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CICESE Parallel Computing Laboratory

EDF algorithm

Earliest Deadline First Scheduling Policy
• means that the task that has the earliest deadline (task that has to be

processed first) is to be scheduled next.
• EDF scheduler views task deadlines as more important than task

priorities.
• Experiments have shown that the earliest deadline first policy is the

most fair scheduling algorithm.
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EDF algorithm
Example: 
Set of independent tasks: with 

(deadline, total execution time, arrival time):
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EDF algorithm
Example: 
Set of independent tasks: with 

(deadline, total execution time, arrival time):
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LL algorithm
Example: Set of independent tasks with 

(deadline, total execution time, arrival time):

Laxity = (Deadline – (Current schedule time + Rest of Task Exec. Time)
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LL algorithm
Example: Set of independent tasks with preemptions

and (deadline, total execution time, arrival time):

Laxity = (Deadline – (Current schedule time + Rest of Task Exec. Time)
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LL algorithm
Example: Set of independent tasks with preemptions and 

(deadline, total execution time, arrival time):

Laxity = (Deadline – (Current schedule time + Rest of Task Exec. Time)
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LL algorithm
Example: Set of independent tasks with preemptions and 

(deadline, total execution time, arrival time):

least laxity schedule (with preemptions): � 8 preemptions, 
total execution time is 15
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Hence: a larger number of processors is not necessarily 
advantageous

Example: Set of independent tasks and (deadline, total 
execution time, arrival time):

Execution on a single, three times faster processor:
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possible with no preemptions; total execution time is 40/3
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Feasibility
Given an instance of 

let , be the ordered sequence of release times 
and deadlines together ( stands for or ), time intervals.

1) Construct a network with source, sink and two sets of nodes: 
the first set (nodes ) corresponds to time intervals in a schedule; 

node corresponds to interval 
2) The second set corresponds to the tasks 
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Feasibility
Example:  
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Feasibility
Given an instance of 

Flow conditions:
1) The capacity of an arc joining the source to node is m(

this corresponds to the total processing capacity of m processors in this 
interval

2) If task is allowed to be processed in interval then is 
joined to by an arc of capacity 

3) Node is joined to the sink of the network by an arc with lower and 
upper capacity equal to 
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Feasibility
Example:  
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Feasibility
Example:  
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Feasibility
Example:  
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Feasibility
Example:  
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Minimizing Maximum Lateness

Topic 3
Scheduling on Parallel Processors
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Minimizing Maximum Lateness

identical processors: NP-hard –problems are also NP-hard
under the criterion

for example: P | | is NP-hard

m = 1 processor: Earliest Due Date algorithm (EDD) of Jackson [Jac55]
• tasks are scheduled in order of non-decreasing due dates

The EDD rule also minimizes maximum lateness and maximum tardiness

Unit processing times of tasks make the problem easy, and P | = 1, | 
can be solved by an obvious application of the EDD rule. 

Moreover, problem can be solved in polynomial time by 
an extension of the single processor algorithm. 

2
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EDD algorithm
Example: Set of independent tasks: with 

(due date, total execution time):

3
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EDD algorithm
Example: Set of independent tasks: with 

(due date, total execution time):

4
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Jackson's EDD rule
Assumption of unit execution times 1 | , | , an integer
a modification of Jackson's EDD rule is optimal

Algorithm Modification of EDD rule for 1 | , | , an integer.
begin
r:=0;
while do
begin

Choose

Schedule at time t;
;

end;
end;
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Jackson's EDD rule
Example: Set of independent tasks: with

(due date, release time):

6

Choose 
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Jackson's EDD rule
Example: Set of independent tasks: with

(due date, release time):
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Jackson's EDD rule
Example: Set of independent tasks: with

(due date, release time):

8
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Jackson's EDD rule
Example: Set of independent tasks: with

(due date, release time):

9
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Jackson's EDD rule
The preemptive mode of processing makes the problem much easier. 

Single processor problem 1 | , | : 
A modification of Jackson's rule due to Horn (1974) solves the problem 
optimally in polynomial time 

10
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Jackson's rule due to Horn (1974) 

CICESE P ll l C ti L b t

Algorithm for 1 | , | , (Horn, 1974).
Begin
repeat

:= ;
if all tasks are available at time 
then �
else � ; 

;
Choose � such that =

, � };
Assign to the interval [ , );
if �
then T := T � { } 
else := � ;

for all � do ;
until T = �;

end;
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Jackson's rule due to Horn (1974) 
Example: Set of independent tasks: with

(due date, total execution time, release time):
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Jackson's rule due to Horn (1974) 
Example: Set of independent tasks: with

(due date, total execution time, release time):
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Scheduling Divisible Tasks

Topic 4
Communication Delays and 

Multiprocessor Tasks
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Scheduling Multiprocessor Tasks

P, cube | div, |
For the hypercube of dimension there are processors in the system.
Each of the processors has direct links to neighbors.
The label of a processor is a binary number from the interval .

• each of the processor's neighbors has a label differing on exactly one 
position.

For

2
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Scheduling Multiprocessor Tasks

P, cube | div, |
At time 0 a task arrives to processor .
Some part of the total load is processed by processor the rest of the

load is transmitted in equal parts to its d neighbours for
processing.

Immediate neighbors of processor take some part of the total load
and retransmit the rest to the still idle neighbors.

This process is continued until the last idle processor in the hypercube is
reached.
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P000 P001

P101P100

P011

P111P110

P010

Scheduling Multiprocessor Tasks

P, cube | div, |
We assume that
• processing time of the task on a standard processor is , while on

processor with a different speed it is .
• is proportional to the reciprocal of the processor's speed.
• transmission time of the whole task's data is for a standard data link,

while for a link with different capabilities it is .
• is the reciprocal of the link bandwidth.

4 CICESE Parallel Computing Laboratory

P000 P001
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P011
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Scheduling Multiprocessor Tasks

P, cube | div, |
We assume two things about the processing element: 
it must receive all its load before transmitting the proper part to the 

neighbors
it is capable of simultaneous transmitting and computing.

5

P000 Communication
Communication
Computation
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Scheduling Multiprocessor Tasks

P, cube | div, |
When processor receives data to process, it takes

• of it for local processing;
• ( ) of the load is transmitted to d neighbors.

Since processor has no 1 in its address, its neighbors have exactly 
one 1 in their addresses.

The part ( ) transmitted from processor is fairly divided among all d
neighbors.
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Scheduling Multiprocessor Tasks

P, cube | div, |
Then, each of the processors with only one 1 in the address takes of the

whole load for local processing from the part it receives from
processor .

The rest is transmitted, in equal shares, to its idle neighbors.
Processors with one 1 in the address have idle neighbors with 

exactly two 1’s in the address.
Note, that processors with one 1 in the address can be reached from the 

originator of the load via only one link, while processors with two 1’s can 
be accessed via two links.
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Scheduling Multiprocessor Tasks

P, cube | div, |
layer i a set of all processors reached in the same number i of processors, 

• starting from layer 0 (processor ).
• The last layer d consists of a single processor
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Scheduling Multiprocessor Tasks

P, cube | div, |
The speedup S, measured as a ratio of the sequential computation time, 

i.e. on the sole originator, to the working time of the originator embedded 
in the hypercube,

The average processor utilization of (U) can be found:

Where is calculated according to a recursive procedure

Using the above formulae one can analyze a performance of the
hypercube depending on such parameters

dimension of the hypercube (d), reciprocal of the communication speed (z),
reciprocal of the processing speed (w) and size of the computing task (p)

9
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Scheduling Multiprocessor Tasks

P, cube | div, |
The execution time of the task decreases with the dimension of the

hypercube.
• for faster processors (w = 0.1) the reduction is relatively smaller than for

slow processors (w = 10)
The gain from parallel processing on slow processors is higher than on fast

processors.

10

Execution time vs. processor speed and dimension
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Scheduling Multiprocessor Tasks

P, cube | div, |
Fast communication network (z = 0.1) is more reasonable than the slow 

one (z = 10). 
• z = 0 is a case of the ideal network (without transportation delays).

11

Execution time vs. communication speed and dimension
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Scheduling Multiprocessor Tasks

P, cube | div, |
Relative processing time as a function of and .The relative execution 

time is equal to the quotient of the actual processing time and 
processing time on the processor of the same speed

• The gain from parallel processing is bigger for long tasks (p = 10).

12

Execution time vs. size of the computing taskp and dimension

Algoritmos y métodos de
Calendarización

Optimization in Cluster, Grid and Cloud
computing

4.4 Bin Packing

Dr. Andrei Tchernykh
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Introduction

2

Metaphorically, there never seem to be enough bins for all one
needs to store

Mathematics comes to the rescue with the bin packing problem and
its relatives

The bin packing problem raises the following question:
Given a finite collection of weights and a collection
of identical bins with capacity (which exceeds the largest of the
weights)

What is the minimum number of bins into which the weights can
be placed without exceeding the bin capacity ?

CICESE Parallel Computing Laboratory

Introduction

3

We want to know how few bins are needed to store a collection of
items

This problem, known as the 1-dimensional bin packing problem, is
one of many mathematical packing problems which are of both
theoretical and applied interest

Keep in mind that weights are indivisible objects rather than
something like oil or water
• To have part of a weight in one bin and part in another is not allowed

One way to visualize the situation is as a collection of rectangles
which have
• Height minor or equal to the capacity C
• Fixed width, whose exact size does not matter

4 531 2
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Introduction

4

When an item is put into the bin, it either falls to the bottom or is
stopped at a height determined by the weights that are already in
the bins

The diagram shows a bin of capacity 7 where three weights have
been placed in the bin, leaving 1 unit of empty space

4 5 63

1 2
…

21
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Basic ideas

5

The bin packing problem asks for the minimum number of
identical bins of capacity needed to store a finite collection of
weights so that no bin has weights stored in it whose
sum exceeds the bin's capacity

Traditionally,
• Bin capacity is chosen to be 1
• Weights are real numbers which lie between 0 and 1

For convenience of exposition,
• is a positive integer
• are positive integers which are less than the

capacity
Example 1: Suppose we have bins of size 7
How few of them are required to store weights of size 1, 1, 2, 2, 2,

3, 3, 3, 4, 5, 6?
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Basic ideas

6
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Basic ideas

7

The weights to be packed above have been presented in the form
of a list ordered from left to right

The seek procedures (algorithms) for packing the bins are "driven"
by a list and a capacity for the bins

The goal of the procedures is to minimize the number of bins
needed to store the weights

A variety of simple ideas as to how to pack the bins suggest
themselves

k th bi
1 2

d

044 56 3 3 22 15
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Next Fit

8

Next Fit (NF) is one of the simplest approaches
The idea is to open a bin and place the items into it in the order that

they appear in the list
If the current item on the list does not fit into the open bin, this bin is

closed permanently, a new one is open, and the packing process
continues with the remaining items in the list

1 2 3 4 5 6 7 8

4
6 5 4

2

3
5

044 56 3 3 22 15

3

1
2
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Next Fit

9

Advantages of NF:
• Very simple
• Bins are shipped off quickly, NF does not hope that an item will

come along later in the list which will fill this empty space
One can imagine a fleet of trucks with a weight restriction (the

capacity ) and one packs weights into the trucks
• If the next weight can not be packed into the truck at the loading

dock, this truck leaves and a new truck pulls into the dock
• We keep track of how much room remains in the bin open at

that moment
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Next Fit

10

NF requires a linear amount of time to find the number of bins for
weights

NF does not always produce an optimal packing for a given set of
weights
• We will find a way to pack the weights of Example 1 into 5 bins

Procedures such as NF are referred to as heuristic algorithms
because although they were conceived as ways to solve a
problem optimally, they do not always deliver an optimal solution

A strategy will typically use fewer bins if it keeps bins open for filling
their empty space with items later in list

g y
oblem optimally, they d

rategy will typically use

Can we find a way to improve NF?
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First Fit

11

First Fit (FF) is a simple way to carry out this idea
FF places the current item in the list into the first bin which has not

been completely filled into which it will fit
• The list is numbered from left to right

Bins are closed when they are completely filled
A new bin is opened when an item does not fit into any currently

open bin

1 2 3 4 5 6 7

044 56 3 3 22 15

4
6

5 4

2 3

5
3

1 2

8
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First Fit

12

Both methods yield 6 and 7 bins, but
is this the best we can hope for ?

One simple insight is computing the total sum of the weights and
dividing this number by the capacity of the bins

The number of bins must be at least where
•

• denotes the smallest integer that is greater than or equal to
The number of bins must always be an integer
Since =35 and =7 in example 1, there is a hope of using 5 bins
However, neither NF nor FF achieves this value with the list given in

Example 1
Perhaps we need a better procedure

Two other simple methods in the spirit of NF and FF have also been
looked at

CICESE Parallel Computing Laboratory

Best Fit

13

Best Fit (BF) keeps bins open in the hope that a later smaller item
will fit

The criterion for placement is that BF puts the next item into the
currently open bin (e.g. not yet full) which leaves the least room
left over
• In the case of a tie, BF puts the item in the lowest numbered bin

as labeled from left to right
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4
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044 56 3 3 22 15
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Worst Fit

14

Worst Fit (WF) also keeps bins open in the hope that a later
smaller item will fit

The criterion for placement is that WF places the item into that
currently open bin into which it will fit with the most room left over
• In the case of a tie, WF puts the item in the lowest numbered

bin as labeled from left to right

1 2 3 4 5 6 7

4
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Best fit and Worst Fit

15C C S C 15

The amount of time necessary to find the minimum number of bins
using either FF, WF, or BF is higher than for NF.
• in terms of the number of weights.

The distinction between FF, WF, and WF:
• Suppose that there are only 3 bins open with capacity 10
• The remaining space is: Bin 1 (4), bin 2 (7), and bin 3 (3)
• Suppose the next item in the list has size 2

Allocation of the strategies:
• FF puts this item in bin 1
• BF puts it in bin 3
• WF puts it in Bin 2

One difficulty is that we are applying "good procedures" but on a
"lousy" list

If we know all the weights to be packed in advance, is there a way 
of constructing a good list? 
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More approaches to bin packing

16

Previous algorithms have the property that there may be more
items in the list to pack but they do not affect what is done to pack
the current item
• farther to the right than one being currently worked on

Such algorithms are known as on-line, the idea for on-line
algorithms is that not all the components of the problem are
known in advance
• they are being used to solve bin packing problems or other

combinatorial optimization problems

In the bin packing case, one can imagine an industrial situation
where items with different weights are being produced and then
are being placed in bins which are at some stage to be shipped to
customers

CICESE Parallel Computing Laboratory

More approaches to bin packing

17

In contrast to an on-line point of view, an off-line approach is a
possibility

• one thinks of having all of the items to be packed in advance
• one can ask for the given weights to be packed if there is some

rearrangement of the weights into a list different from the original
which might be used to give a better result for the number of bins
required

The number of potential lists for items to pack is
• Since the first item can be chosen in ways, the second in

, etc., giving as the number of different possible lists.
Choosing a list for an optimal packing has the flavor of looking for a

needle in a haystack
• Even for 20 items to pack, say, 20! is a very large number

CICESE Parallel Computing Laboratory

More approaches to bin packing

18CICESE Parallel Computing Laboratory

For example, many bins can be open at a specific stage when FF is
used in an on-line environment
• To have so many empty bins is economically unrealistic
• Monitoring that later items will fit efficiently

This situation suggests a version of bin packing where a packing
heuristic is limited to having at most bins open at a given time
• These heuristics are known as bounded-space on-line heuristics

For the heuristics discussed above one can try to develop a open
bin bounded space version of the heuristic

The situation for K > 1 open bins raises some tantalizing issues:
• The way the bins are packed
• When a bin will be shut down (closed permanently) other than

when it is completely full!

CICESE Parallel Computing Laboratory

More approaches to bin packing

19

Suppose open bins and a weight which does not fit into any of
them
• Open a new bin implies closing an old one

This can be done either by
• picking the lowest numbered bin to shut down (this is in the

spirit of FF)
• shutting down the bin which is closest to being completely full

(this is in the spirit of BF).
Four new heuristics in the open bin environment use

• FF or BF as packing rule and
• FF or BF as closing rule

Computing Laboratory

p g
BF as closing rule



CICESE Parallel Computing Laboratory

More approaches to bin packing

20

Very large item to pack at the end of the list made it necessary to
have an extra bin opened at the end
• Packing large items first seems like a good idea

The same strategy you would use to pack a suitcase for a vacation
• Not to leave a large-volumed item to the end!

