
Chapter 5

OWL Formal Semantics

In Chapter 4 we introduced OWL syntactically, and have discussed intuitively
how to derive logical inferences from OWL ontologies. This derivation of
implicit knowledge is at the heart of logic-based semantics, and we give this
a thorough and formal treatment in this chapter. We start with description
logics in Section 5.1, which provide a logical view on OWL. In Section 5.2, we
then present two equivalent ways of defining the formal semantics of OWL.
In Section 5.3 we present the most successful algorithmic approach, the so-
called tableaux method, for automated reasoning with OWL ontologies. In
this chapter, the reader will benefit from some background in predicate logic,
which can be found in Appendix C.

5.1 Description Logics

OWL DL can be identified with a decidable fragment of first-order pred-
icate logic and thus OWL draws on the long history of philosophical and
mathematical logic, which is a well-established and well-understood theory.
As such, it is also in the tradition of logic-based artificial intelligence research,
where the development of suitable knowledge representation formalisms plays
an important part.

Historically, OWL DL can be traced back to so-called semantic networks,
which can be used for the modeling of simple relationships between individu-
als and classes via roles, roughly comparable to RDFS. In the beginning, the
meaning of such semantic networks was vague, which necessitated a formaliza-
tion of their semantics. Eventually, this led to the development of description
logics which we will deal with prominently in this chapter. OWL DL is es-
sentially a description logic, which in turn can be understood as a fragment
of first-order predicate logic.

Description logics have been designed in order to achieve favorable trade-
offs between expressivity and scalability. Also, they are usually decidable and
there exist efficient algorithms for reasoning with them.

To make this introduction more accessible, we will sometimes refrain from
a complete treatment of OWL DL, and instead restrict our attention to sub-
languages which suffice for conveying the key insights.

159

http://freepdf-books.com



160 Foundations of Semantic Web Technologies

5.1.1 The Description Logic ALC

By description logics we understand a family of logics for knowledge rep-
resentation, derived from semantic networks and related to so-called frame
logics. Description logics are usually fragments of first-order predicate logic,
and their development is usually driven by considerations concerning compu-
tational complexity: Given a complexity class, find a description logic which
is as expressive as possible concerning its language constructs, but remains
within the given complexity class. We will return to computational complexity
later.

Researchers have developed a simple and useful notation for description
logics which makes working with them much easier. We will use it in the
following. We start by introducing the basic description logic ALC.

5.1.1.1 Building Blocks of ALC

Just as in OWL, the basic building blocks of ALC are classes, roles, and
individuals, which can be put into relationships with each other. The expres-
sion

Professor(rudiStuder)

describes that the individual rudiStuder belongs to the class Professor. The
expression

hasAffiliation(rudiStuder, aifb)

describes that rudiStuder is affiliated with aifb. The role hasAffiliation
is an abstract role – we will discuss concrete roles later.

Subclass relations are expressed using the symbol v. The expression

Professor v FacultyMember

says that Professor is a subclass of the class FacultyMember. Equivalence
between classes is expressed using the symbol ≡, e.g., as

Professor ≡ Prof.

http://freepdf-books.com



OWL Formal Semantics 161

In order to express complex class relationships, ALC provides logical class
constructors which we already know from OWL. The symbols for conjunction,
disjunction, and negation are u, t, and ¬, respectively. The constructors can
be nested arbitrarily, as in the following example.

Professor v (Person u FacultyMember) t (Person u ¬PhDStudent)

These logical constructors correspond to class constructors we already know
from the OWL RDF syntax, namely, owl:intersectionOf, owl:unionOf,
and owl:complementOf, respectively. The example just given corresponds to
that from Fig. 4.11.

Complex classes can also be defined by using quantifiers, which correspond
to role restrictions in OWL. If R is a role and C a class expression, then ∀R.C
and ∃R.C are also class expressions.

The statement
Exam v ∀hasExaminer.Professor

states that all examiners of an exam must be professors, and corresponds to
the example from page 127 using owl:allValuesFrom. The statement

Exam v ∃hasExaminer.Professor

says that every exam must have at least one examiner who is a professor,
and corresponds to the example using owl:someValuesFrom from page 127.

Quantifiers and logical constructors can be nested arbitrarily.

5.1.1.2 Modeling Part of OWL in ALC

We have already seen that many OWL DL language constructs can be
expressed directly in ALC. Some others can be expressed indirectly, as we
will now demonstrate.

The empty class owl:Nothing, denoted in ALC using the symbol ⊥, can
be expressed by

⊥ ≡ C u ¬C,

where C is some arbitrary class. Analogously, the class >, which corresponds
to owl:Thing, can be expressed by

> ≡ C t ¬C,

or equivalently by
> ≡ ¬⊥.

http://freepdf-books.com



162 Foundations of Semantic Web Technologies

Disjointness of two classes C and D can be expressed using

C uD v ⊥,

or equivalently by
C v ¬D,

corresponding to owl:disjointWith.
Domain and range of roles can also be expressed: The expression

> v ∀R.C

states that C is the rdfs:range of R, and the expression

∃R.> v C

states that C is the rdfs:domain of R.

