1975, he has
taught at the University of
Maryland, Baltimore Country,
University of California, San
Diego, University of Alberta,
and Chinese University of

Hong Kong. He is currently Head of the Department of Com-
puter Science, University of Hong Kong. He has served as a
program co-chairman of the 1988 International Conference on
Computer Processing of Chinese and Oriental Languages (Tor-
onto) and the International Computer Science Conference '88
(Hong Kong). His current research interests include algorithm
design and analysis, parallel and distributed computing.

Abstract. An improved version of Afek and Gafni's
synchronous algorithm for distributed election in
complete networks is given and an O(n) expected
message complexity is shown.

Offprint requests to: M.Y. Chan

Key words: Distributed election algorithms - Ex-
pected message complexity Synchronous com-
plete networks Asynchronous complete networks

1 Introduct ion

This paper presents a modified version of the syn-
chronous complete network election algorithm pre-
sented by Afek and Gafni (1985). This new algo-
rithm, apart from having a slightly better worst
case message complexity, is shown to have an O (n)
expected message complexity. The analysis also al-
lows us to demonstrate that an O(n) expected mes-
sage complexity, alongside an O(n log n) message
and O (n) time complexity in the worst case, is pos-
sible for distributed leader election on asynchro-
nous complete networks. This complete network
result contrasts the ~2(n log n) lower bound on av-
erage message complexity given for election on
asynchronous rings (Pachl et al. 1984).

Afek and Gafni (1985) were the first to address
distributed election in the synchronous complete
network. Previous work on asynchronous complete
network election includes an algorithm by Korach
et al. (1984) which uses 5n log2n+O(n) messages
and O(n log n) time. They also showed a lower
bound of ~2(n log n) on worst case message com-
plexity. Humblet (1984) contributed a time-im-
proved algorithm which uses 2.773 n log 2 n + O (n)
messages and O(n) time. Afek and Gafni (1985)
then gave a slightly improved 2 n log 2 n + O (n) mes-
sage and O (n) time solution. At the same time, they
gave their synchronous algorithm which offered
3nlog2n message and 21og2n+O(1) time com-
plexity, and proved that ~2(n log n) messages are
necessary, and with such a message complexity,
time complexity must be at least ~2(log n). All of
this work focused on worst case behavior only.

20 M.Y. Chan and F.Y.L. Chin: Distributed election in complete networks

2 The algorithm

We adopt the model of Afek and Gafni (1985). As-
sume a point-to-point network of n nodes in which
every node is connected by n - 1 bidirectional com-
munication links to all other nodes. There is no
shared memory, so nodes communicate only by
exchanging messages. Each node has a distinct
identification number, and initially has no idea to
which node each of its incident links connect. A
global clock is connected to all nodes. At the begin-
ning of each clock pulse, nodes receive messages,
do local computation, and send messages destined
to be received by the next clock pulse. Nodes may
start executing the election algorithm either volun-
tarily at any arbitrary time or upon receiving a
message of the algorithm. The same algorithm re-
sides at all nodes.

The algorithm described below is a simple vari-
ation on the synchronous complete network elec-
tion algorithm originally suggested by Afek and
Gafni (1985).

Each node maintains three variables: ID, LEV-
EL and STATE. ID contains the identification
number of the node's owner. Initially ID is the
node's own identity, i.e., initially each node is self-
owned. A node can have at most one owner at
a time but may change owners in the course of
election. The idea is that the node which ends up
owning all nodes is the leader. LEVEL is initially
0 and is incremented once every even clock pulse.
LEVEL basically reflects the total number of nodes
which are owned by the node's current owner; in
particular, for each node, its owner owns 2 LEVEL
nodes in all. There are two STATEs a node can
be in: candidate or captured. A candidate node is
self-owned and contending for leadership, while a
captured node is owned by some other node and
is no long in the running for leadership. There are
two kinds of messages passed: (LEVEL, ID)mes-
sages and KILL messages.