This suggests an approach to off-line bin packing
• Choose the list where the weights appeared in sorted order,

from largest to smallest
• Use any algorithms previously discussed to carry out the

packing
NFD, FFD, BFD, and WFD are the new approaches where "D"

refers to “decreasing” for algorithms NF, FF, BF, and WF
• FFD means First Fit Decreasing

CICESE Parallel Computing Laboratory

More approaches to bin packing

21

Example 2: bin size = 10 and weights = {3, 6, 2, 1, 5, 7, 2, 4, 1, 9}

NF FF FFD
Note that FFD packing is optimal
Not only can one not pack these weights into fewer bins but also 

there is no wasted space
Of course, there are many situations where optimal packings still 

have unused space

CICESE Parallel Computing Laboratory

More approaches to bin packing

22

Among all packings of this kind, one might look for that packing with
various characteristics
• The fewest bins have extra space
• The number of bins used is minimal but as many bins as

possible have some extra room
• A little extra space might allow putting packing material into the bin

to prevent breakage during shipment
Rearrange the items in one of the bins or between bins in an

optimal packing that achieves some secondary goal
• Beyond minimizing the number of bins

FFD found an optimal solution in Example 2, but it does not mean
that this will be the case for other problems

Perhaps you are not surprised to learn that FFD does not always
yield optimal solutions

CICESE Parallel Computing Laboratory

More approaches to bin packing

23

Example 3: bin size = 20 and weights = {4, 8, 7, 10, 3, 8}
2 bins might be achieved since the sum of the weights is 40 and bin

capacity is 20
A packing with only two bins is: Bin_1 (8, 8, 4), and Bin_2 (10, 7, 3)
In this notation, the items in Bin_1 are:

• 8 is at the bottom, next comes the weight 8, and the item of size
4 stays at the top of the bin

• this solution is not unique, items can be permuted
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Example 3: bin size = 20 and weights = {4, 8, 7, 10, 3, 8}
None of the procedures (NF, FF, BF, WF, NFD, FFD, BFD, or

WFD) yields an optimal number of bins with this particular list
• 3 bins are required in each case (you can check)

NF, FF, BF, and WF provide an optimal packing with the list 8, 4, 8,
10, 7, 3
• The weights are packed slightly differently from the solution

given above
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After finding eight heuristics or approximation algorithms in the
search to find an optimal solution to the bin packing problem

finding an optimal solution to bin packing is very hard?
Mathematicians have attempted to show that some problems are

indeed very hard using a variety of approaches
• One approach involves showing that a problem is NP-complete

Intuitively, a problem Z is NP-complete when it has been shown that
• if Z can be solved in polynomial time, then so can a very large

number of other problems
• if Z requires an exponential amount of time to solve, then so will

all of the other problems
NP-complete problems are thought to be hard to solve but either all

of the problems are
• Not really that hard (in the sense of requiring polynomial work)
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• All of the problems require an exponential amount of work to
solve

Since many NP-complete problems are of great importance for
applications in operations research (management science), the
fact that mathematicians and computer scientists are unsure of
the status of the NP-complete problems is frustrating!

You guessed it--the "decision version" of bin packing is known to be
NP-complete

That is, given a capacity C and a list L of weights and an 
integer D the problem of determining if the weights in L can 
be packed into D or fewer bins of capacity C is NP-complete

Thus, finding approximately optimal solutions for bin packing in
polynomial time is probably the best we can hope for
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Packing trucks with weight capacity C is one of many applications of
bin packing
• Realistic versions of truck packing problems typically go beyond

issues of one-dimensional bin packing
Bin packing has an important connection with another important

collection of operations research problems
• Often referred to as machine scheduling problems

Consider the problem of scheduling identical machines with tasks
that are independent of each other
• The tasks can be done by the machines in any order
• Each of the tasks has a time that is necessary to complete it on

one of the machines
More complex machine scheduling problems have to deal with

tasks that cannot be worked on before other tasks are completed
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What is the minimum number of machines which are needed to 
finish a collection of independent tasks by time T with times to 

complete the tasks of ? 

This question is bin packing with a very minimal disguise (change t
to w; T to C)!

For example, suppose one has photocopying jobs of varying
numbers of pages that have been brought into a photocopy shop

If the shopkeeper wants the automatic work of the machines to
enable her to go home within 3 hours of the start of the photocopy
tasks
• how many machines would have to be available to do the work?
• how should the jobs be assigned to the machines?
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Packing ads into breaks is an example of a bin packing problem
packing a collection of ads of different lengths into the minimum

number of bins of fixed size (the length of the ad break)

Scheduling problems are present in the operation of all large
systems:
• scheduling classes in schools;
• scheduling planes, trains, and buses in the transportation sector

of the economy;
• scheduling machines in the manufacture of the products
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The one-dimensional bin packing problem belongs to the
complexity class of problems for which no known algorithm solves
the problems in a polynomial time
• Polynomial in the number of weights

How badly are various heuristic algorithms which might be used to 
solve bin packing problem 

A heuristic algorithm not always guarantees to find the optimal
solution to a problem
• It finds an "approximate" solution to a problem

We can now ask the question: Given a collection of weights and
bins of capacity C

how many bins--compared with the optimum number actually 
required--do these approximation algorithms require? 
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Suppose we are given weights, a capacity, a list L, and an algorithm
A

Denote by
• the optimum number of bins,
• the number of bins which are required by algorithm A

applied to list L

How do and compare in size? 

To answer questions such as this, one can apply mathematical
arguments to show that:

where is some positive constant
One can then try to show by way of examples that the in the

equation above can actually occur
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Many researchers in mathematics and computer science have
contributed to insights in this vein for the literally dozens of
different algorithms that have been investigated to understand
one-dimensional bin packing

Suppose we are dealing with the heuristic NF. It is not difficult to
see that NF obeys:

With a bin capacity of 1, two consecutive bins that are packed by
NF can not both be filled to less than the halfway mark

The reason is that the contents of two such bins would then fit in
only one of the bins, because of the way NF fills the bins

5

10

1 5 1
5

1 5 1 5 1
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The proof of the inequality above uses this fact 

For a further insight, consider the following list of weights for the
case where the bins have capacity 1:

where is a positive integer which is 2 or bigger

NF applied to this list will produce a packing which has bins,
• Each bin packed with an item of weight at the bottom and

an item of weight on top

The optimal packing for this list uses bins:
• N bins, each with two weights of size , and
• One additional bin to contain the items of size
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Below are some diagrams to help visualize the packing which is
optimal versus what happens when NF is used
• The optimal packing has copies of the one bin pictured on the

far left and one copy of the next bin

• The NF packing has copies of the bin on the far right, the
blue area denotes unused space

CICESE Parallel Computing Laboratory

Bin Packing and Machine Scheduling

35

This analysis shows that we have a family of lists for which

Over a period of about 30 years, researchers have
• examined a wide variety of bin packing algorithms and
• obtained increasingly better worst case analyses of the different

algorithms.
For example, FF does significantly better than NF but not

spectacularly so:

where , the ceiling function, denotes the smallest integer greater
than or equal to y.

Intuitively, one would expect the "decreasing" heuristics to work
better and this turns out to be the case
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For FFD we have the result:

In addition to analysing the worst-case performance of bin packing
algorithms, one can also see how different heuristics perform on
the average

Initially, doing simulations sometimes only hints at results. However,
insights gleaned from these simulations often lead to probability
models in which precise results can be obtained
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Many applications of bin packing, for example,
• Placing computer files with specified sizes into memory blocks

of fixed size
• Recording music, where the length of the pieces to be recorded

are the weights and the bin capacity is the amount of time that
can be stored on an audio CD, about 80 minutes

The abstraction of packing bins with weights allows to apply this
mathematical techniques in many situations
• FF can be used in these different situations

We can find problems where bin packing and the algorithms which
have been developed to get insights into this problem can be put
to use

Applying mathematics for one context to other contexts which have
"additional aspects" encourages one to improve on the
mathematics that has been done already
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The problem of preparing a collection of musical pieces to store on
audio compact discs
• An audio CD has a maximal capacity
• The pieces on the compact discs play the roles of the weights
• A piece cannot start on one CD and finish on another

There is a subtlety here, classical music pieces often come in
sections called movements
• Ideally, whole pieces should be placed on the same CD,
• Having the first three movements of a symphony on one CD and the

last movement at the beginning of the next CD might be "acceptable“,
it keeps costs down

The heuristics can not guarantee fitting the music onto the CD
would respect the order of the movements if weights are treated
as movements

This constraint inspires an algorithms where some of the weights
need to be packed in a particular order
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Inspired by various "packing" situations, a variety of "extensions" for
the original bin packing model are:

a) Packings in which the number of items that can be placed in a
bin is restricted in advance not to exceed a certain number
• This restriction might be required in the situation where one is

packing trucks
b) Restrictions on items which can be placed into the same bin

• This restriction might come about if items are being shipped
from A to B in bins
o In order to guarantee that if one bin gets lost or destroyed in transit

to B, one could send redundant items and require that they not be
packed in the same bin

• An alternate scenario is when items may be generating heat,
perhaps because they have some level of radioactivity
o The items in one bin not only fit in the bin but also the items not

generate too much heat during the period they are in the bins
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Inspired by various "packing" situations, a variety of "extensions" for
the original bin packing model are:

c) Packings in which there is an ordering attached to some of the
weights which limits the way those items can be packed
• This restriction is in the sprit of the example discussed in a little

detail above where music is being packed into compact discs of
the same size

d) Packings in which the items being packed may be allowed to
disappear during the packing process
• An item placed in a bin which has not yet been closed may be
o Allowed to be removed from the bin either because fewer

bins will be needed once this item is transferred to another
bin

o Leave the system, sometimes items not only enter the
system
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A scenario with potential applications for this variant of bin packing
Imagine that when items are packed, a test is started to determine if

the item which has been packed has spoiled. This test takes a
certain amount of time to complete
• If the packed item is put into a bin which is closed before the

testing period is done, the packed bin is just shipped out
• If the bin is still open during the period of packing and the

finished test shows the item to have spoiled, then this item can
be removed and the space used for items that haven't spoiled

With cleverness one can perhaps find additional unexpected uses
here

One interesting variant of the bin packing problem involves a
loosening of the requirement that all the bins have the same size
• A standard capacity or size, say 1, with a cost of 1
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Imagine that we can stretch or enlarge bins but we must pay a
penalty for doing this
• The penalty or cost takes the form that a bigger bin is used
• The goal is to pack the weights into stretched bins if necessary

so that the total cost is a minimum
In the standard one-dimensional bin packing problem, the bins are

assumed to have the same size
You may enjoy formulating a variety of problems with
• a limited number of sizes for bins where one wants to pack the

weights so that the total size of the bins used is as small as
possible

• situations where problems such as these might arise
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Another variant of the classical bin packing problem has to do with
the common phenomenon of recycling bins

For simplicity, we assume that a collection of bins contain three
types of glass: clear, brown, and frosted
• The goal is to sort the different kinds of glass so that after the

sorting process one bin has only clear glass, one only brown
glass, and one only frosted glass

Another variant specifies the type of glass for the bins beforehand,
we did not specify which of the bins is to have which kind of glass
• The goal is to conduct the sorting with as few moves as possible
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The essence of mathematical modeling is controlled simplification

• One takes the situation outside of mathematics, holds onto
essential aspects of the problem and "disregards details" that
are secondary to the situation

• If one is fully successful doing this process, then after the
mathematical problem associated with the model is solved, the
mathematics can be used to get important insights into the
original problem even though significant detail of the original
problem was disregarded

• To some extent the creation of the mathematics problem known
as bin packing grew out of attempts to get insight into problems
outside of mathematics
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The range of scheduling problems makes it virtually impossible for
one mathematical model to be useful in all situations

How is bin packing connected with machine scheduling?

Suppose that we have tasks which take differing times to complete
which can be performed in any order on identical machines
• Our goal is to determine the minimum number of machines

needed to finish the tasks by a fixed time

The fixed desired completion time corresponds to the capacity of
the bins, and weights are the times to do the tasks

Finding the minimum number of bins needed to pack the weights
provides the minimum number of machines needed to finish by
the desired time !
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A sample of the many complexities that machine scheduling
problems have

1) A job that must be completed by scheduling the tasks that make
up the job often has to be carried out on very different kinds of
processors
• The construction of a home requires the completion of a gigantic

number of steps
o One needs a building permit, someone to lay the foundation,

and someone to put on the roof
o The "processors" that must be scheduled for doing this work

are not interchangeable. Plumbers rarely do electrical work
and electricians rarely do roofing

2) Schedules for the manufacturing of many identical products often
require that each product get some time on a fixed number of
different machines
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• Several identical machines of one kind
• Manufacturing a computer chip

3) When schedules are constructed, there are different approaches
to how the processors work on the tasks assigned
• When a processor begins work on a task then it continues until

the work on that task is complete
• A condition in the processor will permit to interrupt the current

work on one task to begin another task (an even)

Whereas in manufacturing, once a machine starts work on a task, it
usually continues to work until the task is complete
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Things are somewhat different in medicine, when doctors schedule
patients, they typically stay with a patient until the task is done

Ophthalmologist can be an exception, he
• Put drops in a patient's eyes,
• See another patient while the first patient's pupils are increasing

in size
• Return to complete the first patient's examination
Similarly, a doctor in regular practice who is seeing a patient who

has a head cold would probably interrupt her work to see a patient
who arrived in the office complaining of chest pains
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These scheduling problems are completely deterministic
• Times for completing every task making up a complex job are

known in advance
A directed graph called task-analysis digraph indicates which tasks

come immediately before other tasks
This digraph will have no directed circuit because that would lead to

a contradiction in the precedence relations between the tasks
• A way to follow edges and start at a vertex and return there

An arrow from task to means that task must be completed
before task can begin

Such restrictions are very common in carrying out the individual
tasks that make up a complex jobp j
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In the task-analysis digraph below, each vertex (task) has the
processing time inside the circle

The objective is to schedule six tasks on some fixed number of
identical machines in such a manner that the tasks are completed
by the earliest possible time

• Sometimes referred to as finding the makespan for the tasks
Also, defining which tasks should be scheduled on which machines

during a given time period
The scheduling is carried out without (voluntarily) idle machines
When a machine begins working on a task, it will continue to work

on it without interruption until the task is completed
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One-dimensional bin packing problem can be described as
follows:

Given a bin capacity and a list of objects { }, 
what is the smallest number of bins needed to 

accommodate all of the objects? 
Each has size , such that . i.e. none of the

objects too big to fit in a bin
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Four easily recognizable one-dimensional bin packing problems:
• A material such as piping or cable is supplied in quantities of a

standard length
o The demands for pieces of the material are for varying lengths

that do not exceed
o The idea is to use the least number of standard lengths of the

material in producing a given set of required pieces. Hence
minimizing the wastage

• Advertisements of arbitrary lengths must be assigned to
commercial break time slots on television
o Each break must last no longer than three minutes

• Removal lorries with set weight limits are to be packed with
furniture
o The aim is to use as few lorries as possible to pack all the

items, without exceeding the maximum weight in any lorry
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• The execution of a set of tasks with known, arbitrary execution
times, on some identical processors by a given deadline
o Schedule all of the tasks onto the least number of machines

so that the deadline is met
In the last example, time is the critical resource. It is a scheduling

problem;
• the processors are the bins,
• the deadline is the common bin capacity, and
• the individual execution times of the tasks are the objects ( ) in

the list
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This problem is concerned with packing different sized objects
(most commonly rectangles) into fixed sized, two-dimensional
bins, using as few of the bins as possible

Stock cutting example
• quantities of material such as glass or metal, are produced in

standard sized, rectangular sheets
• Demands for pieces of the material are for rectangles of

arbitrary sizes
• no bigger than the sheet itself

The problem is to use the minimum number of standard sized
sheets in accommodating a given list of required pieces

A variation on the two-dimensional bin packing problem is the
strip packing problem
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The problem
• packing a set of rectangles into an open-ended bin of
o fixed width and
o infinite height
o the rectangles must not overlap each other

The idea is to pack the rectangles in a way that minimizes the
overall height of the bin

The clear difference between this problem and the two-dimensional
bin packing problem, is that there is only one bin
• The aim is to minimize the height of the single bin instead of

trying to minimize the number of bins used
All the rectangles must be packed orthogonally.

