Algoritmos y métodos de calendarización Optimization in Cluster, Grid y Cloud computing

2022
Preliminaries
Scheduling on Parallel Processors Scheduling Multiprocessor Tasks

Dr. Andrei Tchernykh
https://usuario.cicese.mx/~chernykh/

Outline

Topic 3

Scheduling Multiprocessor Tasks

3.2 Scheduling Multiprocessor Tasks

3.2.1 Parallel Processors
3.2.2 Dedicated Processors
3.2.3 Refinement Scheduling
3.3 Scheduling Uniprocessor Tasks with Communication Delays
4.3.1 Scheduling without Task Duplication
4.3.2 Scheduling with Task Duplication
4.3.3 Considering Processor Network Structure
3.4. BinPacking and StripPacking
3.5. Backfill

Outline

Topic 1
Preliminaries
1.1. Objective
1.2. Application areas
1.3. Basic Notions
1.4. The Scheduling ModeI

Topic 2

Scheduling on Parallel Processors
2.1 Minimizing Schedule Length

- Identical Processors
- Uniform Processors
2.2 Minimizing Mean Flow Time
- Identical Processors
- Uniform Processors
2.3 Minimizing Due Date Involving Criteria
- Identical Processors
- Uniform Processors Manufacturing Systems, Springer, pp. 495, 2001 ISBN:3540419314
2.Handbook of Scheduling: Algorithms, Models, and Performance Analysis. Edited by Joseph Y-T. Leung. Published by CRC Press, Boca Raton, FL, USA, 2004
3.J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, J. Weglarz, Handbook on Scheduling. From Theory to Applications, Springer, pp. 647, 2007 ISBN:978-3-540-28046-0

Topic 1: Preliminaries

1.1 Application Area:

- Scheduling in Processor and Operating Systems
- Production Scheduling
- Technical and Industrial Processes
- Control Systems
1.2 Basic Notions
1.3 Scheduling Models
- Deterministic Model
- Optimization Criteria
- Scheduling Problem and $\alpha|\beta| \gamma$ - Notation
- Scheduling Algorithms

© 2022 A. Tchernykh.	Scheduling on Parallel Processors. Due Date Criteria	5

Application Area: Scheduling in Processor and Operating Systems

Questions regarding the scheduling of activities in computers occur at different levels:

- Inside processors: sequencing of micro-operations; pipelining
- scheduling strategies in single processor operating systems:
- round robin
- priority based dispatcher algorithms
- multilevel strategies
- multiprocessor systems, consisting of a CPU, co-processors, and I/O processors: process handling,
assignment of activities to the special purpose processors
- parallel processing on a large number of identical processors as in massive parallelism:

Work distribution, while taking into account the network connectivity and communication delays

Application Area: Scheduling in Processor and Operating Systems

In operating systems there are often hundreds of processes waiting to get access to the processor
Following some implemented strategy, the scheduler decides which process gets the next access

Depending on the particular implementation the strategy takes various
parameters into account, such as

- priority of the process
- its parent priority
- already consumed CPU time
- assigned resources

The scheduler (process dispatcher) is designed to optimize some system performance:

- optimizing throughput: maximize the number of completed processes per time unit
- minimizing the makespan of specified processes
- maximizing profit for the owner of the machine

Application Area: Scheduling in Processor and Operating Systems

- distributed processing (several computers (workstations, PC's, etc.) are connected in a local area network (LAN), or Grids:

Applications like computer integrated manufacturing:

- accesses to scarce network resources
- sequencing the activities
need sophisticated scheduling strategies
- real-time operating systems in parallel or distributed systems need careful handling of activities with deadlines

Application Area: Production Scheduling

Another example of practical interest concerns production systems
Typical in this area is the demand for optimal working plans for assembly lines and for flexible manufacturing machines, e.g. in production cells

General requirements:

- production due dates
- resource balancing
- maximal production throughput
- minimum storage cost

Application Area: Production Scheduling

Examples:

- Control of robot movement has to deal with optical and other data, and concerns the real time coordination of moving the arm(s)
- Assembly lines are of pipeline structure; their optimal design leads to flow shop problems
- Organizing flexible manufacturing machines leads to problems of optimizing lot sizes under the requirement of optimal throughput while minimizing overhead due to tool change delays and other setup costs
- Optimal routing of automated guided vehicles (AGV's) leads to questions that again require careful planning and sequencing

In a manufacturing environment deterministic scheduling is also known as predictive
Its complement is reactive scheduling, which can also be regarded as deterministic scheduling with a shorter planning horizon

Application Area: Technical and Industrial Processes

Activities from

- production planning
- computer aided design
- work planning
- manufacturing
- quality control
have to be coordinated
The objectives are similar: better capacity planning, maximal throughput, minimum storage cost, etc.

Total number of possible solutions

$$
n!\left(\prod_{i=1}^{m} m_{i}\right)^{n}
$$

Application Area: Control Systems

In real-time systems the particular situation dictates conditions different from those before:
some processes must be activated periodically with a fixed rate, and others have to meet given deadlines

In such systems, meeting the deadlines can be a crucial condition for the correct operation of the environment

Examples of application areas are

o aircraft control,
o power plants, heat control, turbine speed control,
o frequency and voltage stabilization etc.,
o security systems in transportation systems such as air bags and ABS

© 2022 A. Tchernykh.	Scheduling on Parallel Processors. Due Date Criteria	13

Basic Notions. Introduction

The notion of task is used to express some well-defined activity or piece of work
Planning in practical applications requires some knowledge about the tasks This knowledge does not regard their nature, but rather general properties such as

- processing times,
- relations between the tasks concerning the order in which the tasks can be processed,
- release times which inform about the earliest times the tasks can be started,
- deadlines that define the times by which the tasks must be completed,
- due dates by which the tasks should be completed together with cost functions that define penalties in case of due date violations,
- additional resources (for example, tools, storage space, data)

Based on these data one could try to develop a work plan or time schedule that specifies for each task when it should be processed, on which machine or processor, including preemption points, etc.

Basic Notions

© 2022 A. Tchernykh.	Scheduling on Parallel Processors. Due Date Criteria	14

Basic Notions. Introduction

Depending on how much is known about the tasks to be processed, we distinguish between three main directions in scheduling theory:

Deterministic or static or off-line scheduling assumes that all information

 required to develop a schedule is known in advance, before the actual processing takes placeEspecially in production scheduling and in real-time applications the deterministic scheduling discipline plays an important role

Non-deterministic scheduling is less restrictive: only partial information is known
for example computer applications where tasks are pieces of software with unknown run-time

On-line scheduling: In many situations detailed knowledge of the nature of the tasks is available, but the time at which tasks occur is open

If the demand of executing a task arises a decision upon acceptance or rejection is required, and, in case of acceptance, the task start time has to be fixed In this situation schedules cannot be determined off-line, and we then talk about online scheduling or dynamic scheduling
Non-clairvoyant scheduling: consider problems of scheduling jobs with unspecied execution time requirements

Stochastic scheduling: only probabilistic information about parameters is available

In this situation probability analysis is typical means to receive information about the system behavior
> For each type of scheduling one can find justifying applications
Here, off-line scheduling (occasionally also on-line scheduling) is considered

© 2022 A. Tchernykh.	Scheduling on Parallel Processors. Due Date Criteria	17

Deterministic Scheduling Problems

- Timing conditions such as task release times, deadlines or due dates may be given

In case of due dates cost functions may define penalties depending on the amount of lateness

- There may be conditions for time lags between pairs of tasks, such as setup delays
- In so-called shop problems sequences of tasks, each to be performed on some specified machine, are defined

An example is the well-known flow shop or assembly line processing

Scheduling problems are characterized not only by the tasks and their specific properties, but also by information about the processing devices
Processors or machines for processing the tasks can be identical, can have different speeds (uniform), or their processing capabilities can be unrelated

Deterministic Scheduling Problems

The deterministic scheduling or planning problems arising in different applications have often strong similarities
hence essentially the same basic model can be used

Common aspects in these applications:

processes consist of complex activities to be scheduled
they can be modeled by means of tasks or jobs

- Tasks usually need one of the available machines, maybe even a special machine, and additional resources of limited availability
- Between tasks there are relations describing the relative order in which the tasks are to be performed
order of task execution can be restricted by conditions like precedence constraints
- Preemption of task execution can be allowed or forbidden

Deterministic Scheduling Problems

The problem is to determine an appropriate schedule, i.e. one that satisfies all conditions imposed on the tasks and processors

A schedule essentially defines the start times of the tasks on a specified processor Generally there may exist several possible schedules for a given set of tasks An important condition describes the intended properties of a schedule, as defined by an optimization criterion
Common criteria are:

- minimization of the makespan of the total task set,
- minimization of the mean waiting time of the tasks

The optimization criterion allows to choose an appropriate schedule
Such schedules are then used as a planning basis for carrying out the various activities

Unfortunately, finding optimal schedules is in general a very difficult process
Except for simplest cases, these problems turn out to be NP-hard, and hence the time required computing an exact solution is beyond all practical means

In this situation, algorithmic approaches for sub-optimal schedules seem to be the only possibility

Deterministic Scheduling Problems

Because of the complexity nature the theory deals with simplified models, and, when dealing with practical problems, rather improper simplifications are made in the corresponding models
as a consequence, there is a big gap between practice and theory
The question arises whether or not the theory of scheduling is of any use for the practice

Hence we are faced with principal questions like

- what can we gain from theory?
- what can theoretical solutions tell us for the application?
- is the still huge effort for solving theoretical problems justified?

The Scheduling Model

The Scheduling Model

- Deterministic Model
- Optimization Criteria
- Scheduling Problem and $\alpha|\beta| \gamma$ - Notation
- Scheduling Algorithms

The Scheduling Model. Deterministic Model

Tasks, Processors, etc.