5.1.1.3 Formal Syntax of ALC

Formally, the following syntax rules define ALC. We first define how com-
plex classes are constructed. Let A be an atomic class, i.e. a class name, and
let R be an (abstract) role. Then class expressions C,D are constructed using
the following rule.

C,D ::= A | > | ⊥ | ¬C | C uD | C tD | ∀R.C | ∃R.C

Another common name for class expressions in description logics is “con-
cept” or “concept expression” but we will adhere to the terminology that is
used in OWL. Statements in ALC – and in other description logics – are di-
vided into two groups, namely into TBox statements and ABox statements.
The TBox is considered to contain terminological (or schema) knowledge,
while the ABox contains assertional knowledge about instances (i.e. individu-
als). Remember that we distinguished between these two types of knowledge
already in the case of RDFS (cf. the example in Section 2.6). Separating TBox
and ABox becomes a bit academic when considering certain more expressive
description logics, but it is still useful, and the distinction is well-defined for
ALC. Statements of either kind are often called axioms in description logics.1

Formally, a TBox consists of statements of the form C ≡ D or C v D,
where C and D are class expressions. Statements C v D are called (general)
class inclusion axioms. An ABox consists of statements of the form C(a) and
R(a, b), where C is a class expression, R is a role, and a, b are individuals. An
ALC knowledge base consists of an ABox and a TBox.

1The term “formula” would be more accurate than “axiom” in cases where a statement is
not required to be true, but “axiom” is widely used in the literature.

http://freepdf-books.com



OWL Formal Semantics 163

5.1.2 OWL DL as Description Logic

We have already seen that the following OWL DL language constructs can
be represented in ALC:

• classes, roles, and individuals

• class membership and role instances

• owl:Thing and owl:Nothing

• class inclusion, class equivalence, and class disjointness

• conjunction, disjunction, and negation of classes

• role restrictions using owl:allValuesFrom and owl:someValuesFrom

• rdfs:domain and rdfs:range

The other OWL DL language constructs cannot be expressed in ALC. In-
stead, we need to extend ALC to the description logic SHOIN (D), which en-
compasses ALC and also provides further expressive means. We will present
them in the following.

5.1.2.1 Class Constructors and Relationships

Closed class expressions using owl:oneOf can be expressed in SHOIN (D)
as follows: The class containing exactly the individuals a1, . . . , an is written as
{a1, . . . , an}. When talking about description logics, closed classes are called
nominals.2

We have already seen on page 129 that owl:hasValue can be expressed
by making use of owl:someValuesFrom and owl:oneOf, i.e. owl:hasValue is
expressible in SHOIN (D).
SHOIN (D) further provides cardinality restrictions via the following no-

tation: The statement

Exam v ≤2hasExaminer

says that each exam has at most two examiners. More generally, we can
express owl:maxCardinality via ≤nR, where n is a non-negative integer,
and R is an (abstract) role. Likewise, owl:minCardinality is written using
≥nR. As already exemplified in Fig. 4.12, owl:cardinality can be expressed
using the intersection of owl:minCardinality and owl:maxCardinality.

2To be precise, a nominal is a class which contains exactly one individual. Closed classes
correspond to unions of nominals then.

http://freepdf-books.com



164 Foundations of Semantic Web Technologies

5.1.2.2 Relationships Between Individuals

Equality of individuals a and b is expressed indirectly as {a} ≡ {b} using
nominals and class equivalence. Inequality of individuals a and b is expressed
likewise by saying that the classes {a} and {b} are disjoint, i.e. by stating
{a} u {b} v ⊥.

5.1.2.3 Role Constructors, Role Relationships, and Role Charac-
teristics

The statement that R is a subrole of S is written as R v S, and is called
a role inclusion axiom. Equivalence between these roles is written as R ≡ S.
The inverse role to R is denoted by R−, i.e. S ≡ R− states that S is the
inverse of R. In SHOIN (D), inverse role descriptions may be used in all the
places where roles may occur, basically as in OWL 2.

Transitivity of a role R is stated as Trans(R). Symmetry of R can be
declared indirectly using R ≡ R−. Functionality of R is stated as > v ≤1R
while inverse functionality of R is stated as > v ≤1R−.

5.1.2.4 Datatypes

SHOIN (D) allows the use of data values, i.e. of elements of datatypes,
in the second argument of concrete roles. It is also possible to form closed
classes using such data values. This straightforward use of datatypes does not
have any significant impact on the logical underpinnings, so we will not go
into more detail here.

There exist more powerful uses of datatypes, known as concrete domains,
in the theory of description logics. But concrete domains are not part of the
OWL standard, so we only refer the interested reader to the literature given
in Section 5.6.