• They cannot be rotated and must be packed with their width
parallel to the bottom of the bin
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Strip Packing and machine scheduling
The rectangles correspond to a set of tasks,

• heights being the amount of processing time they require
• widths the amount of contiguous memory (processors) they

need
• The width of the bin corresponds to the amount of memory

(procs) available
• The aim is to schedule all of the tasks so that they are

completed in the least possible time
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Another common application of the strip packing problem is stock
cutting
• Material such as cloth, paper, or sheet metal, comes in rolls of a

set width
• These rolls may need to be cut into rectangles of arbitrary

widths and heights
• The goal is then to cut out all the required rectangles from the

shortest length of roll possible, so minimizing the wastage
• the roll of material corresponds to the bin
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The problem of finding an optimal solution for the strip packing
problem is NP-complete,
• Approximation algorithms find near optimal solutions but do not

guarantee to find the optimal packing for every set of data.
• Most algorithms pack the rectangles into the bin using one of

five approaches:
• bottom left,
• level-orientated,
• split,
• shelf or
• hybrid
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Rectangle to be placed as near to the bottom of the bin as it will fit
Then as far to the left as it can go at that level without overlapping

any other packed rectangles
List of rectangles require no pre-sorting

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7
7 5 10 6 5 2 8

3 8 3 4 3 5 2

11
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Example: BL for

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7
7 5 10 6 5 2 8

3 8 3 4 3 5 2

14
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Level-oriented algorithms
• The list of rectangles are pre-sorted into order of decreasing

height
• The packing is done on a series of levels, that the bottom of

each rectangle rests on
• The first level is the bottom of the bin and subsequent levels are

defined by the height of the tallest rectangle on the previous
level

Split algorithms
• The level oriented algorithms split the bin horizontally into

blocks of a set width
• split the open ended bin vertically into smaller open ended bins

depending on the widths of the rectangles
• The rectangles are first sorted by width
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Shelf algorithms
• modifications of the level algorithms, that avoid pre-sorting the

list of rectangles
• Rather than being determined by the tallest rectangle, the levels

are fixed height shelves
• The shelf heights are set by a parameter r. ( )

Hybrid algorithms
• These use the characteristics of two or more of the types of

algorithms described above. They may or may not involve pre-
sorting
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The Slave Algorithm
A slave algorithm is the approach that is used to decide which shelf

a rectangle should be put on once all appropriate shelves have
been determined

For the level-by-level algorithms, each level, or shelf, in the bin has
exactly the same width, C. (the width of the bin itself)

This means that, for each rectangle, once the algorithm has
calculated the levels it may be placed on, the decision of which of
these levels to use is exactly a one-dimensional bin packing
problem

That is, the number of levels being used, corresponds to the
number of one-dimensional bins, of capacity C, that are required

This one-dimensional problem is solved by the slave algorithm
There are many one-dimensional algorithms that could be used as

the slave algorithm, for instance: NF and FF algorithms
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On-line vs Off-line
Whether or not the rectangles required sorting before being placed

into the bin
This is an important factor to take into consideration when deciding

on an appropriate algorithm for a bin packing problem
Consider the situation where the list of rectangles arrives one at a

time
When each rectangle arrives it must immediately be assigned its

place in the bin
Only once this has happened, does the identity of the next

rectangle become known
This type of environment is called on-line
On-line algorithms must assume no prior knowledge of the

rectangles in the list, so pre-sorting the list of rectangles is not an
option
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Off-line environment 
it is possible to view the whole list of rectangles first and so sort

them into any order before they are placed on the bin
• Off-line algorithms assume prior knowledge of the whole problem

before any packing has to be done
• An on-line algorithm would be used in a situation where the jobs

had to be done in order. For example, the items may be subject to
different priorities or deadlines

An off-line algorithm would be used when the order did not matter
• For example, if pieces of material were being cut out to make a

jacket, it would not matter if a sleeve was cut out before the
collar, just as long as all the required pieces were produced in
the end.
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Next-fit decreasing-height (NFDH)
The algorithm:
• sorts the items by order of non-increasing height
• places the first item in the position (0,0)
• places the items next to each other in the strip until the next item

will overlap the right border of the strip
New level at the top of the tallest item in the current level and

places the items next to each other in this new level

First-fit decreasing-height (FFDH)
The algorithm works similar to the NFDH algorithm,
However, when placing the next item

• Scans the levels from bottom to top
• Places the item in the first level on which it will fit

A new level is only opened if the item does not fit in any previous
ones
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7
7 5 10 6 5 2 8

3 8 3 4 3 5 2

Example:

13
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7
6 5 4 7 3 4 6

8 7 6 5 4 3 2

Example:

15
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Next-fit decreasing-height (NFDH)
The algorithm:
• sorts the items by order of non-increasing height
• places the first item in the position (0,0)
• places the items next to each other in the strip until the next item

will overlap the right border of the strip
New level at the top of the tallest item in the current level and

places the items next to each other in this new level

First-fit decreasing-height (FFDH)
The algorithm works similar to the NFDH algorithm,
However, when placing the next item

• Scans the levels from bottom to top
• Places the item in the first level on which it will fit

A new level is only opened if the item does not fit in any previous
ones
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7
6 5 4 7 3 4 6

8 7 6 5 4 3 2

Example:

13
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7
7 5 10 6 5 2 8

3 8 3 4 3 5 2

Example:

13
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Best-fit decreasing-height (BFDH)
The algorithm works similar to the NFDH algorithm,
However, when placing the next item

• Scans the levels from bottom to top
• Places the item in the first level on which the horizontal residual

space is the minimum
A new level is only opened if the item does not fit in any previous

ones
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7
6 5 4 7 3 4 6

8 7 6 5 4 3 2

Example:

15
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Example:

https://cgi.csc.liv.ac.uk/~epa/surveyhtml.html
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• Orders items by non-increasing width.
• Packs the next item as near to the bottom as it will fit and then

as close to the left as it can go without overlapping with any
packed item

Note that BL is not a level-oriented packing algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7
7 5 10 6 5 2 8

3 8 3 4 3 5 2
14
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Baker's Up-Down (UD) algorithm
• Combines BL and a generalization of NFDH
• Normalizes the width of strip and items, strip is of unit width
• Divides the items into

, items should order in non-increasing
• The strip is also divided into five regions
• Some items of width in the range are packed to region Ri by BL
• Packs the item to for (in order) from top to bottom
o Since BL leaves a space of increasing width from top to bottom

at the right side of the strip
• The item is packed to by BL if there is no such space
• Finally, items of size at most are packed to the spaces in

by the (generalized) NFDH algorithm
o if there is no space in these regions, the item is packed to

using NFDH
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Baker's Up-Down (UD) algorithm
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Reverse-fit (RF) algorithm
• Normalizes the width of the strip and the items
• Stacks all items of width greater than 1/2
• Remaining items are sorted in non-increasing height and will be

packed above the height reached by those greater than 1/2
• Packs items from left to right with their bottom along the line of

height until there is no more room
• Packs items from right to left and from top to bottom (called

reverse-level) until the total width is at least 1/2
• The reverse-level is dropped down until (at least) one of them

touches some item below.
• The drop down is somehow repeated
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Reverse-fit (RF) algorithm
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Steinberg's algorithm
• Estimates an upper bound of the height H required to pack all

the items such
o it is proved that the input items can be packed into a rectangle

of width W and height H
• Define seven procedures (with seven conditions), each to divide

a problem into two smaller ones and solve them recursively
It has been showed that any tractable problem satisfies one of the

seven conditions
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Split-Fit algorithm (SF)
• Divides items into two groups, L1 with width greater than 1/2

and L2 at most 1/2
• All items of L1 are first packed by FFDH
• Then they are arranged so that all items with width more than

2/3 are below those with width at most 2/3.
o This creates a rectangle R of space with width 1/3

• Remaining items in L2 are then packed to R and the space
above those packed with L1 using FFDH
o The levels created in R are considered to be below those

created above the packing of L1
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Split-Fit algorithm (SF)
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Bin Packing Problem 
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Outline  
 

1. Introduction 

 

Metaphorically, there never seem to be enough bins for all one needs to store. 
Mathematics comes to the rescue with the bin packing problem and its relatives. 

The bin packing problem raises the following question: 


 given a finite collection of n weights  and 

 a collection of identical bins with capacity C (which exceeds the largest of the 

weights), 

 what is the minimum number k of bins into which the weights can be placed without 

exceeding the bin capacity C? 
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Outline  
 

We want to know how few bins are needed to store a collection of items.  

This problem, known as the 1-dimensional bin packing problem, is one of many 
mathematical packing problems which are of both theoretical and applied interest. 

It is important to keep in mind that "weights" are to be thought of as indivisible objects 
rather than something like oil or water.  

For oil one can imagine part of a weight being put into one container and any left over 
being put into another container.  

However, in the problem being considered here we are not allowed to have part of a 
weight in one container and part in another. 

One way to visualize the situation is as a collection of rectangles which have height 
equal to the capacity C and a fixed width, whose exact size does not matter. 

When an item is put into the bin it either falls to the bottom or is stopped at a height 
determined by the weights that are already in the bins.  
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Outline  
 

The diagram below shows a bin of capacity 10 where three identical weights of size 2 
have been placed in the bin, leaving 4 units of empty space, which are shown in 
blue.  

 
  

© 2022 A. Tchernykh. Scheduling   Binpacking   5 

Outline  
 

By contrast with the situation above, the bin below has been packed with weights of 
size 2, 2, 2 and 4 in a way that no room is left over. 
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Basic ideas 
 

The bin packing problem asks for the minimum number k of identical bins of capacity C 
needed to store a finite collection of weights so that no bin has 
weights stored in it whose sum exceeds the bin's capacity.  

Traditionally 


 capacity C is chosen to be 1 and 

 weights are real numbers which lie between 0 and 1, 

 for convenience of exposition, C is a positive integer and the weights are positive 

integers which are less than the capacity. 

Example 1: 


 Suppose we have bins of size 10. How few of them are required to store weights of 
size 3, 6, 2, 1, 5, 7, 2, 4, 1, 9? 
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Basic ideas 
 

The weights to be packed above have been presented in the form of a list L ordered 
from left to right. 

For the moment we will seek procedures (algorithms) for packing the bins that are 
"driven" by a given list L and a capacity size C for the bins. 

The goal of the procedures is to minimize the number of bins needed to store the 
weights. 

A variety of simple ideas as to how to pack the bins suggest themselves.  

One of the simplest approaches is called Next Fit (NF). 

The idea behind this procedure is to open a bin and place the items into it in the order 
they appear in the list. 

If an item on the list will not fit into the open bin, we close this bin permanently and 
open a new one and continue packing the remaining items in the list. 
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Basic ideas Next Fit (NF) 
 

If some of the consecutive weights on the list exactly fill a bin, the bin is then closed 
and a new bin opened.  

When this procedure is applied to the list above we get the packing shown below.  
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Basic ideas Next Fit (NF) 

Next Fit is 


 very simple,  


 allows for bins to be shipped off quickly, because even if there is some extra room 
in a bin, we do not wait around in the hope that an item will come along later in the 
list which will fill this empty space.  

One can imagine having a fleet of trucks with a weight restriction (the capacity C) and 
one packs weights into the trucks. 

If the next weight cannot be packed into the truck at the loading dock, this truck leaves 
and a new truck pulls into the dock. 

We keep track of how much room remains in the bin open at that moment.  
In terms of how much time is required to find the number of bins for n weights, one can 

answer the question using a procedure that takes a linear amount of time in the 
number of weights (n). 

Clearly, NF does not always produce an optimal packing for a given set of weights. You 
can verify this by finding a way to pack the weights in Example 1 into 4 bins.  
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Basic ideas Next Fit (NF) 

Procedures such as NF are sometimes referred to as heuristics or heuristic algorithms 
because although they were conceived as ways to solve a problem optimally, they 
do not always deliver an optimal solution. 

Can we find a way to improve on NF so as to design an algorithm which will always 
produce an optimal packing? 

A natural thought would be that if we are willing to keep bins open in the hope that we 
will be able to fill empty space with items later in list L, we will typically use fewer 
bins. 
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Basic ideas First Fit (FF) 
 

The simplest way to carry out this idea is known as First Fit.  

We place the next item in the list into the first bin which has not been completely filled 
(thought of as numbered from left to right) into which it will fit.  


 When bins are filled completely they are closed, 


 If an item will not fit into any currently open bin, a new bin is opened. 
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Basic ideas First Fit (FF) 
 

The result of carrying out First Fit for the list in Example 1 and with bins of capacity 10 
is shown below: 
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Basic ideas First Fit (FF) 
 

Both methods we have tried have yielded 5 bins. 

We know that this is not the best we can hope for. 

One simple insight is obtained by computing the total sum of the weights and dividing 
this number by the capacity of the bins. 

Since we are dealing with integers, the number of bins we need must be at least 
where . 

(Note that  denotes the smallest integer that is greater than or equal to x). 

Clearly, the number of bins must always be an integer. In Example 1, since  is 40 and 
C is 10, we can conclude that there is hope of using only 4 bins. 

However, neither Next Fit nor First Fit achieves this value with the list given in Example 
1. Perhaps we need a better procedure. 
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Basic ideas Best Fit (BF) and Worst Fit (WF) 
 

Two other simple methods in the spirit of Next Fit and First Fit have also been looked at. 

These are known as Best Fit (BF) and Worst Fit (WF). 

For Best Fit, one again keeps bins open even when the next item in the list will not fit in 
previously opened bins, in the hope that a later smaller item will fit. 

The criterion for placement is that we put the next item into the currently open bin (e.g. 
not yet full) which leaves the least room left over. (In the case of a tie we put the item 
in the lowest numbered bin as labeled from left to right.) 

For Worst Fit, one places the item into that currently open bin into which it will fit with 
the most room left over. 
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Basic ideas Best Fit (BF) and Worst Fit (WF) 
 

The amount of time necessary to find the minimum number of bins using either FF, WF 
or BF is higher than for NF. What is involved here is n log n implementation time in 
terms of the number n of weights. 

The distinction between First Fit, Best Fit and Worst Fit: 

o suppose that we currently have only 3 bins open with capacity 10 

o remaining space as follows: 


 Bin 4, 4 units, 

 Bin 6, 7 units, and 

 Bin 9 with 3 units. 

Suppose the next item in the list has size 2. 

First Fit puts this item in Bin 4, Best Fit puts it in Bin 9, and Worst Fit puts it in Bin 6! 

One difficulty is that we are applying "good procedures" but on a "lousy" list. If we know 
all the weights to be packed in advance, is there a way of constructing a good list? 
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Basic ideas 

Bin packing is a very appealing mathematical model, and yet work on this problem is 
surprisingly recent. As an organized subject this topic is only about 35 years old. Major 
pioneers and contributors in working on this problem are Edward Coffman, Jr., Michael 
Garey, Ronald Graham, and David Johnson.  

 
Department of Industrial Engineering and Operations Research, Computer Science Department, President, 
Armstrong Memorial Research Foundation 
Columbia University 

Edward Coffman, Jr. 
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Michael Garey 

 

 

 
Ronald Graham  

 

 
David Johnson  
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More approaches to bin packing 
 

All of the algorithms we have discussed so far have the property that the fact that there 
may be more items in the list to pack (farther to the right than one being currently 
worked on) does not affect what is done to pack the current item. 

Such algorithms are known as on-line. 

The idea for on-line algorithms, whether they are being used to solve bin packing 
problems or other combinatorial optimization problems, is that 
 

� not all the components of the problem are known in advance  

In the bin packing case one can imagine an industrial situation where items with different 
weights are being produced and then are being placed in bins which are at some stage 
to be shipped to customers.  
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More approaches to bin packing 
 

In contrast to an on-line point of view is the possibility of using an off-line approach. 


 one thinks of having all of the items to be packed in advance. 
 


 one can ask for the given weights to be packed if there is some rearrangement of 
the weights into a list different from the original which might be used to give a better 
result for the number of bins required.  
 


 If there are n items to pack, the number of potential lists for these n items is n!, since 
the first item can be chosen in n ways, the second in n-1, etc., giving n! as the 
number of different possible lists.  
 


 choosing a list for an optimal packing has the flavor of looking for a needle in a 
haystack. (Even for 20 items to pack, say, 20! is a very large number.) 
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More approaches to bin packing 
 

In the on-line environment using FF, for example, at a given stage one may have so 
many open bins that it becomes economically unrealistic to have so many empty bins 
being monitored in the hope that later items will fit efficiently into them.  

This suggests a version of bin packing where one seeks a packing heuristic but is limited 
to having at most  bins open at a given time.  

These heuristics are known as bounded-space on-line heuristics.  

For the heuristics discussed above one can try to develop a K open bin bounded space 
version of the heuristic.  

However, the situation for  open bins raises some tantalizing issues. Not only do 
we have the option of specifying the way the bins are packed, we have an option of 
specifying when a bin will be shut down (closed permanently) other than when it is 
completely full!  
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More approaches to bin packing 
 

Suppose that we have  open bins and we now must pack a weight which does not fit 
into any of the open bins.  

Since we must open a new bin, we have to choose an old bin to shut down.  

This can be done either by  


 picking the lowest numbered bin to shut down (this is in the spirit of FF) or by  

 shutting down the bin which is closest to being completely full (this is in the spirit of 

BF). 

Using either the FF or BF packing rule with the FF or BF closing rule, we get four(!) 
new heuristics in the  open bin environment.  
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More approaches to bin packing 
 

In Example 1 we noticed that the very large item to pack at the end of the list made it 
necessary to have an extra bin opened at the end. 

Intuitively, it seems like a good idea to try to pack large items first. 

This is the same strategy you would use to pack a suitcase for a vacation; you would 
not leave a large-volumed item to the end! 

This suggests the following approach to off-line bin packing. 

Choose the list where the weights appeared in sorted order, from largest to smallest. 
Now use any of the algorithms that we have discussed to carry out the packing. 

We have already discussed four packing algorithms: NF, FF, BF, and WF and 

We now have four new approaches which we will call NFD, FFD, BFD, and WFD where 
in each case the "D" refers to decreasing. 

For example, FFD means First Fit Decreasing, and would give rise to the packing for the 
weights in Example 1 shown below. Note that this packing is optimal. 
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More approaches to bin packing 
 

 
Not only can one not pack these weights into fewer bins but also there is no wasted 

space.  

Of course, there are many situations where optimal packings still have unused space.  
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More approaches to bin packing 
 

Among all packings of this kind one might look for that packing with various 
characteristics, say, that the fewest bins have extra space. 

Alternatively, one might want a packing where the number of bins used is minimal but 
as many bins as possible have some extra room. (A little extra space might allow 
putting packing material into the bin to prevent breakage during shipment.) 

Once one has an optimal packing, one can often either rearrange the items in one of the 
bins or between bins in a way that achieves some secondary goal beyond minimizing 
the number of bins. 

The fact that FFD yielded an optimal solution in Example 1 does not mean that this will 
be the case for other problems the method is applied to. 

Perhaps you are not surprised to learn that First Fit Decreasing does not always yield 
optimal solutions. Here is an example: 
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More approaches to bin packing 
 

Example 2: 

Suppose that one has bins of capacity 20.  

What would be the fewest bins needed to pack weights of size 4, 8, 7, 10, 3, 8?  
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More approaches to bin packing 
 

Since the sum of the weights is 40, with bins of capacity 20 a packing with only 2 bins 
might be achieved.  

In fact there is indeed a packing needing only two bins:  


 Bin 1: 8, 8, 4 and  

 Bin 2: 10, 7, 3.  

