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What will be covered in this tutorial 

What is MPI? 

How to write a simple program in MPI 

Running your application with MPICH 

More advanced topics: 

– Non-blocking communication, collective communication, datatypes 

– One-sided communication 

– Hybrid programming with shared memory and accelerators 

– Non-blocking collectives, topologies, and neighborhood collectives 
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One-sided Communication 

The basic idea of one-sided communication models is to 

decouple data movement with process synchronization 

– Should be able to move data without requiring that the remote 

process synchronize 

– Each process exposes a part of its memory to other processes 

– Other processes can directly read from or write to this memory 
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Two-sided Communication Example 
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• May take advantage of interconnect RDMA,  

shared memory (intranode) 

• Otherwise can be emulated 



Comparing One-sided and Two-sided Programming 
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What we need to know in MPI RMA 

How to create remote accessible memory? 

Reading, Writing and Updating remote memory 

Data Synchronization 

Memory Model 
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Creating Public Memory 

Memory used by proceses is, by default, only locally accessible 

– X = malloc(100); 

 

Once the memory is allocated, the user has to make an explicit MPI call to 

declare a memory region as remotely accessible 

– MPI terminology for remotely accessible memory is a window 

– A group of processes collectively create a window 

 

Once a memory region is declared as remotely accessible, all processes in 

the window can read/write data to this memory without explicitly 

synchronizing with the target process 
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Window creation models 

MPI_Win_allocate 
– You want to create a buffer and directly make it remotely accessible 

 

MPI_Win_create 
– You already have an allocated buffer that you would like to make 

remotely accessible 

 

MPI_Win_create_dynamic 
– You don’t have a buffer yet, but will have one in the future 

– You can add/remove buffers with MPI_Win_attach/detach 

 

MPI_Win_allocate_shared 
– You want multiple processes on the same node to share a buffer with 

remote load/store access 
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MPI_WIN_ALLOCATE 

Create a remotely accessible memory region in an RMA window 

– Only data exposed in a window can be accessed with RMA ops. 

Arguments: 

– size - size of local data in bytes (nonnegative integer) 

– disp_unit - local unit size for displacements, in bytes (positive integer) 

– info - flags passed to the MPI runtime (may enable optimization) 

– comm - communicator (handle) 

– baseptr - pointer to exposed local data 

– win            - window (handle) 
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MPI_Win_allocate(MPI_Aint size, int disp_unit, 

  MPI_Info info, MPI_Comm comm, void *baseptr, 

  MPI_Win *win) 



Example with MPI_WIN_ALLOCATE 

int main(int argc, char ** argv) 

{ 

    int *a;    MPI_Win win; 

 

    MPI_Init(&argc, &argv); 

 

    /* collectively create remote accessible memory in a window */ 

    MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL, 

                     MPI_COMM_WORLD, &a, &win); 

 

  /* Array ‘a’ is now accessible from all processes in 

     * MPI_COMM_WORLD */ 

 

    MPI_Win_free(&win); 

 

      MPI_Finalize(); return 0; 

} 

12 



MPI_WIN_CREATE 

Expose a region of memory in an RMA window 

– Only data exposed in a window can be accessed with RMA ops. 

Arguments: 

– base - pointer to local data to expose 

– size - size of local data in bytes (nonnegative integer) 

– disp_unit - local unit size for displacements, in bytes (positive integer) 

– info - info argument (handle) 

– comm - communicator (handle) 

– win          - window (handle) 
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MPI_Win_create(void *base, MPI_Aint size,  

  int disp_unit, MPI_Info info, 

  MPI_Comm comm, MPI_Win *win) 



Example with MPI_WIN_CREATE 
int main(int argc, char ** argv) 

{ 

    int *a;    MPI_Win win; 

 

    MPI_Init(&argc, &argv); 

 

    /* create private memory */ 

    MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a); 

    /* use private memory like you normally would */ 

    a[0] = 1;  a[1] = 2; 

 

    /* collectively declare memory as remotely accessible */ 

    MPI_Win_create(a, 1000*sizeof(int), sizeof(int),  

    MPI_INFO_NULL, MPI_COMM_WORLD, &win); 

 

  /* Array ‘a’ is now accessibly by all processes in 

     * MPI_COMM_WORLD */ 

 

  MPI_Win_free(&win); 

    MPI_Free_mem(a); 

  MPI_Finalize(); return 0; 

} 
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MPI_WIN_CREATE_DYNAMIC 

Create an RMA window, to which data can later be attached 

– Only data exposed in a window can be accessed with RMA ops 

Initially “empty” 

