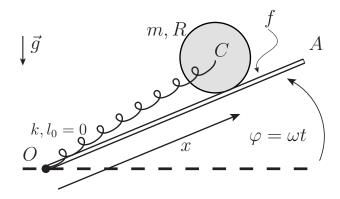
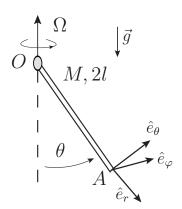

Mecánica Newtoniana Examen, 1 de agosto 2015

Ejercicio 1 Una partícula puntual de masa m se mueve sobre la superficie lisa de un cono trunco circular de eje vertical, radio inferior $R_1 = R/2$, radio superior $R_2 = 3R/2$ y ángulo α con $tan(\alpha) = 1/2$. Inicialmente la partícula está a una distancia R del eje del cono y tiene una velocidad horizontal $\vec{v} = v_0 \hat{e}_{\varphi}$.


- a. Demuestre que la componente vertical de la cantidad de movimiento angular de la partícula respecto al punto ${\cal O}$ se conserva.
- b. Encuentre la ecuación de movimiento para la distancia al eje del cono ρ .
- c. Muestre que la ecuación de movimiento puede escribirse como $\dot{\rho}^2 = f(\rho)$.
- d. Halle la condición que tiene que cumplir v_0 para que la partícula se mantenga dentro del cono.

Ejercicio 2 Una barra OA contenida en un plano vertical gira con velocidad angular ω constante. Inicialmente un disco homogéneo de masa m y radio R rueda sin deslizar apoyado sobre la barra. El contacto entre el disco y la barra es rugoso, de coeficiente de rozamiento estático f. Un resorte de constante $k = m\omega^2$ y longitud natural nula une el centro C del disco con el punto O.


Sea x la distancia entre el punto O y el punto de contacto entre el disco y la barra. En el instante inicial la barra está horizontal, x(0) = 0 y $\dot{x}(0) = 2g/3\omega$.

- a. Hallar la ecuación de movimiento del disco mientras rueda sin deslizar sobre la barra.
- b. Hallar el mínimo valor de f para que el disco no deslice antes que $\varphi = \pi/4$.

Ejercicio 3 Una barra OA homogénea de longitud 2l y masa M está unida a una articulación esférica lisa en su extremo O. El plano definido por la barra y el eje vertical que pasa por O gira con velocidad angular Ω constante. En el extremo inferior de la barra (A) siempre actúa una fuerza $\vec{F} = F\hat{e}_{\varphi}$, perpendicular al plano mencionado, como muestra la figura. La fuerza \vec{F} es variable, y es la responsable de mantener la velocidad angular Ω constante. Suponga que el ángulo θ que forma la barra con la dirección vertical cumple $0 < \theta < \pi$.

- a. Determine la ecuación de movimiento para el ángulo θ .
- b. Halle F en función de θ , $\dot{\theta}$ y los parámetros del problema.
- c. Determine el ángulo θ_{eq} de equilibrio relativo y estudie su estabilidad.

Identidades trigonométricas útiles:

$$cos(\alpha) = \frac{1}{\sqrt{1 + tan^2(\alpha)}}, \quad sin(\alpha) = \frac{tan(\alpha)}{\sqrt{1 + tan^2(\alpha)}}$$