In this notation the item of weight 8 is at the bottom of Bin 1, next comes the item of 
weight 8, and the item of size 4 occupies the space at the top of the bin. Note that this 
solution is not unique because the items within the bin can be permuted.  

However, with this particular list none of the procedures, NF, FF, BF, WF, NFD, FFD, 
BFD, or WFD yields an optimal number of bins.  

In each case 3 bins are required, as you can check for yourself.  

If one had been given, say, the list 8, 4, 8, 10, 7, 3 then NF, FF, BF, and WF would all 
give rise to an optimal packing (with the weights packed slightly differently from the 
solution given above). 

© 2022 A. Tchernykh. Scheduling   Binpacking   27 

More approaches to bin packing 
 

After finding eight appealing heuristics or approximation algorithms in the search to find 
an optimal solution to the bin packing problem, 

One might be tempted to wonder if finding an optimal solution to bin packing is very hard! 

Mathematicians have attempted to show that some problems are indeed very hard using 
a variety of approaches. 

One of these approaches involves showing that a problem is NP-complete. 

Intuitively, a problem Z is NP-complete when it has been shown that if this problem can 
be solved in polynomial time, then so can a very large number of other problems; 

while if Z can be proved to require an exponential amount of time to solve, then so will 
all of the other problems. 

Thus, the NP-complete problems are thought to be hard to solve but either all of the 
problems are, in fact, not really that hard (in the sense of only requiring polynomial 
work) or all of the problems actually require an exponential amount of work to solve. 
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More approaches to bin packing 
 

Since many NP-complete problems are of great importance for applications in 
operations research (management science), the fact that mathematicians and 
computer scientists are unsure of the status of the NP-complete problems is 
frustrating! 

You guessed it--the "decision version" of bin packing is known to be NP-complete. That 
is, given a capacity C and a list L of weights and an integer D the problem of 
determining if the weights in L can be packed into D or fewer bins of capacity C is NP-
complete. 

Thus, finding approximately optimal solutions for bin packing in polynomial time is 
probably the best we can hope for. 
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Applications of bin packing 
 

So far we have alluded to only a few applications of bin packing, such as packing trucks 
with weight capacity C. (Realistic versions of truck packing problems typically go 
beyond issues of one-dimensional bin packing.) 

There is an important connection between bin packing and another very important 
collection of operations research questions, often referred to as machine scheduling 
problems. 

Consider the problem of scheduling identical machines with tasks that are independent 
of each other, that is, the tasks can be done by the machines in any order. 

Each of the tasks has a time that is necessary to complete it on one of the machines. 

More complex machine scheduling problems have to deal with the problem that often 
some tasks cannot be worked on before other tasks are completed. 
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Applications of bin packing 
 

Suppose one wants to know what is the minimum number of machines which are needed 
to finish a collection of independent tasks by time T with times to complete the tasks 
of ?  

As you probably realize this question is bin packing with a very minimal disguise (change 
t to w; T to C)!  

For example, suppose one has photocopying jobs of varying numbers of pages that 
have been brought into a photocopy shop. 

If the shopkeeper wants the automatic work of the machines to enable her to go home 
within 3 hours of the start of the photocopy tasks, how many machines would have to 
be available to do the work, and how should the jobs be assigned to the machines? 

 

http://www.ams.org/featurecolumn/archive/bins5.html 
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Bin Packing and Machine Scheduling 

 

Feature Column Archive 
http://www.ams.org/featurecolumn/archive/packings1.html 
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Bin Packing and Machine Scheduling. Introduction 

 

Packing ads into breaks is an example of a bin packing problem.  

Packing a collection of ads of different lengths into the minimum number of bins of 
fixed size (the length of the ad break). 

 
Scheduling problems are present in the operation of all large systems:  

 scheduling classes in schools; 

 scheduling planes, trains, and buses in the transportation sector of the economy; 

 scheduling machines in the manufacture of the products.  
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Bin Packing Insights into solving hard problems 
 

The one-dimensional bin packing problem belongs to the complexity class of a group of 
problems for which no known algorithm solves the problems in a polynomial time 
function (polynomial in the number of weights) of effort.  

The next step was to see how badly the various appealing "heuristic algorithms" which 
might be used to solve them might behave.  

We can think of a heuristic algorithm (one not always guaranteed to find the optimal 
solution to a problem) as finding an "approximate" solution to a problem.  

We can now ask the question:  

Given a collection of weights and bins of capacity C, 

how many bins--compared with the optimum number actually required--do these 
approximation algorithms require?  
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Bin Packing Insights into solving hard problems 
 

Suppose we are given weights, a capacity, a list L, and an algorithm A.  

Denote by  


  the optimum number of bins,  


  the number of bins which are required by algorithm A applied to list L. 

How do OPT(L) and A(L) compare in size? To answer questions such as this, one can 
apply mathematical arguments to show that: 

 

where r is some positive constant.  

One can then try to show by way of examples that the  in the equation above can 
actually occur. 
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Bin Packing Insights into solving hard problems 
 

Many researchers in mathematics and computer science have contributed to insights 
in this vein for the literally dozens of different algorithms that have been investigated 
to understand one-dimensional bin packing. 

Suppose we are dealing with the heuristic NF, Next Fit. It is not difficult to see that 
Next Fit obeys: 

 

In the case where the capacity of the bins is 1, two consecutive bins that are packed 
by Next Fit can not both be filled to less than the halfway mark. 

The reason is that the contents of two such bins would then fit in only one of the bins, 
because of the way Next Fit fills the bins. 
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Bin Packing Insights into solving hard problems 
 

The proof of the inequality above uses this fact.  

For a further insight, consider the following list of weights for the case where the bins 
have capacity 1: 

 

where N is a positive integer which is 2 or bigger.  

NF applied to this list will produce a packing which has 2N bins, each bin packed with 
an item of weight 1/2 at the bottom and an item of weight on top. 

However, the optimal packing for this list uses N + 1 bins: N bins, each with two 
weights of size 1/2, and one additional bin to contain the N items of size . 
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Bin Packing Insights into solving hard problems 

Below are some diagrams to help visualize the packing which is optimal versus what 
happens when NF is used. 

 
The optimal packing has N copies of the one bin pictured on the far left and one copy 

of the next bin. The NF packing has 2N copies of the bin on the far right. The blue 
denotes unused space.  
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Bin Packing Insights into solving hard problems 
 

This analysis shows that we have a family of lists for which 

 

Over a period of about 30 years, researchers have examined a wide variety of variants 
of bin packing algorithms and obtained increasingly better worst case analyses of the 
different algorithms.  

For example, First Fit does significantly better than NF but not spectacularly so: 

 

where , the ceiling function, denotes the smallest integer greater than or equal to y.  
Intuitively, one would expect the "decreasing" heuristics to work better and this turns 
out to be the case.  
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Bin Packing Insights into solving hard problems 
 

For First Fit Decreasing we have the result: 

 

In addition to analyzing the worst-case performance of bin packing algorithms, one can 
also see how different heuristics perform on the average. 

Initially, doing simulations sometimes only hints at results. However, insights gleaned 
from these simulations often lead to probability models in which precise results can 
be obtained. 
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Applications of bin packing 

Many applications of bin packing come to mind. For example,  


 placing computer files with specified sizes into memory blocks of fixed size, or  

 the recording of all of a composer's music, where the length of the pieces to be 

recorded are the weights and the bin capacity is the amount of time that can be 
stored on an audio CD (about 80 minutes) 

One power of mathematics is that, having abstracted the problem of packing bins with 
weights, there are many situations to which the mathematical techniques apply 


 First Fit heuristic can be used in these different situations 

We can now go out and look for problems where bin packing and the algorithms which 
have been developed to get insights into this problem can be put to use 

However, applying mathematics originally developed in one context to other applications 
contexts which have "additional aspects" to them, encourages one to improve on the 
mathematics that has been done already 
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Applications of bin packing 
The problem of preparing a collection of musical pieces to store on audio compact discs. 

 An audio CD has a maximal capacity; in that regard it follows the bin packing model 

 The pieces one wants to put on the compact discs play the roles of the weights, and  

 one would not want to have a piece start on one compact disc and finish on another 

But there is a subtlety here. Classical music pieces often come in sections called 
movements. 

 Although ideally one would prefer to have whole pieces on each CD,  

 it might be "acceptable" to keeping costs down and give consumers more value for 

their money 
o  the first three movements of a symphony on one CD and the last movement at 

the beginning of the next CD. 
If we just treat the weights as movements, we cannot guarantee that all of the heuristics 

which might be applied to fitting the music onto the compact discs would respect the 
fact that the weights which correspond to the movements of a piece must be packed 
in order of the movements. 

This additional constraint on the problem might inspire one to find specialized algorithms 
for solving bin packing problems where some of the weights need to be packed in a 
particular order.  
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Applications of bin packing 
 

Inspired by various "packing" situations here are a variety of "extensions" of the original 
bin packing model that might surface: 

a. Packings in which the number of items that can be placed in a bin is restricted in 
advance not to exceed a certain number. 


 This restriction might be required in the situation where one is packing trucks.  

b. Restrictions on items which can be placed into the same bin. 


 This restriction might come about if items are being shipped from A to B in bins. In 
order to guarantee that if one bin gets lost or destroyed in transit to B, one could 
send redundant items and require that they not be packed in the same bin. 


 An alternate scenario is that the items being packed may be generating heat, 
perhaps because they have some level of radioactivity. Now one desires that the 
items in one bin not only fit in the bin but that the items not generate too much heat 
during the period they are in the bins.  
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Applications of bin packing 
 

c. Packings in which there is an ordering attached to some of the weights which limits 
the way those items can be packed. 


 This restriction is in the sprit of the example discussed in a little detail above where 
music is being packed into compact discs of the same size.  

d. Packings in which the items being packed may be allowed to disappear during the 
packing process.  


 Thus, an item placed in a bin which has not yet been closed may be allowed to be 
removed from the bin either because fewer bins will be needed once this item is 
transferred to another bin, or because sometimes items not only enter the system 
but also leave the system.  
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Applications of bin packing 

Here is a scenario which offers a potential applications environment for this variant of 
bin packing.  

Imagine that when items are packed, a test is started to determine if the item which has 
been packed has spoiled. This test takes a certain amount of time to complete.  


 If the packed item is put into a bin which is closed before the testing period is done, 
the packed bin is just shipped out. 


 However, if the bin is still open during the period of packing and the finished test 
shows the item to have spoiled, then this item can be removed and the space used 
for items that haven't spoiled. 

With cleverness one can perhaps find additional unexpected uses here. 

One interesting variant of the bin packing problem involves a loosening of the 
requirement that all the bins have the same size.  


 Suppose that we have bins of a standard capacity or size, say 1, and we think of 
this capacity also as having a cost of 1. 
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Applications of bin packing 

Suppose that we can occasionally imagine that bins are stretched or enlarged but we 
must pay a penalty for doing this. 


 The penalty or cost takes the form that a bigger bin is used.  

 The goal is to pack the weights into stretched bins if necessary so that the total cost 

is a minimum.  

In the standard one-dimensional bin packing problem, the bins are assumed to have the 
same size,  

but you may enjoy formulating a variety of problems with a limited number of sizes for 
bins where one wants to pack the weights so that the total size of the bins used is as 
small as possible.  

You may also want to think up applied situations where problems such as these might 
arise 
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Applications of bin packing 

Another variant which uses the word bin but is in many ways quite far from the classical 
bin packing problem has to do with the common phenomenon of recycling bins. 

For simplicity we will assume that we have a collection of bins which contain three types 
of glass: clear, brown, and frosted.  


 The goal is to sort the different kinds of glass so that after the sorting process one 
bin has only clear glass, one only brown glass, and one only frosted glass. 

We do not specify which of the bins is to have which kind of glass, but one can imagine 
another variant where the bins are specified beforehand. 


 The goal of the problem is to conduct the sorting with as few moves as possible. 
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Bin packing and machine scheduling 
 

The essence of mathematical modeling is controlled simplification.  


 One takes the situation outside of mathematics, holds onto essential aspects of the 
problem and disregards "details" that are secondary to the situation. 


 If one is fully successful doing this process, then after the mathematical problem 
associated with the model is solved, the mathematics can be used to get important 
insights into the original problem even though significant detail of the original 
problem was disregarded.  


 To some extent the creation of the mathematics problem known as bin packing grew 
out of attempts to get insight into problems outside of mathematics.  
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Bin packing and machine scheduling 
 

The range of scheduling problems makes it virtually impossible for one mathematical 
model to be useful in all situations. 

How is bin packing connected with machine scheduling? 

Suppose that we have tasks which take differing times to complete which can be 
performed in any order on identical machines. 

Our goal is to determine the minimum number of machines needed to finish the tasks 
by a fixed time. 

The fixed desired completion time corresponds to the capacity of the bins, and weights 
can be thought of as the times to do the tasks. 

When we find the minimum number of bins needed to pack the weights we are finding 
the minimum number of machines needed to finish by the desired time! 
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Bin packing and machine scheduling 
 

Here is a sample of the many complexities that machine scheduling problems have.  

1. A job that must be completed by scheduling the tasks that make up the job often has 
to be carried out on very different kinds of processors.  

Example: To schedule the construction of your dream home requires the completion of 
a gigantic number of steps. One needs a building permit, someone to lay the 
foundation, and someone to put on the roof. The "processors" that must be 
scheduled for doing this work are not interchangeable. Plumbers rarely do electrical 
work and electricians rarely do roofing. 

2 Schedules for the manufacturing of many identical products often require that each 
product get some time on a fixed number of different machines, where there may be 
several identical machines of one kind. 

Example: Manufacturing a computer chip. 
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Bin packing and machine scheduling 

3. When schedules are constructed there are different approaches to how the 
processors work on the tasks assigned.  


 One approach is that once a processor begins work on a task, that processor 
continues until the work on that task is complete.  


 Alternatively, there may be conditions under which a processor will be permitted, 
perhaps even required, to interrupt work on one task to begin another task. 

Examples: Whereas in manufacturing once a machine starts work on a task it usually 
continues to work on it until the task is complete 

In medicine things are somewhat different.  


 When doctors schedule patients, they typically stay with a patient until the task is 
done. 


 An exception would be an ophthalmologist who might put drops in a patient's eyes, 
see another patient while the first patient's pupils are increasing in size, and then 
return to complete the first patient's examination. 


  Similarly, a doctor in regular practice who is seeing a patient who has a head cold 
would probably interrupt her work to see a patient who arrived in the office 
complaining of chest pains.  
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Algorithm for machine scheduling 
 

The scheduling problems we consider are completely deterministic. 


 times for completing every task making up a complex job are known in advance. 


 we are given a directed graph which is called a task-analysis digraph, which 
indicates which tasks come immediately before other tasks. (Note that this digraph 
will have no directed circuit (e.g a way to follow edges and start at a vertex and 
return there) because that would lead to a contradiction in the precedence 
relations between the tasks.) 

o An arrow from task  to  means that task must be completed before task 
can begin.  

Such restrictions are very common in carrying out the individual tasks that make up a 
complex job.  
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Algorithm for machine scheduling 

Also, in the task-analysis digraph below, each vertex, which represents a task, has the 
time for the task inside the circle corresponding to that vertex. 

 
Figure 1 

We want to schedule these six tasks on some fixed number of identical machines in 
such a manner that the tasks are completed by the earliest possible time.  


 This is sometimes referred to as finding the makespan for the tasks that make up the 
job. 

We also want to be specific about which tasks should be scheduled on which machines 
during a given time period. 

We will assume that the scheduling is carried out so that no machine will remain 
voluntarily idle, and that once a machine begins working on a task it will continue to 
work on it without interruption until the task is completed.   
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Algorithm for machine scheduling 

There is an appealing heuristic with which to approach this problem. 

The heuristic has the advantage of being relatively simple to program on a computer, 
and when carried out by hand by different people, leads to the same schedule for the 
tasks (because the ways ties can be broken is specified). 

Typically, the heuristic gives a good approximation to an optimal schedule. This 
algorithm (heuristic) is known as the list processing algorithm. 

The algorithm works by coordinating the scheduling of the tasks on the machines and 
taking account of a "priority list" and then coordinating this list with the demands 
imposed by the task analysis digraph. 

You can think of the given list as a kind of priority list which is independent of the 
scheduling requirements imposed by the task analysis digraph. The tasks are given in 
the list so that when read from left to right, tasks of higher priority are listed first. For 
example, the list may reflect an ordering of the tasks based on the size of cash 
payments that will be made when the tasks are completed.  

Alternatively, the list may have been chosen with the specific goal of trying to minimize 
the completion time for the tasks.   
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Algorithm for machine scheduling 

With respect to constructing a schedule, 

 a task is called ready at a time t if it has not been already assigned to a processor 

and 

 all the tasks which precede it in the task analysis digraph have been completed by 

time t. 

For the task analysis digraph in Figure 1 the tasks ready at time 0 are , , and . 

Remember that we are assuming that machines do not stay voluntarily idle. This means 
that as soon as one processor's task is completed, it will look for a new task on which 
to work.  

In determining what this next task should be, one takes into account where on the priority 
list the task appears, as well as any constraints imposed by the task analysis digraph.  

A machine will stay idle for a period of time only if there are no ready tasks (unassigned 
to other machines) that are ready at the given time. 

The list processing heuristic assigns at a time t a ready task (reading from left to right) 
that has not already been assigned to the lowest-numbered processor which is not 
currently working on a task.  
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Algorithm for machine scheduling 

As an example, consider trying to schedule the tasks in Figure 1 on two machines. 