5.1.2.5 SHOIN (D) and OWL DL

Let us summarize the expressive means available in SHOIN (D), as they
cover OWL DL. We have

• all language constructs from ALC,

• equality and inequality between individuals,

• closed classes (i.e. disjunctions of nominals),

• cardinality restrictions,

• role inclusion axioms and role equivalences (i.e. role hierarchies),

• inverse roles,

• transitivity, symmetry, functionality, and inverse functionality of roles,

http://freepdf-books.com



OWL Formal Semantics 165

• datatypes.

5.1.3 Naming Description Logics – and How They Relate to
the OWL Sublanguages

We have already introduced and used some of the strange names description
logics have, such as ALC or SHOIN (D). The terminology behind these
names is in fact systematic: the letters describe which language constructs
are allowed in a particular description logic. ALC is short for Attributive
Language with Complement, and has its name for historical reasons. ALC is
considered to be the most fundamental description logic,3 and is usually the
starting point for theoretical investigations. We have formally defined ALC
in Section 5.1.1.3.

Expressive means beyond ALC are now indicated by certain letters. The
following explains SHOIN (D).

• S stands for ALC plus role transitivity.

• H stands for role hierarchies, i.e. for role inclusion axioms.

• O stands for nominals, i.e. for closed classes with one element.

• I stands for inverse roles.

• N stands for cardinality restrictions.

• D stands for datatypes.

We also give the letters for some other language constructs which are of
particular importance, and will explain them below.

• F stands for role functionality.

• Q stands for qualified cardinality restrictions.

• R stands for generalized role inclusion axioms.

• E stands for the use of existential role restrictions.

3ALC is often said to be Boolean closed, which means that conjunction, disjunction, nega-
tion and both quantifiers can be used without any restrictions. Description logics without
this feature are called sub-Boolean.

http://freepdf-books.com



166 Foundations of Semantic Web Technologies

5.1.3.1 Role Functionality

We have already said that OWL DL corresponds to SHOIN (D). But
functionality of roles can be declared in OWL DL, so why didn’t we say
that it corresponds to SHOINF(D)? The reason is that redundant letters
are usually left out. We have seen on page 164 that functionality can be
expressed by means of cardinality restrictions, so functionality is implicit in
SHOIN (D), i.e. the letter F is omitted. Likewise, there is no letter for inverse
functionality simply because it can be expressed using cardinality restrictions
and inverse roles. Likewise, symmetry of roles can be expressed using inverse
roles and role hierarchies.

So why do we need the letter F at all? Because having description logics
with functionality but without, e.g., cardinality restrictions can be meaningful.
Indeed, OWL Lite corresponds to the description logic SHIF(D).

5.1.3.2 Qualified Cardinality Restrictions

Qualified cardinality restrictions are a generalization of the cardinality re-
strictions which we already know from SHOIN . They allow us to make
declarations like ≤nR.C and ≥nR.C which are similar to ≤nR and ≥nR
(sometimes called unqualified cardinality restrictions) but furthermore allow
us to specify to which class the second arguments in the role R belong – we
have already encountered them in our discussion of OWL 2 in Section 4.3.1.6.
This usage of qualified cardinality restrictions is thus analogous to the role
restrictions ∀R.C or ∃R.C.

Qualified cardinality restrictions encompass unqualified ones: ≥nR, for ex-
ample, can be expressed using ≥nR.>. It is also a fact that extending from
unqualified to qualified cardinality restrictions hardly makes a difference in
terms of theory, algorithms, or system runtimes. Description logic literature
is thus usually concerned with SHIQ or SHOIQ rather than SHIN or
SHOIN .

5.1.3.3 Generalized Role Inclusions

We have already encountered generalized role inclusions in our discussion
of OWL 2 in Section 4.3.1.5. The notation used for description logics is
R1 ◦ · · · ◦Rn v R, meaning that the concatenation of R1, . . . , Rn is a subrole
of R. A typical example of this would be

hasParent ◦ hasBrother v hasUncle.

OWL 2 DL is essentially the description logic SROIQ(D). Note that gener-
alized role inclusions encompass role hierarchies, so that SROIQ(D) contains
SHOIN (D), i.e. OWL 2 DL contains OWL DL.

http://freepdf-books.com



OWL Formal Semantics 167

OWL Full is not a description logic
OWL DL SHOIN (D)
OWL Lite SHIF(D)
OWL 2 Full is not a description logic
OWL 2 DL SROIQ(D)
OWL 2 EL EL++

OWL 2 QL DL-Lite
OWL 2 RL DLP

FIGURE 5.1: Correspondence between OWL variants and description log-
ics

5.1.3.4 Existential Role Restrictions

Since existential role restrictions are contained in ALC, this symbol is only
useful when discussing sub-Boolean description logics which are properly con-
tained in ALC. This is the case for the description logics corresponding to
some of the tractable profiles of OWL 2, as discussed in Section 4.3.2: The de-
scription logic EL allows conjunction and existential role restrictions.4 EL++

additionally allows generalized role inclusions and nominals. It corresponds
to the OWL 2 EL profile from Section 4.3.2.1. The tractable fragment DL-
Lite imposes more complicated restrictions on the use of language constructs,
and we will not treat it in more detail here. It corresponds to the OWL 2 QL
profile from Section 4.3.2.2. The OWL 2 RL profile from Section 4.3.2.3 corre-
sponds to a naive intersection between SROIQ and datalog (see Section 6.2)
and is very closely related to so-called Description Logic Programs (DLP).
DLP is also a tractable fragment of SROIQ, but we refrain from covering it
in more detail here: we will have much more to say about OWL and Rules in
Chapter 6.

