SOLUCION del EXAMEN DE MATEMÁTICA DISCRETA 2

Ejercicio 1.

A. Hay que probar que $10^n \equiv 10 \pmod{30}$. Por el Teo chino del resto, como mcd(3, 10) = 1, esto es equivalente a probar que

$$\begin{cases} 10^n \equiv 10 \pmod{10} \\ 10^n \equiv 10 \pmod{3}. \end{cases}$$

La primer ecuación vale dado qua ambos lados son congruentes con 0 módulo 10. La segunda ecuación vale dado que ambos lados son congruentes con 1 módulo 3.

- **B.** Como 31 es primo y 31 no divide a 10, tenemos por Fermat que $10^{30} \equiv 1 \pmod{31}$. Por la parte A. tenemos que existe k entero tal que $10^n = 30k + 10$ así que $10^{10^n} = 10^{30k+10} = (10^{30})^k 10^{10} \equiv 10^{10} \pmod{31}$. Y como $10^2 = 100 \equiv 7 \pmod{31} \Rightarrow 10^4 = 49 \equiv 18 \pmod{31} \Rightarrow 10^8 = 18^2 = 324 \equiv 14 \pmod{31} \Rightarrow 10^{10} = 10^2 10^8 \equiv 7 \times 14 \pmod{31} \equiv 98 \pmod{31} \equiv 5 \pmod{31}$. Así que el resto de dividir 10^{10^n} entre 31 es 5.
- C. Por la parte B tenemos que $10^{10000} = 10^{10^4} \equiv 5 \pmod{31}$. Así que $10^{9999}10 \equiv 5 \pmod{31}$. Si c es el inverso de 10 módulo 31, tenemos que $10^{9999} \equiv 5c \pmod{31}$. Como 1 = 31 3(10) así que $10(-3) \equiv 1 \pmod{31}$. Por lo tanto $10^{9999} \equiv 5(-3) \pmod{31} \equiv -15 \pmod{31} \equiv 16 \pmod{31}$. Así que el resto de dividir 10^{9999} entre 31 es 16.

Ejercicio 2.

- **A.** a) Sea r el resto de dividir a entre m; entonces a = km + r con $0 \le r < m$. Entonces $g^a = g^{km+r} = (g^m)^k g^r = e^k g^r = eg^r = g^r$ (la tercer igualdad pues m es el orden de g). Si m|a entonces r=0 y por lo tanto $g^a = g^0 = e$. Si $g^a = e$, entoces $g^r = e$, pero por definicón de orden, m es el menor entero mayor que cero tal que $g^m = e$; y como $0 \le r < m$ necesariamente r=0 así que m|a.
 - b) Tenemos que $g^a = g^b \Leftrightarrow g^a \left(g^b\right)^{-1} = g^b \left(g^b\right)^{-1} \Leftrightarrow g^a \left(g^b\right)^{-1} = e \Leftrightarrow g^{a-b} = e$. Y por la parte a) esto vale si y sólo si m|(a-b); es decir, si y sólo si $a \equiv b \pmod{m}$.
- **B.** Como x es coprimo con n y g es raíz primitiva módulo n, tenemos que existe c entero tal que $x = g^c \pmod{n}$. Así que $x^a \equiv g^b \pmod{n} \Leftrightarrow (g^c)^a \equiv g^b \pmod{n} \Leftrightarrow g^{ca} \equiv g^b \pmod{n}$. Como g es raíz primitiva módulo n, el orden de g en U(n) es $\varphi(n)$; así que por la parte Ab) tenemos que $g^{ca} \equiv g^b \pmod{n} \Leftrightarrow ac \equiv b \pmod{\varphi(n)}$.
- C. Como $\varphi(242) = \varphi(2 \times 11^2) = \varphi(2)\varphi(11^2) = 1(11^2 11) = 110$ y mcd(7, 242) = 1, por Euler tenemos que $7^{110} \equiv 1 \pmod{242}$; así que por la parte Aa) tenemos que si m es el orden de 7 en U(242) entonces m|110, es decir que m divide a $2 \times 5 \times 11$. Para probar que m = 110, basta con probar que m no divide ni a 10, ni a 22 ni a 55. Como $7^{10} \equiv 23 \pmod{242}$, en particular $7^{10} \not\equiv 1 \pmod{242}$ así que m no divide a 10. Además $7^{11} = 7^{10} \times 7 \equiv 23 \times 7 \pmod{242} \equiv 161 \pmod{242}$. Si m dividiera a 22, tendríamos que $7^{22} \equiv 1 \pmod{242}$ y por lo tanto tendríamos que $7^{55} = (7^{22})^2 7^{11} \equiv 7^{11} \pmod{242} \equiv 161 \pmod{242}$. Pero por dato tenemos que $7^{55} \equiv 241 \pmod{242}$ así que m no divide a 22. A su vez, como $7^{55} \equiv 241 \pmod{242} \not\equiv 1 \pmod{242}$ tenemos que m no divide a 55.
- **D.** Si $x^3 \equiv 23 \pmod{242}$, como $\operatorname{mcd}(23,242) = 1$ entonces $\operatorname{mcd}(x^3,242) = 1$ y entonces $\operatorname{mcd}(x,242) = 1$. Y como 7 es raíz primitiva, tenemos que $x \equiv 7^c \pmod{242}$ para algún entero c. Por la parte B. (como $23 \equiv 7^{10} \pmod{242}$) tenemos que $x^3 \equiv 7^{10} \pmod{242} \Leftrightarrow 3c \equiv 10 \pmod{110}$. Como $3 \times 37 \equiv 1 \pmod{110}$ tenemos que $c \equiv 10 \times 37$

