
Introduction to Graph Databases

Fundamentals & Implememntations

Alejandro Vaisman
avaisman@itba.edu.ar

10/5/2022 Introducton to Graph Databases 1

Introduction to Graph Databases 2

NoSQL databases

10/5/2022

Introduction to Graph Databases 3

V1

V2

V3

V4

[
ID: 1112,
Name: Martin,
Salary: 10000

]

[
ID: 6666,
Name: Juan,
Salary: 8000

]

[
ID: 3333,
Name: Uma,
Salary: 3000

]

[
ID: 2323,
Name: Irma,
Salary: 5000

]

[
From: 10/10/2000

]

Property graphs revisited

10/5/2022

Introduction to Graph Databases 4

Typical SQL query

10/5/2022

Introduction to Graph Databases 5

Same query on graphs

The deepest the navigation, the largest the difference with RDBs

10/5/2022

Introduction to Graph Databases 6

• A graph traversal pattern is the ability to rapidly traverse structures
to an arbitrary length (e.g., tree structures, cyclic structures), and
with an arbitrary path description (e.g., Friends that work together,
roads below a certain congestion threshold).

• Opposite to set theory, operated by means of relational algebra

Traversal navigation: key to GDBs

10/5/2022

Introduction to Graph Databases 7

• Based on joining and selecting data

Traversing data in a RDBMS

10/5/2022

Introduction to Graph Databases 8

Traversing data in a GDB

10/5/2022

Introduction to Graph Databases 9

ReportsDirectlyTo

Boss Employee

A C

A D

C E

C M

E T

WITH recursive ReportsTo(Boss, Employee) AS

(SELECT Boss, Employee

FROM ReportsDirectlyTo
UNION ALL

SELECT ReportsTo.Boss, ReportsDirectlyTo.Employee
FROM ReportsTo, ReportsDirectlyTo
WHERE ReportsTo.Employee = ReportsDirectlyTo.Boss)

SELECT * FROM ReportsTo

ReportsTo

Boss Employee

A C

A D

C E

C M

E T

Iteration 2
A E

A M

C T

Iteration 1

A T Iteration 3

We want to compute the closure of the relation “ReportsDirectlyTo”, that is, to whom someone
“ReportsTo”, either directly or indirectly. SQL supports these kinds of recursive queries. Recursively
joining ReportsTo and ReportsDirectlyTo on RT.Employee=RDT.Boss.

10/5/2022

Introduction to Graph Databases 10

These queries are normally more expensive in the Relational Model, since they imply MULTIPLE
JOINS.

Joins are expressed at the schema level rather than at the instance level.

How would we represent this in a Graph Data Model?

ReportsDirectlyTo

Boss Employee

A C

A D

C E

C M

E T

A

C

D

E

M

T

Paths in a graph are expressed at the instance level (there is no schema). Just check if there is an
outgoing edge.

10/5/2022

Introduction to Graph Databases 11

• Graph databases <> large-scale graph processing frameworks (e.g., Pregel
from Google)

• Same data representation, but
• graph processing tools focus on exploitation
• graph databases focus on storage and transactions

• Graph databases scale vertically
• GBD problem: partitioning a graph is HARD
• Pregel executes distributed processing in commodity servers
• Two product families:

• A GDB appropriate to traverse the graph, compute shortest paths
• A graph processing framework adequate for clustering, graph mining,

etc.

Graph storage vs graph processing

10/5/2022

Introduction to Graph Databases 12

Graph DB vs. Graph processing

10/5/2022

Graph database models

10/5/2022 Introducton to Graph Databases 13

• Types of relationships supported by graph data models

1

Graph database models

10/5/2022 Introducton to Graph Databases 14

• A graph is a binary relation. Ex:

<
<

<

<

<
<

<

1

2

3

4

Highest: out-degree = 0

Lowest: in-degree = 0

Ex: write a Relational Algebra
Expression for the “<“ relation (or an
SQL query without using ORDER BY
or MAX/MIN)

The abstract data type Graph (w/properties)

10/5/2022 Introducton to Graph Databases 15

The abstract data type Multigraph

10/5/2022 Introducton to Graph Databases 16

Basic operations

10/5/2022 Introducton to Graph Databases 17

an edge

Graph generalization: (multi)Hypergraphs

10/5/2022 Introducton to Graph Databases 18

Undirected

H = (X , E), where X is a set of nodes, and E is a set of non-empty subsets of X called hyperedges =>

E ⊆ P (X), where P (X) is the power set of X.

Let X = (v1,…,vn), E = (e1,...,em).
Every hypergraph has an m x n incidence
matrix where

1 1 1 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 1 1 0

0 0 0 1 0 0 0{v2,v3}, {v3, v5,v6},

e1

e2

e3

e4

V1 v2 v3 v4 v5 v6 v7

Graph generalization: (multi)Hypergraphs

10/5/2022 Introducton to Graph Databases 19

Directed

In the example:

X = {1,2,3,4}
E = {{1}->{2,4}, {2} -> {3}, {3} -> {2,3}}

H = (X , E), where X is a set of nodes, and E is a set of non-empty subsets of X called hyperedges =>

E is a subbag of P (X) x P(X), where P (X) is the power set of X.