5.1.3.5 OWL Sublanguages and Description Logics

The mentioned letters for describing description logics have to be taken
carefully, since minor modifications are imposed in some cases. It is therefore
necessary to revert to the formal definitions when details matter. We have
given a formal definition of ALC in Section 5.1.1.3 above, and will give the
formal definition of SROIQ and SHIQ in Section 5.1.4 below.

We summarize the relationships between different versions and sublan-
guages of OWL and description logics in Fig. 5.1.

4The letter L does not really carry a specific meaning.

http://freepdf-books.com



168 Foundations of Semantic Web Technologies

5.1.4 Formal Syntax of SROIQ

We will now formally define the complete syntax of the SROIQ descrip-
tion logic. By doing this, we will encounter some details which we have not
mentioned so far in our rather intuitive treatment. The definition we will give
is one of several possible logically equivalent definitions. It is the one most
convenient for the rest of our treatment in this chapter. Its formal semantics
will be presented in Section 5.2.

For SROIQ, it is customary and convenient to distinguish between RBox,
for roles, TBox, for terminological knowledge, and ABox, for assertional
knowledge.

5.1.4.1 SROIQ RBoxes

A SROIQ RBox is based on a set R of atomic roles, which contains all
role names, all inverses of role names (i.e. R− for any role name R), and
the universal role U . The universal role is something like the > element for
roles: It is a superrole of all roles and all inverse roles, and can intuitively be
understood as relating all possible pairs of individuals. It is the top abstract
role which we have already encountered in Section 4.3.1.3.

A generalized role inclusion axiom is a statement of the form S1 ◦ · · · ◦Sn v
R, and a set of such axioms is called a generalized role hierarchy. Such a role
hierarchy is called regular if there exists a strict partial order5 ≺ on R, such
that the following hold:

• S ≺ R if and only if S− ≺ R

• every role inclusion axiom is of one of the forms

R ◦R v R, R− v R, S1 ◦ · · · ◦ Sn v R,

R ◦ S1 ◦ · · · ◦ Sn v R, S1 ◦ · · · ◦ Sn ◦R v R

such that R is a non-inverse role name, and Si ≺ R for i = 1, . . . , n.

Regularity is a way to restrict the occurrence of cycles in generalized role
hierarchies. It needs to be imposed in order to guarantee decidability of
SROIQ.

5A partial order ≤ on a set X satisfies the following conditions for all x, y, z ∈ X: x ≤ x;
if x ≤ y and y ≤ x, then x = y; and if x ≤ y and y ≤ z, then x ≤ z. If ≤ is a partial order,
then we can define a strict partial order < by setting x < y if and only if x ≤ y and x 6= y.

http://freepdf-books.com



OWL Formal Semantics 169

We give an example of a role hierarchy which is not regular:

hasParent ◦ hasHusband v hasFather

hasFather v hasParent

This role hierarchy is not regular because regularity would enforce both
hasParent ≺ hasFather and hasFather ≺ hasParent, which is impossi-
ble because ≺ must be strict.

Note that regular role hierarchies must not contain role equivalences: If we
had R v S and S v R, then regularity would enforce R ≺ S and S ≺ R, which
is impossible because ≺ must be strict. Formally, however, this restriction
is not severe, since it basically means that we do not allow roles to have
synonyms, i.e. if a knowledge base would contain two roles S and R which are
equivalent, then we could simply replace all occurrences of S by R without
losing any substantial information.

We now turn to the notion of simple role, which is also needed in order to
guarantee decidability. Given a role hierarchy, the set of simple roles of this
hierarchy is defined inductively, as follows.

• If a role does not occur on the right-hand side of a role inclusion axiom
– and neither does the inverse of this role –, then it is simple.

• The inverse of a simple role is simple.

• If a role R occurs only on the right-hand side of role inclusion axioms
of the form S v R with S being simple, then R is also simple.

Simplicity of a role essentially means that it does not occur on the right-
hand side of a role inclusion axiom containing a role concatenation ◦.

To give an example, the set of simple roles of the role hierarchy {R v R1;R1◦
R2 v R3;R3 v R4} is {R,R−, R1, R

−
1 , R2, R

−
2 }.