Set of tasks $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$
Set of resource types $\mathbb{R}=\left\{R_{1}, R_{2}, \ldots, R_{s}\right\}$
Set of processors $\mathscr{P}=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$
Examples of processors:
CPUs in e.g. a multiprocessor system
Computers in a distributed processing environment
Production machines in a production environment
Processors may be

- parallel: they are able to perform the same functions
- dedicated: they are specialized for the execution of certain tasks

The Scheduling Model. Deterministic Model

Parallel processors have the same execution capabilities
Three types of parallel processors are distinguished
o identical: if all processors from set \mathscr{P} have equal task processing speeds
o uniform : if the processors differ in their speeds, but the speed b_{i} of each processor is constant and does not depend on the tasks in \mathcal{T}
o unrelated: if the speeds of the processors depend on the particular task unrelated processors are more specialized: on certain tasks, a processor may be faster than on others

The Scheduling Model. Deterministic Model

Characterization of a task $\boldsymbol{T}_{\boldsymbol{j}}$

- Vector of processing times $p_{j}=\left[p_{i j}, \ldots, p_{m j}\right]$, where $p_{i j}$ is the time needed by processor P_{i} to process T_{j}

Identical processors: $p_{1 j}=\cdots=p_{m j}=p_{j}$
Uniform processors: $p_{i j}={ }^{p}{ }_{j} /_{b_{i}}, i=1, \ldots, m$
$p_{j}=$ standard processing time (usually measured on the slowest processor)
b_{i} is the processing speed factor of processor P_{i}

Processing times are usually not known a priori in computer systems
Instead of exact values of processing times one can take their estimate
However, in case of deadlines exact processing times or at least upper bounds are required
© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 26

The Scheduling Model. Deterministic Model

- Preemption / non-preemption:

A scheduling problem is called preemptive if each task may be preempted at any time and its processing is resumed later, perhaps on another processor
If preemption of tasks is not allowed the problem is called non-preemptive

- Resource requests

besides processors, tasks may require certain additional resources during their execution

Resources are usually scarce, which means that they are available only in limited amounts

In computer systems, exclusively accessible devices or data may be considered as resources

The Scheduling Model. Deterministic Model

In manufacturing environments tools, material, transport facilities, etc. can be treated as additional resources

The resources considered here are assumed to be discrete and renewable
Assumption: \boldsymbol{s} types of additional resources $R_{1}, R_{2}, \ldots, R_{s}$ are available in respectively $m_{1}, m_{2}, \ldots, m_{s}$ units
Each task T_{j} requires for its processing one processor and certain fixed amounts of these additional resources:
resource requirement vector $R\left(T_{j}\right)=\left[R_{1}\left(T_{j}\right), R_{2}\left(T_{j}\right), \ldots, R_{s}\left(T_{j}\right)\right]$
$R_{l}\left(T_{j}\right)$ denotes the number of units of resource R_{l} required

$$
\text { for the processing } T_{j} \quad\left(0 \leq R_{l}\left(T_{j}\right) \leq m_{l}, l=1,2, \ldots, s\right)
$$

Obviously the situation may occur that, due to resource limitations, subsets of tasks cannot be processed at the same time. All required resources are granted to a task before its processing begins or resumes (in the case of preemptive scheduling), and they are returned by the task after its completion or in the case of its preemption

The Scheduling Model. Deterministic Model

T_{i} is called a predecessor of T_{j} if there is a sequence of asks $T_{\alpha_{1}}, \ldots, T_{\alpha_{l}}(l \geq 0)$ with T_{i} $\prec T_{\alpha_{1}} \prec \ldots \prec T_{\alpha_{l}} \prec T_{j}$. Likewise, T_{j} is called a successor of T_{i}.
If $T_{i} \prec T_{j}$., but there is no task T_{α} with $T_{i} \prec T_{\alpha} \prec T_{j}$. then T_{i} is called an immediate predecessor of T_{j}, and T_{j} an immediate predecessor of T_{i}

A task that has no predecessor is called start task
A task without successor is referred to as final task

Special types of precedence graphs are

o chain dependencies: the partial order is the union of linearly ordered disjoint subsets of tasks
o tree dependencies: the precedence relation is tree-like;
out-tree: if all task dependencies are oriented away from the root
in-tree: if all dependencies are oriented towards the root

The Scheduling Model. Deterministic Model

We assume without loss of generality that all these parameters, $p_{j}, r_{j}, d_{j}, \widetilde{d}_{j}, w_{j}$ and $R_{l}\left(T_{j}\right)$ are integers. This assumption is equivalent to permitting arbitrary rational values

Conditions among the set of tasks \mathcal{T} : precedence constraints
$T_{i} \prec T_{j}$ means that the processing of T_{i} must be completed before T_{j} can be started
We say that a precedence relation \prec is defined on set \mathcal{T}
mathematically, a precedence relation is a partial order
The tasks in \mathcal{T} are called dependent
if the relation \prec is non-empty
otherwise, the tasks are called independent

The Scheduling Model. Deterministic Model

Representation of tasks with precedence constraints:

- task-on-node graph (Hasse diagram)

For each $T_{i} \prec T_{j}$, an edge is drawn between the corresponding nodes
The situation $T_{i} \prec T_{j}$ and $T_{j} \prec T_{k}$ is called transitive dependency between T_{i} and T_{k}.
Transitive dependencies are not explicitly represented

The Scheduling Model. Deterministic Model

task-on-arc graph, activity network. Arcs represent tasks and nodes time events Example 1: $\mathcal{T}=\left\{T_{1}, \ldots, T_{10}\right\}$ with precedences as shown by the above Hasse diagram. A corresponding activity network:

Task-on-node

task-on-arc graph ?????

Task-on-node

Task-on-arc

The Scheduling Model. Deterministic Model

Task T_{j} is called available at time t if $r_{j} \leq t$ and all its predecessors (with respect to the precedence constraints) have been completed by time t

Schedules

Schedules or work plans generally ...
inform about the times and on which processors the tasks are executed

To demonstrate the principles, the schedules are described for the special case of:

- parallel processors
- tasks have no deadlines
- tasks require no additional resources

Release times and precedence constraints may occur

The Scheduling Model. Deterministic Model

A schedule S is an assignment of processors to the tasks from \mathcal{T} (or an assignment of the tasks to the processors) such that:
$-\operatorname{task} T_{j}$ is processed in the time interval $\left[r_{j}, \infty\right)$ for p_{j} time units,

- all tasks are completed,
- at each instant of time, each processor works on at most one task,
- at each instant of time, each task is processed by at most one processor,
- if tasks T_{i}, T_{j} are in relation $T_{i}<T_{j}$ then the processing of T_{j} is not started before T_{i} has been completed,
- if T_{j} is non-preemptive then processing of T_{j} is not interrupted; if T_{j} is preemptive then T_{j} may be interrupted only a finite number of times

If all tasks are non-preemptive then the schedule is called non-preemptive If all tasks are preemptive, then the schedule is called preemptive

The Scheduling Model. Schedule representation 1

For practical reasons we assume that the image set of $\zeta^{\mathbb{R}}$ is of finite cardinality In other words, we allow only finitely many changes of activity patterns for the processors

If tasks are processed preemptively this assumption implies only finitely many preemptions for each task

This allows a more practical description of $\zeta^{\mathbb{R}}$ where tuples of $\zeta^{\mathbb{R}}(t)$ are specified only for those points of time at which the value of $\zeta^{\mathbb{R}}$ changes

Between succeeding points of time the task assignment is then considered to be constant

In this connection it makes sense to speak about intervals of task assignments during which the task assignment is constant

The Scheduling Model. Schedule representation 1

Let $s\left(T_{j}\right)$ be the start time of T_{j}, i.e. the earliest point of time at which T_{j} occurs in one of the tuples $S^{\mathbb{R}}(t)$

Let $c\left(T_{j}\right)$ be the completion time of T_{j}, i.e. the end point of the last interval that contains T_{j}
Then $\varsigma^{\mathbb{R}}$ must fulfill the following conditions:

- the sum of lengths of intervals in which T_{j} is processed is $p_{j}(j=1, \ldots, n)$,
- $s\left(T_{j}\right) \geq r_{j}$,
- the task in each tuple are pairwise different or Λ,
- if $T_{i} \prec T_{j}$ then $c\left(T_{i}\right) \leq s\left(T_{j}\right)$

The Scheduling Model. Schedule representation 2

(2) An alternative definition specifies only the start times of the tasks This is, however, improper for preemptive schedules:

A non-preemptive schedule can be defined as a mapping $\zeta^{T}: \mathcal{T} \rightarrow \mathbb{R}^{\geq 0} \times \mathscr{P}$; $\zeta^{T}\left(T_{j}\right)=\left(t, P_{i}\right)$ means that T_{j} is started at time t on processor P_{i}

Let $s\left(T_{j}\right)$ be the start time of T_{j}, and $c\left(T_{j}\right)\left(=s\left(T_{j}\right)+p_{j}\right)$ be its completion time
Then the above conditions translate into:
$-s\left(T_{j}\right) \geq r_{j}$,

- ζ^{T} is total (i.e. ζ^{T} specifies one tuple for each task)
- if $S^{T}\left(T_{j}\right)=\left(t, P_{i}\right)$ then no other task T^{\prime} can have an image $\left(t^{\prime}, P_{i}\right)$ with $t^{\prime} \in\left[t, t+p_{j}\right)$,
- if $T_{i} \prec T_{j}$ then $c\left(T_{i}\right) \leq s\left(T_{j}\right)$

The Scheduling Model. Schedule representation 3

(3) Graphic representation: Gantt chart - this is a two-dimensional diagram

The abscissa represents the time axis that usually starts with time 0 at the origin
Each processor is represented by a line
For a task T_{j} to be processed by P_{i} a bar of length $p\left(T_{j}\right)$ and that begins at the time marked by $s\left(T_{j}\right)$, is entered in the line corresponding to P_{i}

The Scheduling Model. Schedule representation

Example 1: $\mathcal{T}=\left\{T_{1}, \ldots, T_{12}\right\}$ with precedences as shown by the Hasse diagram:

The Scheduling Model. Schedule representation

Example 2: non-preemptive schedule

In the above example, let $(2,2,8,2,3,2,4,4,2,1,3,1)$ be the vector of processing times, and assume all release times $=0$
Assume furthermore that there are 3 identical processors ($\mathscr{P}=\left\{P_{1}, \ldots, P_{3}\right\}$) available for processing the tasks
Gantt chart of a non-preemptive schedule:

The Scheduling Model. Schedule representation

The corresponding formal description by a function $\varsigma^{\mathbb{R}}: \mathbb{R}^{\geq 0} \rightarrow(\mathrm{~T} \cup\{\Lambda\})^{m}$ is:

$$
\zeta^{\mathbb{R}}(0)=\ldots .
$$

The corresponding formal description by a function $\varsigma^{T}: \mathcal{T} \rightarrow \mathbb{R}^{\geq 0} \times \mathscr{P}$ is:

$$
\zeta^{T}\left(T_{1}\right)=\ldots .
$$

The Scheduling Model. Schedule representation

The corresponding formal description by a function $\zeta^{\mathbb{R}}: \mathbb{R}^{\geq 0} \rightarrow(\mathrm{~T} \cup\{\Lambda\})^{m}$ is:

$$
\zeta^{\mathbb{R}}(0)=\left(T_{1}, T_{2}, T_{5}\right), \zeta^{\mathbb{R}}(2)=\left(T_{3}, T_{4}, T_{5}\right), \zeta^{\mathbb{R}}(3)=\left(T_{3}, T_{3}, T_{8}\right), \text { etc. }
$$

The corresponding formal description by a function $\zeta^{T}: \mathcal{T} \rightarrow \mathbb{R}^{\geq 0} \times \mathscr{P}$ is: $\zeta^{T}\left(T_{1}\right)=\left(0, P_{1}\right), \zeta^{T}\left(T_{2}\right)=\left(0, P_{2}\right), \zeta^{T}\left(T_{3}\right)=\left(2, P_{1}\right)$, etc.