Graphically, S,T ⊆ X; A hyperedge is denoted S -> T

Implementation

10/5/2022 Introducton to Graph Databases 20

Implementation: adjacency list

10/5/2022 Introducton to Graph Databases 21

10/5/2022 Introducton to Graph Databases 22

Implementation: adjacency list

Adjacency list of a directed graph

Call Adj an array of length |V|
Storage |V| X |E|
Is there a node between X and Y? O (V)
Out-degree of a vertex u = O (Adj[u]) = O (E) (worst case)
Out-degree for all vertices = O (V + E)
In-degree of a node = O (E)
In-degree of all vertices = O (V x E).
Alternative: allocate an array T of size |V | and initialize its entries to zero. Then
scan the lists in Adj once, incrementing T[u] when we see u in the lists => O (V + E) time with
(V) additional storage.

Implementation

10/5/2022 Introducton to Graph Databases 23

Implementation: incidence list

10/5/2022 Introducton to Graph Databases 24

Implementation

10/5/2022 Introducton to Graph Databases 25

Implementation: adjacency matrix

10/5/2022 Introducton to Graph Databases 26

• Complexity

• Storage

Answer : |V| X |V|

• Is there an edge from X to Z?

Answer : O(1)

• Compute the out-degree of Z

Answer: O(|V|)

• Compute the in-degree of Z

Answer: O(|V|)

• Add an edge between two nodes

Answer: O(1)

• Compute all paths of length 4 between any pair of nodes (4-hop)

Answer: O(|𝑉|4).

10/5/2022 Introducton to Graph Databases 27

Implementation: adjacency matrix

Implementation

10/5/2022 Introducton to Graph Databases 28

Implementation: incidence matrix

10/5/2022 Introducton to Graph Databases 29

Implementation: incidence matrix

10/5/2022 Introducton to Graph Databases 30

Properties:

Implementation

10/5/2022 Introducton to Graph Databases 31

Implementations

10/5/2022 Introducton to Graph Databases 32

Graph databases – Representative approaches

10/5/2022 Introducton to Graph Databases 33

Some graph databases

10/5/2022 Introducton to Graph Databases 34

• Some graph db implement an API rather than a query language

10/5/2022 Introducton to Graph Databases 35

Property graph model again

Neo4j (Robinson et al., 2013)

10/5/2022 Introducton to Graph Databases 36

• Labelled attributed multigraph
• Nodes and edges can have properties (property graphs)
• No restrictions on the # of edges between nodes
• Loops allowed
• Different types of traversal strategies
• APIs for Java and Python
• Embeddable and server
• Full ACID transactions

Neo4j (Robinson et al., 2013)

10/5/2022 Introducton to Graph Databases 37

• Native graph processing and storage
• Characterized by index-free adjacency:

• Node keeps direct reference to adjacent nodes
• Acts like a micro-index (or local index)
• Makes query time independent from graph size for many queries

• Joins are “precomputed” and stored as relationships
• In non-native graph DBs, joins must be computed

Neo4j (Robinson et al., 2013)

10/5/2022 Introducton to Graph Databases 38

• Native graph storage

• Storing graphs in files
• Loading graphs into main memory
• Caching graphs for fast querying

Neo4j - architecture

10/5/2022 Introducton to Graph Databases 39

Robinson et al., 2013

File storage

10/5/2022 Introducton to Graph Databases 40

• Graphs stored in store files
• Nodes (neostore.nodestore.db)
• Relationships (neostore.relationshipstore.db)
• Properties (neostore.propertystore.db)

File storage: nodes

10/5/2022 Introducton to Graph Databases 41

• Stored in node records
• Fixed length (9 bytes) to make search performant (find records with an offset from the node id)

• Finding a node is O(1)
• First byte: in-use flag
• 4 bytes for the address of the first relationship
• 4 bytes for the first property

File storage: relationships

10/5/2022 Introducton to Graph Databases 42

• Stored in relationship records
• Fixed length (33 bytes)
• First byte: in-use flag
• Organized as a double-linked list
• Each record contains the IDs of the two nodes in a relationship (start and end nodes)
• A pointer to the relationship type
• For each node, there is a pointer to the previous and next relationship records

• E.g.: firstPrevRelID: previous relationship of the start node; firstNextRelID: next relationship of
the start node (the one after the current relationship)

• These form the relationship chain

File storage: properties

10/5/2022 Introducton to Graph Databases 43

• Stored in property records
• Fixed length
• Each record consists of 4 property blocks and the ID of the next property in the property chain
• Property chains: single-linked list
• Each property: between 1 and 4 blocks
• Each property record holds:

• Property type
• Pointer to the property index file, holding the property name
• A value, or a pointer to a dynamic structure (string or array store)

File storage: example

10/5/2022 Introducton to Graph Databases 44

IU Fst Snd RT FPrev FNext SPrev SNext NP

1 A B ID1 NIL r3 NIL r2 NIL

1 B C ID1 NIL r4 NIL NIL rp3

1 A E ID1 r1 NIL NIL NIL NIL

1 B D ID2 r2 NIL NIL NIL NIL

ID1 R1

ID2 R2

r1

r2

r3

r4

p3 v6 NIL

p1 v1 np2

p2 v2 NIL

p1 v7 NIL

... … …

… … …

rp3

Start

1 A np1 .. r1

2 B r2

3 C Nil

4 D Nil

5 E np7 .. Nil

np1

np2

np7

Relationship
Types

Relationships

Properties

Nodes

In a DFS, start from r1,
then r2, r4, r3 (see table
“Relationships”). We have
all the information.

