

Aprendizaje Automático para Datos en Grafos Aprendiendo Grafos desde Datos

Muy basado en transparencias de Gonzalo Mateos

mfiori@fing.edu.uy
http://www.fing.edu.uy/~mfiori/

Octubre 2022

¿De qué vamos a hablar?

- Aprender grafos desde observaciones en nodos
- Ex: Central en *network neuroscience*
 - \Rightarrow Red funcional a partir de señales de f
MRI

- \blacksquare Mayoría de trabajos GSP: cómo un grafo conocido Gafecta señales y filtros
 - Posible para e.g., redes físicas
 - Links son tangibles y directamente observables
- \blacksquare Igual, obtener y actualizar la información de topología es desafiante
 - \Rightarrow por tamaño, reconfiguración, privacidad, seguridad
- Aquí, camino inverso: ¿cómo usar GSP para inferir la topología del grafo?
- **Objetivo:** recuperar una red latente, o, una representación en grafos de datos

Connecting the dots

Algunos tutoriales recientes en aprendizaje de grafos a partir de datos
 IEEE Signal Processing Magazine y Proceedings of the IEEE

- IEEE Trans. on Signal and Information Processing over Networks
 - Special issue on Network Topology Inference (Jan. 2020)

FACULTAD DE INGENIERÍA

Inferencia de topología del grafo

1 Métodos estadísticos para inferencia de topología del grafo

2 Aprendiendo grafos a partir de observaciones de señales suaves

(3) Identificando la estructura de procesos de difusión en redes

Problemas de inferencia de topología del grafo

 \blacksquare Q: Si G (o una porción de él) no es observada, ¿podemos inferirlo a partir de datos?

 \blacksquare Formular como inferencia estadística, i.e. dados

- Medidas de señales x_i en todos/algunos vértices $i \in \mathcal{V}$
- Indicadores A_{ij} de estado de aristas para algunos pares de vértices $\{i, j\} \in \mathcal{V}_{obs}^{(2)}$
- Una colección \mathcal{G} de grafos candidatos G

Objetivo: inferir la topología del grafo $G(\mathcal{V}, \mathcal{E})$

Poder aprovechar conceptos estadísticos existentes y herramientas

 \Rightarrow Estudiar identificabilidad, consistencia, robustez, complejidad

- Tres problemas canónicos de inferencia de topología del grafo [Kolaczyk'09]
 - (i) Predicción de enlaces
 - (ii) Association network inference \leftarrow Énfasis de estas clases
 - (iii) Tomographic network topology inference

Predicción de enlaces

Supongamos que observamos la señal en el grafo $\mathbf{x} = [x_1, \dots, x_N]^\top$; y

 \blacksquare Estado de aristas observado solo en algun subconjunto de pares $\mathcal{V}^{(2)}_{obs} \subset \mathcal{V}^{(2)}$

ACULTAD DE NGENIERÍA

Objetivo: predecir estado de aristas para el resto de los pares, i.e., $\mathcal{V}_{miss}^{(2)} = \mathcal{V}^{(2)} \setminus \mathcal{V}_{obs}^{(2)}$

Association network inference

Supongamos que solo observamos la señal en el grafo x = [x₁,...,x_N][⊤]; y
Asumimos (i, j) definido por un 'nivel de asociación' no trivial entre x_i, x_j
Objetivo: predecir estado de aristas para todos los pares de vértices V⁽²⁾

Tomographic network topology inference

■ Supongamos que solo observamos x_i para algunos vértices i ⊂ V en el 'perímetro' de G
■ Objetivo: predecir estado de vértices y aristas en el 'interior' de G

Association networks

Def: en association networks los vértices están unidos por aristas si hay un nivel suficiente de 'asociación' entre atributos de los pares de vértices

Experiments

Ejemplo

■ Gene-regulatory networks

Neuro-functional connectivity networks

Association network inference

 \blacksquare Dada una colección de N elementos representados como vértices $v \in \mathcal{V}$

- Señal en el grafo $\mathbf{x} = [x_1, \dots, x_N]^\top \in \mathbb{R}^N$ de atributos observados en los vértices
- Similaridad definida por usuario $sim(i, j) = f(x_i, x_j)$ especifica aristas $(i, j) \in \mathcal{E}$
 - Q: ¿Si los valores mismos de sim (i.e., estado de aristas) no son observables?

