
www.bsc.es

Montevideo, 21-25 October 2019

Marc Jordà, Antonio J. Peña

MPI: One-Sided Communication

What will be covered in this tutorial

What is MPI?

How to write a simple program in MPI

Running your application with MPICH

More advanced topics:

– Non-blocking communication, collective communication, datatypes

– One-sided communication

– Hybrid programming with shared memory and accelerators

– Non-blocking collectives, topologies, and neighborhood collectives

3

One-sided Communication

The basic idea of one-sided communication models is to

decouple data movement with process synchronization

– Should be able to move data without requiring that the remote

process synchronize

– Each process exposes a part of its memory to other processes

– Other processes can directly read from or write to this memory

Process 1 Process 2 Process 3

Private

Memory

Private

Memory

Private

Memory

Process 0

Private

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Global

Address

Space

Private

Memory

Private

Memory

Private

Memory

Private

Memory

4

Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory

Segment

Processor Processor

Send Recv

Memory

Segment

Memory

Segment

Memory

Segment

Memory

Segment

5

One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory

Segment

Processor Processor

Send Recv

Memory

Segment

Memory

Segment

Memory

Segment

6

• May take advantage of interconnect RDMA,

shared memory (intranode)

• Otherwise can be emulated

Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D

E

L

A

Y

Even the

sending

process is

delayed

Process 0 Process 1

PUT(data) D

E

L

A

Y

Delay in

process 1

does not

affect

process 0

GET(data)

7

What we need to know in MPI RMA

How to create remote accessible memory?

Reading, Writing and Updating remote memory

Data Synchronization

Memory Model

8

Creating Public Memory

Memory used by proceses is, by default, only locally accessible

– X = malloc(100);

Once the memory is allocated, the user has to make an explicit MPI call to

declare a memory region as remotely accessible

– MPI terminology for remotely accessible memory is a window

– A group of processes collectively create a window

Once a memory region is declared as remotely accessible, all processes in

the window can read/write data to this memory without explicitly

synchronizing with the target process

9

Process 1 Process 2 Process 3

Private

Memory

Private

Memory

Private

Memory

Process 0

Private

Memory

Private

Memory

Private

Memory

Private

Memory

Private

Memory

Window

Window creation models

MPI_Win_allocate
– You want to create a buffer and directly make it remotely accessible

MPI_Win_create
– You already have an allocated buffer that you would like to make

remotely accessible

MPI_Win_create_dynamic
– You don’t have a buffer yet, but will have one in the future

– You can add/remove buffers with MPI_Win_attach/detach

MPI_Win_allocate_shared
– You want multiple processes on the same node to share a buffer with

remote load/store access

10

MPI_WIN_ALLOCATE

Create a remotely accessible memory region in an RMA window

– Only data exposed in a window can be accessed with RMA ops.

Arguments:

– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - flags passed to the MPI runtime (may enable optimization)

– comm - communicator (handle)

– baseptr - pointer to exposed local data

– win - window (handle)

11

MPI_Win_allocate(MPI_Aint size, int disp_unit,

 MPI_Info info, MPI_Comm comm, void *baseptr,

 MPI_Win *win)

Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)

{

 int *a; MPI_Win win;

 MPI_Init(&argc, &argv);

 /* collectively create remote accessible memory in a window */

 MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

 MPI_COMM_WORLD, &a, &win);

 /* Array ‘a’ is now accessible from all processes in

 * MPI_COMM_WORLD */

 MPI_Win_free(&win);

 MPI_Finalize(); return 0;

}

12

MPI_WIN_CREATE

Expose a region of memory in an RMA window

– Only data exposed in a window can be accessed with RMA ops.

Arguments:

– base - pointer to local data to expose

– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

– win - window (handle)

13

MPI_Win_create(void *base, MPI_Aint size,

 int disp_unit, MPI_Info info,

 MPI_Comm comm, MPI_Win *win)

Example with MPI_WIN_CREATE
int main(int argc, char ** argv)

{

 int *a; MPI_Win win;

 MPI_Init(&argc, &argv);

 /* create private memory */

 MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);

 /* use private memory like you normally would */

 a[0] = 1; a[1] = 2;

 /* collectively declare memory as remotely accessible */

 MPI_Win_create(a, 1000*sizeof(int), sizeof(int),

 MPI_INFO_NULL, MPI_COMM_WORLD, &win);

 /* Array ‘a’ is now accessibly by all processes in

 * MPI_COMM_WORLD */

 MPI_Win_free(&win);

 MPI_Free_mem(a);

 MPI_Finalize(); return 0;

}

14

MPI_WIN_CREATE_DYNAMIC

Create an RMA window, to which data can later be attached

– Only data exposed in a window can be accessed with RMA ops

Initially “empty”

– Application can dynamically attach/detach memory to this window by

calling MPI_Win_attach/detach

– Application can access data on this window only after a memory

region has been attached

Window origin is MPI_BOTTOM

– Displacements are segment addresses relative to MPI_BOTTOM

– Must tell others the displacement after calling attach

15

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,

 MPI_Win *win)

Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)

{

 int *a; MPI_Win win;

 MPI_Init(&argc, &argv);

 MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

 /* create private memory */

 a = (int *) malloc(1000 * sizeof(int));

 /* use private memory like you normally would */

 a[0] = 1; a[1] = 2;

 /* locally declare memory as remotely accessible */

 MPI_Win_attach(win, a, 1000*sizeof(int));

 /* Array ‘a’ is now accessible from all processes */

 /* undeclare remotely accessible memory */

 MPI_Win_detach(win, a); free(a);

 MPI_Win_free(&win);

 MPI_Finalize(); return 0;}

16

Data movement

MPI provides ability to read, write and atomically modify data

in remotely accessible memory regions

– MPI_PUT

– MPI_GET

– MPI_ACCUMULATE (atomic)

– MPI_GET_ACCUMULATE (atomic)

– MPI_COMPARE_AND_SWAP (atomic)

– MPI_FETCH_AND_OP (atomic)

17

Data movement: Put

Move data from origin, to target

Separate data description triples for origin and target

18

Origin

MPI_Put(void *origin_addr, int origin_count,

 MPI_Datatype origin_dtype, int target_rank,

 MPI_Aint target_disp, int target_count,

 MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely

Accessible

Memory

Private

Memory

Data movement: Get

Move data to origin, from target

Separate data description triples for origin and target

19

Origin

MPI_Get(void *origin_addr, int origin_count,

 MPI_Datatype origin_dtype, int target_rank,

 MPI_Aint target_disp, int target_count,

 MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely

Accessible

Memory

Private

Memory

Atomic Data Aggregation: Accumulate

Atomic update operation, similar to a put

– Reduces origin and target data into target buffer using op argument as combiner

– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …

– Predefined ops only, no user-defined operations

Different data layouts between

target/origin OK

– Basic type elements must match

Op = MPI_REPLACE

– Implements f(a,b)=b

– Atomic PUT

20

MPI_Accumulate(void *origin_addr, int origin_count,

 MPI_Datatype origin_dtype, int target_rank,

 MPI_Aint target_disp, int target_count,

 MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

Origin Target

Remotely

Accessible

Memory

Private

Memory

+=

Atomic Data Aggregation: Get Accumulate

Atomic read-modify-write

– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …

– Predefined ops only

Result stored in target buffer

Original data stored in result buf

Different data layouts between

target/origin OK

– Basic type elements must match

Atomic get with MPI_NO_OP

Atomic swap with MPI_REPLACE

21

MPI_Get_accumulate(void *origin_addr, int origin_count,

 MPI_Datatype origin_dtype, void *result_addr,

 int result_count, MPI_Datatype result_dtype,

 int target_rank, MPI_Aint target_disp,

 int target_count, MPI_Datatype target_dype,

 MPI_Op op, MPI_Win win)

+=

Origin Target

Remotely

Accessible

Memory

Private

Memory

Atomic Data Aggregation: CAS and FOP

FOP: Simpler version of MPI_Get_accumulate

– All buffers share a single predefined datatype

– No count argument (it’s always 1)

– Simpler interface allows hardware optimization

CAS: Atomic swap if target value = compare value

22

MPI_Compare_and_swap(void *origin_addr, void *compare_addr,

 void *result_addr, MPI_Datatype dtype, int target_rank,

 MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(void *origin_addr, void *result_addr,

 MPI_Datatype dtype, int target_rank,

 MPI_Aint target_disp, MPI_Op op, MPI_Win win)

Ordering of Operations in MPI RMA

No guaranteed ordering for Put/Get operations

Result of concurrent Puts to the same location undefined

Result of Get concurrent Put/Accumulate to same location undefined

– Can be garbage in both cases

Result of concurrent accumulate operations to the same location are

defined according to the order in which occurred

– Atomic put: Accumulate with op = MPI_REPLACE

– Atomic get: Get_accumulate with op = MPI_NO_OP

Accumulate operations from a process are ordered by default

– User can tell the MPI implementation that ordering in not required as an

optimization hint

– You can ask for only the needed orderings: RAW (read-after-write), WAR,

RAR, or WAW

23

Examples with operation ordering

24

Process 0 Process 1

GET_ACC (y, x+=2, P1)

ACC (x+=1, P1) x += 2

x += 1 y=2

x = 2

PUT(x=2, P1)

GET(y, x, P1)

x = 2 y=1

x = 1

PUT(x=1, P1)

PUT(x=2, P1)

x = 1

x = 0

x = 2

1. Concurrent Puts: undefined

2. Concurrent Get and

Put/Accumulates: undefined

3. Concurrent Accumulate

operations to the same location:

ordering is guaranteed

RMA Synchronization Models

RMA data access model

– When is a process allowed to read/write remotely accessible memory?

