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The Arrhenius Equation Revisited
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The Arrhenius equation has been widely used as a model of the temperature effect on the rate of chemical reactions and
biological processes in foods. Since the model requires that the rate increase monotonically with temperature, its applicability
to enzymatic reactions and microbial growth, which have optimal temperature, is obviously limited. This is also true for
microbial inactivation and chemical reactions that only start at an elevated temperature, and for complex processes and
reactions that do not follow fixed order kinetics, that is, where the isothermal rate constant, however defined, is a function
of both temperature and time.
The linearity of the Arrhenius plot, that is, Ln[k(T)] vs. 1/T where T is in ◦K has been traditionally considered evidence
of the model’s validity. Consequently, the slope of the plot has been used to calculate the reaction or processes’ “energy
of activation,” usually without independent verification. Many experimental and simulated rate constant vs. temperature
relationships that yield linear Arrhenius plots can also be described by the simpler exponential model Ln[k(T)/k(Treference)] =
c(T-Treference). The use of the exponential model or similar empirical alternative would eliminate the confusing temperature
axis inversion, the unnecessary compression of the temperature scale, and the need for kinetic assumptions that are hard
to affirm in food systems. It would also eliminate the reference to the Universal gas constant in systems where a “mole”
cannot be clearly identified. Unless proven otherwise by independent experiments, one cannot dismiss the notion that the
apparent linearity of the Arrhenius plot in many food systems is due to a mathematical property of the model’s equation
rather than to the existence of a temperature independent “energy of activation.” If T+273.16◦C in the Arrhenius model’s
equation is replaced by T+b, where the numerical value of the arbitrary constant b is substantially larger than T and
Treference, the plot of Ln k(T) vs. 1/(T+b) will always appear almost perfectly linear. Both the modified Arrhenius model
version having the arbitrary constant b, Ln[k(T)/k(Treference) = a[1/ (Treference+b)-1/ (T+b)], and the exponential model can
faithfully describe temperature dependencies traditionally described by the Arrhenius equation without the assumption of a
temperature independent “energy of activation.” This is demonstrated mathematically and with computer simulations, and
with reprocessed classical kinetic data and published food results.

Keywords kinetics, modeling, temperature effects, accelerated storage, shelf life, time-temperature integrators

INTRODUCTION

The effect of temperature on the rate of chemical reactions
that had been described by van’t Hoff was given physical foun-
dations by Arrhenius resulting in the famous equation that car-
ries his name. This equation can be written in the form:

k (T ) = k
(
Tref

)
Exp

[
Ea

R

(
1

Tref

− 1

T

)]
(1)
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or

Ln

[
k (T )

k
(
Tref

)
]

= Ea

R

(
1

Tref

− 1

T

)
(2)

where k(T) is the reaction rate at temperature T in ◦K, k(Treference)
the reaction rate at a reference temperature Treference in ◦K, Ea

the energy of activation in J, kJ, cal, or kcal per mole, and R the
Universal gas constant in the corresponding units. The model has
been applied to many different kinds of chemical reactions and
processes and become almost universally accepted. According
to the model’s equation (Eq. 2), a plot of Ln k(T) vs. 1/T (T in ◦K)
should be a straight line, see Fig. 1, whose slope has been used
to calculate the reaction or processes’ energy of activation. This
has led many researchers to define the “energy of activation”
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ARRHENIUS EQUATION REVISITED 831

Figure 1 Simulated k(T)/k(Tref) vs. T plots on linear and semi-logarithmic
coordinates using the traditional Arrhenius equation (Eq.1) as a model. Compare
with Fig. 3.

as:

Ea = R
dLnk(T )

d
(

1
T

) (3)

The Arrhenius equation has also been widely used in food re-
search, technology, and engineering. The reported applications
of the model have not been restricted to the rates of simple chem-
ical reactions such as vitamin degradation (Dermesonlouoglou
et al., 2007; Dutta et al., 2006; Rekha et al., 2005; Giannakourou
and Taoukis, 2004; Martins and Silva, 2003; Uddin et al., 2002;
Rojas and Gerschenson, 2001). They also include biochemi-
cal (enzymatic) reactions (Goncalves et al., 2009; Domenek et
al., 2002; Voegel-Turenne et al., 1999; Pedreschi et al., 2005),
enzyme inactivation (Anthon and Barret, 2001; Weemaes et
al. 1999; Dogan and Dogan, 2004; Nourian et al., 2003; Ortega
et al., 2004), viscosity (Cohen and Weihs, 2010; Hosseini-Parvar
et al., 2010; Dutta et al., 2006), and microbial growth and in-
activation (Murphy et al., 2000; Lee et al., 2001; Mitchell et
al., 2004). The Arrhenius model’s concept and its mathemati-
cal format have been expanded in food research to describe the
rate’s dependence on factors such as pH and aw (Cerf et al.,
1996; Koutsoumanis et al., 2006; Fernandez et al., 2002). And,
by analogy, the notion of “energy of activation” has been ex-
tended to the effect of ultra high pressure on the rate of microbial
inactivation (Lee et al., 2001; Fachin et al., 2002).

In the Ross model of peaked microbial growth, the equation
has been modified to include thermodynamic considerations
associated with a controlling enzymatic reaction (Ross and Dal-
gaard, 2004). Ross (1993) has rearranged the model to produce a
dimensionless version of the equation for the purpose of predict-
ing bacterial spore inactivation using chemical markers, based
on the assumption that the marker thermal degradation and spore
destruction both follow first order kinetics.

Also, because the applicability of the Arrhenius model has
been taken for granted, it has been implemented in time-
temperature integrators (Tsironi et al., 2011; Kreyenschmidt
et al., 2010; Giannakorou et al., 2005; Mendoza et al., 2004;
Shimoni et al., 2001) and used in accelerated storage stud-
ies (Karathanos et al., 2006; Gomez-Alonso et al., 2004) as
a means for anticipating spoilage and predicting shelf life (van
Boekel, 2009). Formulas to estimate shelf life under static con-
ditions also based on the Arrhenius model can be found in both
the food and pharmaceutical literatures (e.g., Duyvesteyn et al.,
2001; Waterman et al., 2005; 2007). The underlying assumption
has been that under constant humidity conditions the time to a
product’s expiration, ts, is inversely proportional to the expo-
nential deterioration “rate” and hence that Ln ts is proportional
to the reciprocal of the absolute temperature.

Despite the successful use of the Arrhenius equation
in many fields and its derivation from statistical mechan-
ics, the notion that it has universal applicability has not
gone unchallenged. Thus according to Wikipedia (http://
en.wikipedia.org/wiki/Arrhenius equation) the equation is
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832 M. PELEG ET AL.

considered an empirical rather than a fundamental physical
model. Although clearly less numerous in comparison with
reports on the successful application of the Arrhenius model,
a web search for “Non-Arrhenius kinetics” still renders thou-
sands of entries providing counter examples. There are many
publications that show considerable discrepancy between the
expected linearity of the Ln k(T) vs. 1/T plot and its actual
shape. There are also such reports in the food literature as well,
notably those that have led to the attempts to replace the Arrhe-
nius equation by the WLF model (e.g., Slade and Levine, 1991;
Sapru and Labuza, 1993), which has already been discussed by
Peleg (1992) and Peleg et al. (2002), or by the Eyring-Polanyi
model (e.g., Cisse et al., 2009; Huang et al., 2011) (see below).