Caching

10/5/2022 Introducton to Graph Databases 45

• File system cache (writing)
• Cache divides each store into regions (pages)
• Stores a fixed number of pages per file
• Pages are replaced using Least Frequently Used pages

• Object cache
• Optimized for reading
• Stores object representations of nodes, relationships, and properties for fast path traversal
• Node objects: contain properties and references to relationships
• Relationship objects: contain only their properties
• This is opposite to what happens in disk storage, where most information is in the relationship

records

Object cache

10/5/2022 Introducton to Graph Databases 46

Node Type REL

n2 B IN: r1

B OUT: r2

B OUT: r4

n3 C IN: r2

… … …

REL Start End Type

r1 A B R1

r2 B C R1

(p3,v6)

r3 A E R1

r4 B D R2

Traversal

10/5/2022 Introducton to Graph Databases 47

Node Type REL

n2 B IN: r1

B OUT: r2

B OUT: r4

n3 C IN: r2

… … …

REL Start End Type

r1 n1 n2 R1

r2 n2 n3 R1

(p3,v6)

r3 n1 n5 R1

r4 n2 n4 R2

• Fetch node data from cache - non-blocking access
• If not in cache, retrieve from storage, into

cache
‣If region is in FS cache: blocking but
short duration access
‣If region is outside FS cache: blocking,
slower access

• Get relationships from cached node
• If not fetched, retrieve from storage, by

following chains
• Expand relationship(s) to end up on next node(s)

• The relationship knows the node, no need
to fetch it yet

• Evaluate
• possibly emitting a Path into the result set

• Repeat

Some graph databases

10/5/2022 Introducton to Graph Databases 48

• Some graph db implement an API rather than a query language

Sparksee

10/5/2022 Introducton to Graph Databases 49

• Logical model
• Labeled

• a label for each vertex and edge

• Directed
• fixed direction edges, from tail to head

• Attributed
• variable # for each vertex)

• Multigraph
• possibly more than one edge between nodes

• Embedded graph dbms
• tightly integrated with the application at code level

Sparksee

10/5/2022 Introducton to Graph Databases 50

• Nodes and edges have a sparksee-generated OID
• Node, edge and global attributes

• Not restricted to an edge or node type (e.g., NAME can belong to all node objects)
• Global attributes belong to the graph

• Attributes can have different indexes
• Basic attributes
• Indexed attributes
• Unique attributes
• Neighborhood index

• Persistent database in a single file
• Can manage very large graphs

Sparksee

10/5/2022 Introducton to Graph Databases 51

• A graph G= (V,E,L,T,H, A1,…….,An) is defined as:

• Labels L= {(o,l)| o ϵ (V ∪ E) ˄ l ϵ string}
• Heads H= {(e,h)| e ϵ E ˄ h ϵ V}
• Tails T={(e,t)| e ϵ E ˄ t ϵ V}
• Attributes Ai={(o,c)| o ϵ (V ∪ E) ˄ c ϵ (int,string,…}

• The graph is split into multiple lists of pairs
• The first element in a pair is always an edge or a vertex

Sparksee - architecture

10/5/2022 Introducton to Graph Databases 52

*SWIG = Simplified Wrapper and Interface Generator. Open source tool used to connect programs/libraries written in C/C++ with other
languages.

Sparksee – internal representation

10/5/2022 Introducton to Graph Databases 53

• Each vertex/edge is identified with an immutable oid.
• Links: bidirectional

• Value - > set of OIDs.
• Given an OID -> a value.

• Two maps: (a) from a value to a vertex or edge set; (b) from a vertex or edge to an oid.
• Maps are B-trees.

Sparksee – internal representation

10/5/2022 Introducton to Graph Databases 54

• A Sparksee Graph is a combination of Bitmaps:
• Bitmap for each node or edge set (type).
• Each position in the bitmap corresponds to the oid.
• One link for each attribute.
• Two links for each type: Outgoing and in-going edges.

• Maps are B+trees
• A compressed UTF-8 storage for UNICODE string.

Sparksee – example

10/5/2022 Introducton to Graph Databases 55

2

Sparksee – example

10/5/2022 Introducton to Graph Databases 56

Value sets: group all pairs of the original set with the
same value, as a pair between the value and the set of
objects with that value

2

Sparksee – example

10/5/2022 Introducton to Graph Databases 57

2

Sparksee – example

10/5/2022 Introducton to Graph Databases 58