The Scheduling Model. Deterministic Model

Given a schedule ς, the following can be determined for each task $\boldsymbol{T}_{\boldsymbol{j}}$:

flow time, turnarround, response $F_{j}:=c_{j}-r_{j}$

$$
\begin{array}{ll}
\text { lateness } & L_{j}=c_{j}-d_{j} \\
\text { tardiness } & D_{j}=\max \left\{c_{j}-d_{j}, 0\right\} \\
\text { tardy task } & U_{j}=\left\{\begin{array}{cl}
0 & \text { if } D_{j}=0 \\
1 & \text { else }
\end{array}\right.
\end{array}
$$

The Scheduling Model. Deterministic Model. Optimization Criteria

Evaluation of schedules

Maximum makespan

$$
C_{\max }=\max \left\{c_{j} \mid T_{j} \in \mathcal{T}\right\}
$$

Mean flow time
Mean weighted flow time
Maximum lateness

$$
\bar{F}:=(1 / n) \sum F_{j}
$$

$$
\overline{F_{w}}:=\left(\Sigma w_{j} F_{j}\right) /\left(\Sigma w_{j}\right)
$$

$$
L_{\max }=\max \left\{L_{j} \mid T_{j} \in \mathcal{T}\right\}
$$

Mean tardiness
$\bar{D}:=(1 / n) \sum D_{j}$
$\overline{D_{w}}:=\left(\sum w_{j} D_{j}\right) /\left(\sum w_{j}\right)$
$\bar{U}:=(1 / n) \sum U_{j}$
Mean weighted sum of tardy tasks

$$
\overline{U_{w}}:=\left(\sum w_{j} U_{j}\right) /\left(\sum w_{j}\right)
$$

The Scheduling Model. Deterministic Model. Optimization Criteria

Given a set of tasks and a processor environment there are generally many possible schedules
Evaluating schedules: distinguish between good and bad schedules
This leads to different optimization criteria

Minimizing the maximum makespan $\boldsymbol{C}_{\text {max }}$

$C_{\max }$ criterion: $C_{\max }$-optimal schedules have minimum makespan the total time to execute all tasks is minimal

Minimizing schedule length is important from the viewpoint of the owner of a set of processors (machines):
This leads to both, the maximization of the processor utilization factor (within schedule length $C_{\max }$), and the minimization of the maximum in-process time of the scheduled set of tasks

The Scheduling Model. Deterministic Model. Optimization Criteria

Minimizing the mean weighted flow time $\overline{\boldsymbol{F}_{w}}$

A schedule is $\overline{F_{w}}$-optimal if the mean flow time of tasks is minimized: the average duration of residence of the tasks is as short as possible

Different weights for the tasks allow to express the urgency of tasks

The mean flow time criterion is important from the user's viewpoint since it yields a minimal mean response time and the mean in-process time of the scheduled task set

The Scheduling Model. Deterministic Model. Optimization Criteria

Deadline related criteria

If deadlines are specified for (some of) the tasks we are interested in a schedule in which all tasks complete before their deadlines expire
Question: does there exist a schedule that fulfills all the given conditions?
Such a schedule is called valid (feasible)
Here we are faced in principle with a decision problem
If, however, a valid schedule exits, we would of course like to get it explicitly
If a valid schedule exists we may wish to find a schedule that has certain additional properties, such as minimum makespan or minimum mean flow

Hence in deadline related problems we often additionally impose one of the other criteria

The Scheduling Model. Deterministic Model. Optimization Criteria

Minimizing the maximum lateness $\boldsymbol{L}_{\text {max }}$

This concerns tasks with due dates
Minimizing $L_{\max }$ expresses the attempt to keep the maximum lateness small, no matter how many tasks are late

Due date involving criteria are of great importance in manufacturing systems, especially for specific customer orders

Minimizing the mean weighted tardiness $\overline{D_{w}}$

This criterion considers a weighted sum of tardinesses
Minimizing mean weighted tardiness means that a task with large weight should have a small tardiness

Minimizing the weighted sum of tardy tasks $\overline{U_{w}}$

This criterion considers only the number of tardy tasks
Individual weights for the tasks are again possible

The Scheduling Model. Deterministic Model. Optimization Criteria

Example 3

Gantt chart of a preemptive schedule:

The Scheduling Model. Deterministic Model. Optimization Criteria

Example 4: non-preemptive schedule with due dates

For the task set as specified before, let in addition due dates be given by the vector $(8,2,16,4,4,8,8,8,10,8,10,11)$.

In the schedule below, task T_{10} with due date 8 violates its due date by two time units.

© 2022 A. Tchernykh.	Scheduling on Parallel Processors. Due Date Criteria

Examples

(1) In the schedule of example 3 the flow time of tasks T_{1} and T_{2} is 2 , that of T_{3} is 11.3 , etc.
(2) In the schedule of example 4 task T_{10} has lateness 2; for all other tasks L_{j} is less than or equal 0 . The tardiness of T_{10}, and it is 0 for all other tasks; hence $U_{10}=1$, and $U_{j}=0$ for all other tasks
(3) In the same schedule task T_{1} has earliness $6, T_{2}$ has earliness 0 , etc.

The Scheduling Model. Deterministic Model. Optimization Criteria

(2) In the schedule of example task T_{10} has lateness ???; for all other tasks L_{j} is less equal ???.

The tardiness of $T_{10}=$????, and it is ??? for all other tasks:
hence $U_{10}=$???, and $U_{j}=$??? for all other tasks
(3) In the same schedule task T_{1} has earliness ??, T_{2} has earliness ??, etc.

Example

Consider the task set as in Example 1, with processing times and due dates as specified in the respective Examples 2 and 3.
processing times $(2,2,8,2,3,2,4,4,2,1,3,1)$,
due dates $\quad(8,2,16,4,4,8,8,8,10,8,10,11)$.

© 2022 A. Tchernykh.

Compute the following values

Criterion	Example 2	Example 3	Example 4
$C_{\max }$			
\bar{F}			
$L_{\max }$			
\bar{D}			
\bar{E}			
\bar{U}			

we compute the following values $r_{j}>=O$ (the smallest values are shaded):

Criterion	Example 2	Example 3	Example 4
\bar{F}	3.33	3.27	3.5

© 2022 A. Tchernykh.	Scheduling on Parallel Processors. Due Date Criteria	65

The Scheduling Model. Scheduling Problems and $\alpha|\beta| \gamma$ - Notation

Scheduling problem Π is defined by a set of parameters for processors, tasks, and an optimality criterion
An instance I of problem Π is specified by particular values for the problem parameters

The parameters are grouped in three fields $\alpha|\beta| \gamma$:
α specifies the processor environment,
β describes properties of the tasks, and
γ the definition of an optimization criterion
The terminology introduced below aims to classify scheduling problems

The Scheduling Model. Scheduling Problems and $\alpha|\beta| \gamma$ - Notation

Component α specifies the processors

$\alpha=\alpha_{1}, \alpha_{2}$ describes the processor environment
Parameter $\alpha_{1} \in\{\varnothing, P, Q, R\}$ characterizes the type of processor parameter $\alpha_{2} \in\{\varnothing, k\}$ denotes the number of available processors:

α_{1}		α_{2}	
\varnothing	single processor	\varnothing	the number of processors is assumed to be variable
P	identical processors	k	the number of processors is equal to $k(k$ is a positive integer $)$
Q	uniform processors	∞	the number of processors is unlimited
R	unrelated processors		

The Scheduling Model. Scheduling Problems and $\alpha|\beta| \gamma$ - Notation

Component β specifies the tasks

$\beta=\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}$ describes task and resource characteristics

Parameter $\beta_{2} \in\{\varnothing, p m t n\}$ indicates the possibility of task preemption

β_{1}	
\varnothing	no preemption is allowed
pmtn	preemptions are allowed

The Scheduling Model. Scheduling Problems and $\alpha|\beta| \gamma$ - Notation

Parameter $\beta_{3} \in\{\varnothing$, prec, uan, tree, chains $\}$ reflects the precedence constraints

$\beta_{3}=\varnothing$, prec, tree, chains: denotes respectively independent tasks, general precedence constraints, tree or a set of chains precedence constraints

Parameter $\beta_{4} \in\left\{\varnothing, r_{j}\right\}$ describes ready times

The Scheduling Model. Scheduling Problems and $\alpha|\beta| \gamma$ - Notation

Parameter $\beta_{2} \in\{\varnothing$, res $\lambda \delta \rho\}$ characterizes additional resources

β_{2}	
res $\lambda \delta \rho$	there are specified resource constraints $\lambda, \delta, \rho \in\{\cdot, k\}$ denote respectively the number of resource types, resource limits and resource requirements
	$\lambda, \delta, \rho=\cdot$
the respective numbers of resource types, resource limits and resource requirements are arbitrary respectively, each resource is available in the system in the amount of k units and the resource requirement of each task is at most equal to k units	