Perhaps the earliest challenge to the use of the Arrhenius
model in food research was based on its incompatibility with
the growth rate of microorganisms (see McMeekin et al.,1998).
The use of the Arrhenius equation in microbial inactivation mod-
eling has been criticized also (Peleg, 2006), and more recently
by Peleg and Corradini (2011) who have offered additional ar-
guments against the use of the equation in microbial growth
kinetics modeling. The criticism has been extended to the ki-
netics of complex chemical reactions such as lipid oxidation
and acrylamide formation, which are governed by competing
mechanisms of synthesis and degradation and have interactive
paths (Peleg et al., 2009).

The importance of kinetics to the successful design of a safe
preservation process that maintains the quality of the product
while minimizing nutritional losses is obvious. The same can be
said about the role of kinetics in choosing a product’s storage
conditions and setting its commercial shelf life. Therefore, it
would be worthwhile to re-examine the properties of the Arrhe-
nius model and critically assess its application in processes and
operations involving foods. In this review we will not address
the physical chemistry of reactions that occur in foods. They are
simply too numerous and their detailed mechanisms, especially
those of the more complicated ones, might not be always fully
known. The same is true of microbial systems. Direct transla-
tion of the kinetics of chemical and biophysical processes within
cells or spores and of events at the cellular level to changes at
the population level are rarely if ever possible, except perhaps
where cells can be individually monitored. Instead, we will fo-
cus on the mathematical properties of the Arrhenius equation,
explore their potential implications, and evaluate how they can
be related to or compared with those of alternative tempera-
ture dependence models when applied to the temperature ef-
fect on chemical, biochemical, and microbial processes in food
systems.

POINTS TO BE CONSIDERED BEFORE USING THE
ARRHENIUS EQUATION IN FOOD

Despite the numerous reports on its successful application,
the notion that the Arrhenius equation is an effective model of
the temperature effect on the rate of chemical reactions and

biological processes in foods can be challenged on several
grounds. The same can be said about its use to calculate these
reactions and processes’ “energy of activation.” The arguments
against the use of the Arrhenius model uncritically are of dif-
ferent kinds, some already mentioned. They will be listed and
discussed in no particular order because all of them lead to the
conclusion that in most food applications the Arrhenius model
has not been a particularly useful.

The Meaning of k(T)

For a reaction following fixed order kinetics, zero, first, or
second order kinetics for example, the rate constants k(T) and
k(Tref) are clearly defined, and hence can be incorporated into the
Arrhenius model’s equation. A problem arises when the reaction
or process in question does not follow fixed order kinetics. Per-
haps the best examples are microbial growth and inactivation.
To start with, growth and survival curves describe the evolution
or demise of cell or spore populations and not the synthesis or
disintegration of molecules (see below). Also, before the on-
set of the mortality phase, most isothermal microbial growth
curves have a sigmoid shape. This is an indication that the mo-
mentary growth rate is governed by different mechanisms or
the interplay of different processes in the “lag,” “exponential,”
and “stationary” phases. The absolute and relative rates of the
cells physical growth, of their division and mortality, and of the
intra- and extracellular exchanges that affect them continuously
vary in a manner that cannot be deduced from the shape of the
growth curve alone (Peleg and Corradini, 2011). It is known that
a change of temperature can affect the lag phase duration, the
overall growth level, and the steepness of the curve at the ex-
ponential phase. Thus, the treatment of the “specific maximum
growth rate” (the growth rate at the inflection point of the growth
curve) as the sole representative of the growth kinetics, and link-
ing it to the “energy of activation” of the growth processes not
only needs theoretical justification but also independent exper-
imental verification (Peleg and Corradini, 2011). Moreover, the
“specific maximum growth rate” itself becomes a problematic
measure when the growth curve is grossly asymmetric around
the inflection point or when the effect of temperature and/or
other ambient factors is mainly expressed in the time taken to
reach the exponential phase (ibid). The explanation offered by
the proponents of the use of the Arrhenius equation is that the
“energy of activation” calculated with this model is of a “lim-
iting enzymatic reaction.” This explanation will be difficult to
accept until this limiting reaction is identified and proven to
be the same at all pertinent temperatures, and until its energy
of activation is determined independently (Peleg and Corradini,
2011), an issue to which we will return. But suppose that such
a reaction did exist. Will its identification enable to predict the
lag phase duration and the asymptotic growth level? Notice that
the application of the Arrhenius model hinges on the assump-
tion that the reaction or process at hand follows fixed order
kinetics and hence that its rate constant ambient conditions is a
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ARRHENIUS EQUATION REVISITED 833

Figure 2 Ln[k(T)/k(Tref)] vs. 1/(T+b) plots generated with the ‘generalized’
Arrhenius equation (Eq. 11) as a model with b having different values. Notice
that b need not be 273.16◦ for the plots to be linear.

function of temperature but not of time. As will be repeatedly
mentioned, this is certainly not the case in several important
processes in foods besides microbial growth, notably in micro-
bial inactivation and complex peaked reactions where synthesis
and degradation occur simultaneously at changing rates.

Processes having Optimal or Onset Temperature

The mathematical construction of the Arrhenius equation en-
tails that a process’s rate increases monotonically with temper-
ature and approaches, asymptotically, a constant value (see be-
low). Obviously, a monotonic rate rise with temperature cannot
be the case in microbial growth. This is because all microorgan-
isms have an optimal growth temperature and because at either
end of the pertinent temperature range growth can turn into mor-
tality. A similar and not unrelated phenomenon can be observed
in enzymatic reactions where the enzyme can be denatured at el-
evated temperatures. Users of the Arrhenius equation are aware
of these facts, of course, and their claim is that the model is
only applicable within the “pertinent temperature range.” This
range’s limits, however, are rarely specified although they ought
to. This could be done either by an explicit statement or by in-
cluding the limits in the model, which would add two adjustable
parameters to its equation. But one can also claim that the pro-
cesses, which lead to a cell’s death, a spore’s destruction, or an
enzyme inactivation, need not start abruptly at a particular tem-
perature. In other words, there can be a continuous mechanistic
shift as the temperature increases or decreases, which the model
equation should have to account for. To do this will require a
more intensive modification of the model equation and further

Figure 3 Simulated k(T)/k(Tref) vs. T plots on linear and semi-logarithmic
coordinates using the exponential model (Eq. 13). Compare with Fig. 1.
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834 M. PELEG ET AL.

increase the number of adjustable parameters. All this raises new
questions concerning the utility of the idea that there is always
a single limiting reaction with a time independent rate constant
having a temperature independent “energy of activation.” Also,
notice that the burden of proof of the existence of a limiting re-
action is on the model’s proponents and not on its critics. There-
fore, it is the user of the Arrhenius equations who should come
up with convincing evidence that microbial growth and inacti-
vation are always controlled by a single biochemical reaction.

