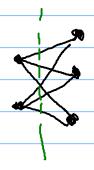


Ejercicio 1 Para el grafo de la Figura 1 (ii), determine: 1) Un camino que no sea un recorrido; 2) Un recorrido que no sea camino simple; 3) Un camino simple de b a d; 4) Un camino cerrado que no sea un circuito; 5) Todos los ciclos que pasan por b; 6) Todos los caminos simples de b a f.

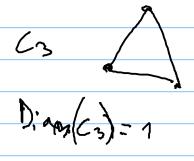
Ejercicio 3 Sea G el grafo con conjunto de vértices $\{1, 2, ..., 15\}$ donde el vértice i es adyacente al j si y solo si su máximo común divisor es mayor que 1. ¿Cuántas componentes conexas tiene G?

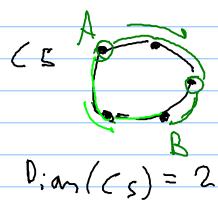

Ejercicio 9 Hallar el diámetro de K_n , $K_{n,m}$, P_n , C_n y el grafo de Petersen.

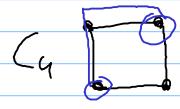
$$d(\alpha, d) = 1$$

 $Lian(k_0) = 1$

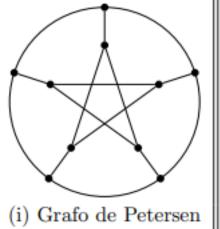
Kn,m:

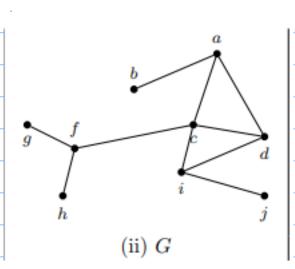



P. :


$$D_{iam}(P_3) = 2$$
 $D_{iam}(P_4) = 3$

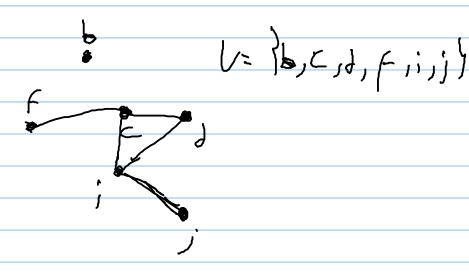
Co:




$$D: an ((u) = \frac{r_3}{\sqrt{2}})$$

Ejercicio 10 Sea G el grafo de la Figura 1 (ii).

- (a) ¿Cuántos subgrafos conexos de G tienen 4 vértices e incluyen algún ciclo?
- (b) ¿Cuántos subgrafos recubridores tiene G?
- (c) ¿Cuántos de los subgrafos anteriores son conexos?
- (d) ¿cuántos subgrafos de la parte (b) tienen el vértice a como vértice aislado?
- (e) Trace el subgrafo de G inducido por el conjunto de vértices $U = \{b, c, d, f, i, j\}$.
- (f) Describa el subgrafo G_1 y G_2 de G (Figura 1 (iii) y (iv) respectivamente) como un subgrafo inducido y en términos de la eliminación de vértices de G.
- (g) Encontrar un subgrafo de G que no sea inducido.


M=V EIGE

G(v, E) $G_1(v_1, E_1)$ G(v, E) G(v, E) G(v, E) $G(v_1, E_1)$ $G(v_1, E_1)$

Figure