The Scheduling Model. Scheduling Problems and $\alpha|\beta| \gamma$ - Notation

Parameter $\beta_{5} \in\left\{\varnothing, p_{j}=p, \underline{p} \leq p_{j} \leq \bar{p}\right\}$ describes task processing times

β_{5}	
\varnothing	tasks have arbitrary processing times
$p_{j}=p$	all tasks have processing times equal to p units
$\underline{p} \leq p_{j} \leq \bar{p}$	no p_{j} is less than \underline{p} or greater than \bar{p}

Parameter $\beta_{6} \in\left\{\varnothing, \widetilde{d}_{j}\right\}$ describes deadlines

β_{6}	
\varnothing	no deadlines or due dates are assumed in the system
\widetilde{d}_{J}	deadlines are imposed on the performance of a task set

The Scheduling Model. Scheduling Problems and $\alpha|\beta| \gamma$ - Notation

Component γ : Specifying the objective criterion

γ	
$C_{\max }$	schedule length or makespan
ΣC_{j}	mean flow time
$\Sigma w_{j} C_{j}$	mean weighted flow time
$L_{\max }$	maximum lateness
ΣD_{j}	mean tardiness
$\Sigma w_{j} D_{j}$	mean weighted tardiness
ΣU_{j}	number of tardy tasks
$\Sigma w_{j} U_{j}$	weighted number of tardy tasks
-	means testing for feasibility

A schedule for which the value of a particular performance measure γ is at its minimum will be called optimal : The corresponding value of γ is denoted by γ *

The purpose of this chapter was to introduce the basic notions in scheduling theory:

- deterministic scheduling
- scheduling model
- schedule representation and evaluation
- three-field notation

The Scheduling Model. Scheduling Algorithms

A scheduling algorithm for a scheduling problem $\alpha|\beta| \gamma$

$$
\text { constructs a schedule for each instance of } \alpha|\beta| \gamma
$$

In general, we are interested in algorithms that find optimal schedules with respect to γ
the above objective criteria are minimization criteria

Final remark about the presented model:
Though the model considers already quite a number of parameters, it is still very restricted
Modeling practical situations, however, mostly require the inclusion of many more parameters and conditions, in particular for the tasks

Examples are communication times, periodic tasks, coupled tasks, setup times for tasks and resources, renewable resources, multiprocessor tasks, and many more

The Scheduling Model. Summary

Topic 2

Scheduling on Parallel Processors

2.1 Minimizing Schedule Length

- Identical Processors
- Uniform Processors
2.2 Minimizing Mean Flow Time
- Identical Processors
- Uniform Processors
2.3 Minimizing Due Date Involving Criteria
- Identical Processors
- Uniform Processors

Independent tasks

Identical Processors $P \| C_{\text {max }}$

The first problem considered is $P \| C_{\text {max }}$ where

- a set of n independent tasks p_{i}
- on m identical processors
- minimize schedule length.

Identical Processors. List Scheduling

$W_{\text {seq }}=\sum_{i=1}^{n} p_{i}$ be the total work of all jobs
$p_{\text {max }}$ is the maximum processing time of a job.
$W_{\text {idle }}$ be the total idle intervals, $W_{\text {idle }} \leq p_{\max }(m-1)$
$C_{\max } \leq \frac{W_{\text {seq }}+W_{\text {idle }}}{m}$ is the completion time of the set of tasks.
$C_{\max } \leq \frac{W_{\text {seq }}+p_{\max }(m-1)}{m}, C_{\max } \leq \frac{W_{\text {seq }}}{m}+\frac{(m-1)}{m} p_{\max }$
$\frac{W_{\text {seq }}}{m}$ and $p_{\max }$ are lower bounds of $C_{o p t}^{s e q}$, it follows that the worst-case
performance bound is $\rho^{\text {seq }} \leq 2-\frac{1}{m}$.

Identical Processors. LPT Algorithm for P || $C_{\max }$

Approximation algorithm for $P \| C_{\text {max }}$:

One of the simplest algorithms is the LPT algorithm in which the tasks are arranged in order of non-increasing p_{j}.

Algorithm LPT for $P \| C_{\text {max }}$.

begin
Order tasks such that $p_{1} \geq \ldots \geq p_{n}$;
for $i=1$ to m do $s_{i}:=0$;
-- processors P_{i} are assumed to be idle from time $s_{i}=0$ on
$j:=1$;
repeat
$s_{k}:=\min \left\{s_{i}\right\} ;$
Assign task T_{j} to processor P_{k} at time s_{k};
-- the first non-assigned task from the list is scheduled on the first processor that becomes free

$$
s_{k}:=s_{k}+p_{j} ; j:=j+1 ;
$$

until $j=n ; \quad$-- all tasks have been scheduled
end;

© 2022 A. Tchernykh.	Scheduling on Parallel Processors. Due Date Criteria	81

Identical Processors. LPT Algorithm for P || Cmax

Example: $m=3$ identical processors; $n=2 m+1$,

$$
\boldsymbol{p}=[2 m-1,2 m-1,2 m-2,2 m-2, \ldots, m+1, m+1, m, m, m]
$$

Time complexity of this algorithm is O (nlogn)

- the most complex activity is to sort the set of tasks.

$$
\text { For } m=3, p=[5,5,4,4,3,3,3]
$$

(a) an optimal schedule,

(b) LPT schedule.

Identical Processors. LPT Algorithm for P || Cmax

Theorem If the LPT algorithm is used to solve problem $P \| C_{\max }$, then $R_{L P T}=\frac{4}{3}-\frac{1}{3 m}$. \square
an example showing that this bound can be achieved.

Let $n=2 m+1, \boldsymbol{p}=[2 m-1,2 m-1,2 m-2,2 m-2, \cdots, m+1, m+1, m, m, m]$.

For $m=3$, Next figure shows two schedules, an optimal one and an $\angle P T$ schedule.

Identical Processors. LPT Algorithm for P || Cmax

Example: $n=(m-1) m+1, \boldsymbol{p}=[1,1, \ldots, 1,1, m]$, \prec is empty,
$L=\left(T_{n}, T_{1}, T_{2}, \ldots, T_{n-1}\right), L^{\prime}=\left(T_{1}, T_{1}, \ldots, T_{n}\right)$.
The corresponding schedules for $m=4$

Preemptions

Identical Processors, P|pmtn | $C_{\text {max }}$

Problem P|pmtn | $C_{\text {max }}$

- relax some constraints imposed on problem $P \| C_{\text {max }}$ and allow preemptions of tasks.
- It appears that problem $P \mid$ pmtn $\mid C_{\text {max }}$ can be solved very efficiently.

It is easy to see that the length of a preemptive schedule cannot be smaller than the maximum of two values:

- the maximum processing time of a task and
- the mean processing requirement on a processor:

The following algorithm given by McNaughton (1959) constructs a schedule whose length is equal to $C_{\text {max }}^{*}$.

$$
C_{\max }^{*}=\max \left\{\max _{j}\left\{p_{j}\right\}, \frac{1}{m} \sum_{j=1}^{n} p_{j}\right\} .
$$

Identical Processors, P|pmtn | Cmaxю McNaughton's rule

```
Algorithm McNaughton's rule for P | pmtn | C max
begin
C **ax := max{\mp@subsup{\Sigma}{j=1}{n}\mp@subsup{p}{j}{\prime}/m,\operatorname{max}{\mp@subsup{p}{j}{}|j=1,\ldots,n}}; -- min schedule length
t:= 0; i:= 1; j:= 1;
repeat
    if t+ pj \leq C **ax
    then begin
    Assign task }\mp@subsup{T}{j}{}\mathrm{ to processor }\mp@subsup{P}{i}{}\mathrm{ , starting at time t;
    t:= t+ p; ; := j+1;
        -- assignment of the next task continues at time t+ pj
    end
    else begin
    Starting at time t, assign task T}\mp@subsup{T}{j}{}\mathrm{ for C Cmax - t units to }\mp@subsup{P}{i}{*}\mathrm{ ;
        -- task }\mp@subsup{T}{j}{}\mathrm{ is preempted at time C C *ax,
        -- assignment of }\mp@subsup{T}{j}{}\mathrm{ continues on the next processor at time 0
    pj:= p
    end;
until j= n ; -- all tasks have been scheduled
end;
```


Identical Processors, $P|p m t n| C_{m a x}$

k-preemptions: Given $k \in \mathbb{N}$; (The value for k (preemption granularity) should be chosen large enough so that the time delay and cost overheads connected with preemptions are negligible).

- Tasks with processing times less than or equal to k are not preempted
- Task preemptions are only allowed after the tasks have been processed continuously for k time units
For the remaining part of a preempted task the same condition is applied

If $k=0$: the problem reduces to the "classical" preemptive scheduling problem.
If for a given instance k is larger than the longest processing time among the given tasks: no preemption is allowed and we end up with non-preemptive scheduling
Another variant is the exact-k-preemptive scheduling problem where task preemptions are only allowed at those moments when the task has been processed exactly an integer multiple of k time units

Identical Processors, $P \mid$ prec $\mid C_{\text {max }}$

Given: task set T with

- vector of processing times \boldsymbol{p}
- precedence constraints \prec
- priority list L
- m identical processors

Let $C_{\text {max }}$ be the length of the list schedule

Precedence constraints

Identical Processors, $P \mid$ prec $\mid C_{\text {max }}$, Graham anomalies

The above parameters can be changed:

- vector of processing times $\boldsymbol{p}^{\prime} \leq \boldsymbol{p}$ (component-wise),
- relaxed precedence constraints $\prec^{\prime} \subseteq \prec$,
- priority list L^{\prime}
- and another number of processors m^{\prime}

Let the new value of schedule length be $C_{\text {max }}^{\prime}$.
List scheduling algorithms have unexpected behavior:

Identical Processors, $P \mid$ prec $\mid C_{\text {max }}$, Graham anomalies

- the schedule length for problem $P \mid$ prec $\mid C_{\text {max }}$
-

may increase
if:

- the number of processors increases,
- task processing times decrease,
- precedence constraints are weakened, or
- the priority list changes

Identical Processors, $P \mid$ prec $\mid C_{\text {max }}$, Graham anomalies

A new list $L^{\prime}=\left(T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{8}, T_{7}\right)$.