Most of the arguments against the use of the Arrhenius equa-
tions are not new, and criticism of its use in food systems is
not difficult to find. One of the earliest resulted in Belerádek’s
model of microbial growth (see McMeekin et al., 1998), which
gave rise to the original and expanded versions of the square
root model. The former only accounts for the rise or fall of the
rate constant above a threshold temperature, and the latter has
markers for both the lowest and highest temperatures between
which growth is observed (see Ratkowsky et al., 1982; 1983).
Expressed mathematically:

√
µmax = b (T − Tmin) (4)

and

√
µmax = b (T − Tmin) {1 − Exp [c (T − Tmax)]} (5)

where µmax is the “maximum specific growth rate,” b and c are
constants and Tmin and Tmax mark the temperature range of the
organism’s growth. [It has also been shown that experimental
µmax vs. T data, which have been successfully fitted with the
square root model, can also be described by a model where the
square root is replaced by different powers (Huang, 2009; Ross
et al., 2011; Huang, 2011)]. Equation (5) with its two growth
limit markers, Tmin and Tmax, is qualitatively consistent with the
actual response of microbial populations to heat, albeit at the cost
of having four adjustable parameters instead of the traditional
Arrhenius model’s two. But Eq. (5) achieves what the original
Arrhenius equation, which has no markers, cannot. Enzymes
are heat inactivated, usually at temperatures only slightly above
their optimal. Thus, a kinetic model of at least certain industrial
biochemical reactions would have a practical advantage if it
included Toptimal and/or Tmax as parameters. When it comes to
microbial inactivation, a marker of its onset temperature, or of
the sub-lethal range, would be helpful too. The inclusion of a
temperature marker concept has already been implemented in
the Weibull-log logistic (WeLL) inactivation model (see Peleg,
2003; 2006). The Weibullian model of isothermal inactivation
can be written in the form:

LogS(t) = −b(T )tn(T ) (6)

where S(t) is the survival ratio at time t, that is, N(t)/N0 where
N(t) and N0 are the momentary an initial number of viable
cells or spores, respectively, b(T) a rate or scale parameter,

primarily representing the steepness of the survival curve, and
n(T) a measure of the concavity degree and direction of the
isothermal survival curve. The temperature dependence of the
rate parameter has been shown to follow the log-logistic model:

b(T ) = Ln{1 + Exp[k(T − Tc)]} (7)

where Tc marks the temperature range where inactivation starts
and k the slope of the b(T) vs. T relationship at tempera-
tures well above Tc. According to this model, when T � Tc,
b(T) → 0 and when T � Tc, b(T) → k (T - Tc). The WeLL
model is most probably also applicable to enzymes where, again,
heat inactivation only starts at a certain temperature and pos-
sibly to other degradation processes were thermal instability is
only noticeable beyond a certain temperature. Notice that in
cases where microbial or enzyme’s inactivation follows first or-
der kinetics, n(T) = 1 at all pertinent temperatures and Eq. (6)
becomes:

LogS(t) = −K(T )t (8)

K(T ) = Ln{1 + Exp[k(T − Tc)]} (9)

where K is the exponential survival rate, the reciprocal of the
traditional “D value.”

Either way, the temperature effect on the inactivation rate
is expressed here by two parameters, k and Tc, the mini-
mum needed number, and not by one as in the log-linear
model (the ‘z-value’), Arrhenius equation (Ea), or Eyring-
Ploanyi model (�G′‡). This enables the WeLL model to ac-
count for the qualitative difference between lethal and non-
lethal temperatures, which neither of the traditional models
does.

Although not always explicitly admitted, quite a few reported
experimental Arrhenius plots in the food literature are not really
linear, as has been assumed. Larger consistent deviations from
log-linearity, which could not be overlooked, have led to the
proposal to adopt what has been dubbed a “Polymer Science
Approach” in food kinetics, that is, to replace the Arrhenius
model by the empirical WLF equation (Slade and Levine, 1991).
The WLF equation was originally proposed for the temperature
effect on the viscosity of rubbery polymers that undergo glass
transition. It had the form:

Log(aT ) = −C1(T − Tref )

C2 + (T − Tref )
(10)

where aT is the shift factor, the ratio between the shear moduli at
a temperature T and at a reference temperature Tref, for example
and C1 and C2 are characteristic constants of the polymer. In
both Polymer Science and Food Science research, the “glass
transition temperature,” “Tg,” has frequently served as the refer-
ence temperature, and it has been assumed that the rate of both
physical and chemical processes in foods primarily depends on
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ARRHENIUS EQUATION REVISITED 835

Figure 4 The fit of the traditional Arrhenius, generalized Arrhenius, with b = 250 and 300◦C, and exponential models to kinetic data of the reactions between
KClO3 and FeSO4 and sodium lye and ethyl acetate reaction. The original data are of Hood (1885) and Warder (1881), respectively. They were downloaded with
permission from http://web.lemoyne.edu/∼giunta/classicalcs/arrkin.html. Notice that for all practical purposes the three models could be used interchangeably.
The regression parameters are listed in Table 1.

how far the temperature is above or below their “Tg.” It is now
well established that most, if not all synthetic polymers, do not
have a clearly defined “Tg” (see Seyler, 1994; Donth, 2001; and
Langer, 2007, for example) and the same is true for biopoly-
mers, foods, and biological materials in general. Consequently,
different methods of glass transition temperature determination
render different “Tg” values for the same material. The same
is true for the heating rate, that is, a slower or a faster rate
of heating during the test will also result in a different “Tg.”
The implication is that a food can be very stable or unstable
at the same temperature depending on how its “Tg” has been
determined and at what heating rate. The notion that C1 and C2

can be assigned the “universal values” of 17.44 and 51.6◦C−1,

respectively, should have also been dismissed long ago (Peleg,
1992). This, however, is not the issue here. Even with adjustable
C1 and C2, the WLF model has the same major deficiencies as
the Arrhenius equation, which it was intended to replace. This
is because the WLF model also implies that the rate constant,
however defined, must increase monotonically with temperature
and be independent of the system’s thermal history. The ability
of the WLF model to fit data that the Arrhenius model cannot
should also not come as a surprise since it has two adjustable
parameters and not one. Much of the above also pertains to the
D and z values. Despite growing evidence that microbial inac-
tivation frequently does not follow first order kinetics, this log
linear model is still widely used in food research, and by the
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836 M. PELEG ET AL.

