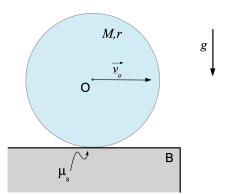
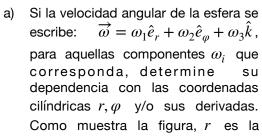
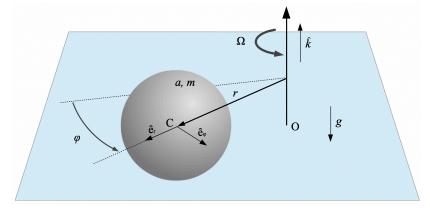

Examen de Mecánica Newtoniana

18 de diciembre de 2021


Ejercicio 1.- Una partícula de masa m está restringida a moverse por una guía \underline{lisa} plana, de manera que sus coordenadas polares r y θ verifican $r(\theta) = r_o + h\theta$, donde r_o y h son constantes positivas. En el instante inicial la velocidad de la partícula es $\overrightarrow{v} = v_o \hat{t}$ (\hat{t} : versor tangente a la guía) y sus coordenadas son $\theta = 0$ y $r = r_o$. No se considera el peso.

- a) Exprese la velocidad \overrightarrow{v} de la partícula en la guía utilizando los versores polares \hat{e}_r y \hat{e}_θ . Calcule una ecuación de movimiento.
- b) Calcule la fuerza de reacción que ejerce la guía sobre la partícula en función de la posición angular θ .


Ejercicio 2.- Considere la situación física de la figura en la cual un disco de radio r y masa M rueda sin deslizar apoyado sobre una superficie horizontal fija. La velocidad del centro del disco es $\overrightarrow{v_o}$.


Consideraremos solamente el movimiento del disco mientras se mantiene <u>apoyado</u> en la superficie y una vez ha llegado al borde B de dicha superficie. El coeficiente de rozamiento estático entre el disco y la superficie vale $\mu_{\rm s}$.

- a) Asumiendo que el disco no desliza, determine la ecuación de movimiento del disco una vez que el punto de apoyo de este con la superficie horizontal es B.
- b) Determine la ecuación que verifica la posición del disco en la cual comienza a deslizar sobre la superficie de apoyo.

Ejercicio 3.- Una esfera maciza de radio a y masa m rueda sin deslizar sobre un plano rugoso horizontal. Dicho plano gira en torno a un eje vertical fijo, con una velocidad angular $\Omega \hat{k}$ constante impuesta.

- distancia del centro C de la esfera al eje de giro del plano, y ϕ el ángulo de este radio-vector con una dirección horizontal fija.
- b) Determine la/s ecuación/es del movimiento del centro C de la esfera y encuentre una solución del movimiento que cumple $r(t) = R_o \ \forall t$, donde R_o es constante.

Datos:

Momento de inercia de una esfera maciza de radio R y masa M en su centro O: $I_o = \frac{2}{5}MR^2$