Immediately after LEVEL increase, at the be-
ginning of every even clock pulse, a candidate node
tries to, in fact, double the extent of its ownership

Algorithm

ID :=identity of the node
LEVEL :=0
STATE:= candidate
O W N E R - L I N K :=nil
for each clock pulse do

if clock pulse is even then
receive all KILL messages
if KILL is received then STATE ,=captured
i f 2 LEVEL ~ n then

if STATE = candidate then YOU ARE THE LEADER, STOP
else L E A D E R IS ACROSS OWNER-LINK, STOP

LEVEL ,=LEVEL + 1
if STATE = candidate then

/* you now own 2 LEVEL- 1 nodes, try for 2 LEvEI-- 1 more*/
send (LEVEL, ID) across up to 2 LEvzL- 1 unmarked links
mark these links

else/* clock pulse is odd */
receive all (LEVEL, ID) messages
let (LEVEL*, ID*) be the lexicographically highest (LEVEL, ID) jus t received
let L * be the link across which (LEVEL*, ID *) was received
for each (LEVEL, ID) ~ (LEVEL*, ID *) just received do

send KILL to its initiator
if (LEVEL *, ID *) < (LEVEL, ID) then

send KILL across L*
else

if O W N E R - L I N K ~ nil then send KILL across O W N E R - L I N K
STATE,= captured
O W N E R - L I N K := L *
(LEVEL, ID) ,=(LEVEL *, ID*)

od Fig. 1

M.Y. Chan and F.Y.L. Chin: Distributed election in complete networks 21

by sending its (LEVEL, ID) pair a c r o s s 2 LEVEL- 1
unmarked links which then become marked for this
node. A candidate is allowed to continue as candi-
date at the next even pulse only if no KILL mes-
sage is received then. Otherwise, the candidate
node becomes captured. If successful (i.e., no KILL
received), the candidate will end up being the sole
owner of 2 LEVEL nodes.

At the beginning of every odd round, each node
considers the lexieographieally highest (LEVEL,
ID) pair then received. In response to all other
(LEVEL, ID)s received, a KILL message is re-
turned. If the highest (LEVEL, ID) is lower than
the current (LEVEL, ID) of the node, a KILL is
also issued to it. Otherwise, the initiator of the
highest (LEVEL, ID) message becomes the owner
of the node, the node's (LEVEL, ID) is changed
to this higher (LEVEL, ID), the node becomes or
stays captured, and the KILL is issued instead to
the node's previous owner. In other words, each
captured node tries to establish for itself at most
one owner.

Each node stops the election process when it
discovers its owner owning all of the nodes in the
network. Details of the algorithm are found in
Fig. 1 :

Remark 1. If, instead of using explicit KILL mes-
sages and implicit ACK (acknowledgement of
owner) messages, we were to use explicit ACK mes-
sages and implicit KILL messages, i.e. each node
would send an ACK message to acknowledge its
current owner at every odd clock pulse and each
candidate would only remain candidate upon re-
ceiving ACK messages from all the nodes it has
sent its identity to, then we would obtain an algo-
rithm that is still slightly different from Afek and
Gafni's algorithm. The difference is that each can-
didate node is the confirmed owner of all previous
nodes it has captured and not just those which
it has recently captured. Another way of looking
at it is that owners in our algorithm know when
they have been displaced, but in Afek and Gafni's
algorithm, displaced owners are not informed. Be-
cause of this difference, we can obtain an explicit-
ACK-implicit-KILL algorithm (the number of
(LEVEL, ID) messages sent by candidate nodes
is also changed) which is better in both message
and time complexity than Afek and Gafni's algo-
rithm. However, the improvements are by constant
factors and this algorithm does not have an O(n)
expected message complexity. See Chan and Chin
(1986) for the details of the 1.89n logan+O(n) mes-
sage and 1.26 log2n+ 0(1) time solution. The pre-
sented algorithm represents a constant factor im-

provement in worst case message complexity over
Afek and Gafni's synchronous algorithm.

Remark 2. The expected case analysis of the pre-
sented algorithm can be carried over to the analysis
of Afek and Gafni's algorithm, and Afek and Gaf-
ni's algorithm can be converted into an asynchro-
nous algorithm using 4 n logz n + O (n) messages
and O (n) time while maintaining the 0 (n) expected
message complexity. See Chan and Chin (1986) for
the details. The conversion involves having nodes
consult their current owners whenever they receive
a (LEVEL, ID) message to decide whether they
should keep or change their current owner. This
is necessary because, in the asynchronous model,
there is no global clock and candidate nodes do
not enlarge their ownerships at the same pace. A
side-effect of this consultation with the owner is
that owners will know when they are being dis-
placed, so this asynchronous algorithm can be
viewed as the asynchronous counterpart of our al-
gorithm as well and explains the message complex-
ity claimed.

