
Modelado y Procesamiento de Grandes
Volumenes de Datos

Neo4j – Cypher

CPAP, FING, UdelaR – 2022

Cypher Language

• Declarative query language that allows users to state what actions to
perform upon their graph data

• Inspired by SQL with the concept of pattern matching taken from
SPARQL (SPARQL Protocol and RDF Query Language)

• Open sourced in 2015 by Neo4j, Inc. aiming that it becomes the "SQL
for graphs" (openCypher)

Property Graphs in Neo4j

• Nodes:
• grouped by labels Person and
Movie:
• Keanu Reeves (Person)

• The Matrix (Movie)

• Relationships:
• ACTED_IN: from Person nodes to
Movie nodes

Property Graphs in Neo4j

• Properties:
• Nodes:

• Person:
• born (integer)
• name (string)

• Movie:
• released (integer)
• title (string)
• tagline (string)

• Relationships:
• ACTED_IN:

• roles (array of string)

Cypher Patterns - ASCII Art in Nodes

• Nodes:
• surrounded by parenthesis
() or (p1)

• Labels:
• start with colon
(p1:Person)

• Properties:
• wrapped with braces and property name separated by a colon from property

value
(p1:Person {name: “Keanu Reeves”})

Cypher Patterns – ASCII Art in Relationship

• Relationships:
• wrapped with hyphens or square brackets
--> or –[a:ACTED_IN]->

• Direction:
• specified by < or >
(p1)-[:ACTED_IN]->(m) or
(m)<-[:ACTED_IN]-(p2)

• Properties:
• analogus to nodes
-[:ACTED_IN {roles: “Neo”}]->

Cypher Patterns

• Get all persons who co-acted with Keanu Reeves.

Cypher Patterns

• Get all persons who co-acted with Keanu Reeves.

Keanu
Reeves

(p1:Person {name: “Keanu Reeves”}) (m:Movie) (p2:Person)-[:ACTED_IN]-> <-[:ACTED_IN]-

PERSON PERSONMOVIE

PATTERN:

ACTED_IN ACTED_IN

Cypher - CREATE (Node)

• AddNode(G,x): adds node x to graph G

LABELS

PROPERTIESVARIABLE
(temporary store node)

RETURN created node
(optional)

* Multiple nodes can be created in one statement separeted by a colon “,”

Cypher - CREATE (Relationship)

• Add(G,x,y,l): adds an edge to graph G between nodes node x
and y with label l

RELATIONSHIP
LABEL

PROPERTIESNODE
PATTERN

RETURN created
relationship
(optional)

NODE
PATTERN

Cypher - DELETE (Node)

• DeleteNode(G,x): deletes the node x from graph G

NODE
PATTERN

DETACH inbound/outbound relationships
(optional)

* You cannot delete a node without also deleting relationships that start or end on said node.

Cypher - DELETE (Relationship)

• Delete(G,x,y,l): deletes an edge from graph G between nodes
node x and y with label l

RELATIONSHIP
LABEL

RELATIONSHIP
PATTERN

NODE
PATTERN

RETURN created
relationship
(optional)

NODE
PATTERN

Cypher - ADJACENT

• Adjacent(G,x,y): tests if there is an edge from x to y in graph G

VARIABLE
(temporary store path)

NODE
PATTERN

NODE
PATTERN

* EXISTS returns true if a match for the pattern exists in the graph, or if the specified property exists in the node, relationship or map.

Cypher - ADJACENT EDGES

• AdjacentEdges(G,x,y): set of labels of edges from x to y in
graph G

NODE
PATTERN

NODE
PATTERN

VARIABLE
(temporary store relationship)

TYPE
(relationship type)

* TYPE returns the string representation of the relationship type.

Cypher - REACH

• Reach(G,x,y): tests if there is a path from x to y in graph G

NODE
PATTERN

NODE
PATTERN

EXISTS
(path)

* EXISTS returns true if a match for the pattern exists in the graph, or if the specified property exists in the node, relationship or map.

Cypher - PATH

• Path(G,x,y): a shortest path from x to y in graph G

NODE
PATTERN

NODE
PATTERN

SHORTESTPATH
(a single shortest path)

* SHORTESTPATH finds a single shortest path.
* ALLSHORTESTPATHS finds all shortest paths.

Cypher - N-HOP

• N-hop(G,x): set of nodes y where exists a path of length n from x
to y in graph G

NODE
PATTERN

N
(number of hops)

Cypher - More…

• Match on multiple relationship types:

Match multiple
relationship types

Cypher - More…

• Variable length relationships

Variable length path:
minHops: 2
maxHops: 4

Cypher - More…

• Relationship variable in variable length relationships (return edges)

List relationships

* RELATIONSHIPS returns a list of relationships comprising a variable length path between to nodes.