 I will refer to the two machines which must be scheduled as Machines M1 and M2. 

Suppose we are given the list . At time 0,  


 M1 being idle, and  being ready and first in the list, we can schedule on M1, 
which will keep that machine busy until time 8. 


 M2 is free at time 0 so it also seeks a task to work on at time 0. The next task in the 
list, , is ready at 0 so M2 can start at time 0 on task  
o Both machines are now "happily" working until time 8 when M1 becomes free. 


 Since is next in the priority list, and its predecessors (there are none) are done at 
time 8, M1 can work on this task because it is ready at time 8. 


 However when time 13 comes, M2, just finishing  would like to begin the next task 
in the priority list which has not yet been assigned to a machine.  
o This would be but this task is not ready at time 13 because has not been 

completed.  

 So M2 tries the next task in the priority list, , and this task being ready at 13 (both 

and are done) can be assigned to M2. 
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Algorithm for machine scheduling 


 You can keep track of what is going on in Figure 2 below where the tasks assigned 
to M1 are represented in the top row and the tasks assigned to M2 are shown in the 
bottom row.  
o Idle time on a machine is represented in blue.  

 
Figure 2 

Continuing our analysis of how Figure 2 is generated, what happens when time 19 
arrives, and M2 tries to find an unassigned task in the priority list?  

 Since both task and are not ready at time 19 (because they can only begin 

when is done), M2 will stay idle until time 22 

 At time 22, both machines are free, and in accordance with our tie-breaking rule, 

gets assigned to Machine 1 while gets assigned to M2. 

 The completion time for this list is 34.  
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Algorithm for machine scheduling 
Is this the best we can do?  
One way to check, when task times are integers, is that we know that a lower bound for 

completing the tasks is the ceiling function applied to the following quotient:  

 the sum of all task times divided by the number of machines.  

In this case, we get a lower bound of 30, which means that there is perhaps some hope 
of finding a better schedule, one that finishes by time 30. 

In addition to 30 there is potentially another independent lower bound that we can take 
into account. Suppose we find the length of all the paths in the task analysis digraph. 
In this example, two typical such paths are  and . The lengths of these two 
paths, computed by summing the numbers inside the vertices making up the paths, 
are respectively, 19 and 26. How are these numbers related to the completion time for 
all of the tasks? Clearly, since we are working with directed paths, the early tasks in 
the paths must be completed before the later ones. Thus, the completion time for all 
the tasks is at least as long as the time necessary to complete all of the tasks in any 
of the paths in the task analysis digraph. In particular, the earliest completion time is 
at least as long as the length of the longest path in this digraph. In this example, the 
length of this longest path is 26 and the path involved is  The path in the task 
analysis digraph which has the longest length is known as a critical path. A given task 
analysis digraph has one or more critical paths. (This is true even if the digraph has 
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no directed edges. In this case the length of the critical path is the amount of time it 
takes to complete the longest task.) Speeding up tasks that are not on the critical path 
does not affect this lower bound, regardless of the number of machines available. The 
earliest completion time must still be at least as long as the critical path, despite having 
a lot of processors to do the tasks not on the critical path(s).  

Is it possible to improve the schedule that is displayed in Figure 2? One idea is to use a 
list to prevent the difficulties when lengthy tasks appear late in a list or when tasks on 
the critical path(s) are given "high priority." Thus, one can construct the list which orders 
the tasks by decreasing time (ties broken in favor of tasks with a lower number). The 
decreasing time list in this case would be:  This list leads to a schedule 
with completion time 32. You can practice trying to use the list processing algorithm on 
this list with 2 processors. The result is a schedule that finishes at time 32 with only 4 
time units of idle time on the second processor. Here is the way the tasks are scheduled: 
Machine 1:  Machine 2:  idle from 28-32. Although this schedule is 
better than the one in Figure 2, it may not be the optimal one, because there is still hope 
that a schedule which uses 30 time units on each machine with no idle time is possible.  
Is there another list we could try that might achieve a better completion time? We have 
mentioned that tasks on the critical path are "bottlenecks" in the sense that when they 
are delayed, the time to complete all the tasks grows. This suggests the idea of a critical 
path list. Begin by putting the first task on a longest path (breaking ties with the task of 
lowest number) at the start of the list. Now remove this task and edges that come out of 
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it from the task analysis digraph and repeat the process by finding a new task to add to 
the list that is at the start of a longest path. Doing this gives rise to the list 

 This list, though different from the decreasing time list actually, gives 
rise to exactly the same schedule we had before that finished at time 32. There are  = 
720 different lists that can arise with six tasks, but the schedules that these lists give rise 
to need not be different, as we see in this case.  
We have tried three lists and they each finish later than the theoretical, but a priori 
possible, optimum time of 30. There is also the possibility that there is a schedule that 
completes at time 31, with 2 units of idle time. You can check that no sum of two sets of 
task times yields a value of 30. You can also check that although there are two sets of 
task times (e.g. 13, 12, and 6; 14, 8 7) that sum to 31 and 29, no schedule based on the 
assignment of the associated tasks in order to schedule two machines obeys the 
restrictions imposed by the task analysis digraph. Thus, with a bit of effort one sees that 
the optimal schedule in this case completes at time 32.  
The analysis of this small example mirrors the fact that for large versions of the machine 
scheduling problem, there is no known polynomial time procedure that will locate what 
the optimal schedule might be. This point brings us full circle to why the list processing 
heuristic was explored as a way of trying to find good approximate schedules. More is 
known for the case where the tasks making up the job can be done in any order, so-
called independent tasks. This is the case where the task analysis digraph has no edges. 
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Ronald Graham has shown that for independent tasks the list algorithm finds a 
completion time using the decreasing time list which is never more than  

 
where  is the optimal time to schedule the tasks and  (at least 2) is the number of 
machines the tasks are scheduled on. This result is a classic example of the interaction 
of theoretical and applied mathematics.  
Bin packing, an applied problem, led to many application insights as well as tools for 
solving a variety of theoretical problems. Bin packing relates to some machine 
scheduling problems, which in turn have rich connections with both pure and applied 
problems. Next month, I will explore some of these connections.  
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One-Dimensional Bin Packing Problem 
 

One-dimensional bin packing problem can be described as follows: 

Given a bin capacity  and a list of objects 
{  }, what is the smallest number of bins 
needed to accommodate all of the objects?  

( Each has size , such that . i.e. none of 
the objects too big to fit in a bin) 
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One-Dimensional Bin Packing Problem 
 

Four easily recognisable one-dimensional bin packing problems:  


 A material such as piping or cable is supplied in quantities of a standard length C. 
The demands for pieces of the material are for varying lengths that do not exceed 
C. The idea is to use the least number of standard lengths of the material in 
producing a given set of required pieces. Hence minimising the wastage.  


 Advertisements of arbitrary lengths, must be assigned to commercial break time 
slots on television. Each break must last no longer than three minutes.  


 Removal lorries with set weight limits are to be packed with furniture. The aim is to 
use as few lorries as possible to pack all the items, without exceeding the 
maximum weight in any lorry.  


 A set of tasks with known, arbitrary execution times, need to be executed on some 
identical processors by a given deadline. The problem is to schedule all of the 
tasks onto the least number of machines so that the deadline is met.  

In the last example, time is the critical resource. It is a scheduling problem; the 
processors are the bins, the deadline is the common bin capacity, and the individual 
execution times of the tasks are the objects ( ) in the list. 
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Two-Dimensional Bin Packing Problem 
 

This problem is concerned with packing different sized objects (most 
commonly rectangles) into fixed sized, two-dimensional bins, using as few of 
the bins as possible.  

Stock cutting example 


 quantities of material such as glass or metal, are produced in standard 
sized, rectangular sheets.  


 Demands for pieces of the material are for rectangles of arbitrary sizes, 

 no bigger than the sheet itself.  

 The problem is to use the minimum number of standard sized sheets in 

accommodating a given list of required pieces.  

A variation on the two-dimensional bin packing problem is the strip packing 
problem. 
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Strip Packing Problem 
 
The problem 

 packing a set of n rectangles into an open-ended bin of  

o  fixed width C and 
o  infinite height.  
o the rectangles must not overlap each other 
o The idea is to pack the rectangles in a way that minimises the overall height of the bin.  

The clear difference between this problem and the two-dimensional bin packing 
problem, is that there is only one bin, so instead of trying to minimise the number of 
bins used, the aim is to minimise the height of the single bin.  

All the rectangles must be packed orthogonally. They cannot be rotated and they 
must be packed with their width parallel to the bottom of the bin.  

The rectangles correspond to a set of tasks,  

o heights being the amount of processing time they require 
o widths the amount of contiguous memory (processors) they need. 
o The width of the bin corresponds to the amount of memory (procs) available  
o The aim is to schedule all of the tasks so that they are completed in the least 

possible time 
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Strip Packing Problem 
 

Another common application of the strip packing problem is stock cutting.  

o Material such as cloth, paper, or sheet metal, comes in rolls of a set width. 
o These rolls may need to be cut into rectangles of arbitrary widths and 

heights. 
o The goal is then to cut out all the required rectangles from the shortest 

length of roll possible, so minimising the wastage. 
o the roll of material corresponds to the bin. 
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Strip Packing Algorithms 
 

The problem of finding an optimal solution for the strip packing problem is NP-
complete,  

o Approximation algorithms find near optimal solutions but do not guarantee 
to find the optimal packing for every set of data.  

o Most algorithms pack the rectangles into the bin using one of five 
approaches:  
o bottom left, 
o level-orientated, 
o split, 
o shelf or 
o hybrid. 
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.  
Strip Packing Algorithms 

 

Bottom-left algorithm 

o rectangle to be placed as near to the bottom of the bin as it will fit 
o then as far to the left as it can go at that level without overlapping 

any other packed rectangles.  
o list of rectangles require no pre-sorting 

Level-oriented algorithms 

o The list of rectangles are pre-sorted into order of decreasing height.  
o the packing is done on a series of levels, that the bottom of each 

rectangle rests on.  
o The first level is the bottom of the bin and subsequent levels are 

defined by the height of the tallest rectangle on the previous level.  
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Strip Packing Algorithms 
 

Split algorithms 

The level oriented algorithms split the bin horizontally into blocks of a 
set width.  

Split algorithms split the open ended bin vertically into smaller open 
ended bins depending on the widths of the rectangles. 

The rectangles are first sorted by width. 

Shelf algorithms 

modifications of the level algorithms, that avoid pre-sorting the list of 
rectangles.  

Rather than being determined by the tallest rectangle, the levels are 
fixed height shelves.  

The shelf heights are set by a parameter r.  
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Strip Packing Algorithms 
 

Hybrid algorithms 

These use the characteristics of two or more of the types of algorithms 
described above. They may or may not involve pre-sorting. 
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Strip Packing Algorithms 
 

The Slave Algorithm 

A slave algorithm is the approach that is used to decide which shelf a rectangle 
should be put on once all appropriate shelves have been determined. 

For the level-by-level algorithms, each level, or shelf, in the bin has exactly the 
same width, C. (the width of the bin itself)  

This means that, for each rectangle, once the algorithm has calculated the levels 
it may be placed on, the decision of which of these levels to use is exactly a 
one-dimensional bin packing problem. 

That is, the number of levels being used, corresponds to the number of one-
dimensional bins, of capacity C, that are required. 

This one-dimensional problem is solved by the slave algorithm. 
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Strip Packing Algorithms 
 

There are many one-dimensional algorithms that could be used as the slave 
algorithm, for instance: Next-fit (NF) and First-fit (FF) algorithms. 

 

Next-fit v's First-fit 
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Strip Packing Algorithms 
 

Next-fit algorithm 


  each rectangle is put onto the highest level on which it will fit, i.e. the current 
level of the required specifications.  


 no backtracking is allowed. 

 For example, if the height of the bin corresponded to time, and the time was 

continuously ticking by, you would not be able to go back in time and 
schedule any jobs for earlier points on the bin since that time has already 
passed!  


 if the bin is a strip of material, going along a conveyor belt. The rectangles 
get put into position on the material as it precedes, and at the end of the 
conveyor they get cut out.  


 In these circumstances the levels lower down the bin (closer to the cutters), 
are continuously getting cut up so no more rectangles could be put on these 
levels as they would have missed the cutting process. 
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Strip Packing Algorithms 
 

First-fit algorithm 

o  each rectangle is put onto the lowest (first) level that it will fit on. 
o  most economical choice since it allows to place the rectangles on all 

the levels lower down the bin 
o  suitable to use so long as all the rectangles may be arranged in the 

bin before anything happens to it, e.g. before the jobs are executed, 
or the strip starts to be cut up. Then it is fine to place the rectangles 
anywhere on the bin. 
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Strip Packing Algorithms 
 

On-line v's Off-line 


 whether or not the rectangles required sorting before being placed into the bin.  

 This is an important factor to take into consideration when deciding on an 

appropriate algorithm for a bin packing problem. 

 Consider the situation where the list of rectangles arrives one at a time.  

 When each rectangle arrives it must immediately be assigned its place in the 

bin.  

 Only once this has happened, does the identity of the next rectangle become 

known.  

 This type of environment is called on-line.  

 On-line algorithms must assume no prior knowledge of the rectangles in the 

list, so pre-sorting the list of rectangles is not an option. 
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Strip Packing Algorithms 
 

off-line environment  

o it is possible to view the whole list of rectangles first and so sort them into 
any order before they are placed on the bin.  

o Off-line algorithms assume prior knowledge of the whole problem before 
any packing has to be done. 

An on-line algorithm would be used in a situation where the jobs had to be done 
in order. For example, the items may be subject to different priorities or 
deadlines. 

An off-line algorithm would be used when the order did not matter. For example, 
if pieces of material were being cut out to make a jacket, it would not matter if 
a sleeve was cut out before the collar, just as long as all the required pieces 
were produced in the end.  
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Strip Packing Algorithms 
 

Guillotine Cuts 

Level algorithms and shelf algorithms are both level-by-level packing approaches.  

o use in relation to guillotine cuts. (Level-by-level packings involve every rectangle 
being completely inside or completely outside of each level.  

o This means that every vertical line through a level, intersects at most one 
rectangle)  

o Guillotine cuts are cuts from one edge, across to the other edge of a rectangular 
section of bin, either parallel to its height or its width. I.e. they cut the area of 
rectangle into into two smaller rectangles, since the cuts must go all the way from 
one edge to the other.  

o Level-by-level packings allow for 3-stage guillotine cuts. These involve first some 
horizontal guillotine cuts, then some vertical guillotine cuts and lastly, some more 
horizontal guillotine cuts to trim the rectangles to size. 

The most common need for the ability to perform the 3-stage guillotine cuts is for its 
use in stock-cutting. In a factory situation, the cutting machines are generally set up 
either perpendicular or parallel to the strip of material (glass, sheet metal, etc) and must 
cut from one edge to the other. 
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Strip Packing Algorithms 
 

Level Algorithms and Shelf Algorithms 

You can view demonstrations of all the algorithms explained below by clicking 
on the one you are interested in 

* Next-Fit Decreasing Height * First-Fit Decreasing Height * Next-Fit Shelf * 
First-Fit Shelf *  

The performance of all the demonstrations is assessed, and displayed on the 
screen after all of the rectangles have been placed in the bin. This is shown as 
the percentage of wasted space (space not filled by a rectangle) in the bin. It is 
calculated by finding the ratio of the total area of all the rectangles in the list, 
and the area of bin used to pack them, (the area below the top of the highest 
rectangle). 

Level Algorithms 

Level algorithms are off-line algorithms. Their first step involves pre-sorting the 
list of rectangles into order of decreasing heights, i.e. the first rectangle to be 
packed will be the tallest and the last, the shortest. The packing is then made 
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up of a series of levels. Each rectangle is successively packed into the bin by 
placing its bottom edge so as it rests on one of the levels. The first level is the 
bottom of the bin and each new level is defined by drawing a horizontal line 
across the bin through the top of the tallest (i.e. first) rectangle on the previous 
level. 

Next-fit decreasing height (NFDH) algorithm 

The NFDH algorithm is a level algorithm which uses the next-fit 
approach to pack the sorted list of rectangles. The rectangles are 
packed, left-justified on a level until the next rectangle will not fit. This 
rectangle is used to define a new level and the packing continues on 
this level. The earlier levels are not revisited. 

To view a demonstration of the NFDH algorithm click here 

First-fit decreasing height (FFDH) algorithm 

This is another level algorithm which this time uses the first-fit 
approach. Each rectangle is placed on the first (i.e. lowest) level on 
which it will fit. If none of the current levels have room, a new level is 
started.  

To view a demonstration of the FFDH algorithm click here 
© 2022 A. Tchernykh. Scheduling   Binpacking   81 

Shelf Algorithms 

Shelf algorithms are variants of the level algorithms which avoid pre-sorting 
the list of rectangles. Therefore, unlike the level algorithms, shelf algorithms 
are on-line. To achieve this, the levels, rather than being determined by their 
tallest rectangle, come in fixed sized shelves, whose heights are determined 
by a parameter r, ( 0 < r < 1 ). Each arriving rectangle is classified according to 
its height. Then, the packing is constructed as a series of shelves, with 
rectangles of similar heights being packed onto the same shelves. 