– Application can dynamically attach/detach memory to this window by 

calling MPI_Win_attach/detach 

– Application can access data on this window only after a memory 

region has been attached 

Window origin is MPI_BOTTOM 

– Displacements are segment addresses relative to MPI_BOTTOM 

– Must tell others the displacement after calling attach 
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MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, 

   MPI_Win *win) 



Example with MPI_WIN_CREATE_DYNAMIC 
int main(int argc, char ** argv) 

{ 

    int *a;    MPI_Win win; 

 

    MPI_Init(&argc, &argv); 

    MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win); 

 

    /* create private memory */ 

    a = (int *) malloc(1000 * sizeof(int)); 

    /* use private memory like you normally would */ 

    a[0] = 1;  a[1] = 2; 

 

    /* locally declare memory as remotely accessible */ 

    MPI_Win_attach(win, a, 1000*sizeof(int)); 

 

  /* Array ‘a’ is now accessible from all processes */ 

 

    /* undeclare remotely accessible memory */ 

    MPI_Win_detach(win, a);  free(a); 

    MPI_Win_free(&win); 

 

    MPI_Finalize(); return 0;} 
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Data movement 

MPI provides ability to read, write and atomically modify data 

in remotely accessible memory regions 

– MPI_PUT 

– MPI_GET 

– MPI_ACCUMULATE (atomic) 

– MPI_GET_ACCUMULATE (atomic) 

– MPI_COMPARE_AND_SWAP (atomic) 

– MPI_FETCH_AND_OP (atomic) 
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Data movement: Put 

Move data from origin, to target 

Separate data description triples for origin and target 
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Data movement: Get 

Move data to origin, from target 

Separate data description triples for origin and target 
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Atomic Data Aggregation: Accumulate 

Atomic update operation, similar to a put 

– Reduces origin and target data into target buffer using op argument as combiner 

– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, … 

– Predefined ops only, no user-defined operations 

Different data layouts between 

target/origin OK 

– Basic type elements must match 

Op = MPI_REPLACE 

– Implements f(a,b)=b 

– Atomic PUT 
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MPI_Accumulate(void *origin_addr, int origin_count, 

 MPI_Datatype origin_dtype, int target_rank, 

 MPI_Aint target_disp, int target_count, 

 MPI_Datatype target_dtype, MPI_Op op, MPI_Win win) 
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Atomic Data Aggregation: Get Accumulate 

Atomic read-modify-write 

– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, … 

– Predefined ops only 

Result stored in target buffer 

Original data stored in result buf 

Different data layouts between 

target/origin OK 

– Basic type elements must match 

Atomic get with MPI_NO_OP 

Atomic swap with MPI_REPLACE 

21 

MPI_Get_accumulate(void *origin_addr, int origin_count, 

 MPI_Datatype origin_dtype, void *result_addr, 

 int result_count, MPI_Datatype result_dtype, 

 int target_rank, MPI_Aint target_disp, 

 int target_count, MPI_Datatype target_dype, 

 MPI_Op op, MPI_Win win) 
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Atomic Data Aggregation: CAS and FOP 

FOP: Simpler version of MPI_Get_accumulate 

– All buffers share a single predefined datatype 

– No count argument (it’s always 1) 

– Simpler interface allows hardware optimization 

 

CAS: Atomic swap if target value = compare value 
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MPI_Compare_and_swap(void *origin_addr, void *compare_addr, 

 void *result_addr, MPI_Datatype dtype, int target_rank, 

 MPI_Aint target_disp, MPI_Win win) 

MPI_Fetch_and_op(void *origin_addr, void *result_addr, 

 MPI_Datatype dtype, int target_rank, 

 MPI_Aint target_disp, MPI_Op op, MPI_Win win) 



Ordering of Operations in MPI RMA 

No guaranteed ordering for Put/Get operations 

Result of concurrent Puts to the same location undefined 

Result of Get concurrent Put/Accumulate to same location undefined 

– Can be garbage in both cases 

 

Result of concurrent accumulate operations to the same location are 

defined according to the order in which occurred 

– Atomic put: Accumulate with op = MPI_REPLACE 

– Atomic get: Get_accumulate with op = MPI_NO_OP 

 

Accumulate operations from a process are ordered by default 

– User can tell the MPI implementation that ordering in not required as an 

optimization hint 

– You can ask for only the needed orderings: RAW (read-after-write), WAR, 

RAR, or WAW 
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Examples with operation ordering 
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RMA Synchronization Models 

RMA data access model 

– When is a process allowed to read/write remotely accessible memory? 

– When is data written by process X available for process Y to read? 