$\left(T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}, T_{8}\right)$.
Processing times decreased; $p_{j}^{\prime}=p_{j}-1, j=1,2, \ldots, n$.

Identical Processors, $P \mid$ prec $\mid C_{\text {max }}$, Graham anomalies

Number of processors increased, $m=3$
(a)

(b)

Figure 4-6 (a) Precedence constraints weakened, (b) resulting list schedule.

Identical Processors, $P|p r e c| C_{\text {max }}$, Graham anomalies

These list scheduling anomalies have been discovered by Graham [Gra66], who has also evaluated the maximum change in schedule length that may be induced by varying one or more problem parameters.
o Let the processing times of the tasks be given by vector \boldsymbol{p},
o let T be scheduled on m processors using list L, and
o let the obtained value of schedule length be equal to $C_{\text {max }}$.

On the other hand, let the above parameters be changed:
o a vector of processing times $\boldsymbol{p}^{\mathbf{\prime}} \leq \boldsymbol{p}$ (for all the components),
o relaxed precedence constraints $<^{\prime} \subseteq<$,
o priority list L^{\prime} and the number of processors m^{\prime}.
o Let the new value of schedule length be Cmax .
Then the following theorem is valid.

© 2022 A. Tchernykh.	Scheduling on Parallel Processors. Due Date Criteria	101

Identical Processors, $P \mid$ prec $\mid C_{\text {max }}$, Graham anomalies

Let $T_{j 1}$ denote a task completed in S^{\prime} at time $C_{\text {max }}$, i.e. $C_{j 1}=C_{\text {max }}$.
Two cases may occur:

1. The starting time $s_{j 1}$ of $T_{j 1}$ is an interior point of B. Then by the definition of B there is some processor P_{i} which for some $\varepsilon>0$ is idle during interval $\left[s_{j 1}-\varepsilon, s_{j 1}\right)$. Such a situation may only occur if we have $T_{j 2}$ ' $T_{j 1}$ and $C_{j 2}=s_{j 1}$ for some task $T_{j 2}$.
2. The starting time of $T_{j 1}$ is not an interior point of B . Let us also suppose that $\mathrm{S}_{j 1}{ }^{1}$ $\neq 0$. Define $x_{1}=\sup \{x \mid x<\sin$, and $x \in \mathrm{~B}\}$ or $x_{1}=0$ if set B is empty.

By the construction of A and B , we see that $x 1 \in \mathrm{~A}$, and processor P_{i} is idle in time interval $\left[x_{1}-\varepsilon, x_{1}\right)$ for some $\varepsilon>0$. But again, such a situation may only occur if some task $T_{j 2}{ }^{\prime} T_{j 1}$ is processed during this time interval.

It follows that either there exists a task $T_{j 2}{ }^{\text {' }} T_{j 1}$ such that $y \in\left[C_{j 2}\right.$, $\left.s_{j 1}\right)$ implies $y \in$ A or we have: $x<s_{j 1}$ implies either $x \in \mathrm{~A}$ or $x<0$.

Identical Processors, $P \mid$ prec $\mid C_{\text {max }}$, Graham anomalies

4.1.3.1 Theorem . Under the above assumptions,
$\frac{C_{\max }^{\prime}}{C_{\max }} \leq 1+\frac{m-1}{m^{\prime}}$

Proof. Let us consider schedule S^{\prime} obtained by processing task set T with primed parameters.
Let the interval [0, Cmax) be divided into two subsets, A and B, defined in the following way:
$\mathrm{A}=\left\{t \in\left[0, C_{\text {max }}\right) \mid\right.$ all processors are busy at time $\left.t\right\}$,
$B=\left[0, C_{\text {max }}\right)-A$.
Notice that both A and B are unions of disjoint half-open intervals.

Identical Processors, $P \mid$ prec $\mid C_{m a x}$, Graham anomalies

The above procedure can be inductively repeated, forming a chain $T_{j 3}, T_{j 4}, \ldots$, until we reach task $T_{j r}$ for which $x<\operatorname{sig}_{j}$ implies either $x \in \mathrm{~A}$ or $x<0$. Hence there must exist a chain of tasks

$$
T_{j r}<^{\prime} T_{j r-1}{ }^{\prime} \ldots{ }^{\prime} T_{j 2}{ }^{\prime} T_{j 1}
$$

such that at each moment $t \in \mathrm{~B}$, some task $T_{j k}$ is being processed in S^{\prime}. This implies that

$$
\sum_{\phi^{\prime} \in S^{\prime}} p^{\prime} \phi^{\prime} \leq\left(m^{\prime}-1\right) \sum_{k=1}^{r} p_{j k}^{\prime}
$$

where the sum on the left-hand side is made over all idle-time tasks ϕ^{\prime} in S^{\prime}. But by (5.1.8) and the hypothesis \subseteq we have

$$
T_{j r}<T_{j r-1}<\cdots<T_{j 2}<T_{j 1}
$$

Hence,

$$
C_{\max } \geq \sum_{k=1}^{r} p_{j k} \geq \sum_{k=1}^{r} p_{j k}^{\prime} .
$$

we have

$$
C_{\text {max }}=\frac{1}{m^{\prime}}\left(\sum_{k=1}^{n} p k+{ }_{\phi^{\prime} \in S^{\prime}} p^{\prime} \dot{\phi}^{\prime}\right) \leq \frac{1}{m^{\prime}}\left(m C_{\max }+\left(m^{\prime}-1\right) C_{\max }\right) .
$$

It follows that

$$
\frac{C_{\max }}{C_{\max }} \leq 1+\frac{m-1}{m^{\prime}}
$$

and the theorem is proved.
From the above theorem, the absolute performance ratio for an arbitrary list scheduling algorithm solving problem $P \| C_{\text {max }}$ can be derived

Identical Processors, $P \mid$ prec $\mid C_{\text {max }}$, Graham anomalies

Corollary (Graham 1966) For an arbitrary list scheduling algorithm LS for $P \| C_{\max }$ we have $\boldsymbol{R}_{L S} \leq 2-\frac{\mathbf{1}}{\boldsymbol{m}}$ if $m^{\prime}=m$.

Schedules for Corollary

(a) an optimal schedule,
(b) an approximate schedule.

Identical Processors, $\mathrm{P} \mid$ prec, $\mathrm{p}_{\mathrm{j}}=1 \mid \mathrm{C}_{\text {max }}$

Problem $P \mid$ prec, $p_{j}=1 \mid C_{\text {max }}$
This problem is known to be NP-hard
Arbitrary list scheduling algorithms: $R_{L S} \leq 2-\frac{1}{m}$ still holds in this case However, under special assumptions polynomial time algorithms exist

Out-tree

Identical Processors, $\mathrm{P} \mid$ prec, $\mathrm{p}_{\mathrm{j}}=1 \mid \mathrm{C}_{\text {max }}$

Hu's algorithm (Hu (1969) for the problem $P \|$ in-tree, $p_{j}=1 \mid C_{\text {max }}$
o level algorithm" or "critical path algorithm"
Task level in an in-tree: is defined as the number of tasks in the path to the root of the graph

Identical Processors, $\mathrm{P} \mid$ prec, $\mathrm{p}_{\mathrm{j}}=1 \mid \mathrm{C}_{\text {max }}$

P_{1}	T_{1}	T_{4}	T_{7}	T_{10}	T_{12}
P_{2}	T_{2}	T_{5}	T_{8}	T_{11}	
P_{3}	T_{3}	T_{6}	T9		
0		1	2	3	4

An example of the application of Algorithm for three processors.

Identical Processors, $\mathrm{P} \mid$ prec, $\mathrm{p}_{\mathrm{j}}=1 \mid \mathrm{C}_{\max }$

Scheduling forests: A forest consisting of in-trees can be scheduled by adding a dummy task that is an immediate successor of only the roots of in-trees, and then by applying Algorithm.

Scheduling out-forests: A schedule for an out-tree can be constructed by changing the orientation of arcs, applying Algorithm to the obtained in-tree and then reading the schedule backwards, i.e. from right to left

Remark: The problem of scheduling opposing forests (that is, combinations of intrees and out-trees) on an arbitrary number of processors is NP-hard (Garey, et al 1983)

Another restriction is to limit the number of processors to 2 : this problem is easily solvable even for arbitrary precedence graphs (Coffman and Graham 1972, and others):
Problem $P 2 \mid$ prec, $p_{j}=1 \mid C_{\text {max }}$ can be solved in polynomial time (quadratic in the number of tasks) [Coffman and Graham 1972]

Identical Processors, $\mathrm{P} \mid$ prec, $\mathrm{p}_{\mathrm{j}}=1 \mid \mathrm{C}_{\max }$

Agorithm given by Coffman and Graham

- to find the shortest schedule for problem $P 2\left|p r e c, p_{j}=1\right| C \max$.
- The algorithm uses labels assigned to tasks, which take into account the levels of the tasks and the numbers of their immediate successors.
- can be implemented to run in time which is almost linear in n and in the number of arcs in the precedence graph; thus its time complexity is practically $O\left(n^{2}\right)$.

An example of the application of Algorithm (tasks are denoted by T_{j} llabel).

Identical Processors, $\mathrm{P} \mid$ prec, $\mathrm{p}_{\mathrm{j}}=1 \mid \mathrm{C}_{\text {max }}$

Algorithm of Coffman and for $P 2 \mid$ prec, $p_{j}=1 \mid C_{\text {max }}$.

begin

Assign label 1 to any task T_{0} for which isucc $\left(T_{0}\right)=\varnothing$;
-- recall that isucc (T) denotes the set of all immediate successors of T
$j:=1$;
repeat
Construct set S consisting of all unlabeled tasks whose successors are labeled;
for all $T \in S$ do
begin
Construct list $L(T)$ consisting of labels of tasks belonging to isucc (T);
Order $L(T)$ in decreasing order of the labels;
end;
Order these lists in increasing lexicographic order $L(T[1])<\ldots<. L(T[|S|])$;
-- see Section 2.1 for definition of $<$.
Assign label $j+1$ to task $T[1]$;
$j:=j+1$;
until $j=n$; -- all tasks have been assigned labels

Identical Processors, $\mathrm{P} \mid$ prec, $\mathrm{p}_{\mathrm{j}}=1 \mid \mathrm{C}_{\text {max }}$

An example of the application of Algorithm (tasks are denoted by T_{j} llabel).

