Introduction to Graph Databases

Fundamentals & Implememntations

Alejandro Vaisman
avaisman@itba.edu.ar

10/5/2022 Introducton to Graph Databases

NoSQL databases

b
e

Key-Value
Stores

Column
Stores
O Document
databases
databases

Relational databases Q

Size

L.

Cc:o.rnp.~'t=m't):'r

10/5/2022 Introduction to Graph Databases

Property graphs revisited

[
[ID: 6666,

From: 10/10/2000 Name: Juan,
Salary: 8000 [

] ID: 2323,
Name: Irma,
Salary: 5000

[

ID: 1112,
Name: Martin,
Salary: 10000 [
] ID: 3333,
Name: Uma,
Salary: 3000

]

10/5/2022 Introduction to Graph Databases

Typical SQL query

Index lookup on Person.id

Index lookup on Companvid Index lookup on Company.name
| Person | I
! Company
: Id | Name Works In : T
1 Id | Name I
I 1+ Larry Page Personld | Companyld | Since '
I = 1 - —a==1 | Google |1
I | 2+ Joshua Bloch =1 1) €«-14998 """ _--7~ 1
; — == t —— - 2 | oracle !
: 3 Brian Goetz ~<4 2 11 <& =7 2001 !
1 1
I I
N | .. 3 2 | 2010
¥ ¥ N '
Y

Select Person.Name

from Person, Company, Worksin

where Company.name="Google’

and Worksln.Companvld = Company. Id
and Worksin.Personid = Person.ld

10/5/2022 Introduction to Graph Databases

Same query on graphs

Index lookup to find root Node

Person 1 < Traverse relation Company 1 I
______________ ;
WORKS m !
[-] Vv
Since 1998
Name : Googfe]

Person 3

The deepest the navigation, the largest the difference with RDBs

10/5/2022 Introduction to Graph Databases

Traversal navigation: key to GDBs

* A graph traversal pattern is the ability to rapidly traverse structures
to an arbitrary length (e.g., tree structures, cyclic structures), and
with an arbitrary path description (e.g., Friends that work together,
roads below a certain congestion threshold).

* Opposite to set theory, operated by means of relational algebra

10/5/2022 Introduction to Graph Databases

Traversing data in a RDBMS

 Based on joining and selecting data

|Dsar |astress |Phoss | mmaii

Al tmrasta

4
Il-ll:l l 113 Foa ™ ILH‘H.‘EIMFnl'rvIw.q.Ilwllmq:l|
] 428 Ba day sobsfEneg e nog

[2sh | oo |

:J.ulﬂu-.w:u-ai |

(= s | L5 el S Lo o

(F]
Osex | SrdacTd) p ik
Mo (M| |
Wi [T A
wm | w3
==
imh | mEE

10/5/2022

shad

#fan

]

.L.l.IlImIﬂ I [apcciption | Husdlirg |

L -3 urraiETy oF | Do
AN

|t | pedela

.u‘u -ﬂlﬂq'l.l.m |

SELECT *
FAOM user u, user_order uo,
prd=r= o, item= 1

WHERE un.u=er = uoc.user AND
us.orderld = oc.orderld AMND
i.lin=Itemnlid = i.lineltexld
AND u.u=er = "Alice’

Cardinmlities:

|0z : S.003.000
|DserOrder| - 100 . 300 . 200
|0xdexr=| : 1.000.000.030
| Item| - 35.000

Query Cost?!

Introduction to Graph Databases

10/5/2022

Traversing data in a GDB

orchac: 124
date: J0320000
Statun:
oeliveres

dmscription:
atrandaczcy Loe
cowan
nandling)
freoer

Ssmcziption:

Lrusania
prouts

Cardinalities:

|Userx|:

e 8 | Item|:
date: 20120810
BIATUN:
dispatones

id: cant
MgCription:
espresso beans

Introduction to Graph Databases

5.000.000

{Oxdex=z|: 1.000.000.000

35.000

Query Cost?!

