
2do Parcial Física 2 11 de julio de 2015

Considere $g = 9.8 \text{ m/s}^2 \text{ y R}_G = 8.3145 \text{ J/mol K}.$

Problema 1 (30 puntos)

La figura muestra un cilindro cerrado por un pistón de masa $m_P = 10$ kg que se puede mover libremente, excepto cuando llega a los topes. El volumen <u>total</u> del cilindro es de 3,0 litros y su sección de 50 cm². Los topes se encuentran en el último tercio del cilindro.

El cilindro contiene Argón, un gas ideal monoatómico.

Inicialmente, el gas ocupa 2/3 del volumen total del cilindro y su temperatura es de 723 K. El gas se encuentra en equilibrio mecánico con el pistón y la atmosfera a P_0 = 100 kPa.

Luego, el gas entra en contacto térmico con agua en estado sólido (hielo) a $0^{\circ}\text{C y P}_{0.}$

Parte A

Suponiendo que el proceso es cuasiestático y el sistema no intercambia calor con la atmósfera.

I) Calcular la temperatura del gas en el instante en que el pistón

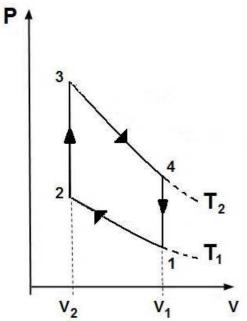
llega a los topes.

- II) Calcular la cantidad de hielo <u>mínima</u> necesaria para que el pistón llegue a los topes, si el agua no cambia su temperatura en el proceso.
- III) Calcular la variación de entropía del universo en este proceso.

Parte B

A continuación del proceso anterior, se sustituye el hielo por 2,0 g de agua líquida a 0° C. Ahora todo el sistema (gas + agua) intercambia calor con la atmósfera a T_0 = 293 K, hasta quedar en equilibrio térmico con ésta.

- I) Calcular la presión final y el volumen final que ocupa el gas.
- II) Calcular el calor total que el gas y el agua (ambos) intercambiaron con la atmófera.
- III) Calcular la variación de entropía del universo en el proceso que se describe en la parte B.


Parte C

Dibujar el diagrama P-V de todo el proceso sufrido por el gas (parte A y parte B).

Datos:	c _a = 4,186 kJ/kg K	$c_h = 2,200 \text{ kJ/kg K}$	L _v = 2256 kJ/kg	$L_f = 333 \text{ kJ/kg}$
	, ,	, , ,		

Problema 2 (20 puntos)

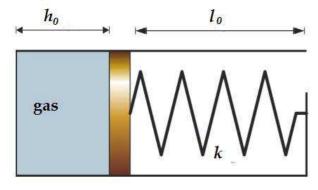
Se tiene la atmósfera a temperatura $T_1 = 20$ °C y una fuente de calor a temperatura $T_2 = 1000$ °C. Se hace funcionar un motor Stirling entre ellos para dar energía a un refrigerador.

El motor, funciona según un ciclo Stirling compuesto por dos procesos isotermos y dos isocóros, como se muestra en la figura.

Parte A

- I) Sabiendo que $V_1/V_2 = 3$, calcule el trabajo otorgado por el ciclo, si se hace funcionar al motor con <u>un mol de aire</u>, considerado como gas ideal diatómico.
- II) ¿Cuál es la eficiencia del ciclo? ¿es reversible? Justifique.

Importante: calor de alta y calor de baja refiere a todo el calor intercambiado con las correspondientes fuentes.


Parte B

Si el refrigerador que se desea hacer funcionar es reversible, ¿qué cantidad de calor máxima puede extraerse de su cabina interior que se encuentra a 0 °C?

Parte C
Dibuje un esquema del universo descrito.

Nota: la figura es esquemática; no está dibujada a escala.

Pregunta (10 puntos)

Demuestre que en un cilindro cerrado por un pistón unido a un resorte, el trabajo realizado por el gas en un proceso de expansión cuasiestático es igual a la variación de la energía potencial del resorte, si el sistema está en el vacío y el gas recibe calor.

La figura muestra un sistema en el instante en que el resorte de constante \boldsymbol{k} no está ni

estirado ni comprimido. La sección del cilindro también es conocida. El grosor del pistón es despreciable.