Cypher - More…

• Return only properties:

Return properties

Cypher - SET (Properties)

• Set rating of 9.9 for title The Matrix:

• Remove rating property for title The Matrix:

Rating value

Removing property

Cypher - SET (Labels)

• Set Favorite label to title The Matrix:

LABEL

Cypher - REMOVE (Properties/Labels)

• Remove rating property from title The Matrix:

• Remove :Favorite label from title The Matrix:

Cypher - WHERE

• All titles released between 2000 and 2010:

• It is also possible to nest existential subqueries (must return true or
false):

Cypher - Aggregating Functions

• Analogus to SQL GROUP BY:
• avg

• count

• max

• min

• sum

• etc

Grouping key

Aggregating
Function

Cypher - Aggregating Functions

• collect: returns a list containing the values returned by an
expression

• Result:

Cypher - Internal IDs

• it is possible to create two distinct relationships with the same label
between two nodes:

• it is also possible to create two distinct nodes with the same label and
same properties:

Cypher - Internal IDs

• id: returns the internal ID of the relationship or node.

Internal ID

Cypher - Constraints

Constraint Description Neo4j Edition

Unique node property ensures that property values are unique for all nodes
with a specific label

Community

Node property existence ensures that a property exists for all nodes with a
specific label

Enterprise

Relationship property existence ensures that a property exists for all relationships
with a specific type

Enterprise

Node key ensures that, for a given label and set of properties:
i. all the properties exist on all the nodes with that

label
ii. the combination of the property values is

unique

Enterprise

https://neo4j.com/docs/cypher-manual/current/constraints/

https://neo4j.com/docs/cypher-manual/current/constraints/

Cypher - Unique Node Property Constraints

• Adding a unique property constraint on a property will also add a
single-property index on that property

DEPRECATED

Cypher - Indexes

• Single-property:

• Composite:

Cypher - Query Execution

1. Convert the input query string into an abstract syntax tree (AST)

• query string is first tokenized and then parsed into an AST

• perform semantic checking of the variable types and scoping of variables within the tree

2. Optimize and normalize the AST

• simple optimizations and normalizations, i.e:

• moving all labels and types from the MATCH clause to WHERE

• suppressing redundant WITH

• expanding aliases: RETURN * => RETURN x AS x, y AS y

• folding of constants: 1+2*4 => 9

• naming anonymous pattern nodes: MATCH () => MATCH (n)

• converting the equality operator to an IN:
MATCH (n) WHERE id(n)=12 => MATCH n WHERE id(n) IN [12]

• other normalizations

https://neo4j.com/blog/introducing-new-cypher-query-optimizer

https://neo4j.com/blog/introducing-new-cypher-query-optimizer

Cypher - Query Execution

3. Create a query graph from the normalized AST
• more abstract, high level representation of the query
• allows to compute costs and perform optimizations far more effectively

4. Create a logical plan from X
• a logical plan is produced in a step-by-step fashion following a bottom-up approach for each

query graph (depending on the query, a query graph may consist of sub query graphs)
• the cost of a logical plan is an estimate of the amount of work the database will have to do in

order to execute it (dominated by I/O reads from the store and indices, and in-memory
computational work such as expanding the graph by traversing more relationships and hence
gathering more nodes)

5. Rewrite the logical plan
• the logical plan is now rewritten using un-nesting, merging and simplification of various

components

https://neo4j.com/blog/introducing-new-cypher-query-optimizer

https://neo4j.com/blog/introducing-new-cypher-query-optimizer

Cypher - Query Execution

6. Create an execution plan from the logical plan
• choose a physical implementation for logical operators

7. Execute the query using the execution plan

https://neo4j.com/blog/introducing-new-cypher-query-optimizer

https://neo4j.com/blog/introducing-new-cypher-query-optimizer

Cypher - Query Execution

https://neo4j.com/blog/introducing-new-cypher-query-optimizer

https://neo4j.com/blog/introducing-new-cypher-query-optimizer

Cypher - Query Profiling

• EXPLAIN:
• see the execution plan but not run the statement

• return an empty result and make no changes to the database

• PROFILE:
• run the statement and see which operators are doing most of the work

References

• Neo4j Cypher Refcard
https://neo4j.com/docs/cypher-refcard/current/

• Cypher Query Language
https://neo4j.com/developer/cypher/

• The Neo4j Cypher Manual v4.4
https://neo4j.com/docs/cypher-manual/current/

• Introducing the new Cypher Query Optimizer
https://neo4j.com/blog/introducing-new-cypher-query-optimizer/

https://neo4j.com/docs/cypher-refcard/current/
https://neo4j.com/developer/cypher/
https://neo4j.com/docs/cypher-manual/current/
https://neo4j.com/blog/introducing-new-cypher-query-optimizer/