Figure 5 The fit of the traditional Arrhenius, generalized Arrhenius, with b = 250 and 300◦C, and exponential model to kinetic data of sucrose inversion and
the reaction between sodium lye and ethyl acetate. The original data are of Spohr (1888) and Hecht and Konrad (1889), respectively. They were downloaded with
permission from http://web.lemoyne.edu/∼giunta/classicalcs/arrkin.html. Notice that for all practical purposes the three models could be used interchangeably.
The regression parameters are listed in Table 1.

food industry and regulating government agencies to establish
the safety of thermally processed foods. In other words, at least
where microbial inactivation is concerned, the three models: the
older log-linear model, which produced the D and z values, the
Arrhenius model that has replaced it, and the WLF model that
has been proposed to replace them both, can only be applicable
if the kinetics follows first or other fixed order.

Experimental Arrhenius Plots

For years in food research, the validity of the Arrhenius
equation has been taken for granted. Consequently, many pub-
lished linear Ln k(T) vs. 1/T (T in ◦K) plots or relationships

from which Ea have been determined are based on 3 or 4
experimental temperatures only, rarely a sufficient number to
establish or affirm the linearity of the relationship. The sta-
tistical aspects of calculating the k(T) of processes follow-
ing first and other order kinetics and subsequently comput-
ing Ea have been thoroughly discussed by van Boekel (1996;
2009) and others. Suffice it to reiterate here that a high
r2 value by itself does not establish linearity, and in many
cases the existence of curvature in the data is clearly evi-
dent (see the discussion of the WLF model in the previous
section).

According to the theory underlying the use of the Arrhenius
model, the existence of curvature implies that the process or
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ARRHENIUS EQUATION REVISITED 837

Figure 6 The fit of the traditional Arrhenius, generalized Arrhenius, with b = 250 and 300◦C, and exponential model to kinetic data of chloroacetic acid
decomposition and the reaction between sodium chloroacetate and sodium hydroxide. The original data are of van’t Hoff (1884), downloaded with permission
from http://web.lemoyne.edu/∼giunta/classicalcs/arrkin.html. Notice that for all practical purposes the three models could be used interchangeably. The regression
parameters are listed in Table 1.

the reaction’s “energy of activation,” Ea, is actually temperature
dependent. In certain reactions or processes, Ea’s temperature
dependence might be weak in the reported temperature range.
In such cases, the slight curvature could perhaps be ignored if
the results are only used for interpolation. But before report-
ing Ea values as a reaction or process’s characteristic, one has
to confirm that the calculated “energy of activation” is indeed
temperature independent, at least by statistical analysis aimed
at proving or disproving the existence of curvature in the data.
This can be done by examining the residuals distribution or
through comparison of the performance and fit of the linear
vis-à-vis nonlinear models, for example. When extrapolation is

concerned, the issue becomes even more serious. Provided that
the rate constant is well defined, using the parameters of the
fitted linear model when the relationship is curvilinear might
result in considerable discrepancy between the actual and as-
sumed rates, a mismatch to which the logarithmic scale of the
ordinate also contributes. Nonlinear regression might be an im-
provement, but it would not rid the model of its other prob-
lems. Thus, regardless of how Ea is calculated, reporting its
magnitude with three or more digits on the basis of 3-4 ex-
perimental temperatures gives a misleading impression of the
analysis accuracy and the theoretical strength of the model (see
below).
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838 M. PELEG ET AL.

Figure 7 Screen display from the Wolfram Demonstration (http://demonstrations.wolfram.com/ArrheniusVersusExponentialModelForChemicalReactions/) that
shows data generated with the generalized Arrhenius equation and fitted with the exponential model. Notice that the models and generation parameters can be
entered numerically or by moving sliders on the screen.

Independent Verification

Many, perhaps most chemical reactions or biological
processes in foods, occur in a chemically and physically
changing environment. Consequently, the notion that the
slope of the Ln k(T) vs. 1/T (T in ◦K) plot can be used
to determine their “energy of activation” is an assumption
that needs independent verification. The magnitude of Ea,
calculated from the Arrhenius plot can and should be confirmed
experimentally, by calorimetry, for example. Unfortunately,
reports on independent determination of Ea in foods and
food systems are very difficult to find, and one might suspect
that they do not exist. Consequently, any unconfirmed value
of Ea in foods should be considered as tentative at best,
and where the process or reaction has multiple steps and
several alternative pathways, treated with caution. The already
discussed microbial heat inactivation is a good example of why.
The death of a cell exposed to heat can have several different
biochemical and biophysical causes whose roles, unless proven
otherwise, need not be the same at all temperatures. Another
example is food deterioration caused by reactions involving
free radicals such as in lipid oxidation. It is very unlikely that
the absolute and relative abundance and the stability of these
radicals remain unchanged as the temperature of the food rises
or falls and there is no reason to assume that they should.
Therefore, the notion that a single temperature independent
“energy of activation” can always characterize the entire

oxidation process still requires independent confirmation. The
attempt to avoid the issue by defining the “energy of activation”
by Eq. (3) cannot be a solution because it is based on circular
reasoning. The same problem is encountered where a curvilin-
ear Arrhenius plot is divided into two straight-line segments.
The frequently accompanying suggestion that the underlying
reaction has two regimes must also be viewed with caution,
unless their existence is independently confirmed and there is a
mechanistic explanation of the transition between them. This is
because the alternative explanations, that there might be three or
more stages, or that the whole concept of “energy of activation”
does not apply, cannot be dismissed out of hand. Another
danger in such data interpretation is that experiments covering
different temperature ranges might reveal a different sequence
of “regimes” or “stages” where the predominant processes or
reactions have different “energies of activation.” Again, the
correct way to establish the existence of the assumed stages
and affirm their corresponding energies of activation is through
increasing the number of temperatures examined within the
pertinent range and independent verification of the proposed
mechanism by tests especially designed for the purpose.

The Structure of the Arrhenius Equation and its Kinetic
Implications

The Arrhenius equation (Eq. 1) is based on the assumption of
first or other fixed order kinetics, which defines the isothermal
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ARRHENIUS EQUATION REVISITED 839

Table 1 The fit of the exponential model (Eq. 13), the traditional and generalized versions of the Arrhenius model (Eq. 11 with b = 273.16◦ and b 	= 273.16◦)
to chemical data

System
Temp. range

(◦C) Tref (◦C) Model Equation r2 MSE Figure Data Source∗

KClO3 + FeSO4 10-32 10 Exponential 13 0.9999 0.0020 4 Hood (1885)
Arrhenius 1 0.9999 0.0007
Generalized Arrhenius (b = 250◦C) 11 0.9999 0.0010
Generalized Arrhenius (b = 300◦C) 11 0.9999 0.0005

Sodium lye + ethyl 3.6-37.7 11 Exponential 13 0.9991 0.008 4 Warder (1881)
acetate Arrhenius 1 0.9997 0.003