 $(\mod 110) \equiv 40 \pmod{110}$. Por lo tanto $x^3 \equiv 23 \pmod{242} \Leftrightarrow x \equiv 7^{40} \pmod{242}$. Por otro lado, como 7 es raíz primitiva módulo 41, el orden de 7 en U(41) es 40, así que $7^{20} \equiv -1 \pmod{41} \equiv 40 \pmod{41}$. De forma análoga al anterior, tenemos que $x \equiv 7^d \pmod{41}$ con d tal que $11d \equiv 20 \pmod{40}$; como $11(11) \equiv 1 \pmod{40}$ tenemos que $d \equiv 20(11) \pmod{40} \equiv 220 \pmod{40} \equiv 20 \pmod{40}$. Así que $x^{11} \equiv 40 \pmod{41} \Leftrightarrow x \equiv 7^{20} \pmod{41} \equiv 40 \pmod{41}$. Tenemos entonces que el sistema original es equivalente al sistema

$$\begin{cases} x \equiv 7^{20} \pmod{242} \\ x \equiv 40 \pmod{41}. \end{cases}$$

Y este sistema tiene solución pues mcd(41, 242) = 1.

Ejercicio 3.

- **A.** Sea $x \in G$; $x \sim x \Leftrightarrow x^{-1}x \in H \Leftrightarrow e \in H$ y esto es cierto por se H un subgrupo de G
 - Si $x \sim y$ entonces $x^{-1}y \in H$. Como H es un subgrupo, tenemos que $(x^{-1}y)^{-1} \in H$; así que $y^{-1}x \in H$ y por lo tanto $y \sim x$.
 - Si $x \sim y$ e $y \sim z$ entonces $x^{-1}y \in H$ y $y^{-1}z \in H$; por ser H subgrupo tenemos que $(x^{-1}y)(y^{-1}z) \in H$; entonces $x^{-1}z \in H$ y por lo tanto $x \sim z$.

La clase de equivalencia de g es el conjunto $\{x \in G : g \sim x\} = \{x \in G : g^{-1}x \in H\} = \{x \in G : \exists h \in H : g^{-1}x = h\} = \{x \in G : \exists h \in H : x = gh\} = gH.$

- **B.** a) Tenemos que hallar (ab)h para todo $h \in H$. Observar que para todo a, b como en la letra se tiene que $H = \{Id, (ab)(cd), (ac)(bd), (ad)(bc)\}.$
 - \bullet (a b)Id = (a b).
 - $(ab)(ab)(cd) = (ab)^2(cd) = Id(cd) = (cd).$

 - b) Tenemos que IdH = H. Por la parte anterior tenemos que $(12)H = \{(12), (34), (344), (3142)\};$
 - $(13)H = \{(13), (24), (1234), (2143)\}$ y
 - $(14)H = \{(14), (23), (1243), (2134)\}$. Por otro lado
 - $(123)H = \{(123)Id, (123)(12)(34), (123)(13)(24), (123)(14)(23)\} =$
 - $\{(1\,2\,3),\,(1\,3\,4),\,(2\,4\,3),\,(1\,4\,2)\}$. Hasta aquí tenemos 5 clases, cada una con 4 elementos, así que resta una clase que contiene a los elementos que no están en ninguna de las clases anteriores:
 - $(132)H = \{(132), (143), (234), (124)\}.$
 - c) Dado que sabemos que H es un subgrupo, para probar que $H \subseteq S_4$ resta probar que $\sigma\tau\sigma^{-1} \in H$ para todo τ en H y σ en S_4 . Si $\tau = Id$ entonces $\sigma\tau\sigma^{-1} = \sigma\sigma^{-1} = Id \in H$. Si $\tau = (ab)(cd)$ con $\{a,b,c,d\} = \{1,2,3,4\}$ entonces $\sigma\tau\sigma^{-1} = (\sigma(a)\sigma(b))(\sigma(c)\sigma(d)) \in H$.
 - d) El orden en S_4/H de IdH es 1. El orden de $(a\,b)H$ es 2 y el orden de $(1\,2\,3)H$ y de $(1\,3\,2)H$ es 3. Por lo tanto no hay en S_4/H elementos de orden 6. Si hubiera un isomorfismo $f: \mathbb{Z}_6 \to S_4/H$, como en \mathbb{Z}_6 el orden de $\bar{1}$ es 6, el orden de $f(\bar{1})$ en S_4/H sería 6. Así que no existe tal isomorfismo.