
1Introduction to Graph Databases12/5/2022

Introduction to Graph Databases

Neo4j

Alejandro Vaisman

avaisman@itba.edu.ar

Neo4j - Practice

2Introduction to Graph Databases12/5/2022

Introduction to Graph Databases 3

Neo4j Practice – The Northwind Database

12/5/2022

Introduction to Graph Databases 4

Neo4j Practice

12/5/2022

1. Using the LOAD CVS statement

LOAD CSV WITH HEADERS FROM "file:///territories.csv" AS row

CREATE (:Territory {territoryID: row.territoryid,

name: row.territorydescription});

============

LOAD CSV WITH HEADERS FROM "file:///employees.csv" AS row

CREATE (:Employee{employeeID: row.employeeid,

lastName: row.lastname,firstName: row.firstname, city:row.city,region:row.region,country:row.country});

==============

LOAD CSV WITH HEADERS FROM "file:///employeeterritories.csv" AS row

MATCH (t:Territory {territoryID: row.territoryid})

MATCH (e:Employee {employeeID: row.employeeid})

MERGE (e)-[:AssignedTo]->(t)

file:///D:/territories.csv
file:///D:/employees.csv
file:///D:/employeeterritories.csv

Introduction to Graph Databases 5

Neo4j Practice

12/5/2022

2. Connecting to a Postgres DB

• Driver copied in the “Plugins” folder

• APOC library must also be copied in the “Plugins” folder

WITH "jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres" as url

%% NorthwindOLTP: your database in the PostgreSQL instance
%% url: to be used in the procedure call
CALL apoc.load.jdbc(url,"select * from categories") YIELD row
% the query string can also mention just a table
% row: a “row variable” just as before
RETURN row.description,row.categoryname

This lists the table “categories” in Neo4j.
We can use this also for loading data into Neo4j.

Introduction to Graph Databases 6

Neo4j Practice

12/5/2022

WITH "jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres" as url

CALL apoc.load.jdbc(url,"select * from products") YIELD row

CREATE (:Product {productID: row.productid,productName:row.productname, supplier: row.supplierid, category:row.categoryid,

qtyperunit:row.quantityperunit})

===================================

WITH "jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres" as url

CALL apoc.load.jdbc(url,"select * from suppliers") YIELD row

CREATE (:Supplier {supplierID: row.supplierid, supplierName:row.companyname, city:row.city, region:row.region, country:row.country})

Introduction to Graph Databases 7

Neo4j Practice

12/5/2022

3. With Cypher

MATCH(s:Supplier)

MATCH(p:Product) where p.supplier=s.supplierID

MERGE (s)-[:Supplies]->(p)

Introduction to Graph Databases 8

Neo4j Practice - Creating the NW Graph

12/5/2022

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/city.csv" AS row
CREATE (:City {cityID:row.citykey,cityName: row.cityname});

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/territories.csv" AS row
CREATE (:Territory {territoryID: row.territoryID, name: row.territoryDescription});

...

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/employee-territories.csv" AS row
MATCH (territory:Territory{territoryID: row.territoryID})
MATCH (employee:Employee {employeeID: row.employeeID})
MERGE (employee)-[:AssignedTo]->(territory);

Introduction to Graph Databases 9

Neo4j Practice

12/5/2022

-- To create the join of orders with order details.

CREATE VIEW order1 AS (SELECT o.orderid AS orderID,o.orderdate AS
orderDate,o.shippeddate AS shippedDate,o.shipname AS shipName, sum(quantity)
AS totqty,sum(unitprice*quantity) AS totAmount FROM orders o,orderdetails o1
WHERE o.orderid=o1.orderid
group by o.orderid,o.orderdate,o.shippeddate,o.shipname
order by orderid asc)
SELECT * INTO ordershg FROM order1

COPY ordershg to 'C:\tmp\ordershg.csv' delimiter ',' CSV header USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:/NWdata/ordershg.csv" AS row
CREATE (:Order {orderID: row.orderid, orderDate: row.orderdate,
ShippedDate: row.shippeddate,shipName:row.shipname,totalQty:row.totqty, totalAmount:row.totamount});