ReportsTo ReportsDirectlyTo

A C
A D A D
c E > |teration 1 _ E
C M C M
E T _‘ E T
A E

A M Iteration 2

C T

A T Iteration 3

We want to compute the closure of the relation “ReportsDirectlyTo”, that is, to whom someone
“ReportsTo”, either directly or indirectly. SQL supports these kinds of recursive queries. Recursively
joining ReportsTo and ReportsDirectlyTo on RT.Employee=RDT.Boss.

WITH recursive ReportsTo (Boss, Employee) AS
(SELECT Boss, Employee
FROM ReportsDirectlyTo
UNION ALL
SELECT ReportsTo.Boss, ReportsDirectlyTo.Employee
FROM ReportsTo, ReportsDirectlyTo
WHERE ReportsTo.Employee = ReportsDirectlyTo.Boss)
SELECT * FROM ReportsTo

10/5/2022 Introduction to Graph Databases

10/5/2022

ReportsDirectlyTo

Employee

Introduction to Graph Databases

10

10/5/2022

Graph storage vs graph processing

e Graph databases <> large-scale graph processing frameworks (e.g., Pregel
from Google)
* Same data representation, but
* graph processing tools focus on exploitation
* graph databases focus on storage and transactions
* Graph databases scale vertically
* GBD problem: partitioning a graph is HARD
* Pregel executes distributed processing in commodity servers
* Two product families:
A GDB appropriate to traverse the graph, compute shortest paths
* A graph processing framework adequate for clustering, graph mining,
etc.

Introduction to Graph Databases

11

10/5/2022

Graph DB vs. Graph processing

Traversal processing speed

iGraph
JUNG
'\ (v Univesssl [
k. Networi/Graph) +
.
l\‘ ’
. R

In memory graphs

Graph databases

T =

R *® Neosj s,
. @ the graph database “

rientDB "
& InfiniteGraph

-

L.
Fal

Introduction to Graph Databases

Data Size

12

Graph database models

* Types of relationships supported by graph data models

Attributes

« Properties,
« Mono- or mulfi-
valued.

Standard
abstractions

» Part-of,
composed-by,
n-ary
associations.

10/5/2022

Entities
o it
« Groups of real-

world objects.

Derivation and
inheritance

» Subclasses and
superclasses,

 Relations of
instantiations.

Introducton to Graph Databases

Neighborhood
relations

« Structures to

represent
neighborhoods

of an entity.

MNested
relations

« Recursively
specified
relations.

13

Graph database models

 Agraph is a binary relation. Ex:

Highest: out-degree = 0
Lowest: in-degree =0

Ex: write a Relational Algebra
Expression for the “<“ relation (or an
SQL guery without using ORDER BY
or MAX/MIN)

10/5/2022 Introducton to Graph Databases 14

The abstract data type Graph (w/properties)

G=(V, E,Z L)is a graph:

= Vs a finite set of nodes or vertices,
e.g. V={Term, forOffice, Organization,..]

= E s a set of edges representing binbgﬁ“‘ [m'm: foreice }W'| .

I 1 | i - it
relationship between elements in 'V, _ '\ |
e.g. E={(forOffice, Term) - ofce oy
(forOffice, Organization),(Office, Organization).. }| T
» Zisa setof labels, (oS

e.g., 2 =|domain, range, sc, type, ...}

= Lisafunction-VxV= &,

e g., L=[((forOffice, Term),domain), ((forOffice, Organization),range). .. }

10/5/2022 Introducton to Graph Databases

15

The abstract data type Multigraph

=(V. E, Z L) is a multi-graph:

= \/is afinite set of nodes or vertices, . '
e.g. V={Term, forOffice, Organization, ..} soman, Lo e
g N
ceempin | r.:nnt.
» E is a set of edges representing binary™ \ B

e.g. E={(forOffice, Term) | trpe
(forOffice,Organization),(Office, Organization)...} | —]—’

relationship between elements in V, | f_f E

1 ’ 1 fanodfice |
» Jisa setof labels, IL& -

forCirpanizabion

e.9., £ =|{domain, range, sc, type, ...}

" Lisa functlc}n Vx V=2 PowerSet(2),

eqg., L= omain}), ((forOffice, Organization),{range}),
_id0,AZ), [forOffice, forOrganization}). ..