– When is data written by process X available for process Y to read?

– RMA synchronization models define these semantics

Three synchronization models provided by MPI:

– Fence (active target, target process is involved in synchronization)

– Post-start-complete-wait (generalized active target)

– Lock/Unlock (passive target, target process not involved)

Data accesses (Get, Put, Accum.) occur within epochs

– Access epochs: a process can use get/put/accum on remote data

– Exposure epochs: a process exposes its mem segment in win to other

processes

– Epochs define ordering and completion semantics

– Synchronization models provide mechanisms define the epochs

• E.g., starting, ending, and synchronizing epochs

25

Fence: Active Target Synchronization

Collective synchronization model

Starts and ends access and exposure

epochs on all processes in the window

1. All processes in group of win do an

MPI_WIN_FENCE to open an epoch

2. Everyone can issue PUT/GET

operations to read/write data

3. Everyone does an MPI_WIN_FENCE

to close the epoch

4. All operations complete at the second

fence synchronization

26

Fence

MPI_Win_fence(int assert, MPI_Win win)

P0 P1 P2

Fence

Implementing Stencil Computation with RMA Fence

27

Origin buffers

Target buffers

RMA window

PUT

P
U

T

PUT

P
U

T

28

Code Example

stencil_mpi_ddt_rma.c

MPI_Put used to move data; explicit receives not needed

Data location specified by MPI datatypes

Manual packing of data no longer required

PSCW: Generalized Active Target Synchronization

Like FENCE, but origin and target specify
who they communicate with

Target: Exposure epoch

– Opened with MPI_Win_post

– Closed by MPI_Win_wait

Origin: Access epoch

– Opened by MPI_Win_start

– Closed by MPI_Win_complete

All synchronization operations may block,
to enforce P-S/C-W ordering

– Processes can be both origins and targets

29

Start

Complete

Post

Wait

Target Origin

MPI_Win_start/post(MPI_Group grp, int assert, MPI_Win win)

MPI_Win_complete/wait(MPI_Win win)

Lock/Unlock: Passive Target Synchronization

Passive mode: One-sided, asynchronous communication

– Target does not participate in communication operation

Shared memory-like model

30

Active Target Mode Passive Target Mode

Lock

Unlock

Start

Complete

Post

Wait

Passive Target Synchronization

Lock/Unlock: Begin/end passive mode epoch

– Target process does not make a corresponding MPI call

– Can initiate multiple passive target epochs to different processes

– Concurrent epochs to same process not allowed (affects threads)

Lock type

– SHARED: Other processes using shared can access concurrently

– EXCLUSIVE: No other processes can access concurrently

Flush: Remotely complete RMA operations to the target process

– After completion, data can be read by target process or a different process

Flush_local: Locally complete RMA operations to the target process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)

31

MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)

Advanced Passive Target Synchronization

Lock_all: Shared lock, passive target epoch to all other procs.

– Expected usage is long-lived: lock_all, put/get, flush, …, unlock_all

Flush_all – remotely complete RMA operations to all procs.

Flush_local_all – locally complete RMA operations to all procs.

32

MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)

Which synchronization mode should I use, when?

RMA communication has low overheads versus send/recv

– Two-sided: Matching, queuing, buffering, unexpected receives, etc.

– One-sided: No matching, no buffering, always ready to receive

– Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)

Active mode: bulk synchronization

– E.g. ghost cell (aka halo) exchange

Passive mode: asynchronous data movement

– Useful when dataset is large, requiring memory of multiple nodes

– Also, when data access and synchronization pattern is dynamic

– Common use case: distributed, shared arrays

Passive target locking mode

– Lock/unlock – Useful when exclusive epochs are needed

– Lock_all/unlock_all – Useful when only shared epochs are needed

34

MPI RMA Memory Model

MPI-3 provides two memory models:

separate and unified

MPI-2: Separate Model

– Logical public and private copies

– MPI provides software coherence

between window copies

– Extremely portable, to systems that don’t

provide hardware coherence

MPI-3: New Unified Model

– Single copy of the window

– System must provide coherence

– Superset of separate semantics

• E.g. allows concurrent local/remote access

– Provides access to full performance

potential of hardware

35

Public
Copy

Private
Copy

Unified
Copy

MPI RMA Memory Model (separate windows)

Very portable, compatible with non-coherent memory systems

Limits concurrent accesses to enable software coherence

Public
Copy

Private
Copy

Same source

Same epoch Diff. Sources

load store store

X

36

X

MPI RMA Memory Model (unified windows)

Allows concurrent local/remote accesses

Concurrent, conflicting operations are allowed (not invalid)

– Outcome is not defined by MPI (defined by the hardware)

Can enable better performance by reducing synchronization

37

Unified
Copy

Same source

Same epoch Diff. Sources

load store store

X

www.bsc.es

Thank you!

For further information please contact

marc.jorda@bsc.es, antonio.pena@bsc.es

40