You can also connect directly to a PostgreSQL database

CALL apoc.load.jdbc('jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres','select * from
ordershg') YIELD row
CREATE (:Order {orderID: row.orderid, orderDate: row.orderdate, ShippedDate:
row.shippeddate,shipName:row.shipname,totalQty:row.totqty, totalAmount:row.totamount});

Introduction to Graph Databases 10

Neo4j Practice

12/5/2022

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/orders.csv" AS row
MATCH (order:Order {orderID: row.orderID})
MATCH (employee:Employee {employeeID: row.employeeID})
MERGE (employee)-[:Sold]->(order);

LOAD CSV WITH HEADERS FROM "file:/NWdata/orderdetails.csv" AS row
MATCH (order:Order {orderID: row.orderID})
MATCH (product:Product {productID: row.productID})
MERGE (order)-[:Contains{unitPrice:row.unitPrice,quantity:row.quantity, discount:row.discount}]->(product);

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/products.csv" AS row
MATCH (product:Product {productID: row.productID})
MATCH (supplier:Supplier {supplierID: row.supplierID})
MERGE (supplier)-[:Supplies]->(product);

CALL apoc.load.jdbc('jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres','select * from employees') YIELD row
MATCH (employee:Employee {employeeID: row.employeeid})
MATCH (employee1:Employee {employeeID: row.reportsto})
MERGE (employee)-[:ReportsTo]->(employee1);

Introduction to Graph Databases 11

Schema: Northwindhg database

12/5/2022

Introduction to Graph Databases 12

Problem 1. Northwindhg database

12/5/2022

• Query 1. List products and their unit price.

MATCH (p:Product)
RETURN p.productName, p.unitPrice
ORDER BY p.unitPrice DESC

• Query 2. List information about products 'Chocolade' & 'Pavlova'.

MATCH (p:Product)
WHERE p.productName IN ['Chocolade','Pavlova']
RETURN p

• Query 3. List information about products with names starting with a "C”, whose unit price is greater than 50.

MATCH (p:Product)
WHERE p.productName STARTS WITH "C" AND tofloat(p.unitPrice) > 50
RETURN p.productName, p.unitPrice;

• Query 4. Same as 3, but considering the sales price, not the product’s price.

MATCH (p:Product) <- [c:Contains] - (o:Order)
WHERE p.productName STARTS WITH "C" AND tofloat(c.unitPrice) > 50
RETURN distinct p.productName, p.unitPrice,c.unitPrice;

Introduction to Graph Databases 1312/5/2022

• Query 5. Total purchased by customer and product.

MATCH (c:Customer)
OPTIONAL MATCH (p:Product)<-[pu:Contains]-(:Order)-[:Purchased]-
>(c) RETURN c.customerName,p.productName, tofloat(sum(tofloat(pu.unitPrice) * toInteger (pu.quantity))) AS volume
ORDER BY volume DESC;

• Query 6. Top 10 employees, considering the number of orders sold.

MATCH (:Order)<-[:Sold]-(e:Employee)
RETURN e.firstName,e.lastName, count(*) AS Ordenes
ORDER BY Ordenes DESC LIMIT 10

• Query 7. For each employee, list the assigned territories.

MATCH (t:Territory)<-[:AssignedTo]-(e:Employee)
RETURN e.lastName, COLLECT(t.name);

• Query 8. For each city, list the companies settled in that city.

MATCH (c:City)<-[:locatedIn]-(c1:Customer)
RETURN c.cityname, COLLECT(c1.customerName);

Problem 1. Northwindhg database

Introduction to Graph Databases 1412/5/2022

• Query 10. How many persons an employee reports to, either directly or transitively?

MATCH (report:Employee)
OPTIONAL MATCH (e)<-[rel:ReportsTo*]-(report)
RETURN report.lastName AS e1, COUNT(rel) AS reports

• Query 11. Whom do persons called “Robert” report to?