10/5/2022 Introducton to Graph Databases

16

Basic operations

10/5/2022

Given a graph G, the following are operations over G:

AddNode(G,x): adds node x to the graph G.
DeleteMNode(G,x): deletes the node x from graph G.
Adjacent(G,x,y): tests if there is an edge from x to y.
MNeighbors(G,x): nodes y s.t. there is an edge from x to y.
AdjacentEdges(G,x,y): set of labels of edges from x to y.
Add(G,x,y,|): adds an edge between x and y with label |.
Delete(G,x,y,l): deletes an edge between x and y with label |.
Reach(G,x,y): tests if there a path from x to y.

Path(G,x,y): a (shortest) path from x to y.

2-hop(G,x): set of nodes y s.t. there is a path of length 2 from x to y, or from
y to X.

n-hop(G,x): set of nodes y s t. there is a path of length n from x to y, or from
y to X.

Introducton to Graph Databases

17

Graph generalization: (multi)Hypergraphs

H=(X, E), where Xis aset of nodes, and E is a set of non-empty subsets of X called hyperedges =>

E SP(X), whereP (X)isthe power set of X.

=0y

Undirected

X = {vy,v2,v3,v4,v5, 05,07}

E = {e1,ez3,e3,e4} = {{v1,v2,v3 },{v2,v3}, {v3, v5,6},

10/5/2022

Introducton to Graph Databases

Let X = (v1,...,vn), E =(el,...,em).
Every hypergraph has an m x n incidence
matrix A = (a;;) where

L 1 ifuy € e
M {‘D otherwise.
Sl 1 1100 000
e2 0 1 1 0 O 0 O
e3s 0 0 1 0 1 1 O
e4 0 O O 1 0 0 O

Vi v2 v3 v4 Vv5 vb6 V7 18

Graph generalization: (multi)Hypergraphs

H=(X,E), where Xis a set of nodes, and E is a set of non-empty subsets of X called hyperedges =>
E is a subbag of P (X) x P(X), where P (X) is the power set of X.

Directed \

O,
O,

Graphically, S,T € X; A hyperedge is denoted S->T

In the example:

X={1,2,3,4}
E = {{1}->{2,4}, {2} -> {3}, {3} ->{2,3}}

10/5/2022 Introducton to Graph Databases

19

Implementation

Adjacency
List

=

| | For each node a list
of neighbars.

If the graph iz
dirscted,

| | adjacency list of i
containg only the
outgoing nodes of
I

"H.__

Cheaper for
obtaining the
neighbors of a
node.

Mot suitable for
checking if there
— |3 an edge
between two
nodes.

o

10/5/2022 Introducton to Graph Databases

Implementation: adjacency list

Adjacency L2 L3 Vi
List V1

| | For each node a list ve

of neighbors. L1 ——r— (V1,{L2}) | (V3,{L3})

- V3

If the graph iz
directed, @
dj list of i
|| adjacency list of | V4

containg only the _"((v1.{L1h

putgc:ing nodea of
i

Cheaper for
obtaining the
neighbors of a
node.

Mot suitable for
checking if there
— |3 an edge

between two
nodes.

10/5/2022 Introducton to Graph Databases

Implementation: adjacency list

Adjacency list of a directed graph

Call Adj an array of length |V|

Storage |V| X |E]|

Is there a node between Xand Y? O (V)

Out-degree of a vertex u = O (Adj[u]) = O (E) (worst case)

Out-degree for all vertices = O (V + E)

In-degree of a node =0 (E)

In-degree of all vertices =0 (V x E).

Alternative: allocate an array T of size |V | and initialize its entries to zero. Then

scan the lists in Adj once, incrementing T[u] when we see u in the lists => O (V + E) time with
(V) additional storage.

10/5/2022 Introducton to Graph Databases

22

Implementation

Adjacency
List

=

| | For each node a list
of neighbars.

If the graph iz
dirscted,

| | adjacency list of i
containg only the
outgoing nodes of
I

"H.__

Cheaper for
obtaining the
neighbors of a
node.

Mot suitable for
checking if there
— |3 an edge
between two
nodes.

o

10/5/2022

Incldence
List

A

.".I’Brtiﬂm and edges
— are stored as records

of objects.

| Each vertex stores
incident edges.

i 51

|| Each edge stores
incident nodesa.