Identical Processors, $\mathrm{P} \mid$ prec, $\mathrm{p}_{\mathrm{j}}=1 \mid \mathrm{C}_{\text {max }}$. Known Results

- 1961: P| in-tree, out-tree, pj=1 |Cmax - Hu's Level algorithm is optimal and of linear time complexity
- 1966: P| prec |Cmax - Graham showed that for List Scheduling algorithms the performance bound $r=2-1 / m$
- 1969: $P \| C_{m a x}$ Graham used the LPT algorithm with $r=4 / 3-1 / 3 m$
- 1972: P2| prec, pj=1 |Cmax Coffman proved that problem can be solved in quadratic time

Identical Processors, $\mathrm{P} \mid$ prec, $\mathrm{p}_{\mathrm{j}}=1 \mid \mathrm{C}_{\text {max }}$. Known Results

- 1975: P2| prec, $p_{j}=1 \mid C \max \quad$ Chen \& Liu found \quad R_level=4/3
- 1976: P|prec, $p_{j=1} \left\lvert\, C \max \quad R_{\text {Level }} 2-\frac{1}{m-1}\right.$ for $m \geq 3$
- 1976: P| prec, pj=1 |Cmax Coffman \& Sethi proved the bound
$1+1 / n-1 / n m$ for $P|\mid C m a x$ taking into account the number of tasks
- 1977: P2| prec, $p_{j}=1$ |Cmax Garey\&Johnson - Latest Possible Start Time algorithm, optimal
- 1981: P| opposing forest, $p_{j=1} \mid$ Cmax Kunde, Critical Path algorithm $r=2-2 /(m+1)$
- 1994: P|prec, $p_{j}=1 \mid C$ max Braschi and Trystram found
$r=2-2 / m-(m-3) /\left(m C_{\text {max }}\right)$ for $m>=31996$: Pm| prec, $p_{j=1 \mid C \text { max }}$ is with unknown time complexity

Identical Processors, $\mathrm{P} \mid$ prec, $\mathrm{p}_{\mathrm{j}}=1 \mid \mathrm{C}_{\text {max }}$. Known Results

I_{C} is the length of a longest chain of tasks Theorem [Tchernykh et al 2000]. Given a set T of \boldsymbol{n} unit execution time tasks, the performance of the general list strategy can be estimated by

$$
R=\min \left\{R^{\prime}, R^{\prime}\right\}
$$

$$
\text { with } \quad R^{\prime} \leq 1+\frac{I_{c}}{n}(m-1)
$$

$$
\begin{equation*}
\text { and } \quad R^{\prime \prime} \leq 1+\frac{1}{m}\left(\frac{n}{l_{c}}-1\right) \tag{1}
\end{equation*}
$$

Furthermore,

R^{\prime} is tight in the case of $I_{C} \leq n / m$, and $R^{\prime \prime}$ is tight in the case of $I_{C}>n / m$

Preemptions

Identical Processors. $P \mid$ pmtn, prec $\mid C_{\text {max }}$

What can be gained by allowing preemptions?
Coffman and Garey (1991) compared problems $P 2 \mid$ prec $\mid C_{\text {max }}$ and $P 2 \mid p m t n$, prec $\mid C_{\text {max }}: \quad(3 / 4) C_{\max }^{\text {non-preemptive }} \leq C_{\max }^{\text {preemptive }} \leq C_{\max }^{\text {non-preemptive }}$

Example showing the (3/4)-bound (with three even independent tasks):
(a) non-preemptive schedule:
(b) preemptive schedule:

Identical Processors. $P \mid$ pmtn, prec | Cmax
Algorithm by Muntz and Coffman for $P 2 \mid$ pmtn, prec $\mid C_{m a x}$ and $P \mid$ pmtn, forest $\mid C_{\text {max }}$.

begin

for all $T \in \mathrm{~T}$ do Compute the level of task T;
$t:=0 ; h:=m$;
repeat
Construct set Z of tasks without predecessors at time t;
while $h>0$ and $|Z|>0$ do
begin
Construct subset S of Z consisting of tasks at the highest level;
if $|S|>h$
then

begin

Assign $\beta:=h /|S|$ of a processing capacity to each of the tasks from S;
$h:=0 ;-$ a processor shared partial schedule is constructed
end
else
begin
Assign one processor to each of the tasks from S;
$h:=h-|S| ;-$ a "normal" partial schedule is constructed

Identical Processors. $P \mid$ pmtn, prec $\mid ~ C \max$

In the general case of dependent tasks of arbitrary length, one can construct optimal preemptive schedules.

- the level of task T_{j} in a precedence graph is now the sum of processing times (including p_{j}) of tasks along the longest path between T_{j} and a terminal task (a task with no successors).

The algorithm uses a notion of a processor shared schedule, in which a task receives some fraction $\beta(\leq 1)$ of the processing capacity of a processor.
end;
Z := Z-S;
end; -- the most "urgent" tasks have been assigned at time t
Calculate time τ at which either one of the assigned tasks is finished or a point is reached at which continuing with the present partial assignment means that a task at a lower level will be executed at a faster rate β than a task at a higher level;
Decrease levels of the assigned tasks by $(\tau-t) \beta$;
$t:=\tau$; $h:=m$;
-- a portion of each assigned task equal to $(\tau-t) \beta$ has been processed
until all tasks are finished;
call Algorithm (McNaughton's rule) to re-schedule portions of the processor shared schedule to get a normal one;
end;

The above algorithm can be implemented to run in $O\left(n^{2}\right)$ time.
(a) a task set (nodes are denoted by $\left.T_{j} / p_{j}\right)$,

Topic 2

Scheduling on Parallel Processors

2.1 Minimizing Schedule Length

Identical Processors

Uniform Processors

3.2 Minimizing Mean Flow Time

Identical Processors
Uniform and Unrelated Processors
3.3 Minimizing Due Date Involving Criteria

Identical Processors
Uniform and Unrelated Processors

Identical Processors. $P \mid p m t n$, prec $\mid C_{\text {max }}$

(b) I: a processor-shared schedule, II: an optimal schedule
I.

II.

Processors or machines for processing the tasks can be

- parallel - performing the same functions
- dedicated - specialized for the execution of certain tasks.

Parallel: Three types of parallel processors are distinguished depending on their speeds

- identical processors have equal task processing speeds
- uniform processors differ in their speeds, but the speed b_{i} of each
- unrelated processor is constant and does not depend on the task speeds of the processors depend on the particular task processed

Uniform Processors. Problem $Q\left|p_{j}=1\right| C_{\text {max }}$

Problem $Q\left|p_{j}=1\right| C_{\text {max }}$

- independent tasks
- non-preemptive scheduling
- UET
- problem with arbitrary processing times is already NP-hard for identical processors
- all we can hope to find is a polynomial time optimization algorithm for tasks with unit standard processing times only.
- a transportation network formulation has been presented by Graham et al. for problem $Q\left|p_{j}=1\right| C_{\text {max }}$.

Uniform Processors. Problem $Q\left|p_{j}=1\right| C_{\text {max }}$

The min-max transportation problem can be now formulated as follows:

Minimize

$$
\max _{i j k}\left\{c_{i j k} x_{i j k}\right\}
$$

subject to

$$
\sum_{i=1}^{m} \sum_{k=1}^{n} x_{i j k}=1 \quad \text { for all } j
$$

$$
\begin{aligned}
& \sum_{j=1}^{n} x_{i j k} \leq 1 \quad \text { for all } i, k \\
& x_{i j k} \geq 0 \text { for all } i, j, k
\end{aligned}
$$

Uniform Processors. Problem $Q\left|p_{j}=1\right| C_{\text {max }}$

Let there be n sources $j, j=1,2, \ldots, n$,
and $m n$ sinks (i, k), $i=1,2, \ldots, m$ and $k=1,2, \ldots, n$.
Sources correspond to tasks and sinks to processors and positions of tasks on them (number of tasks processed on the processor).
Let $c_{i j k}=k / b j$ be the cost of $\operatorname{arc}(j,(i, k))$; this value corresponds to the completion time of task T_{j} processed on P_{i} in the k th position. The arc flow $x_{i j k}$ has the following interpretation:
$x_{i j k}=\left\{\begin{array}{l}1 \text { if } T_{j} \text { is processed in the } k \text { th position on } P_{i} \\ 0 \text { otherwise. }\end{array}\right.$

© 2022 A. Tchernykh.	Scheduling on Parallel Processors. Due Date Criteria	134

Uniform Processors. Problem $Q\left|p_{j}=1\right| C_{\text {max }}$

minimum schedule length is given as $C_{\text {max }}^{*}=\sup \left\{t \mid \sum_{i=1}^{m}\left\lfloor t b_{i}\right\rfloor<n\right\}$.
lower bound on the schedule length for the above problem is

$$
C^{\prime}=n / \sum_{i=1}^{m} b_{i} \leq C_{\max }^{*}
$$

Bound C^{\prime} can be achieved e.g. by a preemptive schedule.
If we assign $k_{i}=\left\lfloor C^{\prime} b_{i}\right\rfloor$ tasks to processor P_{i},

- these tasks may be processed in time interval [0, C'].
- However, $l=n-\sum_{i=1}^{m} k_{i}$ tasks remain unassigned.
- $l \leq m-1$, since $C^{\prime} b_{i}-\left\lfloor C^{\prime} b_{i}\right\rfloor<1$ for each i.
- The remaining l tasks are assigned to those P_{i} for which $\min \left\{\left(k_{i}+1\right) / b_{i}\right\}$ is reached
- k_{i} is increased by one after the assignment of a task to a particular processor P_{i}.

This procedure is repeated until all tasks are assigned. We see that this approach results in an $O\left(m^{2}\right)$-algorithm for solving problem $Q\left|p_{j}=1\right| C_{\text {max }}$.