Generalized Arrhenius (b = 250◦C) 11 0.9997 0.003
Generalized Arrhenius (b = 300◦C) 11 0.9996 0.003

Inversion of sucrose 25-55 25 Exponential 13 0.9995 0.481 5 Sporh (1888)
Arrhenius 1 0.9999 0.081
Generalized Arrhenius (b = 250◦C) 11 0.9999 0.117
Generalized Arrhenius (b = 300◦C) 11 0.9999 0.055

Ethoxide + methyl 0-30 12 Exponential 13 0.9999 0.0014 5 Hecht and Konrad
iodide Arrhenius 1 0.9995 0.0091 (1889)

Generalized Arrhenius (b = 250◦C) 11 0.9995 0.0101
Generalized Arrhenius (b = 300◦C) 11 0.9996 0.0081

Chloroacetic acid 80-130 80 Exponential 13 0.9974 7.34 6 Van’t Hoff (1884)
decomposition Arrhenius 1 0.9999 0.31

Generalized Arrhenius (b = 250◦C) 11 0.9999 0.17
Generalized Arrhenius (b = 300◦C) 11 0.9998 0.49

Sodium chloroacetate 70-130 70 Exponential 13 0.9998 2.8 6 Van’t Hoff (1884)
+ NaOH Arrhenius 1 0.9961 53.5

Generalized Arrhenius (b = 250 ◦C) 11 0.9956 59.7
Generalized Arrhenius (b = 300 ◦C) 11 0.9965 47.6

∗Compiled and posted by Giunta (2003), http://web.lemoyne.edu/∼giunta/classicalcs/arrkin.html

temperature dependent rate constant k(T). Consequently, the
equation does not have time as an independent variable. This
implies that k(T), however defined, is unaffected by the reaction
or the thermal history of the process. Accepting this assumption
might give rise to peculiar scenarios. Consider the traditional
and still commonly held view that microbial inactivation follows
first order kinetics and that the exponential rate constant follows
the Arrhenius equation (or the log-linear or WLF model for that
matter). If true, then a bacterial spore population reaching 110◦C
after 1 min of heating in a certain medium must have exactly
the same momentary exponential inactivation rate as the same
spore population just being cooled to this temperature after being
held at 125◦C for 30 min in the same medium (Peleg, 2006).
In other words, the number of surviving spores will be very
different, of course, but not the predicted inactivation rate of the
model.

Similarly, if a chemical deterioration process in a food fol-
lows fixed order kinetics with a rate constant k(T) obeying the
Arrhenius equation, then the deterioration rate constant would
have to be exactly the same if the food had been stored for a
month at 5◦C and then reached 25◦C in one day, held at 25◦C
for a month or cooled to 25◦C in one day after being stored for
a month at 35◦C. Here too, according to the Arrhenius model,
the extent of the deterioration in the three scenarios will be
very different, this is true. But the prediction that the deteri-
oration rate constant of the food after the three temperature
histories must be exactly the same can and should be verified
experimentally.

The Coordinates Compression in the Arrhenius Plot

The presentation of kinetic data in the form of a Ln k(T) vs.
1/T (T in ◦K) plot makes perfect sense in reactions between
gases where the covered temperature range is very large, in
which case the 1/T (T in ◦K) rises or falls several fold, and the
corresponding rates might vary by several orders of magnitude.
However, this is rarely the case in foods and biological systems
(Peleg, 2006). In food storage, for example, it makes a big differ-
ence if the temperature is 5 or 40◦C. Yet, this huge temperature
range as far as the quality or safety of the food is concerned is
transformed into the meager 0.0036 to 0.0032◦K−1 range for no
apparent reason. Another example is the inactivation of bacterial
spores. Many bacterial spores survive exposure to a temperature
of around 75◦C, for example. [This is exploited in the prepara-
tion of spore suspensions free of vegetative cells, which almost
invariably are killed by the treatment.] But at 120◦C, the same
spores could be destroyed on the time scale of minutes. Thus
the rationale of compressing the temperature range of 75 to
120◦C, huge as far the fate of the spore is concerned, to the
minute 0.0029 to 0.025◦K−1, is not at all clear. Moreover, the
temperature conversion from T in ◦C to 1/T (where T is in ◦K)
also reverse the direction of the plot, a higher temperature is on
the left of a lower one, which makes intuitive comprehension
of the relationship unnecessarily difficult. Suppose now, for the
sake of the argument, that a quality loss of a food at 15 to 25◦C
(0.00335 to 0.00347◦K−1) and a spore inactivation in the lethal
temperature range of 110 to 120◦C (0.00254 to 0.00261◦K−1)
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840 M. PELEG ET AL.

Figure 8 Screen display from the Wolfram Demonstration (http://demonstrations.wolfram.com/ArrheniusVersusExponentialModelForChemicalReactions/) that
shows data generated with the exponential model and fitted with the generalized Arrhenius. Notice that the models and generation parameters can be entered
numerically or by moving sliders on the screen.

indeed follow first order kinetics. If so, does the exponential
rate constant of these processes (not the concentration of a
component or the count) always vary by the several orders of
magnitude needed to justify its presentation on a logarithmic
scale?

The “Energy of Activation” and Universal Gas Constant

The concept of “energy of activation” was originally
developed for stoichiometric chemical reactions where the
quantities of the reactants are expressed in “moles.” Obviously,
many complex chemical and biological processes that occur in
foods do not fit this description although their individual steps
probably do. However, identifying all these steps and quantify-
ing their kinetics might not be easy because of the potential and
actual existence of several interacting pathways. Consequently,
different literature sources sometimes suggest alternative
mechanisms and pathways, which are not necessarily the same
or at the same level of detail (Corradini and Peleg, 2006; 2009).
Whether all the steps indeed follow first order kinetics as is
usually assumed is also not clear but this is not the main issue
here. Let us consider the previously mentioned commonly
accepted notion that microbial thermal inactivation follows
first order kinetics and has a temperature independent “energy
of activation” on the order of 100-500 kJ “per mole” (see

http://www.fda.gov/Food/ScienceResearch/ResearchAreas/
SafePracticesforFoodProcesses/ucm100198.htm.) What is a
“mole” of bacterial cells or spores? Well, since what is counted
to determine the exponential rate constant is the number of
surviving cells or viable spores, trivial calculations will show
that a “mole” of these has a mass on the order of 105 metric
tons, hardly a convenient unit for comparisons (Peleg, 2006). A
mole of an inactivated enzyme has a smaller mass, of course,
but still huge when compared to that of small inorganic or even
organic molecules. As already mentioned, the argument that the
energy of activation refers to an underlying “limiting reaction”
is unsatisfactory since this reaction has yet to be identified.
But even if such a reaction exists, which has yet to be proven,
it is doubtful that it will be the same at different temperatures
(Peleg and Corradini, 2011). All of the above also pertain to the
food applications of the Eyring-Polyani model as a substitute
to the Arrhenius model. It too has the Universal gas constant in
its mathematical expression and the free energy of activation
has J or kJ per “mole” units.