Shelf sizes come in the form . Each rectangle of height h, is packed onto a 
shelf having height , which satisfies the equation, 

 

for some integer value k. The parameter r is pre-specified, and its aim is to 
limit the amount of wasted space allowed on each shelf. You are able to vary r 
in the demonstration applets to see how it affects the packing. 

For small r, (r approximately equal to zero), the range of heights allowed on 
each shelf is large. This would often be required if there was only a small 
number of rectangles to pack, as you would not want every rectangle on its 
own individual shelf with the shelves not getting full up. It would also be useful 
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if the list of rectangles had a wide selection of heights. In general, for small r, 
there would be a fewer amount of shelf heights to choose from, with each shelf 
containing rectangles with a larger range of heights. 

For large r, (r approximately equal to one), each shelf would contain only 
rectangles that were very similar in height. This may be used if the list of 
rectangles was very long, because it would mean the likelihood of each 
different sized shelf becoming full up, would be increased. Another reason for 
having a large r, would be if the rectangles in the list, all had similar heights, so 
the algorithm would distinguish between the smaller differences in height. 
Generally, a large r would produce a wider selection of shelf heights, with the 
rectangles on each shelf having very similar heights. 

Next-fit shelf (NFS) algorithm 

Using the next-fit approach, this algorithm packs each rectangle as far 
to the left as possible on the highest shelf that has the required height. 
(The currently active shelf of this height) If there is no room on this 
shelf, or there is not yet a shelf of this height in the packing, a new 
such shelf is created and becomes the currently active shelf for that 
height. Shelves of the same height, below the active shelf are not 
revisited. 

© 2022 A. Tchernykh. Scheduling   Binpacking   83 

To view a demonstration of the NFS algorithm click here 

First-fit shelf (FFS) algorithm 

With the first-fit approach, the lowermost shelf of the correct height, 
onto which the rectangle will fit, is chosen. If there is no shelf of the 
required height, or none of the appropriate shelves have sufficient 
room, then a new shelf of that height is created. 

To view a demonstration of the FFS algorithm click here 

http://users.cs.cf.ac.uk/C.L.Mumford/heidi/BinPacking.html 
 
http://www.um.es/estructura/equipo/vic-estudiantes/arquimedes2003/pdf/015-
JesusBeltran-EduardoCalderon.pdf 
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Assuming the FIRSTFIT algorithm is applied, the following steps are taken: 
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1.The list of feasible backfill jobs is filtered, selecting only those which will 
actually fit in the current backfill window. 

2.The first job is started. 
3.While backfill jobs and idle resources remain, repeat step 1. 
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BESTFIT
Assuming the BESTFIT algorithm is applied, the following steps are taken: 
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1. The list of feasible backfill jobs is filtered, selecting only those which will 
actually fit in the current backfill window. 

2. The degree of fit of each job is determined based on the 
SCHEDULINGCRITERIA parameter (i.e., processors, seconds, 
processor-seconds, etc) 

3.  The job with the best fit is started. 
While backfill jobs and idle resources remain, repeat step 1. 
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Assuming the GREEDY algorithm is applied, the following steps are taken: 
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1. The list of feasible backfill jobs is filtered, selecting only those which will 
actually fit in the current backfill window. 

2.All possible combinations of jobs are evaluated, and the degree of fit of 
each combination is determined based on the SCHEDULINGCRITERIA
parameter (i.e., processors, seconds, processor-seconds, etc) 

3.Each job in the combination with the best fit is started. 
4.While backfill jobs and idle resources remain, repeat step 1. 
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3. Foundation of Parallel Computing 
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Von Neumann Architecture 
 
1 For over 70 years, virtually all computers have followed a common machine 

model known as the von Neumann computer. Named after the Hungarian 
mathematician John von Neumann.  

2 A von Neumann computer uses the stored-program concept. The CPU 
executes a stored program that specifies a sequence of read and write 
operations on the memory.  

 
3 Basic design: 

� Memory is used to store both program and data instructions  
� Program instructions are coded data which tell the computer to do something  
� Data is simply information to be used by the program  
� A central processing unit (CPU) gets instructions and/or data from memory, 

decodes the instructions and then sequentially performs them.  
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Taxonomies of parallel machines 
 
There are different ways to classify parallel computers. 
 
Most popular classifications are based on 
1 Control and data streams (Flynn taxonomy); 
2 Memory allocation (shared memory, distributed memory, distributed-shared 

memory); 
3 Interconnection 

o static (mesh, hypercube, tree,...); 
o dynamic (bus, crossbar, multistage network, ...) 

4 Distribution in space (centralized and distributed) 
5 Memory access 

o symmetrical multiprocessor, UMA 
o asymmetric multiprocessor, NUMA. 

6 Communication 
o Loosly coupled multiprocessors 
o Tightly coupled multiprocessors 
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Flynn's Classical Taxonomy 
 
1 One of the more widely used classifications, in use since 1966, is called Flynn's 

Taxonomy.  
2 Flynn's taxonomy distinguishes multi-processor computer architectures 

according to how they can be classified along the two independent dimensions 
of Instruction and Data. Each of these dimensions can have only one of two 
possible states: Single or Multiple.  

3 The matrix below defines the 4 possible classifications according to Flynn.  
 

CONTROL 
  Single Multiple 

 
 
DATA 

Single SISD 
Single Instruction, 

Single Data 

MISD 
Multiple Instruction, 

Single Data 
 Multiple SIMD 

Single Instruction, 
Multiple Data 

MIMD 
Multiple Instruction, 

Multiple Data 
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Single Instruction, Single Data (SISD) 
 

1 A serial (non-parallel) computer  
2 Single instruction: only one instruction stream is being acted on by the 

CPU during any one clock cycle  
3 Single data: only one data stream is being used as input during any one 

clock cycle  
4 Deterministic execution 
5 This is the oldest and until recently, the most prevalent form of computer  
6 Examples: most PCs, single CPU workstations and mainframes  

 

____________ 

© A. Tchernykh. Parallel Computing. Foundation, 2022         6 

 
Single Instruction, Multiple Data (SIMD) 
 
1 Single instruction: All processing units execute the same instruction at any 

given clock cycle  
2 Multiple data: Each processing unit can operate on a different data element  
3 One clock 
 
4 Best suited for specialized problems characterized by a high degree of 

regularity such as image processing.  
5 Synchronous and deterministic execution  
6 Two varieties: Processor Arrays and Vector Pipelines  
7 Examples:  

o Processor Arrays: Connection Machine CM-2, Maspar MP-1, MP-2 
o Vector Pipelines: IBM 9000, Cray C90, Fujitsu VP, NEC SX-2, Hitachi S820  
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Multiple Instruction, Single Data (MISD) 
 
Several instructions are operating on a single piece of data. 
 
1 Few actual examples of this class of parallel computer have ever existed  
2 Some possible examples might be:  


 multiple frequency filters operating on a single signal stream  

 multiple cryptography algorithms attempting to crack a single coded 

message.  
 
 
Pipelined vector processor 
Systolic array  

1 could be classified as MISD 
2 if elements of a vector may be considered to belong to the same piece of data  

and all pipeline stages represent multiple instructions that are being applied to 
that vector. 
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Multiple Instruction, Multiple Data (MIMD) 
 

1 most common type of parallel computer  
2 Multiple Instruction: every processor may be executing a different 

instruction stream  
3 Multiple Data: every processor may be working with a different data stream  
4 Execution can be synchronous or asynchronous, deterministic or non- 

deterministic  
5 Examples: most current supercomputers, networked parallel computer 

"grids" and multi-processor SMP computers - including some types of PCs. 
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Pipeline 
 
The principle of pipelining can he exploited in computer architecture at various 
levels: 
 
Pipelining at the gate level 
Instruction  

1 passes through the pipeline 
2 entered and emitted in every cycle. 

 
Instr. 
Fetch 

Instr. 
Decode 

Addr. 
Gener. 

Oper. 
Fetch 

… Exec. 

 
Pipelining at the level of subsystems. 

1 Pipelined arithmetic units are typical examples. 
2 The pipelined operations ADD, MUL, DlV are found in many 

contemporary, even though not typically pipelined, computer structures. 
 
The example of computer with pipeline architecture is well-known CRAY-1 
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Pipeline 
 

A pipeline is analogous to an assembly line. 
1 If each segment of the pipe requires the same amount of time, 
2 increase in the throughput is equal to 

o the number of segments in the pipeline. 
 

 
Pipelining in the context of a high-performance photocopier. 
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Data parallelism 
 

Data parallelism is the use of multiple functional units to apply the same 
operation simultaneously to elements of a data set. 

 
1 A k-fold increase in the number of functional units leads to a k-fold increase 

in the throughput of the system 
2 if there is no overhead associated with the increase in parallelism. 
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Contrasting Pipelining and Data Parallelism 

 
Assume that 
 
o it takes three units of time to assemble. 
o assembly consists of three steps-A, B, 

and C, 
o each step requires exactly one unit of 

time. 
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Three-segment pipeline 
 
Each of the subassembly tasks has been assigned to a separate machine 

1 first machine performs subassembly task every time unit 
2 passes the partially result to the second machine. 
3 second machine performs subassembly task B 
4 third machine performs subassembly task C. 

 
The pipelined assembly machine produces one result in three time units as does 
the sequential machine 

1 After the initial time to fill the pipe, one result appears every time unit. 
2 The second result appears at time unit four 
3 The third one at time unit five, and so on. 
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Three data-parallel assembly machines 
 

1 Each machine performs every subassembly task, as the sequential assembler. 
2 Throughput is increased by replicating machines. 
3 Another three results appear every three time units. 
4 Time needed to produce four results is the same as the time needed to 

produce five or six results. 

 
Speedup achieved by the pipelined and data-parallel machines. 
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Pipeline speedup 
 
Consider n instructions processed in s stages, with t stage delay (cycle time).  
Unpipelined processor:  

1 s stages per instruction 
2 for a total time of nst .  

Pipelined processor:  
1 first instruction finishes in s cycles, 
2 1 cycle for following n-1 instructions, 
3 for a total time of (s+(n-1))t.  

1��
�

ns
nsS

 
If n is large, this approaches s.  
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Systolic Array 
 

 
1 Large number of identical processing elements (PEs).  
2 Each PE has limited local storage 
3 Each PE is only allowed to be connected to neighboring PEs through 

interconnection networks. 
4 PEs are arranged in a well-organized pipeline structure 

o linear 
o two-dimentional array. 



 

____________ 

© A. Tchernykh. Parallel Computing. Foundation, 2022         17 

 
 
 
 
 
 
 
 
 
 

Interconnects 
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Dynamic Interconnects 
 

1 Paths are established as needed between processors  
2 System expansion difficult  
3 Processors are usually equidistant  
4 Examples : Bus based, Crossbar, Multistage networks  
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Static Interconnects 
 

1 Consist of point-to-point links between processors  
2 Can make parallel system expansion easy  
3 Some processors may be "closer" than others  
4 Examples : Hypercube, Mesh/Torus, Tree  
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Interconnect representation 
 
A processor organization can be represented by a graph 

 nodes (vertices) represent processors 

 edges represent communication paths between pairs of processors 
Processor organizations are evaluated according to criteria that help us 
understand their effectiveness in implementing efficient parallel algorithms on real 
hardware. 
 
These criteria are: 

 Diameter. 

 Bisection width. 

 Number of edges per node 

 Maximum edge length 
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Criteria  
 

 The diameter of a network is the largest distance between two nodes. 

 Low diameter is better, 

because the diameter puts a lower bound on the complexity of parallel 
algorithms requiring communication between arbitrary pairs of nodes. 

 
Bisection width of the network. 

 The bisection width of a network is the minimum number of edges that must be 

removed in order to divide the network into two halves (within one). 

 High bisection width is better, 

because in algorithms requiring large amounts of data movement, the size of 
the data set divided by the bisection width puts a lower bound on the 
complexity of the parallel algorithm. 
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Criteria 
 
Number of edges per node 

 It is best if the number of edges per node is a constant independent of the 

network size 

 The processor organization scales more easily to systems with large numbers 

of nodes. 
 

Maximum edge length 
For scalability reasons it is best if the nodes and edges of the network can be laid 
out in three-dimensional space so that the maximum edge length is a constant 
independent of the network size. 
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Full connected  
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Ring 
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Mesh 
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Binary Tree 
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Hypertree 
 

 
Hypertree network of degree 4 and depth 2 

(a)  Front view 
(b)  Side view 
(c)  Complete network. 
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Binary Fat Tree 
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Pyramid 
 

Every interior processor is connected to nine other processors: 
1 one parent, 
2 four mesh neighbors, 
3 four children. 
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Butterfly Network 
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Four-dimensional hypercube 
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Cube-Connected Cycles Networks 
 
The cube-connected cycles network is a k-dimensional hypercube 

1 2k "vertices" are actually cycles of k nodes. 
2 For each dimension, every cycle has a node connected to a node in the 

neighboring cycle in that dimension. 
24-node cube-connected cycles network. 
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Characteristics of networks 
 

 These criteria are: 
1 Diameter. 
2 Bisection width. 
3 Number of edges per node 
4 Maximum edge length 

Network Nodes Diameter Bisection 
Width 

Constant 
Number of 
Edges 

Constant 
Edge Length 

1-D mesh K K-1 1 Yes Yes 
2-D mesh k2 2(k-1) K Yes Yes 
3-D mesh k3 3(k-1) k2 Yes Yes 
Binary tree 2k-1 2(k-1) 1 Yes No 
4-ary hypertree 2k(2k+l-1) 2k 2k+I  Yes  No 
Pyramid (4k2-1)/3 2logk 2k Yes No 
Butterfly (k+1)2k 2k 2k Yes No 
Hypercube 2k K 2k-1 No No 
Cube-connected 
cycles 

k2k 2k 2k-1 Yes No 
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Performance Characteristics of Networks 
 

1 Bandwidth: Maximum rate at which network can propagate information (bits/sec ) 
2 Time of flight: Time it takes for the first bit to reach the receiver (depends among 

others on physical distance). 
3 Transmission time: Time it takes for a message to pass through the network. 

transmission time = (message size)/(bandwidth) 
4 Transport latency: Time it takes for a message to pass through the network. Transport 

latency = time of flight + transmission time 
5 Sender overhead: Time it takes for a sender to inject message into network (start up 

overhead). Mostly independent of message size. 
6 Receiver overhead: Time it takes for a receiver to extract message from network. 

Mostly independent of message size. 
7 Total latency: total latency = sender overhead + time of flight + transmission time + 

receiver overhead  
total latency = overhead + (message size)/bandwidth Time it really takes a message to 
pass from sender to receiver. 

8 Effective bandwidth: effective bandwidth = message size/(total latency) More realistic 
performance indicator than pure bandwidth. Depends on message size. 
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4. Parallel Terminology 
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Parallel Terminology 
 
Some of the more commonly used terms are listed below.  
 
Task  

A logically discrete section of computational work. A task is typically a program 
or program-like set of instructions that is executed by a processor.  

Parallel Task  
A task that can be executed by multiple processors safely (yields correct 
results)  

Serial Execution  
Execution of a program sequentially, one statement at a time. In the simplest 
sense, this is what happens on a one processor machine. However, virtually all 
parallel tasks will have sections of a parallel program that must be executed 
serially.  

Parallel Execution  
Execution of a program by more than one task, with each task being able to 
execute the same or different statement at the same moment in time.  
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Parallel Terminology 
 
Shared Memory  

From a hardware point of view, describes a computer architecture where all 
processors have direct (usually bus based) access to common physical 
memory. 
In a programming sense, it describes a model where parallel tasks all have the 
same "picture" of memory and can directly address and access the same 
logical memory locations regardless of where the physical memory actually 
exists. (Single address space) 
 
Advantages: 

1. Same memory layout as on uniprocessor. 
2. Data sharing between tasks simple. 
3. Data sharing between tasks fast. 

 
Disadvantages: 

1. Synchronization requirements. 
2. Limited scalability of performance. 
3. Progressive increase in cost due to special hardware. 
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Parallel Terminology 
 
Distributed Memory  

In hardware, refers to network based memory access for physical memory that 
is not common. As a programming model, tasks can only logically "see" local 
machine memory and must use communications to access memory on other 
machines where other tasks are executing. 

 
Advantages: 

1. Processor scalability. 
2. Memory scalability. 
3. Each processor can quickly access its own memory. 
4. Cost effectiveness. 

 
Disadvantages: 

1. Requires decomposition of data structures. 
2. Difficult to program. 
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Parallel Terminology 
 
Communications  
Parallel tasks typically need to exchange data. 
 
There are several ways this can be accomplished, such as  

1 through a shared memory 
2 over a network 

 
However the actual event of data exchange is commonly referred to as 
communications regardless of the method employed.  
 

� Embarrassingly parallel  

� Regular and synchronous 

� Irregular and/or asynchronous 
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Embarrassingly parallel problems 
 

� No communication is required 

� Easily load balanced 

� Expect perfect speedup 

� Dynamic load balancing can be done 
using a task farm approach 
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Regular and Synchronous problems  
 

 
� Synchronous (or loosely synchronous) 

communications 

� Reasonable speedup 
� Computation time is grater than communication 

time 
� Size of array is much larger than number of 

processors 
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Irregular and/or asynchronous  

� Cannot be implemented efficiently 

� Usually high communication overhead 

� Careful coding of complex asynchronous 
communication 

� Careful load balancing 

� Difficult to get good speedup 
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Parallel Terminology 
 
Synchronization  

The coordination of parallel tasks in time, very often associated with 
communications. 
 