– RMA synchronization models define these semantics 

 

Three synchronization models provided by MPI: 

– Fence (active target, target process is involved in synchronization) 

– Post-start-complete-wait (generalized active target) 

– Lock/Unlock (passive target, target process not involved) 

 

Data accesses (Get, Put, Accum.) occur within epochs 

– Access epochs: a process can use get/put/accum on remote data 

– Exposure epochs: a process exposes its mem segment in win to other 

processes 

– Epochs define ordering and completion semantics 

– Synchronization models provide mechanisms define the epochs 

• E.g., starting, ending, and synchronizing epochs 
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Fence: Active Target Synchronization 

Collective synchronization model 

Starts and ends access and exposure 

epochs on all processes in the window 

 

1. All processes in group of win do an 

MPI_WIN_FENCE to open an epoch 

2. Everyone can issue PUT/GET 

operations to read/write data 

3. Everyone does an MPI_WIN_FENCE 

to close the epoch 

4. All operations complete at the second 

fence synchronization 
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Implementing Stencil Computation with RMA Fence 
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Code Example 

stencil_mpi_ddt_rma.c 

MPI_Put used to move data; explicit receives not needed 

Data location specified by MPI datatypes 

Manual packing of data no longer required 



PSCW: Generalized Active Target Synchronization 

Like FENCE, but origin and target specify 
who they communicate with 

 

Target: Exposure epoch 

– Opened with MPI_Win_post 

– Closed by MPI_Win_wait 

 

Origin: Access epoch 

– Opened by MPI_Win_start 

– Closed by MPI_Win_complete 

 

All synchronization operations may block, 
to enforce P-S/C-W ordering 

– Processes can be both origins and targets 
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Lock/Unlock: Passive Target Synchronization 

Passive mode: One-sided, asynchronous communication 

– Target does not participate in communication operation 

Shared memory-like model 
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Passive Target Synchronization 

Lock/Unlock: Begin/end passive mode epoch 

– Target process does not make a corresponding MPI call 

– Can initiate multiple passive target epochs to different processes 

– Concurrent epochs to same process not allowed (affects threads) 

Lock type 

– SHARED: Other processes using shared can access concurrently 

– EXCLUSIVE: No other processes can access concurrently 

 

Flush: Remotely complete RMA operations to the target process 

– After completion, data can be read by target process or a different process 

Flush_local: Locally complete RMA operations to the target process 

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win) 
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MPI_Win_unlock(int rank, MPI_Win win) 

MPI_Win_flush/flush_local(int rank, MPI_Win win) 



Advanced Passive Target Synchronization 

Lock_all: Shared lock, passive target epoch to all other procs. 

– Expected usage is long-lived: lock_all, put/get, flush, …, unlock_all 

 

Flush_all – remotely complete RMA operations to all procs. 

Flush_local_all – locally complete RMA operations to all procs. 
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MPI_Win_lock_all(int assert, MPI_Win win) 

MPI_Win_unlock_all(MPI_Win win) 
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Which synchronization mode should I use, when? 

RMA communication has low overheads versus send/recv 

– Two-sided: Matching, queuing, buffering, unexpected receives, etc. 

– One-sided: No matching, no buffering, always ready to receive 

– Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand) 

Active mode: bulk synchronization 

– E.g. ghost cell (aka halo) exchange 

Passive mode: asynchronous data movement 

– Useful when dataset is large, requiring memory of multiple nodes 

– Also, when data access and synchronization pattern is dynamic 

– Common use case: distributed, shared arrays 

Passive target locking mode 

– Lock/unlock – Useful when exclusive epochs are needed 

– Lock_all/unlock_all – Useful when only shared epochs are needed 
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MPI RMA Memory Model 

MPI-3 provides two memory models: 

separate and unified 

MPI-2: Separate Model 

– Logical public and private copies 

– MPI provides software coherence 

between window copies 

– Extremely portable, to systems that don’t 

provide hardware coherence 

MPI-3: New Unified Model 

– Single copy of the window 

– System must provide coherence 

– Superset of separate semantics 

• E.g. allows concurrent local/remote access 

– Provides access to full performance 

potential of hardware 
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MPI RMA Memory Model (separate windows) 

Very portable, compatible with non-coherent memory systems 

Limits concurrent accesses to enable software coherence 
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MPI RMA Memory Model (unified windows) 

Allows concurrent local/remote accesses 

Concurrent, conflicting operations are allowed (not invalid) 

– Outcome is not defined by MPI (defined by the hardware) 

Can enable better performance by reducing synchronization 
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Thank you! 

For further information please contact 

marc.jorda@bsc.es, antonio.pena@bsc.es 
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