Similar confusion exists in the application of the Arrhenius
model to the temperature effect on the viscosity or apparent
viscosity of liquid and semi-liquid foods. What is a “mole” of
mayonnaise, orange juice concentrate, or ketchup? How does
the Universal gas constant enter the relationship between the
flowability and temperature of these foods? In light of the nu-
merous reports in the food literature on the Arrhenius model
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ARRHENIUS EQUATION REVISITED 841

Figure 9 Examples of the exponential model’s fit (Eq. 13) to k vs. T data generated with the traditional and “generalized” Arrhenius equations (Eq. 11). For the
regression parameters see Table 2.

Table 2 The fit of the exponential model (Eq. 13) to data generated with the traditional and generalized versions of the Arrhenius model (Eq. (11) with b =
273.16◦ and b 	= 273.16◦) and vice versa1)

Arrhenius equation’s parameters Exponential model’s parameters

Number of points Tref a b r2 c by regression c calculated by Eq. (16)

10 15 5000 273.16 0.999 0.05 0.06
10 45 25000 273.16 0.999 0.21 0.25
10 30 15000 300 0.999 0.11 0.14
10 15 2500 250 0.999 0.031 0.036

Exponential models’s parameters Arrhenius model’s parameters

Number of points Tref c r2 b (fixed) a by regression a calculated by Eq. (17)
10 15 0.05 0.997 273.16 5000 4200
10 15 0.10 0.998 273.16 10800 9500
10 45 0.20 0.998 300 26800 23800
10 5 0.30 0.998 250 22025 19500

1) Tref and a are in ◦C and c is in ◦C−1.
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842 M. PELEG ET AL.

Figure 10 Examples of the traditional and “generalized” Arrhenius models’ (Eq. 11) fit to data generated with the exponential model (Eq. 13). For the regression
parameters see Table 2.

application, it is most surprising that these questions have not
been asked until very recently.

COMPARISON OF THE ARRHENIUS EQUATION TO
THE SIMPLER EXPONENTIAL MODEL

One of the appeals of applying the Arrhenius model to reac-
tions and processes for which it has not been derived can perhaps
be attributed to the frequently observed linearity or apparent lin-
earity of the Ln k(T) vs. 1/T (T in ◦K) plot. The slope of this plot
can be easily calculated by linear regression (or in the very old
days graphically) to render the putative “energy of activation.”
It is a fact that most chemical reactions and biological processes
are accelerated by temperature at least within a certain practi-
cal range and that the rise of the rate is exponential rather than

linear. The question that should be asked is why so many reac-
tions and processes, which have little or nothing in common, so
frequently produce a log-linear or close to log-linear Arrhenius
plot. To explain this observation, let us investigate the mathe-
matical properties of the Arrhenius equation and compare them
to those of a much simpler exponential model.

The Arrhenius model (Eq. 1) can be written in the generalized
form:

Ln

[
k (T )

k
(
Tref

)
]

= a

(
1

Tref + b
− 1

T + b

)
(11)

where T and Tref are in ◦C and a and b are constants having
temperature units. Traditionally, a in this equation is presented
as Ea/R and b is assigned the value of 273.16◦, to make the
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ARRHENIUS EQUATION REVISITED 843

Figure 11 The fit of the traditional Arrhenius, “generalized” Arrhenius, with b = 250 and 300◦C, and exponential model to kinetic data of chlorophyll and
chlorophyllides degradation. The original data are from Canjura et al. (1991). Notice that for all practical purposes the three models could be used interchangeably.
The regression parameters are listed in Table 3.

temperature absolute, that is, in ◦K. The reason for writing the
model in the form of Eq. (11) instead of the traditional will soon
become clear.

According to this equation, when T →∞, Ln[k(T)/k(Tref)]
→a/(Tref + b), not to infinity. In other words, the rate cannot rise
indefinitely, even theoretically, because the Ln[k(T)/k(Tref)] vs.
T relationship has an inflection point at T = (a-2b)/2. Also, ac-
cording to the traditional Arrhenius equation, as T→-273.16◦C
or 0◦K, Ln[k(T)/k(Tref)] →-∞, that is, the rate approaches zero,
which is consistent with physical considerations. By definition,
the model implies that at T = Tref, k(T)/k(Tref) = 1 and hence
Ln[k(T)/k(Tref)] = 0. Also, according to both the traditional and
general version of the model, if T > Tref, Ln[k(T)/k(Tref)] > 0,
and if T < Tref, Ln[k(T)/k(Tref)] < 0. Plots of k(T)/k(Tref) vs.
T and Ln[k(T)/k(Tref)] vs. 1/T relationships generated with Eq.

(11) as a model are shown in Fig. 2. Consider now a simpler
exponential model of the k(T ) vs. T relationship at tempera-
tures well below the inflection point of the Arrhenius model,
that is,where the curve has upper concavity. Mathematically the
exponential model can be written in the form:

k (T ) = k(Tref )Exp[c(T − Tref )] (12)

or

Ln

[
k (T )

k
(
Tref

)
]

= c(T − Tref ) (13)

where T and Tref are in ◦C and c is a constant having ◦C−1 units.
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844 M. PELEG ET AL.

Figure 12 The fit of the traditional Arrhenius, “generalized” Arrhenius, with b = 250 and 300◦C, and exponential model to kinetic data of folic acid and
anthocyanin thermal degradation. The original data are from Nisha et al. (2005) and Verbeyst et al. (2010), respectively. Notice that for all practical purposes the
three models could be used interchangeably. The regression parameters are listed in Table 2.

In addition to not having an inflection point, the expo-
nential model also implies, by definition, that at T = Tref,
Ln[k(T)/k(Tref)] = 0. And, as in the Arrhenius equation, if T
> Tref, Ln[k(T)/k(Tref)] > 0, and if T < Tref, Ln[k(T)/k(Tref)] <

0. Unlike in the Arrhenius model, Eq. (12) entails that k(T)→0
when T→-∞, which has no physical meaning. In contrast with
the Arrhenius equation, the exponential model, having no in-
flection point, implies that as T→ ∞, k(T)→ ∞, that is, that
the rate can rise indefinitely. According to Eq. (13), the plot
of Ln[k(T)/ k(Tref)] vs. T- Tref should be a straight line passing
through the origin and having a slope c. As shown in Fig. 3, the
plot of Ln[k(T)/ k(Tref)] vs. T will have the same slope but will
cross the T-axis at T = Tref.

