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Abstract. An improved version of Afek and Gafni's 
synchronous algorithm for distributed election in 
complete networks is given and an O(n) expected 
message complexity is shown. 
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1 Introduct ion  

This paper presents a modified version of the syn- 
chronous complete network election algorithm pre- 
sented by Afek and Gafni (1985). This new algo- 
rithm, apart from having a slightly better worst 
case message complexity, is shown to have an O (n) 
expected message complexity. The analysis also al- 
lows us to demonstrate that an O(n) expected mes- 
sage complexity, alongside an O(n log n) message 
and O (n) time complexity in the worst case, is pos- 
sible for distributed leader election on asynchro- 
nous complete networks. This complete network 
result contrasts the ~2(n log n) lower bound on av- 
erage message complexity given for election on 
asynchronous rings (Pachl et al. 1984). 

Afek and Gafni (1985) were the first to address 
distributed election in the synchronous complete 
network. Previous work on asynchronous complete 
network election includes an algorithm by Korach 
et al. (1984) which uses 5n log2n+O(n ) messages 
and O(n log n) time. They also showed a lower 
bound of ~2(n log n) on worst case message com- 
plexity. Humblet  (1984) contributed a time-im- 
proved algorithm which uses 2.773 n log 2 n + O (n) 
messages and O(n) time. Afek and Gafni (1985) 
then gave a slightly improved 2 n log 2 n + O (n) mes- 
sage and O (n) time solution. At the same time, they 
gave their synchronous algorithm which offered 
3nlog2n message and 21og2n+O(1)  time com- 
plexity, and proved that ~2(n log n) messages are 
necessary, and with such a message complexity, 
time complexity must be at least ~2(log n). All of 
this work focused on worst case behavior only. 
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2 The algorithm 

We adopt the model of Afek and Gafni (1985). As- 
sume a point-to-point network of n nodes in which 
every node is connected by n -  1 bidirectional com- 
munication links to all other nodes. There is no 
shared memory, so nodes communicate only by 
exchanging messages. Each node has a distinct 
identification number, and initially has no idea to 
which node each of its incident links connect. A 
global clock is connected to all nodes. At the begin- 
ning of each clock pulse, nodes receive messages, 
do local computation, and send messages destined 
to be received by the next clock pulse. Nodes may 
start executing the election algorithm either volun- 
tarily at any arbitrary time or upon receiving a 
message of the algorithm. The same algorithm re- 
sides at all nodes. 

The algorithm described below is a simple vari- 
ation on the synchronous complete network elec- 
tion algorithm originally suggested by Afek and 
Gafni (1985). 

Each node maintains three variables: ID, LEV- 
EL and STATE. ID contains the identification 
number of the node's owner. Initially ID is the 
node's own identity, i.e., initially each node is self- 
owned. A node can have at most one owner at 
a time but may change owners in the course of 
election. The idea is that the node which ends up 
owning all nodes is the leader. LEVEL is initially 
0 and is incremented once every even clock pulse. 
LEVEL basically reflects the total number of nodes 
which are owned by the node's current owner; in 
particular, for each node, its owner owns 2 LEVEL 
nodes in all. There are two STATEs a node can 
be in: candidate or captured. A candidate node is 
self-owned and contending for leadership, while a 
captured node is owned by some other node and 
is no long in the running for leadership. There are 
two kinds of messages passed: (LEVEL, ID)mes-  
sages and KILL messages. 

Immediately after LEVEL increase, at the be- 
ginning of every even clock pulse, a candidate node 
tries to, in fact, double the extent of its ownership 

Algorithm 

ID :=identity of the node 
LEVEL :=0 
STATE:= candidate 
O W N E R - L I N K  :=nil 
for each clock pulse do 

if clock pulse is even then 
receive all KILL messages 
if KILL is received then STATE ,=captured 
i f  2 LEVEL ~ n then 

if STATE = candidate then YOU ARE THE LEADER,  STOP 
else L E A D E R  IS ACROSS OWNER-LINK,  STOP 