Often implemented by establishing a synchronization point within an 
application where a task may not proceed further until another task(s) reaches 
the same or logically equivalent point.  
 
Synchronization usually involves waiting by at least one task,  
can therefore cause a parallel application's wall clock execution time to 
increase.  

 

 

____________ 

© A. Tchernykh. Parallel Computing. Foundation, 2022         44 

 
Granularity 
 

 

In parallel computing, granularity is a qualitative 
measure of the ratio of computation to 
communication. 
 

1. Coarse: relatively large amounts of 
computational work are done between 
communication events  

 
2. Fine: relatively small amounts of 

computational work are done between 
communication events  
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Parallel Terminology 
 
Observed Speedup  

Observed speedup of a code which has been parallelized, defined as:  
(time of serial execution)/(time of parallel execution) 
 
One of the simplest and most widely used indicators for a parallel program's 
performance.  

 
Parallel Overhead  

The amount of time required to coordinate parallel tasks, as opposed to doing 
useful work. Parallel overhead can include factors such as:  

1 Task start-up time  
2 Synchronizations  
3 Data communications 
4 Operating System overhead  
5 Software overhead imposed by parallel compilers, libraries, tools, etc.  
6 Task termination time  
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Parallel Terminology 
 
Massively Parallel  

Refers to the hardware that includes a given parallel system - having many 
processors. The meaning of many keeps increasing, but currently means more 
than 1000.  

 
Scalability  

Refers to a parallel system's (hardware and/or software) ability to demonstrate 
a proportionate increase in parallel speedup with the addition of more 
processors. 

 
Factors that contribute to scalability include: 

1 Hardware - particularly memory-CPU bandwidths and network 
communications  

2 Application algorithm 
3 Characteristics of your specific application and coding  
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Parallel Terminology 
 
Peak Performance 
Ppeak = clock frequency * number of processors * number of functional units = 
FLOP (Floating Point Operations per Second) 

1 upper limit to performance 
2 ignores  

o synchronization 
o communication 
o interconnection network capacity 
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Parallel Terminology 
 
Benchmarking 
Many applications do not achieve anywhere near the peak performance, 
particularly on high-performance computers. 
 
Many standard benchmarks have been developed to determine actual 
performance of a computer over a range of applications. 
 
Benchmarks aimed at parallel and vector HPC machines include: 
 

1 LINPACK matrix solver (from SCALAPACK parallel linear algebra library), 
used to rank Top 500 list  

2 NAS Benchmarks (kernels for some NASA fluid dynamics applications) 
3 Others at BenchWeb (www.netlib.org/benchweb/) 

 
Best benchmark is of course to run your applications (or the compute-intensive 
application kernel) on the machine. 
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5. Parallel Computer Memory Architectures 
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Shared Memory 
 
 
General Characteristics:  

1 Shared memory parallel computers vary widely, but generally have in 
common the ability for all processors to access all memory as global 
address space.  

2 Multiple processors can operate independently but share the same memory 
resources.  

3 Changes in a memory location effected by one processor are visible to all 
other processors.  

4 Shared memory machines can be divided into two main classes based 
upon memory access times: UMA and NUMA.  
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Uniform Memory Access (UMA): 
 

1 Most commonly represented today by Symmetric Multiprocessor (SMP) machines  
2 Identical processors  
3 Equal access and access times to memory  
4 Sometimes called CC-UMA  (Cache Coherent UMA). Cache coherent means if one 

processor updates a location in shared memory, all the other processors know about 
the update. Cache coherency is accomplished at the hardware level. 

Advantages:  
1 Global address space provides a user-friendly programming perspective to memory  

Disadvantages:  
1 lack of scalability between memory and CPUs. Adding more CPUs can geometrically 

increases traffic on the shared memory-CPU path 
2 Programmer responsibility for synchronization constructs that insure "correct" access 

of global memory.  
3 Expense: it becomes increasingly difficult and expensive to design and produce 

shared memory machines with ever increasing numbers of processors.  
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Non-Uniform Memory Access (NUMA): 
 

1 Often made by physically linking two or more SMPs  
2 One SMP can directly access memory of another SMP  
3 Not all processors have equal access time to all memories  
4 Memory access across link is slower  
5 If cache coherency is maintained, then may also be called CC-NUMA - 

Cache Coherent NUMA  
 
General Characteristics:  

1 Require a communication network to connect inter-processor memory.  
2 Processors have their own local memory.  
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Parallel Computer Distributed Memory Architectures 
 
Taxonomy 

1 Distributed Memory Supercomputer 
2 Cluster 
3 Local Area Network 
4 Computational Grid 

 
Advantages:  

1 Memory is scalable with number of processors. Increase the number of processors 
and the size of memory increases proportionately.  

2 Each processor can rapidly access its own memory without interference and without 
the overhead incurred with trying to maintain cache coherency.  

3 Cost effectiveness: can use commodity, off-the-shelf processors and networking.  
 
Disadvantages:  

1 The programmer is responsible for many of the details associated with data 
communication between processors.  

2 It may be difficult to map existing data structures, based on global memory, to this 
memory organization.  
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Comparison of Shared and Distributed Memory Architectures 
 

Architecture  CC-UMA  CC-NUMA  Distributed  

Examples  

SMPs  
Sun Vexx  
DEC/Compaq  
SGI Challenge  
IBM POWER3  

SGI Origin  
Sequent  
HP Exemplar  
IBM POWER4  

Cray T3E  
IBM SP2  

Communications  
MPI  
Threads  
OpenMP  

MPI  
Threads  
OpenMP  

MPI  

Scalability  to 10s of procs  to 1000s of procs  to 10000s of procs  

Draw Backs  Limited memory 
bandwidth  

New architecture 
Point-to-point 
communication  

System administration,  
Programming is hard to 
develop and maintain  

 

1 The shared memory component is usually a cache coherent SMP machine.  
2 The distributed memory component is the networking of multiple SMPs. 
3 SMPs know only about their own memory - not the memory on another SMP. 

Therefore, network communications are required to move data from one SMP to 
another. 
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6. Parallel Programming Models 
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Parallel Programming Models 
 
Overview  
 

1 Parallel programming models exist as an abstraction above hardware and 
memory architectures.  

 
 

2 There are several parallel programming models in common use:  
 
o Shared Memory (OpenMP) 
o Threads   (Posix Threads) 
o Message Passing (MPI) 
o Data Parallel   (HPF) 
o Hybrid  
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Parallel Programming Models 
 

1 These models are NOT specific to a particular type of machine or memory 
architecture.  

2 Any of these models can (theoretically) be implemented on any underlying 
hardware. Two examples:  

Shared memory model on a distributed memory machine: 
Machine memory was physically distributed, but appeared to the user as a single 
shared memory (global address space). Has been implemented both 

1 in software (e.g., to provide the shared memory programming model on 
networks of workstations) 

2 in hardware (e.g., using cache consistency protocols to support shared 
memory across physically distributed main memories. ANSI/IEEE Scalable 
Coherent Interface (SCI) standard, IEEE Std. 1596-1992 ) 

 
Generically, this approach is referred to as "virtual shared memory".  
Message passing model on a shared memory machine: MPI on SGI Origin. 
The SGI Origin employs the CC-NUMA type of shared memory architecture, where 
every task has direct access to global memory. However, the ability to send and 
receive messages with MPI, as is commonly done over a network of distributed 
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memory machines, is not only implemented but is very commonly used.
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Shared Memory Model 
 

1 In the shared-memory programming model, tasks share a common address 
space, which they read and write asynchronously.  

2 Various mechanisms such as locks and semaphores may be used to control 
access to the shared memory.  

3 An advantage of this model from the programmer's point of view is that the 
notion of data "ownership" is lacking, so there is no need to specify explicitly 
the communication of data between tasks. Program development can often 
be simplified.  

4 An important disadvantage in terms of performance is that it becomes more 
difficult to understand and manage data locality. 
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Threads Model 
 
1 In the threads model of parallel programming (lightweight processes), a single 

process can have multiple, concurrent execution paths. 
2 Perhaps the most simple analogy that can be used to describe threads is the 

concept of a single program that includes a number of subroutines:  

 The main program performs some serial work, and then creates a number of 

tasks (threads) that can be scheduled and run by the operating system 
concurrently. 


 Each thread has local data, but also, shares the entire resources of the main 
program. This saves the overhead associated with replicating a program's 
resources for each thread. 


 Any thread can execute any subroutine at the same time as other threads.  

 Threads communicate with each other through global memory (updating 

address locations). This requires synchronization constructs to insure that 
more than one thread is not updating the same global address at any time.  


 Threads can come and go, but the main program remains present to provide 
the necessary shared resources until the application has completed.  

3 Threads are commonly associated with shared memory architectures and 
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operating systems. 
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Threads Model 
 

The scheduling of threads will be performed in a similar way as for processes. 
 
Scheduling will be performed on a per-thread basis. In other words, the process-

thread model is a finer grain scheduling model than the process model. 
 
It has numerous advantages 

1 with finer grained entities more parallelism can be exposed 
2 creation of threads or the communication, synchronization or switch among 

threads are far less expensive operations then those for processes, since all 
threads belonging to the same process are sharing the same resources. 

3 most operating systems are based on the process-thread model. 
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Threads Model 
 

4 Standard is prepared to standardize the thread interface (IEEE POSIX 
1003.40). 

5 Many operating systems are taking into consideration this standard. 
 
Threads have a similar lifecycle as the processes and will be managed mainly in 

the same way as processes are. 
 

1 Initially each process will be created with one single thread. 
2 Threads are usually allowed to create new ones using particular system calls 
3 Typically for each process a thread tree will be created. 

Process

Threads
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Threads Model Implementations 
 
From a programming perspective, threads implementations commonly include:  
 

1 library of subroutines that are called from within parallel source code  
2 set of compiler directives imbedded in either serial or parallel source code  

 
In both cases, the programmer is responsible for determining all parallelism.  

 
1 Thread level concurrent execution is termed as multithreading. 
2 Threaded implementations are not new in computing. Historically, hardware 

vendors have implemented their own proprietary versions of threads. These 
implementations differed substantially from each other making it difficult for 
programmers to develop portable threaded applications.  

 
3 Unrelated standardization efforts have resulted in two very different 

implementations of threads: POSIX Threads and OpenMP.  
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POSIX Threads 
 

 
1 Library based; requires parallel coding 
2 Specified by the IEEE POSIX 1003.1c standard (1995).  
3 Commonly referred to as Pthreads.  
4 Most hardware vendors now offer Pthreads in addition to their 

proprietary threads implementations.  
5 Very explicit parallelism; requires significant programmer attention to 

details. 
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OpenMP 
 

1 Compiler directive based; can use serial code  
2 Jointly defined and endorsed by a group of major computer hardware and 

software vendors. The OpenMP Fortran API was released October 28, 
1997. The C/C++ API was released in late 1998.  

3 Portable / multi-platform, including Unix and Windows NT platforms  
4 Available in C/C++ and Fortran implementations  
5 Can be very easy and simple to use - provides for "incremental parallelism"  
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Message Passing Model 
 

1 A set of tasks that use their own local memory during computation. Multiple 
tasks can reside on the same physical machine as well across an arbitrary 
number of machines. 

 
2 Tasks exchange data through communications by sending and receiving 

messages.  
 
3 Data transfer usually requires cooperative operations to be performed by 

each process. For example, a send operation must have a matching receive 
operation.  

 
4 From a programming perspective, message passing implementations 

commonly includes a library of subroutines that are imbedded in source 
code. The programmer is responsible for determining all parallelism.  
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Message Passing Model Implementations 
 

1 Historically, a variety of message passing libraries have been available since 
the 1980s. These implementations differed substantially from each other 
making it difficult for programmers to develop portable applications.  

2 In 1992, the MPI Forum was formed with the primary goal of establishing a 
standard interface for message passing implementations.  

 
PVM had been de-facto standard focused in distributed computing 
 

3 Part 1 of the Message Passing Interface (MPI) was released in 1994.  
4 Part 2 (MPI-2) was released in 1996. Both MPI specifications are available 

on the web:  http://www-unix.mcs.anl.gov/mpi/  
5 MPI is now the "de facto" industry standard for message passing, 

replacing virtually all other message passing implementations. Most, if not all 
of the popular parallel computing platforms offer at least one implementation 
of MPI. Very few have a full implementation of MPI-2.  

 
6 For shared memory architectures, MPI implementations usually don't use a 

network for task communications. Instead, they use shared memory 



 

____________ 

© A. Tchernykh. Parallel Computing. Foundation, 2022         69 

(memory copies) for performance reasons.  
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Other Models  
 

Other parallel programming models besides those previously mentioned 
certainly exist. 
Only three of the more common ones are mentioned here.  

a. Hybrid 
b. SPMD 
c. MPMD 

 
Hybrid:  

1 In this model, any two or more parallel programming models are combined. 
 
2 A common example of a hybrid model is the combination of the message 

passing model (MPI) with either the threads model (POSIX threads) or the 
shared memory model (OpenMP). 

 
3 Another common example of a hybrid model is combining data parallel with 

message passing. As mentioned in the data parallel model section 
previously, data parallel implementations (F90, HPF) on distributed memory 
architectures actually use message passing to transmit data between tasks, 
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transparently to the programmer.  
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Single Program Multiple Data (SPMD) 
 

1 SPMD is actually a "high level" programming model that can be built upon any 
combination of the previously mentioned parallel programming models.  

2 A single program is executed by all tasks simultaneously.  

3 At any moment in time, tasks can be executing the same or different 
instructions within the same program.  

4 SPMD programs usually have the necessary logic programmed into them to 
allow different tasks to branch or conditionally execute only those parts of the 
program they are designed to execute. That is, tasks do not necessarily have 
to execute the entire program - perhaps only a portion of it.  

5 All tasks may use different data  
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Multiple Program Multiple Data (MPMD) 
 
1 Like SPMD, MPMD is actually a "high level" programming model that can be 

built upon any combination of the previously mentioned parallel programming 
models.  

2 MPMD applications typically have multiple executable object files (programs). 
While the application is being run in parallel, each task can be executing the 
same or different program as other tasks.  

3 All tasks may use different data  
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7. Designing Parallel Programs 

 

____________ 

© A. Tchernykh. Parallel Computing. Foundation, 2022         75 

 
Automatic vs. Manual Parallelization 
 

1 Designing and developing parallel programs is a very manual process.  

2 The programmer is typically responsible for both identifying and actually 
implementing parallelism.  

3 Very often, manually developing parallel codes is a time consuming, 
complex and error-prone and iterative process.  

4 For a number of years now, various tools have been available to assist the 
programmer with converting serial programs into parallel programs. 

5 The most common type of tool used to automatically parallelize a serial 
program is a parallelizing compiler or pre-processor.  
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Automatic vs. Manual Parallelization 
 

A parallelizing compiler generally works in two different ways:  
 

1 Fully Automatic  
 

o The compiler analyzes the source code and identifies opportunities for 
parallelism.  

o The analysis includes identifying bottlenecks of parallelism and possibly 
a cost weighting on whether or not the parallelism would actually 
improve performance.  

o Loops (do, for) loops are the most frequent target for automatic 
parallelization.  

 
2 Programmer Directed  
 

o Using "compiler directives" or possibly compiler flags, the programmer 
explicitly tells the compiler how to parallelize the code.  

o May be able to be used in conjunction with some degree of automatic 
parallelization also.  
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Automatic vs. Manual Parallelization 
 
1 If you are beginning with an existing serial code and have time or budget 

constraints, then automatic parallelization may be the answer. 
 
2 There are several important problems that apply to automatic parallelization:  
 

o Wrong results may be produced  
o Performance may actually degrade  
o Much less flexible than manual parallelization  
o Limited to a subset (mostly loops) of code  
o May actually not parallelize code if the analysis suggests there are inhibitors 

or the code is too complex  
o Most automatic parallelization tools are for Fortran 
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Designing Parallel Programs 
 
Problem -> 

Algorithm ->   
Language ->  

Program -> 
Object Code -> 

Execution 
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Homogeneous Parallelization 
 
The work to be done can be broken into identical  (homogeneous) subtask, each 
working on a portion of the total task. 
 
The obvious candidates for homogeneous parallelization are loops composed of a 
finite number of iterations. 
 
 

A

A

A

A

A AA A
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Heterogeneous parallelization  
 
The work to be done is spread over a large number of different subtasks, each of 
which works a discrete portion of the total algorithm. 
 
An algorithm that has multiple independent components, in which each can be 
executed separately, would be a candidate for heterogeneous parallelization. 
 

A

D

C

B

C DBA
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Understand the Problem and the Program 
 
1 The first step in developing parallel software is to first understand the problem 

that you wish to solve in parallel. 
2 If you are starting with a serial program, this necessitates understanding the 

existing code also. 
3 Before spending time in an attempt to develop a parallel solution for a problem, 

determine whether or not the problem is one that can actually be parallelized. 
 

o Example of Parallelizable Problem: Matrix Multiplication 
o Example of a Non-parallelizable Problem:  

Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by 
use of the formula: F(k + 2) = F(k + 1) + F(k) 
 
This is a non-parallelizable problem because the calculation of the 
Fibonacci sequence entail dependent calculations rather than independent 
ones. 
The calculation of the k + 2 value uses those of both k + 1 and k. 
These three terms cannot be calculated independently and therefore, not 
in parallel. 
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Understand the Problem and the Program. Scalar product  
 
Problem: Compute the scalar product c of two vectors a and b of length n. 