From a purely formalistic viewpoint, the use of the Arrhenius
model can become problematic at very high temperatures while
the exponential model at very low ones. However, the temper-
atures at the extreme ends of the scale, are either well above
those to which foods are exposed even during heat processing
or well below those to which foods are exposed during cold
storage and freezing. Hence, this theoretical issue need not be
of concern when either model is used to describe the kinetics
of food processes at temperatures around the reference temper-
ature. Also, notice that the traditional log-linear (D & z) model
used in microbial and enzymes inactivation can be viewed as a
special case of the exponential model for first order kinetics, in
which case c = Ln[10 (T - Tref )/z]/(T - Tref).
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ARRHENIUS EQUATION REVISITED 845

Figure 13 The fit of the traditional Arrhenius, “generalized” Arrhenius, with b = 250 and 300◦C, and exponential model to kinetic data of betacryptoxanthin
and ascorbic acid. The original data are from Dhuique-Mayer et al. (2007). Notice that for all practical purposes the three models could be used interchangeably.
The regression parameters are listed in Table 3.

Comparison of the Arrhenius and Exponential Models’ Fit to
Classical Kinetic Data

Examples of the two model’s fit to classical rate vs.
temperature data are shown in Figs. 4 to 7, with the regression
parameters listed in Table 1. The data have been retrieved
from a compiled collection posted on the Internet by Professor
Carmen Giunta of Le Moyne College in Syracuse, NY (see
http://web.lemoyne.edu/∼giunta/classicalcs/arrkin.html). The
data are used with Professor Giunta’s permission, which is
gratefully acknowledged. The figures and other plots not
included clearly show that the fit of both the Arrhenius (Eq. 11)
and exponential (Eq. 12) models to the data is almost perfect,
regardless of the reaction type, the temperature range covered,

and the chosen reference temperature. In other words, the two
models, despite their different mathematical construction could
be used interchangeably for all the data sets examined. The fig-
ures show that a similar excellent fit and linear Arrhenius-Type
Plot could also be obtained whenever the parameter b in Eq.
(10) has been assigned a value other than 273.16◦C, as long
as it was larger than about 200◦C. In light of the very small
scatter in the classical experimental data, the excellent fit of
the two models cannot be explained as being a statistical fluke.
To demonstrate the truth of this statement we have written a
program in Mathematica R© (Wolfram Research, Champaign IL)
that generates data with the “generalized Arrhenius equation”
(Eq. 11) and fits them with the exponential model (Eqs. 12
or 13) and vice versa. The program has been posted on the
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846 M. PELEG ET AL.

Figure 14 The fit of the traditional Arrhenius, “generalized” Arrhenius, with b = 250 and 300◦C, and the exponential model to kinetic data of lipid oxidation.
The original data are from Gomez-Alonso et al. (2004). Notice that for all practical purposes the three models could be used interchangeably. The regression
parameters are listed in Table 3.

Web as a freely downloadable Wolfram Demonstration (http://
demonstrations.wolfram.com/ArrheniusVersusExponential-
ModelForChemicalReactions/). It allows the user to choose
and modify the parameters of the two models, the number of
generated points, the reference temperature, and the tempera-
ture range by moving sliders on the screen. Examples of screen
displays of the Demonstration in its two modes, Arrhenius
equation vs. the exponential model and the exponential model
vs. the Arrhenius equation, are shown in Figs. 8 and 9. The
simulations, which the reader can repeat, have shown that there
is a wide range of parameter and temperature combinations
where the fit, had it been solely judged by statistical criteria,
would be considered excellent. Since the generated data had no
scatter at all, the agreement between the models ought to be

attributed to their mathematical properties. One can surmise that
had the analyzed records had scatter, the distinction between
the fit of the two models would have been even more difficult
(see below). The source of the agreement between the two
models is revealed in the series expansion of the generalized
Arrhenius equation around Tref:

Ln

[
k (T )

k
(
Tref

)
]

=a

[
T − Tref

(Tref + b)2
− (T − Tref )2

(Tref + b)3
+ (T − Tref )3

(Tref + b)4

− (T − Tref )4

(Tref + b)5
+ (T − Tref )5

(Tref + b)6
− . . .

]
(14)
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ARRHENIUS EQUATION REVISITED 847

Figure 15 The fit of the traditional Arrhenius, “generalized” Arrhenius, with b = 250 and 300◦C, and exponential model to kinetic data of lipid oxidation. The
original data are from Tan et al. (2001). Notice that for all practical purposes the three models could be used interchangeably. The regression parameters are listed
in Table 3.

Since the sum of the terms on the right side of the equation
starting with the second is in many cases considerably smaller
than the value of the first term, especially where b is much larger
than Tref, Eq. (14) can be written as the rough approximation:

Ln

[
k (T )

k
(
Tref

)
]

≈ a

[
T − Tref

(Tref + b)2

]
(15)

But this approximation is the exponential model’s equation
(Eq. 13) where

c ≈ a

(Tref + b)2
(16)

or

a ≈ c(Tref + b)2 (17)
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Table 3 The fit of the exponential model (Eq. 13), the traditional and generalized versions of the Arrhenius model (Eq. (11) with b = 273.16◦ and b 	= 273.16◦)
to food systems

System
Temp. range

(◦C) Tref (◦C) Model Equation r2 MSE Figure Data Source∗

Chlorophyll 100–145 115 Exponential 13 0.9914 0.043 11 Canjura
Arrhenius 1 0.9938 0.031 et al. (1991)
Generalized Arrhenius (b = 250◦C) 11 0.9939 0.031
Generalized Arrhenius (b = 300◦C) 11 0.9938 0.032

Chlorophyllide 80–115 100 Exponential 13 0.9953 0.008 11 Canjura
Arrhenius 1 0.9972 0.005 et al. (1991)
Generalized Arrhenius (b = 250◦C) 11 0.9971 0.005
Generalized Arrhenius (b = 300◦C) 11 0.9973 0.005

Folic acid 80–120 100 Exponential 13 0.9999 0.001 12 Nisha et al. (2005)
Arrhenius 1 0.9981 0.002
Generalized Arrhenius (b = 250◦C) 11 0.9982 0.002
Generalized Arrhenius (b = 300◦C) 11 0.9986 0.002

Anthocyanins 95–130 100 Exponential 13 0.9997 0.007 12 Verbeyst
Arrhenius 1 0.9992 0.017 et al. (2010)
Generalized Arrhenius (b = 250◦C) 11 0.9991 0.018
Generalized Arrhenius (b = 300◦C) 11 0.9994 0.016

betacryptoxanthin 75–100 80 Exponential 13 0.9818 1.10 13 Dhuique-Mayer
Arrhenius 1 0.9775 1.36 et al. (2007)
Generalized Arrhenius (b = 250◦C) 11 0.9771 1.38
Generalized Arrhenius (b = 300◦C) 11 0.9778 1.34

Ascorbic Acid 50–100 50 Exponential 13 0.9973 0.035 13 Dhuique-Mayer
Arrhenius 1 0.9944 0.073 et al. (2007)
Generalized Arrhenius (b = 250◦C) 11 0.9947 0.069
Generalized Arrhenius (b = 300◦C) 11 0.9941 0.077