Association network inference

Inferir valores no triviales de sim a partir de observaciones i.i.d. $\mathcal{X} := \{\mathbf{x}_p\}_{p=1}^P$

Hay muchas elecciones a tomar, y entonces muchos acercamientos posibles

- Elección de sim: correlación, correlación parcial, información mutua
- Elección técnica de inferencia: test de hipótesis, regresión, ad hoc
- Elección de parámetros: umbrales de test, nivel de significancia, regularización

Redes de correlación

Coeficiente de correlación de Pearson como sim entre pares de vértices

$$\operatorname{sim}(i,j) := \rho_{ij} = \frac{\operatorname{cov}[x_i, x_j]}{\sqrt{\operatorname{var}[x_i] \operatorname{var}[x_j]}}, \ i, j \in \mathcal{V}$$

Def: el grafo de correlación $G(\mathcal{V}, \mathcal{E})$ tiene como aristas

$$\mathcal{E} = \left\{ (i,j) \in \mathcal{V}^{(2)} : \rho_{ij} \neq 0 \right\}$$

• Association network inference \Leftrightarrow Inferencia de correlaciones no nulas

 \blacksquare Inferencia de ${\mathcal E}$ típicamente atacado como problema de test de hipótesis

$$H_0: \rho_{ij} = 0$$
 versus $H_1: \rho_{ij} \neq 0$

Estadísticos para el test

Una elección usual de estadístico son las correlaciones empíricas

$$\hat{\rho}_{ij} = \frac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii}\hat{\sigma}_{jj}}}, \text{ where } \hat{\boldsymbol{\Sigma}} = [\hat{\sigma}_{ij}] = \frac{1}{P-1} \sum_{p=1}^{P} \mathbf{x}_p \mathbf{x}_p^{\top}$$

Un estadístico alternativo conveniente es el transformado de Fisher

ACULTAD DE NGENIERÍA DELAR

$$\hat{z}_{ij} = \frac{1}{2} \log \left(\frac{1 + \hat{\rho}_{ij}}{1 - \hat{\rho}_{ij}} \right), \ i, j \in \mathcal{V}$$

 \Rightarrow Bajo $H_0, \hat{z}_{ij} \sim \mathcal{N}(0, \frac{1}{P-3}) \Rightarrow$ Simple de controlar significancia

Rechazamos H_0 bajo nivel de significancia α , i.e., asignamos arista (i, j) si $|\hat{z}_{ij}| > \frac{z_{\alpha/2}}{\sqrt{P-3}}$

Tasa de control de error:
$$P_{H_0}$$
 (falsa arista) = $P_{H_0}\left(|\hat{z}_{ij}| > \frac{z_{\alpha/2}}{\sqrt{P-3}}\right) = \alpha$

Grafos y testeo múltiple

- \blacksquare Surgen desafíos interesantes con grafos de gran escala
 - \Rightarrow Supongamos que testeamos los $\binom{N}{2}$ pares de vértices, cada uno a nivel α
- \blacksquare Incluso si el grafo verdadero G es el grafo vacío, i.e., $\mathcal{E}=\emptyset$
 - \Rightarrow Esperamos encontrar $\binom{N}{2}\alpha$ aristas espúreas solo por azar!
 - \Rightarrow Para un grafo grande, este número puede ser considerable
- Ex: Si G tiene N = 100 nodos y testeamos aristas individualmente a nivel $\alpha = 0.05$ \Rightarrow El número esperado de aristas espúreas es $4950 \times 0.05 \approx 250$
- En estadística, este dilema es conocido como el problema de testeo múltiple

Corrección para testeo múltiple

Idea: Controlar los errores a nivel de la colección de test, no de forma individual
 False discovery rate (FDR) controla, i.e., para un nivel dado γ aseguramos

$$\mathrm{FDR} = \mathbb{E} \left[\frac{R_{false}}{R} \, \big| \, R > 0 \right] \mathrm{P} \left(R > 0 \right) \leq \gamma$$

