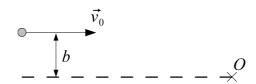

Mecánica Newtoniana Primer Parcial, 17 de mayo


Ejercicio 1 Un bloque de masa m se mueve sobre una plataforma móvil que se mantiene siempre horizontal. El centro A de esta base se mueve sobre una circunferencia de radio R y su radio vector forma con la horizontal un ángulo $\varphi(t) = \omega t$ ($\omega > 0$ constante) tal como se indica en la figura. La base $\{\hat{i}', \hat{j}'\}$ es solidaria a la plataforma y x es la coordenada que ubica a la partícula con respecto al centro A. El contacto entre la plataforma y el bloque es rugoso, de coeficiente de fricción estática f_E y fricción dinámica f_D ($< f_E$).

- a. Escriba la velocidad y aceleración de la partícula relativa a la plataforma.
- b. Halle la velocidad y aceleración absoluta de la partícula.
- c. En t = 0 la partícula se encuentra en el punto A en reposo relativo a la plataforma. Encuentre la condición que debe verificar f_E para que el bloque no deslice respecto a la plataforma en un entorno del instante inicial.
- d. Si f_E no cumple con la condición anterior, halle la aceleración relativa y la componente horizontal de la velocidad absoluta de la partícula en función del tiempo en un entorno del instante inicial.

Ejercicio 2 Una partícula de masa m se mueve bajo la acción de un potencial central atractivo de la forma $U(r) = -Cr^{-4}$, con C una constante positiva y r la distancia al centro de fuerzas O.

- a. Bosqueje la forma del potencial efectivo que experimenta la partícula.
- b. La partícula se acerca desde el infinito. Suponiendo conocido el momento angular, halle la condición que debe cumplir la energía para que la partícula alcance el centro de fuerzas.
- c. Si la velocidad de la partícula en el infinito es \vec{v}_0 , con el centro de fuerzas a distancia b de la recta que contiene a la velocidad inicial, determine la condición que debe cumplir b para que la partícula alcance el centro de fuerzas.

d. Suponiendo que no se cumple la condición anterior, encuentre la mínima distancia al centro O y la velocidad máxima que adquirirá la partícula en su movimiento.