Note that regular role hierarchies allow us to express transitivity (R◦R v R)
and symmetry (R− v R). In SROIQ, we additionally allow the explicit
declaration of reflexivity of a role by Ref(R), of antisymmetry of a role by
Asy(S), and of disjointness of two roles S1 and S2 by Dis(S1, S2). However,
we have to impose the condition that S, S1 and S2 are simple in order to
ascertain decidability. These declarations are called role characteristics.6

6In the description logic literature, role characteristics are often called role assertions.

http://freepdf-books.com



170 Foundations of Semantic Web Technologies

Let us explain the intuition behind the three new SROIQ role character-
istics which we have already encountered in Section 4.3.1.3. Reflexivity of a
role means that everything is related to itself by this role; a typical example
would be isIdenticalTo. Antisymmetry of a role R means that whenever a is
related to b via R, then b is not related to a via R. Most roles are antisymmet-
ric; an example would be the role hasParent. Disjointness of two roles means
that they do not share any pair of instances. The two roles hasParent and
hasChild, for example, would be disjoint, while hasParent and hasFather
would not be disjoint.

A SROIQ RBox is the union of a set of role characteristics and a role
hierarchy. A SROIQ RBox is regular if its role hierarchy is regular.

5.1.4.2 SROIQ Knowledge Bases

Given a SROIQ RBox R, we now define the set of class expressions C
inductively as follows.

• Every class name is a class expression.

• > and ⊥ are class expressions.

• If C,D are class expressions, R,S ∈ R with S being simple, a is an
individual, and n is a non-negative integer, then the following are class
expressions:

¬C C uD C tD {a} ∀R.C ∃R.C

∃S.Self ≤nS.C ≥nS.C

From our discussion of SHOIN (D), these language constructs are already
familiar. An exception is the ∃S.Self expression, which we have already en-
countered for OWL 2 in Section 4.3.1.7. Intuitively, an individual a is an
instance of ∃S.Self if a is related to itself via the S role. A typical example
would be the class inclusion

PersonCommittingSuicide v ∃kills.Self.

Concerning nominals, i.e. the use of the construct {a}, note that closed
classes with more than one individual can be constructed using disjunction,
i.e. {a1, . . . , an} can be written as {a1} t · · · t {an}.

A SROIQ TBox is a set of class inclusion axioms of the form C v D,
where C and D are class expressions.

A SROIQ ABox is a set of individual assignments – of one of the forms
C(a), R(a, b), or ¬R(a, b), where C ∈ C, R ∈ R and a, b are individuals.

http://freepdf-books.com



OWL Formal Semantics 171

Note that SROIQ allows negated role assignments ¬R(a, b), which we also
know from OWL 2 and Section 4.3.1.8. This allows us to state explicitly, e.g.,
that John is not the father of Mary, namely by ¬hasFather(Mary, John).

A SROIQ knowledge base is the union of a regular RBox R, an ABox, and
a TBox for R.

5.1.4.3 SHIQ

The description logic SHIQ is of particular importance for research around
OWL. From the perspective of computational complexity, which we discuss
more closely in Section 5.3.5, SHIQ is not more complicated than ALC. At
the same time, only nominals are missing from SHIQ in order to encompass
OWL DL.7 SHOIN , however, which is essentially OWL DL, is much more
complex than SHIQ, and SROIQ is even worse.

For research into reasoning issues around OWL, methods and algorithms are
often first developed for ALC, and then lifted to SHIQ, before attempting
SHOIQ or even SROIQ. We do the same in Section 5.3, and require a
formal definition of SHIQ.

We define SHIQ by restricting SROIQ. SHIQ RBoxes are SROIQ
RBoxes restricted to axioms of the form R ◦ R v R (written as Trans(R)),
R− v R (written as Sym(R)), and S v R. Regularity does not need to be
imposed for SHIQ. Simplicity of roles is defined as for SROIQ, but note
that we can give a simpler definition of simplicity for SHIQ: A role is simple
unless it is transitive, its inverse is transitive, it has a transitive subrole, or
its inverse has a transitive subrole. Note that we do not allow any of the
additional role characteristics from SROIQ.
SHIQ TBoxes are SROIQ TBoxes where Self and nominals of the form

{a}, for a an individual, do not occur.
SHIQ ABoxes contain statements of the form C(a), R(a, b), or a 6= b,

where C ∈ C, R ∈ R, and a, b are individuals, i.e. SHIQ Aboxes are SROIQ
ABoxes where ¬ does not occur and where inequality of individuals may be
explicitly stated. Note that there is no need to explicitly allow inequality of
individuals in SROIQ ABoxes, since a statement like a 6= b can be expressed
in a SROIQ TBox using nominals as {a} u {b} v ⊥.

A SHIQ knowledge base is the union of a SHIQ RBox, a SHIQ TBox,
and a SHIQ Abox.

For completeness, let us remark that the only difference between SHIQ
and SHOIQ is that nominals are allowed in class expressions.

7Datatypes are also missing, but they do not pose any particular difficulties to the theory.

http://freepdf-books.com



172 Foundations of Semantic Web Technologies

5.2 Model-Theoretic Semantics of OWL

We now define formally the semantics of SROIQ, i.e. for OWL 2 DL. Since
SROIQ encompasses SHOIN , this also means that we essentially define the
formal semantics of OWL DL.