LEVEL ,=LEVEL + 1 
if STATE = candidate then 

/* you now own 2 LEVEL- 1 nodes, try for 2 LEvEI-- 1 more*/  
send (LEVEL, ID) across up to 2 LEvzL- 1 unmarked links 
mark these links 

else/* clock pulse is odd */ 
receive all (LEVEL, ID) messages 
let (LEVEL*, ID*) be the lexicographically highest (LEVEL, ID) jus t  received 
let L * be the link across which (LEVEL*, ID *) was received 
for each (LEVEL, ID) ~ (LEVEL*, ID *) just received do 

send KILL to its initiator 
if (LEVEL *, ID *) < (LEVEL, ID) then 

send KILL across L* 
else 

if O W N E R - L I N K  ~ nil then send KILL across O W N E R - L I N K  
STATE,= captured 
O W N E R - L I N K  := L * 
(LEVEL, ID) ,=(LEVEL *, ID*) 

od Fig. 1 
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by sending its (LEVEL, ID) pair a c r o s s  2 LEVEL- 1 
unmarked links which then become marked for this 
node. A candidate is allowed to continue as candi- 
date at the next even pulse only if no KILL mes- 
sage is received then. Otherwise, the candidate 
node becomes captured. If successful (i.e., no KILL 
received), the candidate will end up being the sole 
owner of 2 LEVEL nodes. 

At the beginning of every odd round, each node 
considers the lexieographieally highest (LEVEL, 
ID) pair then received. In response to all other 
(LEVEL, ID)s received, a KILL message is re- 
turned. If the highest (LEVEL, ID) is lower than 
the current (LEVEL, ID) of the node, a KILL is 
also issued to it. Otherwise, the initiator of the 
highest (LEVEL, ID) message becomes the owner 
of the node, the node's (LEVEL, ID) is changed 
to this higher (LEVEL, ID), the node becomes or 
stays captured, and the KILL is issued instead to 
the node's previous owner. In other words, each 
captured node tries to establish for itself at most 
one owner. 

Each node stops the election process when it 
discovers its owner owning all of the nodes in the 
network. Details of the algorithm are found in 
Fig. 1 : 

Remark 1. If, instead of using explicit KILL mes- 
sages and implicit ACK (acknowledgement of 
owner) messages, we were to use explicit ACK mes- 
sages and implicit KILL messages, i.e. each node 
would send an ACK message to acknowledge its 
current owner at every odd clock pulse and each 
candidate would only remain candidate upon re- 
ceiving ACK messages from all the nodes it has 
sent its identity to, then we would obtain an algo- 
rithm that is still slightly different from Afek and 
Gafni's algorithm. The difference is that each can- 
didate node is the confirmed owner of all previous 
nodes it has captured and not just those which 
it has recently captured. Another way of looking 
at it is that owners in our algorithm know when 
they have been displaced, but in Afek and Gafni's 
algorithm, displaced owners are not informed. Be- 
cause of this difference, we can obtain an explicit- 
ACK-implicit-KILL algorithm (the number of 
(LEVEL, ID) messages sent by candidate nodes 
is also changed) which is better in both message 
and time complexity than Afek and Gafni's algo- 
rithm. However, the improvements are by constant 
factors and this algorithm does not have an O(n) 
expected message complexity. See Chan and Chin 
(1986) for the details of the 1.89n logan+O(n ) mes- 
sage and 1.26 log2n+ 0(1) time solution. The pre- 
sented algorithm represents a constant factor im- 

provement in worst case message complexity over 
Afek and Gafni's synchronous algorithm. 

Remark 2. The expected case analysis of the pre- 
sented algorithm can be carried over to the analysis 
of Afek and Gafni's algorithm, and Afek and Gaf- 
ni's algorithm can be converted into an asynchro- 
nous algorithm using 4 n logz n + O (n) messages 
and O (n) time while maintaining the 0 (n) expected 
message complexity. See Chan and Chin (1986) for 
the details. The conversion involves having nodes 
consult their current owners whenever they receive 
a (LEVEL, ID) message to decide whether they 
should keep or change their current owner. This 
is necessary because, in the asynchronous model, 
there is no global clock and candidate nodes do 
not enlarge their ownerships at the same pace. A 
side-effect of this consultation with the owner is 
that owners will know when they are being dis- 
placed, so this asynchronous algorithm can be 
viewed as the asynchronous counterpart of our al- 
gorithm as well and explains the message complex- 
ity claimed. 