Introducton to Graph Databases

23

Implementation: incidence list

Incldence
List

.".I’Brtiﬂm and edges
— are stored as records

of objects.

| Each vertex stores
incident edges.

| Each edge stores
incident nodesa.

V1

Va2

V3

V4

10/5/2022

L1

L2

L3

@m,my (destination,L1)

(source,l2) | (source,l3)

L1

@ﬁnaﬁun,m] >

(source,L1)

(V4. V1)
(V2,V1)

(V2,V3)

Introducton to Graph Databases

Properties:

Storage: O(|V|+|E|+[L])
Adjacent(G,x.y): O(|E|)
Neighbors(G,x): O(|E[)
AdjacentEdges(G,x,y): O(|E|)
Add(G,x,y,1): O(|E|)
Delete(G,x,y.1): O(]E[)

24

Implementation

Adjacency
List

=

| | For each node a list
of neighbars.

If the graph iz
dirscted,
| | adjacency list of i
containg only the
outgoing nodes of
I

"H.__

Cheaper for
obtaining the
neighbors of a
node.

Mot suitable for
checking if there
— |3 an edge
between two
nodes.

o

10/5/2022

Incldence
List

A

.".I’Brtiﬂm and edges
— are stored as records

of objects.

| Each vertex stores
incident edges.

i

|| Each edge stores
incident nodesa.

Adjacency
Matrix

A

Fa

Bidimenszional
graph _
reprezentation.

Ty

| Rows represent
BoUroe vertioes.

Columne repreaent
destination vertices.

Each non-null
entry representa
that there iz an
— edge from the
source node to
the destination
node.

Introducton to urapn vatapases

25

Adjacency
Matrix

. R
Bidimenszional
graph
representation.

%, o

| Rows represent
BOUroe vertioes.

Columns represent

Each non-null
entry represents
that there is an
— adge from the
source node to
the destination
node.

.

destination vertices.

-,

10/5/2022

V1

V2

V3

V4

Vi

V2

V3 V4

(L2)

(L3)

{L1]

Introducton to Graph Databases

mplementation: adjacency matrix

L2 L3
V1

L1

@

26

Implementation: adjacency matrix

* Complexity

» Storage

Answer : |V| X |V]|

* Isthere an edge from X to Z?
Answer : O(1)

* Compute the out-degree of Z
Answer: O(|V])

e Compute the in-degree of Z
Answer: O(|V])

* Add an edge between two nodes
Answer: O(1)

* Compute all paths of length 4 between any pair of nodes (4-hop)
Answer: O(|[V]*).

10/5/2022 Introducton to Graph Databases

Implementation

Adjacency
List

=

| | For each node a list
of neighbars.

If the graph iz
dirscted,
| | adjacency list of i
containg only the
outgoing nodes of
I

"H.__

Cheaper for
obtaining the
neighbors of a
node.

Mot suitable for
checking if there
— |3 an edge
between two
nodes.

o

10/5/2022

Incldence Adjacency
List Matrix

Vertioss and edges [_
— are stored as records Bidimensional

of objects. graph _

- S reprezentation.
| Each vertex stores ._

mlnnldErnt edges. | Rows represent

source vertices.

|| Each edge stores

incident nodea.

Columne repreaent
destination vertices.

Each non-null
entry representa
that there iz an
— edge from the
source node to
the destination
node.

Introducton to urapn vatapases

Incidence
Matrix

Bidimensional
— graph
representation.

Rows

— represant
‘vartices.)
Columns

— reprecsnt
edges

it

i

A non-null entry reprecents
— that the source verex is
incident to the edge.

o

28

mplementation: incidence matrix

Incidence L1 L2 L3

Matrix v{ |destination | destination v L2 @ L3 @
1
l.l' 1

Bidimensional V2 source source
— graph
representation.

V3 destination L1

i
o

[Fows | source
— reprasent V4
|vertices. V4

i !

Colurmins
— reprasent

edges
LS

i 1
A non-null entry reprecents
— that the source vertex is
incident to the edge.