Theorem. The algorithm elects a leader using
2n log2 n messages in the worst case, 0 (n) messages
on the average, and 2 logEn+O(1) time.

Proof

Correctness. First observe that there can be at most
one leader, since ownership of a node is disjoint
and only the node which owns all others can be
leader. Secondly, it is not possible for all nodes
to be captured, i.e. for there to be no leader. To
see this, suppose all nodes are captured and consid-
er the node with the lexicographicaUy highest
(LEVEL, ID) at the time of capture. This node
must have been captured because of a candidate
node with higher (LEVEL, ID) which at its time
of capture may have an even higher (LEVEL, ID);
this gives an obvious contradiction. Furthermore,
each candidate will either be captured or increase

t he extent of its ownership within two clock pulses.
Thus, exactly one node will be elected as leader.

Worst case message complexity. There are at most
n/2 i candidates which disjointly own 2 i nodes. Each
of these candidates, for i = 0, 1 [log2 n] - 1, will
send out at most 2 i (LEVEL, ID) messages in an
attempt to double the extent of its ownership.
There can be at most one KILL message associated
with each (LEVEL, ID) sent. Thus, the message

22 M.Y. Chan and F.Y.L. Chin: Distributed election in complete networks

complexity is

[logan] -- 1
n

2 ~ 2 i. 27_<2n log2n.
i = 0

Time complexity. The eventual winner of the elec-
tion must be among the first nodes to awake. With
two clock pulses per level increase and [log 2 n] lev-
els, the time complexity is 2 log2 n + 0(1).

Average case message complexity. The crux of the
proof lies in determining the upper bound on the
expected number of candidates to survive each lev-
el. To this end we have the following lemma.

Lemma. Let a be the number of nodes disjointly
owned by each candidate at the start of level i and
b be the number of messages sent by each candidate
at the start of level i. Then, the expected number
of candidates to start level i+ 1 will be at most

n
l + - -

ab"

Proof Let xa, x 2 x m be the candidates to start
level i arranged in descending ID order where
ma<n, and P1 be the probability that xj survives
level i. If xj is to survive level i, it must send mes-
sages to b nodes other than those already owned
by xl , ..., x j_ l. Hence,

(n-ja]/{n-a)
PJ<-\ b] / \ b

Since

(n;ja)<_(n-Jba+i) for i_>0,

p j < i ~ = l (n - (j ; l ' a - i) / a (n b a)

So the expected number of candidates to start level
i+1 is

~ p j = l + ~ p ; < _
j = l j=2

1 b a - i) / a (n b a)

ma(n)/() - k n--a
< 1 + ~ a

k = a + l b b

< 1 + a
k=,+l b b

<-'+(~-+al)/a(nba)

n - a l b n
=1-~ a (b + l) s []

Thus, the expected number of candidates to begin
level 1 is at most n, level 2 is at most n/2, and with
a=b =2 i- 1 using Lemma, level i+ 1 is at most 1
+n/2 2i-2 for i=2 , ..., [l og2n] - 1. Recall that the
number of(LEVEL, ID) messages sent by each can-
didate upon level increase is 2 eEveL- 1 (so at level
i+ 1, each candidate sends 2 i (LEVEL, ID) mes-
sages), and for each (LEVEL, ID), there is at most
one KILL message. Hence, the expected number
of messages is at most

4 n + ~ 2 i+1 1+ =O(n). []
i = 2

References
Afek Y, Gafni E 0985) Time and message bounds for election

in synchronous and asynchronous complete networks. Proc
ACM Syrup Principles Distributed Comput, Minacki, On-
tario (August 1985) pp 186 195

Chan M-Y, Chin F (1986) Expected and worst performance
for election in synchronous and asynchronous complete net-
works. Tech Rep TR-20-86, Centre of Computer Studies
and Applications, University of Hong Kong (October 1986).

Humbler PA (1984) Selecting a leader in a clique in O(N log N)
messages. Proc 23rd Conf on Decision and Control, Las
Vegas, Nevada (December 1984) pp 1139-1140

Koraeh E, Moran S, Zaks S (1984) Tight lower and upper
bounds for some distributed algorithms for a complete net-
work of processors. Proc ACM Symp Principles Distributed
Comput, Vancouver, BC (August 1984) pp 199 207

Pachl J, Korach E, Rotem D (1984) Lower bounds for distrib-
uted maximum-finding algorithms. J ACM 31:905 918