Theorem. The algorithm elects a leader using 
2n log2 n messages in the worst case, 0 (n) messages 
on the average, and 2 logEn+O(1 ) time. 

Proof 

Correctness. First observe that there can be at most 
one leader, since ownership of a node is disjoint 
and only the node which owns all others can be 
leader. Secondly, it is not possible for all nodes 
to be captured, i.e. for there to be no leader. To 
see this, suppose all nodes are captured and consid- 
er the node with the lexicographicaUy highest 
(LEVEL, ID) at the time of capture. This node 
must have been captured because of a candidate 
node with higher (LEVEL, ID) which at its time 
of capture may have an even higher (LEVEL, ID); 
this gives an obvious contradiction. Furthermore, 
each candidate will either be captured or increase 

t he  extent of its ownership within two clock pulses. 
Thus, exactly one node will be elected as leader. 

Worst case message complexity. There are at most 
n/2 i candidates which disjointly own 2 i nodes. Each 
of these candidates, for i = 0, 1 . . . . .  [log2 n] - 1, will 
send out at most 2 i (LEVEL, ID) messages in an 
attempt to double the extent of its ownership. 
There can be at most one KILL message associated 
with each (LEVEL, ID) sent. Thus, the message 
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complexity is 

[ logan] -- 1 
n 

2 ~ 2 i. 27_<2n log2n.  
i = 0  

Time complexity. The eventual winner of the elec- 
tion must be among the first nodes to awake. With 
two clock pulses per level increase and [ log 2 n] lev- 
els, the time complexity is 2 log2 n + 0(1). 

Average case message complexity. The crux of the 
proof lies in determining the upper bound on the 
expected number of candidates to survive each lev- 
el. To this end we have the following lemma. 

Lemma. Let a be the number of nodes disjointly 
owned by each candidate at the start of level i and 
b be the number of messages sent by each candidate 
at the start of level i. Then, the expected number 
of candidates to start level i+ 1 will be at most 

n 
l + - -  

ab" 

Proof Let xa, x 2 . . . . .  x m be the candidates to start 
level i arranged in descending ID order where 
ma<n, and P1 be the probability that xj survives 
level i. If xj is to survive level i, it must send mes- 
sages to b nodes other than those already owned 
by xl ,  ..., x j_ l. Hence, 

(n-ja]/{n-a) 
PJ<-\ b ] / \  b 

Since 

(n;ja)<_(n-Jba+i) for i_>0, 

p j < i ~ = l ( n - ( j ; l ' a - i ) / a ( n b  a) 

So the expected number of candidates to start level 
i+1 is 

~ p j = l + ~ p ; < _  
j = l  j=2 

1 b a - i ) / a ( n b a )  

ma(n)/( ) - k  n--a 
< 1 +  ~ a 

k = a + l  b b 

< 1 +  a 
k=,+l b b 

<-'+(~-+al)/a(nba ) 

n - a l b  n 
=1-~ a ( b + l )  s  [] 

Thus, the expected number of candidates to begin 
level 1 is at most n, level 2 is at most n/2, and with 
a=b =2  i- 1 using Lemma, level i+  1 is at most 1 
+n/2 2i-2 for i=2 ,  ..., [ l og2n ] -  1. Recall that the 
number of(LEVEL, ID) messages sent by each can- 
didate upon level increase is 2 eEveL- 1 (so at level 
i+  1, each candidate sends 2 i (LEVEL, ID) mes- 
sages), and for each (LEVEL, ID), there is at most 
one KILL message. Hence, the expected number 
of messages is at most 

4 n +  ~ 2 i+1 1+ =O(n). [] 
i = 2  
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