L A

10/5/2022 Introducton to Graph Databases

mplementation: incidence matrix

Incidence L1 L2 L3
Matrix w1 | destination | destination v L2 @ L3 @
. . 1
Bidimensional e SOource source

— graph
reprecentation. __
] . V3 destination L1

..HEIWE | sounce

— reprasant

\vertices. va @
Columns Properties:

— represent
edges = Storage: O(|V|x|E])

)) __ = Adjacent(G,x.y): O(|E|)
A non-null te . - :

-m&”&QLﬁmTﬁﬁéiﬁi" Neighbors(G,x): O(|V|x|E|)
neident o the edge. | = AdjacentEdges(G x,y): O(|E|)

= Add(G,x,y,I): O(|V])
= Delete(G,x,y.1): O(|V])

10/5/2022 Introducton to Graph Databases

Implementation

Adjacency
List

=

| | For each node a list
of neighbars.

If the graph iz
dirscted,
| | adjacency list of i
containg only the
outgoing nodes of
I

"H.__

Cheaper for
obtaining the
neighbors of a
node.

Mot suitable for
checking if there
— |3 an edge
between two
nodes.

o

10/5/2022

Incldence Adjacency
List Matrix

Vertioss and edges [_
— are stored as records Bidimensional

of objects. graph _

- S reprezentation.
| Each vertex stores ._

mlnnldErnt edges. | Rows represent

source vertices.

|| Each edge stores

incident nodea.

Columng represent

Each non-null
entry representa
that there iz an
— edge from the
source node to
the destination
node.

destination vertices.

Introducton to urapn vatapases

Incidence
Matrix

Bidimensional
— graph

Rows

— represant
‘vartices.)
Columns

— reprecsnt
edges

it

representation.

’ Compressed %
Adjacency

Differential
encoding
batweaon two
consaoutive
nodes

i

o

A non-null entry reprecents
— that the source verex is
incident to the edge.

31

10/5/2022

Implementations

Introducton to Graph Databases

32

Graph databases — Representative approaches

Neo4j Reference Card

http://www_hypergraphdb.org

A Fl a8

[
[

http://www.neo4j.org

http://www.sparsity-technologies.com/

10/5/2022 Introducton to Graph Databases 33

Some graph databases

10/5/2022

Sparksee

Java library for
management of
—| perzigtent and
temporary
grapha.

Implementation
reliez on

|| bitmaps and

gecondary
structures (B-
tres)

‘ HyperGraphDBE Neod;

-

L Implements the E:lﬁ::::l; madel
hyper graph

data model — where relations
' are first-class
objects.

Mative dizk-
| | based storage
rmanager for
graphs.

Framewaork for
raph trave

Some graph db implement an APl rather than a query language

Introducton to Graph Databases

34

Property graph model again

| |
| role=Bill !
! f=TMDb L le=Dalilah |
- —— | re | : i role=Delilah | ng : Person
o @ Movie I ref = IMDb |
name=Clint Eastwood 1 _ — | name = Anna Levine
gender =male title=Untorgiven J L gender = female

10/5/2022 Introducton to Graph Databases

Neo4" (Robinson et al., 2013)

* Labelled attributed multigraph

 Nodes and edges can have properties (property graphs)
* No restrictions on the # of edges between nodes

* Loops allowed

e Different types of traversal strategies

* APIs for Java and Python

* Embeddable and server

* Full ACID transactions

10/5/2022 Introducton to Graph Databases 36

Neo4j (Robinson et al., 2013)

* Native graph processing and storage
* Characterized by index-free adjacency:
* Node keeps direct reference to adjacent nodes
e Acts like a micro-index (or local index)
 Makes query time independent from graph size for many queries
* Joins are “precomputed” and stored as relationships
* |n non-native graph DBs, joins must be computed

10/5/2022 Introducton to Graph Databases 37

Neo4j (Robinson et al., 2013)

* Native graph storage

e Storing graphs in files
 Loading graphs into main memory
* Caching graphs for fast querying

10/5/2022 Introducton to Graph Databases

38

Neo4| - architecture

Robinson et al., 2013

Traverser APl

Core API Cypher

Object Cache

Transaction Management

File System Cache

Record Files

Transaction Log

Disks

10/5/2022

Introducton to Graph Databases

39

File storage

inlse
nextRelld nextPropld
1 5 9
Relationship (33 bytes)
inlse firstPrevRelld secondiextRelld
firstNode secondiode relationshipType fistextRelld secondPrevRelld nextPropld
1 5 9 13 17 21 25 29 33