- $\bullet~R$ es el número total de aristas detectadas; y
- R_{false} es el número de falsas aristas detectadas

 \blacksquare Método para controlar FDR a nivel γ [Benjamini-Hochberg'94]

Paso 1: Ordenar *p*-valores para los $\bar{N} := {N \choose 2}$ tests, obtenemos $p_{(1)} \leq \ldots \leq p_{(\bar{N})}$ Paso 2: Rechazar H_0 , i.e., declarar todas las aristas para las cuales

$$p_{(k)} \le \left(\frac{k}{\bar{N}}\right)\gamma$$

Ejemplo: correlaciones en nivel de expresión de genes

Datos de microarray para bacteria Escherichia coli (E. coli)

ACULTAD DE NGENIERÍA

- Dos TFs tyrR y lrp, potencial target aroG sobre n = 445 experimentos
- Ground truth: aroG es regulado por tyrR pero no por lrp

I Fisher scores: $z_{tyrR}^{aroG} = 0,4599$ y $z_{lrp}^{aroG} = 1,2562$. Ambos *p*-valores son chicos

 \blacksquare En base a correlaciones, aroG está fuertemente asociado con ambos TFs tyrR y lrp

Correlaciones parciales

Hay que usar la correlación con cuidado: 'correlación no implica causalidad'

- $\bullet\,$ Nodos $i,j\in\mathcal{V}$ pueden tener alto ρ_{ij} porque se influencian entre sí
- Pero ρ_{ij} podría ser alto si ambos i, j son influenciados por un tercer nodo $k \in \mathcal{V}$ \Rightarrow Redes de correlación pueden declarar aristas debidas a factores de confusión

Las correlaciones parciales capturan mejor la influencia directa entre nodos

• Para $i, j \in \mathcal{V}$ consideremos los nodos latentes $S_m = \{k_1, \ldots, k_m\} \subset \mathcal{V} \setminus \{i, j\}$

Correlación parcial entre x_i y x_j , ajustada por (o condicionada a) $\mathbf{x}_{S_m} = [x_{k_1}, \dots, x_{k_m}]^\top$ es

$$\rho_{ij|S_m} = \frac{\operatorname{cov}[x_i, x_j \mid \mathbf{x}_{S_m}]}{\sqrt{\operatorname{var}\left[x_i \mid \mathbf{x}_{S_m}\right] \operatorname{var}\left[x_j \mid \mathbf{x}_{S_m}\right]}}, \ i, j \in \mathcal{V}$$

Q: ¿Cómo calcular estas correlaciones parciales?

Cálculo de correlaciones parciales

Dados $\mathbf{x}_{S_m} = [x_{k_1}, \dots, x_{k_m}]^\top$, la correlación parcial entre x_i y x_j es

$$\rho_{ij|S_m} = \frac{\operatorname{cov}[x_i, x_j \mid \mathbf{x}_{S_m}]}{\sqrt{\operatorname{var}\left[x_i \mid \mathbf{x}_{S_m}\right] \operatorname{var}\left[x_j \mid \mathbf{x}_{S_m}\right]}} = \frac{\sigma_{ij|S_m}}{\sqrt{\sigma_{ii|S_m}\sigma_{jj|S_m}}}$$

 \blacksquare Aquí $\sigma_{ii|S_m},\sigma_{jj|S_m}$ y $\sigma_{ij|S_m}$ son los elem
ntos en la diagonal y fuera de la diagonal de

$$\mathbf{\Sigma}_{11|2} := \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} \in \mathbb{R}^{2 imes 2}$$

Las matrices Σ_{11} , Σ_{22} y $\Sigma_{21} = \Sigma_{12}^{\top}$ son los bloques de la matriz de covarianza:

$$\operatorname{cov} \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \end{bmatrix} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix}, \quad \operatorname{donde} \mathbf{w}_1 := [x_i, x_j]^\top \ \mathbf{y} \ \mathbf{w}_2 := \mathbf{x}_{S_m}$$