Specification: 

�

��
n

i
ii bac

1  
Sequential code: 
 
c = 0; 
for (i=0; i<n; i++) 
{ 
c = c + a[i] * b[i]; 
} 
 
Parallel code:  
 
NO concurrency in sequential code 
 
Problem -> Algorithm -> Sequential code --> NO Parallel code 
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Understand the Problem and the Program. Scalar product 
 
Sequential code -> Modified sequential code -> Parallel code 
 
 
c = 0; 
for (i=0; i<n; i++) 
{ 
tmp[i] = a[i] * b[i]; 
} 
for (i=0; i<n; i++) 
{  
c = c + tmp[i]; 
} 
 
 
Parallel code: 
 
First iteration can be parallelized 
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Understand the Problem and the Program. Loop Distribution 
 
 

1 Code fragment:  
 

        for(i=0;i<n;i++) { 
            a[i]= b[i]+ c[i]*d; 
            c[i]= a[i-1]; 

      } 
 

2 Problem: Dependence carried on a  
3 Solution: Distribute loop into two loops, both are now i parallelizable  
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Understand the Problem and the Program. Fibonacci number 
 
Problem: Compute n-th Fibonacci number 
 
The Fibonacci series is formed by adding the latest two numbers to get the 
next one, starting from 0 and 1:  
  
  0 1 --the series starts like this. 
  0+1=1 so the series is now    0 1 1 
  1+1=2 so the series continues...  0 1 1 2 and the next term is 
  1+2=3 so we now have     0 1 1 2 3  and it continues as follows ... 

 
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ...  

 
Algorithm 1: 
 
fib( n) = if n <= 1 then 1 else fibx( n, 2, 1, 1) 
 
fibx( n, i, val, prev) = if i = n then val + prev else fib( n, i+1, val+prev, val) 
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Understand the Problem and the Program. Fibonacci number 
 
The (recurrence) formula for these Fibonacci numbers is:  

F(0)=0, F(1)=1, F(n)=F(n-1)+F(n-2) for n>1.  
 
Algorithm 2: 
fib( n) = if n <= 1 
then 1 
else fib( n-1) + fib( n-2) 
 
 
An explicit formula for F(n) just in terms of n (not previous terms)  

...236067977.2

...)6180339.0(...6180339.1
)(

nn

nFib ��
�

 
 
Problem -> Alternative Algorithm -> Alternative Sequential code -> Parallel 
code 
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Understand the Problem and the Program. Factorial calculation 
 

 
 

fact1 0    = 1 
fact1 n    = n * fact1 (n - 1) 

(a) 
 

fact2 0    = 1 
fact2 n    =  prod 1 n 
prod m n = if m = n then  m 
     else (prod  m halfway) * ( prod  halfway+1  n ) 
         where halfway  =  m +  (( n  - m) div 2 ) 

 
(b) 
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Understand the Problem and the Program. Matrix Multiplication 
 
Problem: Compute the multiplication c of the two matrices a and b of size n*n 
 

Specification: 

�

��
n

k
jkkiji BAC

1

,,,

 
 
Sequential Code: 
 
for(i=0;i<n; i++) { 
      for(j=0;j<n; j++) { 
         for(k=0;k<n; k++) { 
            c[i][j]+= a[i][k] * b[k][j]; 

      } 
   } 
} 

 
Parallel code: 
 

 

____________ 

© A. Tchernykh. Parallel Computing. Foundation, 2022         91 

different  ways 
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Understand the Problem and the Program. Matrix Multiplication  
 

Loop Reordering 
 
for(k=0;k<n;k++) { 
      for(i=0;i<n;i++) { 
         for(j=0;j<n;j++) { 
            c[i][j]+= a[i][k] * b[k][j]; 

      } 
   } 
} 

 
 

1 Outer loop cannot be parallelized due to dependence carried on a.  
2 Can parallelize i loop, but very little work inside the parallel loop  
3 Interchanging k and j loops does not alter program semantics; however, 

parallelizing the outer i loop creates more work inside the parallel loop  
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Understand the Problem and the Program. Matrix Multiplication 
 
Loop Reordering 
 
void parallel_mm()  { 
  int I, id, nprocs; 
   
  id=m_get_myid(); 
  nprocs=m_get_numprocs(); 
 
  for(i=id;i<n;i+=nprocs) { 
      for(k=0;k<n;k++) { 
         for(j=0;j<n;j++) { 
            c[i][j]+= a[i][k] * b[k][j]; 

      } 
   } 
} 

} 
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Understand the Problem and the Program. Example 
 
Problem: Find a minimum element of n numbers 
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Data and Functional Parallelism 
 
Data parallel: 
loops where each iteration of a loop is independent and represents a simple 
statement and is executed on a different processor  

1   for (i=0; i < 1000; i++) 
2     a[i] = b[i] + c[i]; 

 
Functional parallel: 
loops which cannot be parallelized individually, but the different code blocks are 
independent and are executed on different processors  

3   for (i=0; i < 10; i++)  /* block 1 */ 
4     b[i-1] = b[i] + c[i]; 
5    ... 
6   for (j=0; j < 5; i++)   /* block n */ 

    a[j-1] = a[j] + d[j]; 
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Data Allocation 
 
A two-dimensional array A[0:3, 0:3] is located in 4 memory units. 

 data retrieval within a memory units is sequential 

 retrieval of columns is n times slower than that of rows. 

 
The data could be allocated so that access time for rows and columns will be 
balanced. 
 

0 1 2 3  0 1 3 3 
a00 a01 a02 a03  a00 a01 a02 a03 
a10 a11 a12 a13  a13 a10 a11 a12 
a20 a21 a22 a23  a22 a23 a20 a21 
a30 a31 a32 a33  a31 a32 a33 a30 

 
Versions of matrix allocation in parallel access memory 
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Communications 
 
Most problems do need communication !! 
 
1 (almost) NOT need communications  

� Some types of problems can be decomposed and executed in parallel with 
virtually no need for tasks to share data. For example, 

 image processing operation where every pixel in a black and white 

image needs to have its color reversed.  

 image data can easily be distributed to multiple tasks that then act 

independently of each other to do their portion of the work.  
� These types of problems are often called embarrassingly parallel because 

they are so straight-forward. Very little inter-task communication is 
required.  

2 need communications  
o Most parallel applications are not so simple, and do require tasks to share 

data with each other. For example, 
o 3-D heat diffusion problem requires a task to know the temperatures 

calculated by the tasks that have neighboring data. 
o Changes to neighboring data has a direct effect on that task's data.  
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Synchronous vs. asynchronous communications 
 
� Synchronous communications require some type of "handshaking" between 

tasks that are sharing data. This can be explicitly structured in code by the 
programmer, or it may happen at a lower level unknown to the programmer.  

 
o Synchronous communications are often referred to as blocking 

communications since other work must wait until the communications 
have completed.  

 
� Asynchronous communications allow tasks to transfer data independently from 

one another. For example, task 1 can prepare and send a message to task 2, 
and then immediately begin doing other work. When task 2 actually receives the 
data doesn't matter.  

 
o Asynchronous communications are often referred to as non-blocking 

communications since other work can be done while the 
communications are taking place.  

 
� Overlapping computation with communication is the greatest benefit for using 
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asynchronous communications.  
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Scope of communications 
 
o Knowing which tasks must communicate with each other is critical during the 

design stage of a parallel code. Both of the two scopings described below can be 
implemented synchronously or asynchronously.  

 
 
o Point-to-point - involves two tasks with one task acting as the sender/producer 

of data, and the other acting as the receiver/consumer.  
� ONE Sender 
� ONE Receiver 
� ONE Message 

 
o Collective - involves data sharing between more than two tasks, which are often 

specified as being members in a common group, or collective.  
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Scope of communications 
 


 Collective - Some common variations:  
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Synchronous vs. Asynchronous Communication 
 
Blocking Send - Blocking Receive: 
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Synchronous vs. Asynchronous Communication 
 
Non-Blocking Send - Blocking Receive: 
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Synchronous vs. Asynchronous Communication 
 
Non-Blocking Send – Non-Blocking Receive: 
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8. Synchronization 
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Synchronization 
 
Types of Synchronization:  

1 Barrier  
� Usually implies that all tasks are involved 
� Each task performs its work until it reaches the barrier. It then stops, or 

"blocks".  
� When the last task reaches the barrier, all tasks are synchronized.  
� After that the tasks are automatically released to continue their work.  

 
2 Lock / semaphore  
� Can involve any number of tasks  
� Typically used to serialize (protect) access to global data or a section of 

code.  
� Only one task at a time may use (own) the lock / semaphore.  
� The first task to acquire the lock "sets" it. This task can then safely (serially) 

access the protected data or code.  
� Other tasks can attempt to acquire the lock but must wait until the task that 

owns the lock releases it.  
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Semaphore 
 
Edsger Dijkstra (1965) proposed a semaphore as a synchronization 
mechanism  
 
Semaphores are special variables 

1 non-negative integer values (binary semaphore assumes 0 and 1) 
2 only two operations P and V are defined. 

 
For semaphore S, 

1 operator V is equivalent to S:=S+1 
2 operation P is equivalent to l: if S>0 then S:=S-1 else goto l; 

 
Operation P and V are regard as indivisible, i.e. at any instant only one such 
operation can be executed. 
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Counting vs. Binary Semaphore 
 
Counting Semaphore 

� can take any value 
� V operation never blocks 
� P and V operations do not have to alternate 
� V could always be the first operation 

 
Binary Semaphore 

� Can only take 0 or 1 
� Both P and V operation may block 
� P and V operations must alternate 
� If the initial value is 0, the first operation must be V; 
�  if the initial value is 1, the first operation must be P. 
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Binary vs. Lock Semaphore 
 
Binary Semaphore 

� Has no concept of ownership 
� Any thread can invoke P or V operations 
� Consecutive P or V operations will be blocked 
� Need to specify an initial value 

 
Lock 

� A lock can be owned by at most one thread at any given time 
� Only the owner can invoke unlock operations 
� The owner can invoke lock/unlock operations 
� Does not have to be initialized 
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Dining Philosophers Problem (DPP) 
 
A problem introduced by Dijkstra concerning resource allocation between 
processes. 
The DPP is a model and universal method for testing and comparing theories on 
resource allocation. 
 
The problem consists of a finite set of processes which 

� share a finite set of resources, 
� each of which can be used by only one process at a time, 

thus leading to potential deadlock. 
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Dining philosophers problem (DPP) 
 
Five philosophers sit around a table and think until hungry. 
Interspersed between the philosophers are five forks.  
A hungry philosopher must have exclusive access to both its left and right forks in 
order to eat. If they are not both free the philosopher waits. 
The following algorithm 

1 does not deadlock  
� it never happens that all philosophers are hungry each holding one fork and 

waiting for the other 
2 allows maximal parallelism 

� philosopher never picks up and holds a fork while waiting for the other fork to 
become available when the fork it is holding could be used for eating by its 
neighbor 

3 allows starvation 
� philosopher's two neighbors can collaborate and alternate their eating so the 

one in the middle never can use the forks. 
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Dining philosophers problem (DPP) 
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Dining philosophers problem (DPP) 
 
Each fork is represented by a semaphore and each hungry philosopher does a 
``P'' on its left fork and then its right fork.  
 
We can fix the deadlock problem and retain no starvation but we still do not have 
maximal parallelism.  
 
All philosophers pick up left then right except one designated philosopher who 
picks up right then left.  
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9. Granularity 
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Fine-grain Parallelism 
 

1 Relatively small amounts of computational work are done between 
communication events  

 
Fine grain: implies tens of instructions, e.g. statements in programs  
Each loop iteration of C program is executed on a different processor  
      for (i=0; i < 1000; i++) a[i] = b[i] + c[i]; 

 
2 Low computation to communication ratio  
3 Facilitates load balancing  
4 Implies high communication overhead and less opportunity for performance 

enhancement  
5 If granularity is too fine it is possible that the overhead required for 

communications and synchronization between tasks takes longer than the 
computation.  
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Coarse-grain Parallelism 
 

1 Relatively large amounts of computational work are done between 
communication/synchronization events  

Coarse grain:  
implies thousands of instructions, e.g. functions or procedure calls in programs -- 
Each group of loop iterations of C program representing complex sets of 
statements containing function calls executed on different processor  
for (i=0; i < 1000; i++) a[i] = b[i] + c[i] * work(d[i]); 

2 High computation to communication ratio  
3 Implies more opportunity for performance increase  
4 Harder to load balance efficiently  

 
Which is Best?  
1 The most efficient granularity is dependent on the algorithm and the hardware 

environment in which it runs.  
2 In most cases the overhead associated with communications and 

synchronization is high relative to execution speed so it is advantageous to 
have coarse granularity.  

3 Fine-grain parallelism can help reduce overheads due to load imbalance.  
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10. Limits and Costs of Parallel Programming 
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Performance 
 
The three most commonly used terms used to describe the performance of parallel 
computers and computations are speed-up (absolute, relative), efficiency, cost. 

 pT

T
pS 1�

                                 p
pS

pE �
 

processorsponprogramparalleltheofTime
programsequentialbesttheofTimeSpeedup �

 
 

)( processorperupspeed
processorsofNumber

SpeedupEfficiency ��
 

   
Cost of parallel program = time*number of processors      Cp=T*p 
 
A suitable measure for comparing algorithms is a ratio Sp/Cp = Ep*Sp/T1, 
so that in designing algorithms we try to maximize the product of efficiency and 
speedup. 
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Performance 
 

nodesponprogramparalleltheofTime
nodeoneonprogramparalleltheofTimeSpeeduprelative �

 
 

1 Parallelizability 
2 Used to estimate the relative program performance as the number 

processors increases.  
3 Speed-up provides an indication of the effective number of processors 

utilized 
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Parallel Speedup and Amdahl's Law 
 
When your program runs on more than one CPU, its total run time should be less. 


 But how much less? 

 And what are the limits on the speedup? 

 
 

In 1967, an IBM designer, Gene Amdahl 
made the statement that the bottlenecks 
present in sequential computers would be 
difficult to overcome because even parallel 
solutions involved an overhead that is 
sequential and therefore unlikely to be 
overcome by parallel techniques. 

      Sp

Linear speedup (theoretical)

Reality

p

Figure 2. Speedup



 

____________ 

© A. Tchernykh. Parallel Computing. Foundation, 2022         121 

 
Amdahl's Law 
 
There are two basic limits to the speedup you can achieve by parallel execution: 

1 The fraction of the program that can be run in parallel, pf, is never 100%.  
2 Because of hardware constraints, after a certain point, there is less and less 

benefit from each added CPU.  
 
We can estimate of how much performance is lost using Amdahl's Law. 
 

1 This rule of parallel computation states that the performance gain one may 
achieve from parallelizing a program is limited by the amount of the 
program that runs sequentially. 
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Amdahl's Law 
 

2 If sf, is the portion of a program that runs sequentially, and 
3 pf, is the part that runs in parallel 

(sf,+pf, = 1), 
 

4 parallel speedup is 
 

fffff

ff

spsspps
ps

Speedup 1

/)1(

1

/
�

��
�

�
�

�
  

Suppose pf, = 0.8; 
then Speedup(2) = 1/(0.4+0.2) = 1.67, 
and  Speedup(4) = 1/(0.2+0.2) = 2.5. 
1 The maximum possible speedup --- if you could apply an infinite number of 

CPUs --- would be 1/(1-pf,)=1/s f, 
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Amdahl's Law 
 
The fraction pf, has a strong effect on the possible speedup, as shown in this 
graph: 

 
5 more CPUs you have, the more benefit you get from increasing p f,. 
6 Using only 4 CPUs, you need only pf, = 0.6 to get half the ideal speedup. 
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7 With 8 CPUs, you need pf, = 0.85 to get half the ideal speedup. 
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The expected speedup 
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Amdahl's Law 
 
Expected Speedup 

1 sf pfT T T� � , .
pf

p sf

T
T T

p
� �  

?sfT � ?pfT �
 

sf=?     pf=? 
 
 
Predicting Execution Time with n CPUs 

You can use the calculated value of fp to extrapolate the potential speedup with 
higher numbers of CPUs. For example, if p=0.895 and T(1)=188 seconds, what is 
the expected time with four CPUs?  
 
Speedup(4)= 1/((0.895/4)+(1-0.895)) = 3.04  
T(4)= T(1)/Speedup(4) = 188/3.04 = 61.8 
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Speed up classes 
 
There are three possible relationship between a speedup and the number of 
processors:  

1 Speedup < P, or sublinear speedup;  
2 Speedup = P, or linear speedup;  
3 Speedup > P, or superlinear speedup.  

Practical parallel program consolidates the final answer in one program 
 
1 serial percentage in Amdahl's Law is never zero in practice. 
2 Thus, theoretically linear and superlinear speedups are not possible. 
In reality, however, there are two factors that can be used to produce linear or 
superlinear speedups:  
1 Use of a resource constrained serial execution as the base for speedup 

calculation;  
2 Use a parallel implementation that can bypass large amount of calculation steps 

while yield the same output of the corresponding serial algorithm.  
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Costs of Parallel Programming. Complexity 
 

1 In general, parallel applications are much more complex than corresponding 
serial applications, perhaps an order of magnitude. Not only do you have 
multiple instruction streams executing at the same time, but you also have 
data flowing between them.  

 
2 The costs of complexity are measured in programmer time in virtually every 

aspect of the software development cycle:  
o Design  
o Coding  
o Debugging  
o Tuning  
o Maintenance  

 