 Graphs stored in store files

10/5/2022

Nodes (neostore.nodestore.db)
Relationships (neostore.relationshipstore.db)
Properties (neostore.propertystore.db)

Introducton to Graph Databases

40

File storage: nodes

inlse
nextRelld nextPropld

1 3 9

 Storedin node records
* Fixed length (9 bytes) to make search performant (find records with an offset from the node id)
 Finding a node is O(1)
e First byte: in-use flag
4 bytes for the address of the first relationship
4 bytes for the first property

10/5/2022 Introducton to Graph Databases 41

File storage: relationships

inlse firstPrevelld secondextRelld
firstNode secondMode relationshipType firstextBelld secondPrevRelld nextPropld

1 5 9 13 17 21 25 29 33

e Stored in relationship records
 Fixed length (33 bytes)
e First byte: in-use flag
* Organized as a double-linked list
 Each record contains the IDs of the two nodes in a relationship (start and end nodes)
A pointer to the relationship type
 For each node, there is a pointer to the previous and next relationship records
« E.g.:firstPrevRellD: previous relationship of the start node; firstNextRellD: next relationship of
the start node (the one after the current relationship)
« These form the relationship chain

10/5/2022 Introducton to Graph Databases 42

File storage: properties

Stored in property records
* Fixed length
* Each record consists of 4 property blocks and the ID of the next property in the property chain
* Property chains: single-linked list
 Each property: between 1 and 4 blocks
Each property record holds:
* Property type
 Pointer to the property index file, holding the property name
 Avalue, or a pointer to a dynamic structure (string or array store)

10/5/2022 Introducton to Graph Databases 43

File storage: example

:R1{p3:v6}
r2

C
:L1{p1:v3,p4:v4}

B
:L1{p1:v3,p4:v4}

A
‘L1{p1:v1,p2:v2}

D
:L2{p8:v9}

NN
ri \“

1 A npl
In a DFS, start from r1, 5 . SR
then r2, r4, r3 (see table B |
“Relationships”). We have 3 € Nil 2 BB
all the information. 4 D Nil
r4 1
5 E np7 Nil

10/5/2022

Introducton to Graph Databases

Properties

Relationship rp3 p3 v6 NIL
Types npl pl vl np2

-- np2 P2 Vv2 NI
e np7 pl V7 NI
D2 R2

Relationships

| Fst | snd | RT | Ferev | FNext | SPrev | SNext| NP_
A B ID1 NIL r3 NIL r2 NIL

B C ID1 NIL r4 NIL NIL rp3

A E ID1 ri NIL NIL NIL NIL

B D ID2 r2 NIL NIL NIL NIL
44

Caching

File system cache (writing)

e Cache divides each store into regions (pages)

e Stores a fixed number of pages per file

 Pages are replaced using Least Frequently Used pages

Object cache

* Optimized for reading

 Stores object representations of nodes, relationships, and properties for fast path traversal

* Node objects: contain properties and references to relationships

 Relationship objects: contain only their properties

 Thisis opposite to what happens in disk storage, where most information is in the relationship
records

10/5/2022 Introducton to Graph Databases 45

Object cache

10/5/2022

A

‘L1{p1:v1,p2:v2}

ID
¢ X in H1 Hz Hn
e
PP T R [& R
2 n [R [R | R
typeY
P out | R R
type
;E ID | start | end | type
Z | key key; key; key,

n3

O W W

B
‘L1{p1:v3,p4:v4}

IN: rl
OUT: r2
OUT: r4
IN: r2

Introducton to Graph Databases

:R1{p3:v6}

r2

L2{p8:v9}

r3
rd

46

Traversal A n

‘L1{p1:v1,p2:v2} ‘L1{p1:v3,p4:v4}

Fetch node data from cache - non-blocking access
* If notin cache, retrieve from storage, into :L2{p8:v9}
cache
»If region is in FS cache: blocking but
short duration access
»If region is outside FS cache: blocking,