We present the semantics in two versions, which are equivalent. In Sec-
tion 5.2.1 we give the extensional semantics, sometimes also called the direct
model-theoretic semantics. In Section 5.2.2, we define the semantics by a
translation into first-order predicate logic.

5.2.1 Extensional Semantics of SROIQ

The direct model-theoretic semantics which we now define is similar to
the model-theoretic semantics of RDF(S) given in Chapter 3. We will make
remarks about similarities and differences at the appropriate places.

5.2.1.1 Interpreting Individuals, Classes, and Roles

As for RDF(S), we first need to fix notation for the vocabulary used. We
assume

• a set I of symbols for individuals,

• a set C of symbols for class names, and

• a set R of symbols for roles.

There is a significant difference from the situation for RDF(S) (and OWL
Full): The sets I, C, and R must be mutually disjoint. This means that
we enforce type separation as discussed for OWL DL on page 139. OWL 2
punning as in Section 4.3.1.1 is not needed, although this would not change
the theory. We avoid the issue of punning here simply for convenience.

We next define the notion of SROIQ interpretation. As for RDF(S), we
start with a set of entities, which can be thought of as resources, individuals,
or single objects. We denote this set, called the domain of the interpretation,
by ∆. We now declare how individuals, class names, and roles are interpreted,
namely, by means of the functions

• II, which maps individuals to elements of the domain: II : I→ ∆,

• IC, which maps class names to subsets of the domain: IC : C→ 2∆ (the
class extension), and

• IR, which maps roles to binary relations on the domain, i.e. to sets of
pairs of domain elements: IR : R→ 2∆×∆ (the property extension).

http://freepdf-books.com



OWL Formal Semantics 173

There are many choices possible, which we do not further restrict: The set
∆ may be arbitrary, and how exactly the functions II, IC, and IR assign their
values also bears a lot of freedom.

We note that we do not map class names and role names to single elements
as done in RDF(S). The function IC, however, could be understood as the
concatenation of the functions IS and ICEXT from an RDF(S) interpretation.
Likewise, IR could be understood as the concatenation of the functions IS and
IEXT. Figure 5.2 graphically depicts a DL interpretation.

FIGURE 5.2: Schematic representation of a DL interpretation

We next define an interpretation function ·I , which lifts the interpretation
of individuals, class names, and role names just given to complex class and
role expressions.

• We set >I = ∆ and ⊥I = ∅.

• ¬C describes those things which are not in C, i.e. (¬C)I = ∆ \ CI .

• C u D describes those things which are both in C and in D, i.e. (C u
D)I = CI ∩DI .

• C t D describes those things which are in C or in D, i.e. (C t D)I =
CI ∪DI .

• ∃R.C describes those things which are connected via R with something
in C, i.e. (∃R.C)I = {x | there is some y with (x, y) ∈ RI and y ∈ CI}.

• ∀R.C describes those things x for which every y which connects from x
via a role R is in the class C, i.e. (∀R.C)I = {x | for all y with (x, y) ∈
RI we have y ∈ CI}.

http://freepdf-books.com



174 Foundations of Semantic Web Technologies

• ≤nR.C describes those things which are connected via R to at most n
things in C, i.e.8 (≤nR.C)I = {x | #{(x, y) ∈ RI | y ∈ CI} ≤ n}.

• ≥nR.C describes those things which are connected via R to at least n
things in C, i.e. (≥nR.C)I = {x | #{(x, y) ∈ RI | y ∈ CI} ≥ n}.

• {a} describes the class containing only a, i.e. {a}I = {aI}.

• ∃S.Self describes those things which are connected to themselves via S,
i.e. (∃S.Self)I = {x | (x, x) ∈ SI}.

• For R ∈ R, we set (R−)I = {(b, a) | (a, b) ∈ RI}.

• For the universal role U , we set UI = ∆×∆.

Given a SROIQ knowledge base, an interpretation consists of a domain ∆
and an interpretation function which satisfies the constraints just given. Note
that due to the many degrees of freedom in choosing ∆ and the functions II,
IC, and IR, it is not necessary that interpretations are intuitively meaningful.

If we consider, for example, the knowledge base consisting of the axioms

Professor v FacultyMember

Professor(rudiStuder)
hasAffiliation(rudiStuder, aifb)

then we could set

∆ = {a, b, Ian}
II(rudiStuder) = Ian

II(aifb) = b

IC(Professor) = {a}
IC(FacultyMember) = {a, b}

IR(hasAffiliation) = {(a, b), (b, Ian)}

Intuitively, these settings are nonsense, but they nevertheless determine a
valid interpretation.