MATCH (e:Employee)<-[:ReportsTo*]-(sub:Employee)
WHERE sub.firstName = 'Robert'
RETURN e.firstName,e.lastName,sub.lastName

• Query 12. Who does not report to anybody?

MATCH (e:Employee)
WHERE NOT (e)-[:ReportsTo]->()
RETURN e.firstName as TopBossFirst, e.lastName as TopBossLast

• Query 13. Suppliers, number of categories they supply, and a list of such categories

MATCH (s:Supplier)-->(:Product)-->(c:Category)
WITH s.supplierName as Supplier, collect(distinct c.categoryName) as Categories
WITH Supplier, Categories, size(Categories) AS Cantidad ORDER BY Cantidad DESC
RETURN Supplier, Cantidad, Categories;

Problem 1. Northwindhg database

Introduction to Graph Databases 1512/5/2022

• Query 14. Suppliers who supply beverages

MATCH (c:Category {categoryName:"Beverages"})<--(:Product)<--(s:Supplier)
RETURN DISTINCT s.supplierName as ProduceSuppliers;

• Query 15. Customer who purchases the largest amount of beverages

MATCH (cust:Customer)<-[:Purchased]-(:Order)-[o:Contains]->(p:Product),
(p)-[:hasCategory]->(c:Category {categoryName:"Beverages"})
RETURN DISTINCT cust.customerName as CustomerName, SUM(toInteger(o.quantity)) as cant ORDER by cant DESC LIMIT 1

• Query 16. List the 5 most popular products (considering the number of orders)

MATCH (c:Customer)<-[:Purchased]-(o:Order)-[o1:Contains]->(p:Product)
return c.customerName, p.productName, count(o1) as orders
order by orders desc LIMIT 5

• Query 17. Products ordered by customers from the same country than their suppliers

MATCH (c:Customer)-[r:locatedIn]->(cy:City) -[:belongsTo]-(:Region)-[:isIn]->(co:Country)
WITH co,c MATCH (s:Supplier) WHERE co.countryname=s.country
WITH s,co,c MATCH (s)-[su:Supplies]->(p:Product) <-[:Contains]-(o:Order)-[:Purchased]->(c)
RETURN c.customerName,s.supplierName,co.countryname,p.productName

Problem 1. Northwindhg database

Introduction to Graph Databases 1612/5/2022

Problem 2 – NorthwindDW database

Introduction to Graph Databases 1712/5/2022

Query 1. Total sales amount per customer, year, and product category.

MATCH (c:Category)<-[hc:HasCategory]-(p:Product)<-[pu:Contains]- (s:Sales)-[:PurchasedBy]->(cu:Customer)
MATCH (s)-[:HasOrderDate]->(d:Date)
RETURN cu.CompanyName AS Customer,c.CategoryName as Category,d.year,
sum(tofloat(s.SalesAmount)) AS Volume
ORDER BY Customer DESC;

Problem 2 – NorthwindDW database

Introduction to Graph Databases 1812/5/2022

Problem 3 – MusicBrainz database

Introduction to Graph Databases 1912/5/2022

Compute the triples of artists, and the number of times they have performed together in an event, if this number is at
least 3.

MATCH (a1:Artist)<-[]-(e:EventFact)-[]->(a2:Artist)
WHERE a1.id < a2.id
WITH a1,a2,COLLECT(e) AS events WHERE SIZE(events) > 2
MATCH (a1:Artist)<-[]-(e1:EventFact)-[]->(a2:Artist)
MATCH (a3:Artist)<-[]-(e1) WHERE a2.id < a3.id
WITH a1.name as name1, a2.name as name2,a3.name as name3, COUNT(e1.idEvent) as nbrTimes WHERE nbrTimes > 2
RETURN name1,name2,name3, nbrTimes ORDER BY nbrTimes DESC

Compare against this solution:

MATCH (a1:Artist)<-[]-(e:EventFact)-[]->(a2:Artist)
MATCH (a3:Artist)<-[]-(e) WHERE a1.id < a2.id and a2.id < a3.id
WITH a1.name as name1, a2.name as name2,a3.name as name3, COUNT(e.idEvent) as nbrTimes WHERE nbrTimes > 2
RETURN name1,name2,name3, nbrTimes ORDER BY nbrTimes DESC

Problem 3 – MusicBrainz database

Introduction to Graph Databases 2012/5/2022

Compute the quadruples of artists, and the number of times they have performed together in an event, if this
number is at least 3.