Uniform Processors. Problem $Q\left|p_{j}=1\right| C_{\text {max }}$

Example $n=9$ tasks, $m=3$ uniform processors, processing speeds $\boldsymbol{b}=[3,2,1]$.
$C^{\prime}=9 / 6=1.5$.
The numbers of tasks assigned to processors at the first stage are, respectively, 4, 3, and 1.

One heuristic algorithm is a list scheduling algorithm.
Tasks are ordered on the list in non-increasing order of their processing times and processors are ordered in non-increasing order of their processing speeds.
Now, whenever a machine becomes free it gets the first non-assigned task of the list; if there are two or more free processors, the fastest is chosen.

The worst-case behavior of the algorithm has been evaluated for the case of an $m+1$ processor system, m of which have processing speed factor equal to 1 and the remaining processor has processing speed factor b. The bound is as follows.

$$
R=\left\{\begin{array}{cc}
\frac{2(m+b)}{b+2} & \text { for } b \leq 2 \\
\frac{m+b}{2} & \text { for } b>2
\end{array}\right.
$$

It is clear that the algorithm does better if, in the first case ($b \leq 2$), m decreases faster than b, and if b and m decrease in case of $b>2$.

Uniform Processors. Problem $Q\left|p_{j}=1\right| C_{\max }$

Topic 3

 Scheduling on Parallel Processors3.1 Minimizing Schedule Length

Identical Processors
Uniform and Unrelated Processors
3.2 Minimizing Mean Flow Time

Identical Processors
Uniform and Unrelated Processors

3.3 Minimizing Due Date Involving Criteria Identical Processors

Uniform and Unrelated Processors

Model

Arrival time (or release or ready time) $r_{j} \ldots$ is the time at which task T_{j} is ready for processing
if the arrival times are the same for all tasks from \mathcal{T}, then $r_{j}=0$ is assumed for all tasks

- Due date $d_{j} \ldots$ specifies a time limit by which T_{j} should be completed problems where tasks have due dates are often called "soft" real-time problems. Usually, penalty functions are defined in accordance with due dates
- Penalty functions G_{j} define penalties in case of due date violations
- Deadline $\widetilde{d}_{J} \ldots$ "hard" real time limit, by which T_{j} must be completed
- Weight (priority) $w_{j} \ldots$ expresses the relative urgency of T_{j}

© 2022 A. Tchernykh.	Scheduling on Parallel Processors. Due Date Criteria	141

Identical Processors. Deadline Criteria $\boldsymbol{P}\left|\boldsymbol{r}_{\boldsymbol{j}}, \widetilde{d_{j}}\right|-$

Scheduling strategies:

A strategy is called "feasible", if the algorithm generates schedules where all tasks observe their deadlines (assuming this is actually possible)
three interesting deadline scheduling strategies:

EDF	Earliest Deadline First scheduling
LL	Least Laxity scheduling
MUF	Maximum Urgency First scheduling.

Identical Processors. Deadline Criteria $\boldsymbol{P}\left|\boldsymbol{r}_{j}, \widetilde{\boldsymbol{d}_{j}}\right|-$

More complex deadline scheduler is the "Least Laxity" (or "LL") scheduler.

- takes into account both a task's deadline and its processing load,

EDF deadline scheduler would allow Task \mathbf{X} to run before Task \mathbf{Y}, even if Task \mathbf{Y} normally has higher priority.

- However, it could cause Task Y to miss its deadline.
- So perhaps an "LL" scheduler would be better

Identical Processors. Deadline Criteria $\boldsymbol{P}\left|\boldsymbol{r}_{\boldsymbol{j}}, \widetilde{d_{j}}\right|-$

Laxity is the value that describes how much computation there is still left before the deadline of the task if it ran to completion immediately. Laxity of a task is a measure for it's urgency.

Laxity = (Task Deadline - (Current schedule time + Rest of Task Exec. Time) LL=D-t-Prest

It is the amount of time that the scheduler can "play with" before causing the task to fail to meet its deadline.

Least Laxity Scheduling Policy: the task that has the smallest laxity (meaning the least computation left before it's deadline) is scheduled next.

Thus, a Least Laxity deadline scheduler takes into account both deadline and processing load.

Identical Processors. Deadline Criteria $\boldsymbol{P} \mid \boldsymbol{r}_{\boldsymbol{j}},{\widetilde{d_{j}}}^{\boldsymbol{l}}$ -

LL scheduling, while excellent for highly time-critical tasks, might be overkilled for less time-sensitive tasks.

And so there is a third interesting variant of deadline scheduling, called "Maximum Urgency First" (or "MUF") scheduling.

It is really a mixture of some "LL" deadline scheduling, with some traditional prioritybased preemptive scheduling.

In "MUF" scheduling, high-priority time-critical tasks are scheduled with "LL" deadline scheduling, while within the same scheduler other (lower-priority) tasks are scheduled by good old-fashioned priority-based preemption.

Identical Processors. Deadline Criteria $\boldsymbol{P}\left|\boldsymbol{r}_{\boldsymbol{j}}, \widetilde{d_{j}}\right|-$

Example: Comparison of strategies

Set of independent tasks: $\mathrm{T}=\left\{T_{1}, T_{2}, \ldots, T_{6}\right\}$
Tasks: (deadline, total execution time, arrival time):

$$
\begin{aligned}
& T_{1}=(5,4,0), T_{2}=(6,3,0), T_{3}=(7,4,0), \\
& T_{4}=(12,9,2), T_{5}=(13,8,4), T_{6}=(15,12,2)
\end{aligned}
$$

Execution on three identical processors:
EDF-schedule (no preemptions): total execution time is 16
least laxity schedule (with preemptions): ≤ 8 preemptions,
total execution time is 15
optimal schedule with 3 preemptions, total execution time $=15$
Execution on a single, three times faster processor: possible with no preemptions; total execution time is $40 / 3$

Hence: a larger number of processors is not necessarily advantageous

Identical Processors. Deadline Criteria $P\left|p m t n, r_{j}, \widetilde{d_{j}}\right|-$

Feasibility testing of problem $P\left|p m t n, r_{j}, \widetilde{d}_{j}\right|-$ is done by applying a network flow approach (Horn 1974)

Given an instance of $P\left|p m t n, r_{j}, \widetilde{d}_{j}\right|$,
let $e_{0}<e_{1}<\ldots<e_{k}, k \leq 2 n-1$ be the ordered sequence of release times and deadlines together (e_{i} stands for r_{j} or \widetilde{d}_{j}) (time intervals)

Construct a network with source, sink and two sets of nodes (Figure):
the first set (nodes w_{i}) corresponds to time intervals in a schedule; node w_{i} corresponds to interval $\left[e_{i-1}, e_{i}\right], i=1,2, \ldots, k$
the second set corresponds to the tasks

Identical Processors. Deadline Criteria $P\left|p m t n, r_{j}, \widetilde{d_{j}}\right|-$

Flow conditions:

- The capacity of an arc joining the source to node w_{i} is $m\left(e_{i}-e_{i-1}\right)$
o this corresponds to the total processing capacity of m processors in this interval
- If task T_{j} is allowed to be processed in interval $\left[e_{i-1}, e_{j}\right]$
then w_{i} is joined to T_{j} by an arc of capacity $e_{i}-e_{i-1}$
- Node T_{j} is joined to the sink of the network by an arc with lower and upper capacity equal to p_{j}

Finding a feasible flow pattern corresponds to constructing a feasible schedule; this test can be made in $O\left(n^{3}\right)$ time
the schedule is constructed on the basis of the flow values on arcs between interval and task nodes.

(b) feasible flow pattern
(c) optimal schedule

Identical Processors. $P \| L_{\max }$

- $\boldsymbol{m}=1$ processor: earliest due date algorithm (EDD rule) of Jackson [Jac55] : tasks are scheduled in order of non-decreasing due dates
The EDD rule also minimizes maximum lateness and maximum tardiness
- $\boldsymbol{m} \geq 1$ identical processors: NP-hard $C_{\max }$-problems are also NP-hard under the $L_{\max }$ criterion

$$
\text { for example: } \boldsymbol{P} \| L_{\max } \text { is NP-hard }
$$

- unit processing times of tasks make the problem easy, and $P\left|p_{j}=1, r_{j}\right| L_{\max }$ can be solved by an obvious application of the EDD rule.
- Moreover, problem $P\left|p_{j}=p, r_{j}\right| L_{\max }$ can be solved in polynomial time by an extension of the single processor algorithm.

Identical Processors. $P\left|r_{j}\right| L_{\max }$

Problem $1\left|r_{j}\right| L_{\text {max }}$ is strongly NP-hard (Lenstra et al., 1977) solution methods based on branch and bound are known

Assumption of unit execution times

($1\left|r_{j}, p_{j}=1\right| L_{\max }, r_{j}$ an integer): a modification of Jackson's EDD rule is optimal

```
Algorithm for problem \(1\left|p m t n, r_{j}\right| L_{\max }\) (Horn, 1974)
begin
repeat
    \(\rho_{1}:=\min \left\{r_{j} \mid r_{j} \in T\right\}\);
    if all tasks are available at time \(\rho_{1}\)
    then \(\rho_{2}:=\infty\)
    else \(\rho_{2}:=\min \left\{r_{j} \mid r_{j} \neq \rho_{1}\right\}\);
    \(E:=\left\{T_{j} \mid r_{j}=\rho_{1}\right\}\);
    Choose \(T_{k} \in E\) such that \(d_{k}=\min \left\{d_{j} \mid T_{j} \in E\right\}\)
    \(l:=\min \left\{p_{k}, \rho_{2}-\rho_{1}\right\}\);
    Assign \(T_{k}\) to the interval \(\left[\rho_{1}, \rho_{1}+l\right)\);
    if \(p_{k} \leq l\)
    then \(\mathcal{T}:=\mathcal{T}-\left\{T_{k}\right\}\)
    else \(p_{k}:=p_{k}-l\);
    for all \(T_{j} \in E\) do \(r_{j}:=\rho_{1}+l\);
    until \(\mathcal{T}=\varnothing\);
end;
```


Identical Processors. $P\left|p m t n, r_{j}\right| L_{\max }$

To find a schedule with minimum $L_{\max }$, a binary search can be performed:
the deadlines are increased by $L_{\max } / 2$ (instead of $L_{\max }$) and this new instance is checked for feasibility by means of the network flow computation.