Get relationships from cached node
n2 nl n2 R1

* If not fetched, retrieve from storage, by B IN: rl rl
following chains B OUT: r2 r2 n2 n3 R1
Expand relationship(s) to end up on next node(s)
 The relationship knows the node, no need B OUT: r4 (p3,v6)
to fetch it yet n3 C IN: r2 r3 n1 ns R1
Evaluate
e possibly emitting a Path into the result set rd n2 n4 R2
Repeat

10/5/2022 Introducton to Graph Databases 47

Some graph databases

‘ Sparksee ‘ HyperGraphDB ‘ Neodj
Java library for L Implements the Metwork
management of hyper graph oniented model

— where relations
are first-class
objecta.

—{ perzigtent and

temporary
grapha.

data model.

Mative dizk-
| based storage
rmanager for
grapha.

Implementation
reliez on

|_| bitmaps and
secondary
structures (B
tres)

|| Framework for
graph traveraal.

* Some graph db implement an API rather than a query language

10/5/2022 Introducton to Graph Databases

Sparksee

* Logical model
 Labeled

*

Bill Murray

 alabel for each vertex and edge

e Directed

* fixed direction edges, from tail to hear

e Attributed

* variable # for each vertex)

 Multigraph

*

* Diane Keaton

—_—
Woody Allen SAA Manhattan

Sofia Coppola

*

Penélope Cruz

=

* cas = chst |
- Scarlett T oSN Vicky Cristina ARIA ELEN/
Johansson Barcelona

e possibly more than one edge between nodes

e Embedded graph dbms

* tightly integrated with the application at code level

10/5/2022

Introducton to Graph Databases

49

Sparksee

Nodes and edges have a sparksee-generated OID

Node, edge and global attributes

 Not restricted to an edge or node type (e.g., NAME can belong to all node objects)
* Global attributes belong to the graph

Attributes can have different indexes

e Basic attributes

* |ndexed attributes
 Unique attributes

* Neighborhood index

Persistent database in a single file
Can manage very large graphs

Sparksee
 Agraph G=(V,E,LT,H, AL,....... ,An) is defined as:

 LabelsL={(o,/)| o€ (V uUE)A[lEestring}

e Heads H={(e,h)| e€e EA heV}

 TailsT={(e,t)| e€ E At eV}

e Attributes Ai={(o,c)| o € (V u E) A c € (int,string,...}

* The graph is split into multiple lists of pairs
 The first element in a pair is always an edge or a vertex

Sparksee - architecture

| SparkseePhyton][Sp'lrlal\n Il 39.*,"“ | &

*SWIG = Simplified Wrapper and Interface Generator. Open source tool used to connect programs/libraries written in C/C++ with other
languages.

10/5/2022 Introducton to Graph Databases

52

Sparksee — internal representation

Anciralighia

* Each vertex/edge is identified with an immutable oid.
* Links: bidirectional
 Value - > set of OIDs.
e Givenan OID -> a value.
« Two maps: (a) from a value to a vertex or edge set; (b) from a vertex or edge to an oid.

* Maps are B-trees.

10/5/2022 Introducton to Graph Databases 53

Sparksee — internal representation

Anciralighia

* A Sparksee Graph is a combination of Bitmaps:

* Bitmap for each node or edge set (type).

* Each position in the bitmap corresponds to the oid.

* One link for each attribute.

* Two links for each type: Outgoing and in-going edges.
* Maps are B+trees

* A compressed UTF-8 storage for UNICODE string.

10/5/2022 Introducton to Graph Databases

54

Sparksee — example

BABEL e[1]
nic="‘en’
-

rticle [v1]
id=1

title = ‘Europa’
tic =‘ca’

REF e[4]
tag="contin

Article [v4]
id=4

title = ‘Barcelona,
tic = ‘en’

10/5/2022

Article [v3]
id=3

title = ‘Europa
tic =‘en’

contains e[7]

BABEL ¢[2]
nic=‘en’

rticle [v2]
id=2

title = ‘Europa
tic =1fr’

contains ¢[5]

Image [v5]
id=1
file="europe.png’

contains e[6]

Image [v6]
id= 2
file="bcn.png’