Let us dwell for a bit on the point that the interpretation just given is in-
tuitively nonsense. There are actually two aspects to this. The first is the
choice of names for the elements in ∆, e.g., that rudiStuder is interpreted
as Ian, which seems to be quite far-fetched. Note, however, that this aspect

8Recall from Appendix B that #A denotes the cardinality of the set A.

http://freepdf-books.com



OWL Formal Semantics 175

relates only to the names of elements in a set, while in logic we would usu-
ally abstract from concrete names, i.e. we would usually be able to rename
things without compromising logical meanings. The second aspect is more
severe, as it is structural: It is about the question whether the interpretation
faithfully captures the relations between entities as stated in the knowledge
base. This is not the case in this example: II(rudiStuder) is not contained in
IC(Professor), although the knowledge base states that it should. Similarly,
IR(hasAffiliation) does not contain the pair (II(rudiStuder), II(aifb)),
although it should according to the knowledge base.

Interpretations which do make sense for a knowledge base in the structural
manner just described are called models of the knowledge base, and we intro-
duce them formally next. Note, however, that we ignore the first aspect, as
commonly done in logic.

5.2.1.2 Interpreting Axioms

Models capture the structure of a knowledge base in the sense that they
give a truthful representation of the axioms in terms of sets. Formally, models
of a knowledge base are interpretations which satisfy additional constraints
which are determined by the axioms of the knowledge base. The constraints
are as follows: An interpretation I of a SROIQ knowledge base K is a model
of K, written I |= K, if the following hold.

• If C(a) ∈ K, then aI ∈ CI .

• If R(a, b) ∈ K, then (aI , bI) ∈ RI .

• If ¬R(a, b) ∈ K, then (aI , bI) 6∈ RI .

• If C v D ∈ K, then CI ⊆ DI .

• If S v R ∈ K, then SI ⊆ RI .

• If S1◦· · ·◦Sn v R ∈ K, then {(a1, an+1) ∈ ∆×∆ | there are a2, . . . , an ∈
∆ such that (ai, ai+1) ∈ SIi for all i = 1, . . . , n} ⊆ RI .

• If Ref(R) ∈ K, then {(x, x) | x ∈ ∆} ⊆ RI .

• If Asy(R) ∈ K, then (x, y) 6∈ RI whenever (y, x) ∈ RI .

• If Dis(R,S) ∈ K, then RI ∩ SI = ∅.

http://freepdf-books.com



176 Foundations of Semantic Web Technologies

Model 1 Model 2 Model 3
∆ {a, r, s} {1, 2} {♠}
II(rudiStuder) r 1 ♠
II(aifb) a 2 ♠
IC(Professor) {r} {1} {♠}
IC(FacultyMember) {a, r, s} {1, 2} {♠}
IR(hasAffiliation) {(r, a)} {(1, 1), (1, 2)} {(♠,♠)}

FIGURE 5.3: Models for the example knowledge base from page 174

We can now see that the example interpretation from page 174 is not a
model: For it to be a model, we would need to have (rudiStuderI , aifbI) ∈
hasAffiliationI , i.e. we would need to have

(Ian, b) ∈ {(a, b), (b, Ian)},

which is not the case.
The following determines an interpretation which is also a model of the

example knowledge base from page 174.

∆ = {a, r, s}
II(rudiStuder) = r

II(aifb) = a

IC(Professor) = {r}
IC(FacultyMember) = {r, s}

IR(hasAffiliation) = {(r, a)}

Let us remark on a difference to RDF(S): for the SROIQ (i.e. OWL)
semantics, we need to consider many different kinds of axioms. For RDF(S),
however, we had to consider only one kind of axiom, namely triples.

5.2.1.3 Logical Consequences

Models capture the structure of a knowledge base in set-theoretic terms.
However, a knowledge base can still have many models. Each of these models
describes a meaningful interpretation of the knowledge base. Figure 5.3 lists
several example models for the knowledge base from page 174.

So how do we make the step from models to a notion of logical consequence,
i.e. how do we define what implicit knowledge a knowledge base entails? Fig-
ure 5.3 shows that it does not suffice to consider one or a few models.

http://freepdf-books.com



OWL Formal Semantics 177

K |= C v D iff (C v D)I f.a. I |= K iff CI ⊆ DI f.a. I |= K
K |= C(a) iff (C(a))I f.a. I |= K iff aI ∈ CI f.a. I |= K
K |= R(a, b) iff (R(a, b))I f.a. I |= K iff (aI , bI) ∈ RI f.a. I |= K
K |= ¬R(a, b) iff (¬R(a, b))I f.a. I |= K iff (aI , bI) 6∈ RI f.a. I |= K

FIGURE 5.4: Logical consequences of a knowledge base. The first line
states that C v D is a logical consequence of K if and only if (C v D)I holds
for all models I of K, which is the case if and only if CI ⊆ DI holds for all
models I of K.

For example, we have aifbI ∈ FacultyMemberI in all three models in
Fig. 5.3, but we would not expect the conclusion from the knowledge base
that aifb is a faculty member.