This is not the best solution:

MATCH (a1:Artist)<-[]-(e:EventFact)-[]->(a2:Artist)
WHERE a1.id < a2.id
MATCH (a3:Artist)<-[]-(e) WHERE a2.id < a3.id
MATCH (a4:Artist)<-[]-(e:EventFact) WHERE a3.id < a4.id
WITH a1.name as name1, a2.name as name2, a3.name as name3,
a4.name as name4, COUNT(e.idEvent) as nbrTimes WHERE nbrTimes > 2
RETURN name1,name2,name3,name4,nbrTimes ORDER BY nbrTimes DESC

Problem 3 – MusicBrainz database

Introduction to Graph Databases 2112/5/2022

Problem 4 – Rivers

Introduction to Graph Databases 2212/5/2022

Problem 4 – Rivers

Introduction to Graph Databases 2312/5/2022

Problem 4 – Rivers

Introduction to Graph Databases 2412/5/2022

Problem 4 – Rivers

Introduction to Graph Databases 2512/5/2022

Find the number of splits in the downstream path of segment 6020612

MATCH (n:Segment {vhas:6020612})
CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path AS pp
UNWIND NODES(pp) as p
MATCH (p)-[:flowsTo]->(r:Segment)
WITH p, count(DISTINCT r) as co WHERE co > 1
RETURN count(p)

Problem 4 – Rivers

The spanningTree function from the APOC library is used. This function computes all simple paths that can
be reached starting from a node in the graph, using breath-first search by default. This is done visiting nodes
only once. The relationshipfilter is “flowsTo “, indicating that the path must traverse only this relation, in
downstream direction.
A collection of paths is returned (pp), which is then flattened as a table using UNWIND. All reachable nodes
are obtained. For each node in this table, it is tested if this node has more than one outgoing segments. If
this is the case, there is a split. The node with vhas:6020612 is chosen for the test because it is one of the
farthest from the sea, thus its flow downstream is one of the longest ones.

Introduction to Graph Databases 2612/5/2022

Find the length, the # of segments, and the IDs of the segments, of the longest branch of upstream
flow starting from a given segment.

MATCH (n:Segment {vhas:6020612})
CALL apoc.path.expandConfig(n,{relationshipFilter:"<flowsTo", minLevel: 1}) YIELD path AS pp
WITH reduce(longi= tofloat(0), n IN nodes(pp)| longi+ tofloat(n.lengte)) AS blength, Length(pp) as
alength, [p in NODES(pp) |p.vhas] AS nodelist
WITH blength, alength, nodelist[size(nodelist)-1] as id
WITH id, max(blength) as ml, collect([id,blength,alength]) as coll
WITH id, ml, [p in coll WHERE p[0]= id AND p[1]=ml|p[2]] AS lhops
UNWIND lhops as hops
RETURN id,ml,hops order by id desc;

Problem 4 – Rivers

Introduction to Graph Databases 2712/5/2022

Find all segments reachable from the segment closest to Antwerpen’s Groenplaats

CALL apoc.spatial.geocodeOnce('Groenplaats Antwerpen Flanders Belgium') YIELD location as ini
MATCH (n:Segment)
WITH n, ini, distance(point({longitude:n.source_long, latitude:n.source_lat}), point({longitude:ini.longitude, latitude:ini.latitude})) as d
WITH n, d order by d asc limit 1
CALL apoc.path.spanningTree (n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path as pp
UNWIND NODES(pp) as p
RETURN p.vhas;

OR:

RETURN [p in NODES(pp)|p.vhas];

Problem 5 – Rivers