This procedure can be implemented to solve problem $P\left|p m t n, r_{j}\right| L_{\max }$ in time $O\left(n^{3} \min \left\{n^{2}, \log n+\log \max \left\{p_{j}\right\}\right\}\right.$

The fundamental approach in that area is testing feasibility of problem $\mathrm{P} \mid \mathrm{pmtn}, r_{j}$, $\widetilde{d_{j}} \mid$ - via the network flow approach [Hor74].

Using this approach repetitively, one can then solve the original problem $\mathrm{P} \mid$ pmtn | $L_{\text {max }}$ by changing due dates (deadlines) according to a binary search procedure.

- Problem $P \mid$ prec, $r_{j} \mid L_{\text {max }}$
- with $m=1$ processor:

Example: Consider five tasks with release times $\boldsymbol{r}=[0,2,3,0,7]$, processing times $\boldsymbol{p}=[2,1,2,2,2]$, and tails $\boldsymbol{d}=[7,10,6,9,10]$,
a) the precedence constraint $T_{4} \prec T_{2}$;
b) No precedence constraint

Identical Processors. $L_{\text {max }}$ - problems with precedences

We just mention some results

- Problem $P \mid$ prec $\mid L_{\max }$: A general approach is to modify the due dates, depending on the number and due dates of their successors.
- Scheduling unit processing time tasks can result in polynomial time scheduling algorithms:
Problem P | in-tree, $p_{j}=1 \mid L_{\max }$ can be solved in $O(n \log n)$ time (Brucker 1976),
but surprisingly $P \mid$ out-tree, $p_{j}=1 \mid L_{\max }$ is NP-hard (Brucker et al., 1977).
- Problem $P 2 \mid$ prec, $p_{j}=1 \mid L_{\max }$ with arbitrary precedences: using a different way of computing modified due dates allows to solve the problem in $O\left(n^{2}\right)$ time (Garey et al, 1976).

Identical Processors. $L_{\text {max }}$ - problems with precedence

- Problem $P \mid$ prec, $r_{j} \mid L_{\max }$ with $m=1$ processor:

Example: Consider five tasks with release times $r=[0,2,3,0,7]$, processing times $\boldsymbol{p}=[2,1,2,2,2]$, and tails $\boldsymbol{d}=[7,10,6,9,10]$, and the precedence constraint $T_{4} \prec T_{2}$; note that $r_{4}+p_{4} \leq r_{2}$ and $d_{4} \geq d_{2}-p_{2}$.
If the constraint $T_{4} \prec T_{2}$ is ignored, the unique optimal schedule is given by (T_{1}, T_{2}, T_{3}, T_{4}, T_{5}) with value $L_{\max }^{*}-1$. Explicit inclusion of this constraint leads to $L_{\max }^{*}=$ 0 .

Identical Processors. $L_{\text {max }}$ - problems with precedences

- Allowing preemptions:

The following problems are solvable in polynomial time:

$$
\begin{aligned}
& P \mid \text { pmtn, in-tree } \mid L_{\max }, \\
& P 2 \mid \text { pmtn, prec } \mid L_{\max }, \\
& P 2 \mid \text { pmtn, prec, } r_{j} \mid L_{\max }
\end{aligned}
$$

Algorithms for these problems employ essentially the same techniques for dealing with precedence constraints as the corresponding algorithms for tasks with unit execution time

Four different types of problems are considered:

- a deadline problem
- three due date problems
- minimizing maximum lateness,
- weighted number of tardy tasks,
- and maximum weighted tardiness

All these problems could be solved in polynomial time only under very special restrictions

Summary

Scheduling on Parallel Processors

Communication Delays and Multiprocessor Tasks

- Introductory Remarks
- Scheduling Multiprocessor Tasks
o Parallel Processors
o Refinement Scheduling
- Scheduling Uniprocessor Tasks with Communication Delays
o Scheduling without Task Duplication
o Scheduling with Task Duplication
o Considering Processor Network Structure
- Scheduling Divisible Tasks

Scheduling Uniprocessor Tasks with Communication Delays

The following simple example serves as an introduction to the problems. Let there be given three tasks with precedences as shown in Figure (a).

(a) Precedence graph

The computational results of task T_{1} are needed by both successor tasks, T_{2} and T_{3} We assume unit processing times.
For task execution there are two identical processors, connected by a communication link.
To transmit the results of computation T_{1} along the link takes 1.5 units of time.

169

Outline

Scheduling Uniprocessor Tasks with Communication Delays

Schedule (d) demonstrates that there are situations where a second processor does not help to gain a shorter schedule.

(d) Optimal schedule without task duplication

The fourth schedule, (e), demonstrates another possibility: if task T_{1} is processed on both processors, an even shorter schedule is obtained. The latter case is usually referred to as task duplication

(e) Optimal schedule with task duplication

Scheduling Uniprocessor Tasks with Communication Delays

P_{2}	$1 / \mathrm{l} \mathrm{l}^{2}$	T_{3}
	T_{1}	T_{1}

(b) Schedule without consideration of communication delays

The schedule in Figure (b) shows a schedule where communication delays are not considered

(c) Schedule considering communication from T_{1} to T_{3}

The schedule (c) is obtained from (b) by introducing a communication delay between T_{1} and T_{3}
© 2022 A. Tchernykh. Scheduling Outline

Scheduling Uniprocessor Tasks with Communication Delays

Communication delays are the same for all tasks

- So-called uniform delay scheduling.

Other approaches distinguish between coarse grain and fine grain parallelism:

- high computation-communication ratio can be expected in coarse grain parallelism

As pointed out before, task duplication often leads to shorter schedules; this is in particular the case if the communication times are large compared to the processing times

Bin Packing Problem

Outline

We want to know how few bins are needed to store a collection of items.
This problem, known as the 1-dimensional bin packing problem, is one of many mathematical packing problems which are of both theoretical and applied interest.

It is important to keep in mind that "weights" are to be thought of as indivisible objects rather than something like oil or water.

For oil one can imagine part of a weight being put into one container and any left over being put into another container.

However, in the problem being considered here we are not allowed to have part of a weight in one container and part in another.
One way to visualize the situation is as a collection of rectangles which have height equal to the capacity C and a fixed width, whose exact size does not matter.

When an item is put into the bin it either falls to the bottom or is stopped at a height determined by the weights that are already in the bins.

Outline

1. Introduction

Metaphorically, there never seem to be enough bins for all one needs to store Mathematics comes to the rescue with the bin packing problem and its relatives.

The bin packing problem raises the following question:

- given a finite collection of n weights $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$, and
- a collection of identical bins with capacity C (which exceeds the largest of the weights),
- what is the minimum number k of bins into which the weights can be placed without exceeding the bin capacity C ?

Outline

The diagram below shows a bin of capacity 10 where three identical weights of size 2 have been placed in the bin, leaving 4 units of empty space, which are shown in blue.

Outline

By contrast with the situation above, the bin below has been packed with weights of size 2, 2, 2 and 4 in a way that no room is left over.

Basic ideas Next Fit (NF)

If some of the consecutive weights on the list exactly fill a bin, the bin is then closed and a new bin opened.
When this procedure is applied to the list above we get the packing shown below.

Basic ideas Next Fit (NF)

Next Fit is

- very simple,
- allows for bins to be shipped off quickly, because even if there is some extra room in a bin, we do not wait around in the hope that an item will come along later in the list which will fill this empty space.

One can imagine having a fleet of trucks with a weight restriction (the capacity C) and one packs weights into the trucks.
If the next weight cannot be packed into the truck at the loading dock, this truck leaves and a new truck pulls into the dock.
We keep track of how much room remains in the bin open at that moment
In terms of how much time is required to find the number of bins for n weights, one can answer the question using a procedure that takes a linear amount of time in the number of weights (n).

Clearly, NF does not always produce an optimal packing for a given set of weights. You can verify this by finding a way to pack the weights in Example 1 into 4 bins.

Basic ideas First Fit (FF)

The result of carrying out First Fit for the list in Example 1 and with bins of capacity 10 is shown below:

Basic ideas First Fit (FF)

Both methods we have tried have yielded 5 bins.
We know that this is not the best we can hope for
One simple insight is obtained by computing the total sum of the weights and dividing this number by the capacity of the bins.

Since we are dealing with integers, the number of bins we need must be at least $\lceil\Omega / C\rceil$ where $\Omega=\sum_{i=1}^{n} w_{i}$.
(Note that $\lceil x\rceil$ denotes the smallest integer that is greater than or equal to x).
Clearly, the number of bins must always be an integer. In Example 1, since Ω is 40 and C is 10 , we can conclude that there is hope of using only 4 bins.

However, neither Next Fit nor First Fit achieves this value with the list given in Example 1. Perhaps we need a better procedure.

Basic ideas Best Fit (BF) and Worst Fit (WF)

The amount of time necessary to find the minimum number of bins using either FF, WF or BF is higher than for NF. What is involved here is $n \log n$ implementation time in terms of the number n of weights.

The distinction between First Fit, Best Fit and Worst Fit:
o suppose that we currently have only 3 bins open with capacity 10
o remaining space as follows:

- Bin 4, 4 units,
- Bin 6, 7 units, and
- Bin 9 with 3 units.

Suppose the next item in the list has size 2
First Fit puts this item in Bin 4, Best Fit puts it in Bin 9, and Worst Fit puts it in Bin 6!
One difficulty is that we are applying "good procedures" but on a "lousy" list. If we know all the weights to be packed in advance, is there a way of constructing a good list?

Two other simple methods in the spirit of Next Fit and First Fit have also been looked at.

These are known as Best Fit (BF) and Worst Fit (WF)
For Best Fit, one again keeps bins open even when the next item in the list will not fit in previously opened bins, in the hope that a later smaller item will fit.

The criterion for placement is that we put the next item into the currently open bin (e.g not yet full) which leaves the least room left over. (In the case of a tie we put the item in the lowest numbered bin as labeled from left to right.)

For Worst Fit, one places the item into that currently open bin into which it will fit with the most room left over.

Basic ideas Best Fit (BF) and Worst Fit (WF)