Peroxide Value 25–75 50 Exponential 13 0.9983 0.003 14 Gomez Alonso
Arrhenius 1 0.9984 0.003 et al. (2004)
Generalized Arrhenius (b = 250◦C) 11 0.9984 0.003
Generalized Arrhenius (b = 300◦C) 11 0.9985 0.003

Oxidation Index K270 25–75 50 Exponential 13 0.9965 0.007 14 Gomez Alonso
Arrhenius 1 0.9985 0.003 et al. (2004)
Generalized Arrhenius (b = 250◦C) 11 0.9986 0.003
Generalized Arrhenius (b = 300◦C) 11 0.9984 0.003

Peroxide value 1 110–140 110 Exponential 13 0.9946 0.093 15 Tan et al.(2001)
Arrhenius 1 0.9968 0.056
Generalized Arrhenius (b = 250◦C) 11 0.9969 0.054
Generalized Arrhenius (b = 300◦C) 11 0.9967 0.058

Peroxide value 2 110–140 110 Exponential 13 0.9972 0.054 15 Tan et al.(2001)
Arrhenius 1 0.9952 0.092
Generalized Arrhenius (b = 250◦C) 11 0.9951 0.095
Generalized Arrhenius (b = 300◦C) 11 0.9952 0.089

Therefore, it is no wonder that the Arrhenius and exponential
models can be used interchangeably at temperatures around Tref.
It can also be shown that the larger the value of b, the closer is
the value of c estimated with Eq. (16), or the value of a estimated
with Eq. (17), to the value calculated by nonlinear regression.
Examples are given in Figs. 9 and 10 and in Table 2. All this
suggests that the common observation of the Arrhenius model’s
fit to kinetic data in foods and biological systems might have
more to do with the high b value (273.16◦) used in the ◦C to ◦K
conversion than to the existence of a temperature independent
“energy of activation” as has been traditionally assumed. This
issue, as has been repeatedly stated in this work, can only be re-
solved by direct determination of the “energy of activation” and
its comparison with that inferred from the Arrhenius plot. Until
this is done, one cannot dismiss the alternative explanation that
the rise of a reaction or process’s rate with temperature merely

follows an exponential model, and that the Arrhenius model’s fit
stems from the fact that 0◦C happens to be 273.16◦K, a relatively
large number when compared with commonly chosen reference
temperatures. If this hypothetical alternative is correct, then at
least in foods and biological systems, the relationship between
the Arrhenius plot’s slope and the “energy of activation” would
be unclear.

Comparison of the Arrhenius and exponential Models’ Fit to
Kinetic Data In Foods

Figures 11–15 show the fit of the Arrhenius equation and ex-
ponential model to kinetic data published in the food literature.
The regression parameters are listed in Table 3. The figures
and table demonstrate that whenever the Arrhenius equation
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fits the data, so does the simpler exponential model and with
a comparable degree of fit as judged by the regression coef-
ficient r2 and mean square error (MSE). The figures and ta-
ble also demonstrate that inserting a sufficiently large b value
into Eq. (11), 250, or 350◦C in the examples given, results in
an Arrhenius plot that is almost perfectly linear and creates
excellent agreement between the exponential and generalized
Arrhenius models. This observation raises a fundamental the-
oretical question: Can the reactivity and stability of molecules
and enzymes in a food medium, especially solid, or the heat
resistance of microbial cells and spores, be affected by the ab-
solute temperature in the same manner as free simple molecules
in a gas under low pressure or a dilute solution? If not, and
this might well be the case, the reason for the frequently ob-
served fit of the Arrhenius model to experimental temperature-
rate data might be the incidental value of absolute zero being
-273.16◦C. If so, the much simpler exponential model is by
far, more convenient and its use will eliminate the need to as-
sume the existence of a temperature-independent “energy of
activation” and the invocation of the “mole” unit and Univer-
sal Gas Constant in systems where their relevance is not at all
obvious.

CONCLUDING REMARKS

The Arrhenius Equation has been widely used in food re-
search as a means to quantify the temperature effect on the
rates of a variety of chemical and biochemical reactions and
of the growth and inactivation of microorganisms. It has also
been used to create a linear Arrhenius Plot in order to ex-
tract the process’s “energy of activation,” Ea, from its slope.
This “energy of activation” has found a wide range of uses in
food technology. Examples are calibration of time-temperature
integrators (TTI’s), extrapolation of accelerated storage data,
shelf life assessment, and sterility calculations in thermal
processing.

The validity of the Arrhenius equation as a temperature de-
pendence model has been so trusted that the “energy of activa-
tion” has been frequently calculated from plots based on only 3-4
temperatures, and without any attempt to confirm the value by
an independent test. Upon scrutiny, however, the applicability of
the Arrhenius model to food systems kinetics has several serious
problems, conceptual and practical. Examples of the first kind
are: What is a “mole of bacterial cells”? How can the Universal
gas constant be linked to a multi-step chemical or biochemical
reactions in a solid? Can Ea be temperature independent in a
complex process occurring in a continuously changing physical
and chemical environment? Examples of practical issues are:
How can one identify the applicable temperature range where
the reaction or process has optimal or threshold temperature?
Can the Arrhenius model be used for extrapolation in order to
predict the shelf life of foods and if so, how accurate will the
predictions be if the kinetics is nonlinear?

In light of the Arrhenius model’s conceptual problems and
practical deficiencies when applied to biological systems, one
wonders why it has survived for so long. It is also very surprising
that the Arrhenius model continues to be taught in food science,
food microbiology, and food engineering courses, and to ap-
pear in textbooks without expressed reservation or cautionary
notes.

The initial appeal of the Arrhenius model can be well under-
stood. In “pre-computer times,” there was a premium on math-
ematical models that could be written in a linear form. This
allowed the coefficients of such models to be determined graph-
ically or by linear regression using mechanical desk calculators.
But this advantage is hardly relevant today when non-linear re-
gression is a standard option in commercial mathematical and
statistical software. Moreover, it has been demonstrated in this
work, that many k(T) vs. T relationships, which were originally
used to establish the traditional Arrhenius model can also be
described by the simpler exponential model (Eqs. 12 and 13)
without sacrificing the goodness of fit. The same has been ob-
served in reported k(T) vs. T relationships determined in foods.
The use of this alternative model, where applicable, or of similar
more elaborate models if needed, will eliminate the unnecessary
compression and inversion of the temperature scale that the Ar-
rhenius model requires. They will also eliminate the need to
assume the existence of a temperature-independent energy of
activation in cases where its physical reality is questionable or
where its value as determined by the Arrhenius model has never
been confirmed independently. The comparable fit of the sim-
pler exponential model to experimental data raises the specter
that the widely reported “success” of the Arrhenius equation
might be primarily due to its mathematical construction rather
than to the validity of the assumptions on which it is based. Con-
sequently, the mere fit of the Arrhenius model, which was origi-
nally derived for reactions between gas molecules or molecules
in solution, should not be used in lieu of its independent valida-
tion, especially in complex foods and biological systems.
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