Redes de correlaciones parciales

Hay varias formas de usar correlaciones parciales para definir aristas en GEx: x_i, x_j correlacionados sin importar sobre qué m vértices condicionamos

$$\mathcal{E} = \left\{ (i,j) \in \mathcal{V}^{(2)} : \rho_{ij|S_m} \neq 0, \text{ para todo } S_m \in \mathcal{V}^{(m)}_{\{i,j\}} \right\}$$

 \blacksquare Inferencia de potencial arista (i, j) como problema de test de hipótesis

$$\begin{split} H_0: \rho_{ij|S_m} &= 0 \text{ para algún } S_m \in \mathcal{V}_{\backslash \{i,j\}}^{(m)} \\ H_1: \rho_{ij|S_m} &\neq 0 \text{ para todo } S_m \in \mathcal{V}_{\backslash \{i,j\}}^{(m)} \end{split}$$

De nuevo, dadas medidas $\mathcal{X} := {\mathbf{x}_p}_{p=1}^P$ necesitamos:

- Seleccionar un estadístico para el test
- Construir una distribución de referencia
- Ajustes de test múltiple

Case study: Inferencia de interacciones de regulación génica

Genes son segmentos del ADN que codifican información sobre funcionamiento celular

- \blacksquare Esta información se usa en el proceso de expresión de genes
 - \Rightarrow Creación de productos bioquímicos, i.e., ARN o proteínas
- **Regulación de un gen refiere al control de esta expresión**
 - $\operatorname{Ex:}$ regulación durante la transcripción, copia del ADN a ARN
 - \Rightarrow Los genes que controlan son transcription factors (TFs)
 - \Rightarrow Los genes controlados se denominan targets
 - \Rightarrow Tipo de regulación: activación o represión
- Ineracciones de regulación entre genes es fundamental para entender el funcionamiento de oganismos

 \Rightarrow Inferencia de interacciones \rightarrow Encontrar pares de genes TF/target

 \blacksquare Esta información relacional se resume en una red de regulación génica

Interacciones de regulación entre genes en E. coli

Uso de datos de microarray y métodos de correlación para inferir pares TF/target

Experiments

Dataset: nivel de expresión relativa logartítmica de expresión ARN, para genes en E. coli
 4,345 genes medidos bajo 445 condiciones experimentales diferentes

Ground truth: 153 TFs, y pares de TF/target de la base de datos RegulonDB

Métodos para inferir pares de genes TF/target

 \blacksquare Tres métodos basados en correlación para inferir pares de genes $\mathrm{TF}/\mathrm{target}$

- \Rightarrow Declaramos interacciones si los p-valoresca
en debajo de cierto umbral
- Método 1: Correlación de Pearson entre TF y potencial gen destino (target) Método 2: Correlaciones parciales, condicionado individualmente a un (m = 1) TF, sobre todos los 152 TFs
- **Método 3:** Correlación parcial completa, condicionando simultáneamente a todos los otros TFs (m = 152)
- \blacksquare En todos los casos se aplica la transformación de Fisher para obtener z-scores
 - \Rightarrow Distribuciones as
intóticas gaussianas para $p\mbox{-values},$ con
 P=445
- Comparamos los grafos inferidos con el ground-truth network de RegulonDB

Comparación de performance

Curvas ROC y Precision/Recall para los métodos 1, 2, y 3

 \Rightarrow Precision: fracción de aristas que se predicen que son efectivamente ciertas

 \Rightarrow Recall: fracción de aristas verda deras que se predicen correctamente

 \blacksquare Método 1 es el peor, pero ninguno es la gran cosa

FACULTAD DE INGENIERÍA \Rightarrow Correlación no es un indicador fuerte de regulación en estos datos

Todos los métodos comparten una región de alta precisión, pero con muy bjo recall

 \Rightarrow Limitantes en número y diversidad de perfiles [Faith et al'07]

Predecir nuevos pares de genes TF/target

En biología, suele haber interés en predecir nuevas interacciones

 \blacksquare 11 interacciones encontradas para TF lrp, 10 confirmadas experimentalmente (punteado)

- \Rightarrow 5 interacciones con genes target son nuevas (magenta, red, cyan)
- \Rightarrow 4 presentes en RegulonDB (magenta, cyan), pero no como lrp targets

