Solución

Problema 1

1) Vértice A: $p_A V_A = nRT_A$

 $n = p_A V_A / (RT_A) = 0.4 \text{ mol.}$

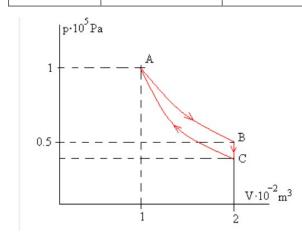
Transformación isoterma: $p_A V_A = p_B V_B$, $p_B = 50$ kPa

Transformación isócora: $V_B = V_C$.

Transformación adiabática: $p_A V_A^{\gamma} = p_C V_C^{\gamma}$, $p_C = p_A (V_A/V_C)^{\gamma} = 31.5$ kPa, donde usamos que $\gamma = 5/3$ (gas ideal monoatómico).

Vértice C: $p_C V_C = nRT_C$, $T_C = 189 \text{ K}$

Vértice	p (kPa)	$V(\mathrm{m}^3)$	<i>T</i> (K)
A	100	10-2	300
В	50	2x10 ⁻²	300
С	31.5	2x10 ⁻²	189



2)

• A→B, proceso isotermo

$$\Delta U_{AB}$$
=0
 W_{AB} = - $\int_{AB} p \cdot dV$ = - $\int_{AB} nRT/V \cdot dV$ =-nRT·ln(V_B/V_A) = -693 J
 Q_{AB} = 693 J

• B→C, proceso isócoro

$$\Delta U_{BC} = n c_{\nu} (T_C - T_B) = -555 J.$$

 $W_{BC} = 0$
 $Q_{BC} = -555 J$

• C→A, proceso adiabático

$$\Delta U_{CA} = n c_v (T_A - T_C) = 555 J$$

 $W_{CA} = 555 J$
 $Q_{CA} = 0$

La eficiencia se calcula como $\eta=|W_{NETO}|/|Q_H|=0.2$ donde usamos que $W_{NETO}=-138~\mathrm{Jy}$ $Q_H=693~\mathrm{J}$.

Problema 2

1) Dado que las dos máquinas son ideales reversibles, su eficiencia es la de Carnot, por lo tanto,

$$\eta_1 = 1 - \frac{T_e}{T_C}$$

$$\eta_2 = 1 - \frac{T_f}{T_C}$$

Además $\eta_1 = \eta_2$

$$T_e = \sqrt{T_f T_c} = 351 K$$

Trabajando únicamente con los módulos del trabajo y el calor, tenemos

2)
$$W_1 = \eta_1 Q_1$$
; $\eta_1 = 1 - \frac{351}{555} = 0.37$; $W_1 = 157 J$.

3)
$$Q_e = Q_1 - W_1 = 270 J$$

 $W_2 = n_2 Q_e = 99.3 J$
 $Q_2 = Q_e - W_2 = 170.7 J$

Problema 3

- 1) El calor intercambiado por el hielo es $Q_{hielo} = m_{hielo} L_f + m_{hielo} c_a (T_{eq} T_{1H}) = 25.4 \text{ kJ}.$
- 2) El calor intercambiado por el gas hasta el momento en que toca los soportes es $Q_{gas,1}$ =n c_p $(T_{sop}-T_1)$ =7/2 $P_1(V_{sop}-V_1)$,

donde T_{sop} es la temperatura del gas en el instante en que el pistón apenas toca los

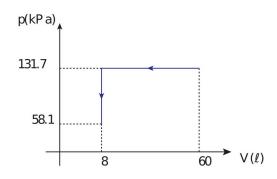
soportes y P₁ es la presión inicial del gas. Para calcular esta presión, alcanza con considerar las fuerzas actuando sobre el pistón y que el proceso es cuasiestático

$$P_1 = P_0 + \frac{m_p g}{A} = 131.7 \, kPa$$
 ,

de donde Q_{gas,1}=-24 kJ.

3) Para hallar la presión final conviene tener en cuenta que, durante el proceso a volumen constante el calor es

$$Q_{\text{gas,2}}\!\!=\!\!-Q_{\text{hielo}}\!\!-\!Q_{\text{gas,1}}\!\!=\!\!nc_{\text{v}}\!(T_{\text{eq}}\!\!-\!T_{\text{sop}})\!\!=\!\!5/2(P_{\text{f}}\!\!-\!P_{\text{1}})V_{\text{sop}},\,de\,\,donde\,\,P_{\text{f}}\!\!=\!\!58.1\,\,kPa.$$



- 4) W=- $P_1(V_{sop}-V_1)$ =6.85 kJ.
- 5) $\Delta S_{univ} = \Delta S_{gas} + \Delta S_{hielo}$

 $\Delta S_{gas} = n \ c_v \ log(P_2/P_1) + n c_p log(V_2/V_1) = -13.42 \ J/K, \ donde \ usamos \ que \ n = P_f \ V_{sop}/(R \ T_{eq}) = 0.18 \ mol.$ $\Delta S_{hielo} = m_{hielo} \ L_f/T_{1H} + m_{hielo} \ c_a \ log(T_{eq}/T_{1H}) = 90.94 \ J/K;$

 ΔS_{univ} =77.52 J/K y, por lo tanto, el proceso es irreversible.