Introducton to Graph Databases

55

Sparksee — example

rticle [v1] BABEL e[1] Atticle [v3] BABEL e[2] Article [v2]

id =1 nie=en id=3 nic="en’ id=2

title = ‘Europa’ title = ‘Europa’ title = ‘Europa’
tic =‘ca’ tic ="‘en’ tic = fr’

contains €[5]

Image [v5]
id=1
file="europe.png’

REF e[4]

tag="contin REF e[3]

contains e[6]

contains €e[7]

id=4
title = ‘Barcelona;

Imnge [v6]
id=2
file="bcn.png’

Value sets: group all pairs of the original set with the
same value, as a pair between the value and the set of
objects with that value

10/5/2022

Aid

Atitle

Anic

Afilena
me

Atag

Introducton to Graph Databases

vi, ARTICLE), (v2, ARTICLE),
(v3, ARTICLE),
(va, ARTICLE), (vs, IMAGE),

(ve, IMAGE), (e1, BABEL), (ez,

BABEL), (es, REF), (e, REF),
(es, CONTAINS),

(es, CONTAINS), (e7,
CONTAINS)

(e1, v1), (e2, v2), (es3, v4), (e4,
va), (es, v3), (es, v3), (e7, v4)

(e1, v3), (e2, v3), (e3, v3), (e4,
va), (es, vs), (es, ve), (€7, ve)

(v1, 1), (v2, 2), (v3, 3), (v4, 4),
(vs, 1), (vs, 2)

(v1, Europa), (v2, Europe), (vs,
Europe), (v4, Barcelona)

(v1, ca), (vz, fr), (v, en), (va,
en), (e1, en),(ez2, en)

(vs, europe.png), (vs, ben.jpg)

(e4, continent)

(ARTICLE, {v1, v2, v3, v4}),
(BABEL, {e1, ez2}),
(CONTAINS, {es, es, e7}),
(IMAGE, {vs, ve}), (REF, {es,
es})

(v1, {e1}), (vz, {e2}), (v3, {es,
es}), (v4, {e3, e4, e7})

(vs, {e1, ez, es, e4}), (vs, {es}),
(ve, {es, e7})

(1, {v1, vs}), (2, {v2, vs}), (3,
{v3}), (4, {v4})

(Barcelona, {va}), (Europa,
{v1}), (Europe, {v2, v3})

(ca, {v1}), (en, {v3, v4, e1, e2}),

(fr, {v2})

(ben.jpg, {vs}), (europe.png,
{vs})

(continent, {e4})

56

Sparksee — example

BABEL e[1]

nic=‘en’

REF e[4]
tag=‘contingnt’

Article [v4]
id=4
title = ‘Barcelona

contains e[7]

BABEL e[2]
nic="en’

title = ‘Europa’
ic ="

contains e[5]

Image [v5]
id=1
file="europe.png’

contains e[6]

Im: 6,
g

file=‘bcn.png’

00l

QBJECTS | RELATIONSHIPS

LABELS TALS
et e 1.

3 eus

3 l jO00000 |

3 OO0

. jococoaonao 31 |

s L ——— — | QO0O000 11001 |

ARTELF |
? MAGE gﬂ
QAR L e |
CONTANS Honan000 11 1 l [MEADS

= REF } Q00000001 3 -

13 l eds

13 jo00000t 111

13 000000 000]

' jonoooaoanac 11 |
=
. I
10/5/2022 Introducton to Graph Databases

57

Sparksee — example

Graph query examples

— Number of articles
lobjects (LABELS, ‘ARTICLE))

— Qut-degree of English article ‘Europe’
lobjects (TAILS, objects(TITLE, ‘Europe’) N objects (NLC, ‘en’) N objects
(LABELS, ‘ARTICLE"))l

— Articles with references to the image with filename ‘ben.jpg’
{lookup(TAILS, x) Ix € objects (HEAD, objects (FILENAME, ‘' bcn.jpg’)
N objects (LABELS, ' IMAGE'))}

— Count the articles of each language

{(x,y) x e domain(NLC) A y = I(objects (NLC, x) n objects {LABELS;
* ARTICLE’))I)

10/5/2022 Introducton to Graph Databases

58