The right perspective on different models is the following: Each model of a
knowledge base provides a possible view or realization of the knowledge base.
The model captures all necessary structural aspects of the knowledge base,
but it may add additional relationships which are not generally intended. In
order to get rid of these additional relationships, we consider all models of a
knowledge base when defining the notion of logical consequence. The rationale
behind this idea is the following: If the models capture all possible views, or
possible realizations, of a knowledge base, then those things common to all
models must be universally valid logical consequences from the knowledge
base. This leads us to the following formal definition.

Let K be a SROIQ knowledge base and α be a general inclusion axiom
or an individual assignment. Then α is a logical consequence of K, written
K |= α, if αI , as defined in Fig. 5.4, holds in every model I of K. Figure 5.5
contains an example related to logical consequence.

Let us introduce some further notions which are useful when dealing with
model-theoretic semantics. A knowledge base is called satisfiable or consistent
if it has at least one model. It is unsatisfiable, or contradictory, or inconsistent,
if it is not satisfiable. A class expression C is called satisfiable if there is a
model I of the knowledge base such that CI 6= ∅, and it is called unsatisfiable
otherwise. Examples of these notions are given in Fig. 5.6.

Unsatisfiability of a knowledge base or of a named class usually points
to modeling errors. But unsatisfiability also has other uses, which we will
encounter in Section 5.3.

http://freepdf-books.com



178 Foundations of Semantic Web Technologies

Returning to our running example knowledge base, let us show formally that
FacultyMember(aifb) is not a logical consequence. This can be done by
giving a model M of the knowledge base where aifbM 6∈ FacultyMemberM .
The following determines such a model.

∆ = {a, r}
II(rudiStuder) = r

II(aifb) = a

IC(Professor) = {r}
IC(FacultyMember) = {r}

IR(hasAffiliation) = {(r, a)}

FIGURE 5.5: Example of logical consequence

We give examples of these notions. The knowledge base consisting of the
axioms

Unicorn(beautyTheUnicorn)
Unicorn v Fictitious

Unicorn v Animal

Fictitious u Animal v ⊥

is inconsistent because beautyTheUnicorn would be a Fictitious Animal,
which is forbidden by the last axiom. If we leave out the first individual
assignment, then the resulting knowledge base is consistent, but Unicorn is
unsatisfiable (i.e. is necessarily empty), as the existence of a Unicorn would
lead to a contradiction.

FIGURE 5.6: Examples of notions of consistency and satisfiability

http://freepdf-books.com



OWL Formal Semantics 179

5.2.2 SROIQ Semantics via Predicate Logic

We now briefly present an alternative perspective on the semantics of OWL,
namely by translating SROIQ knowledge bases into first-order predicate
logic. This perspective serves two purposes:

• it shows that the formal semantics of OWL is based on the long-standing
tradition of mathematical logic, and

• it helps to convey the semantics of OWL to those readers who already
have some background in formal logic.

More precisely, the translation is into first-order predicate logic with equal-
ity, which is a mild generalization of first-order predicate logic with an equality
predicate = and with the unary > and ⊥ predicates, with the obvious mean-
ing and formal semantics. Every SROIQ knowledge base thus translates to
a theory in first-order predicate logic with equality.

We give the translation of a SROIQ knowledge base K by means of a
function π which is defined by π(K) =

⋃
α∈K π(α). How π(α) is defined

depends on the type of the axiom α, and is specified in the following.

5.2.2.1 Translating Class Inclusion Axioms

If α is a class inclusion axiom of the form C v D, then π(α) is defined
inductively as in Fig. 5.7, where A is a class name.

5.2.2.2 Translating Individual Assignments

If α is an individual assignment, then π(α) is defined as

π(C(a)) = C(a),
π(R(a, b)) = R(a, b),

π(¬R(a, b)) = ¬R(a, b),

i.e. the translation does nothing, due to the notational similarity of individual
assignments in SROIQ to standard predicate logic notation.

5.2.2.3 Translating RBoxes

If α is an RBox statement, then π(α) is defined inductively as stated in
Fig. 5.8, where S is a role name.

5.2.2.4 Properties of the Translation and an Example

The function π translates SROIQ knowledge bases to first-order predicate
logic theories in such a way that K and π(K) are very intimately related.
Indeed, K and π(K) have essentially identical models, where the models of
π(K) are defined as usual for first-order predicate logic. This means that we

http://freepdf-books.com



180 Foundations of Semantic Web Technologies

π(C v D) = (∀x)(πx(C)→ πx(D))
πx(A) = A(x)

πx(¬C) = ¬πx(C)
πx(C uD) = πx(C) ∧ πx(D)
πx(C tD) = πx(C) ∨ πx(D)
πx(∀R.C) = (∀x1)(R(x, x1)→ πx1(C))
πx(∃R.C) = (∃x1)(R(x, x1) ∧ πx1(C))

πx(≥nS.C) = (∃x1) . . . (∃xn)

∧
i6=j

(xi 6= xj) ∧
∧
i

(S(x, xi) ∧ πxi(C))


πx(≤nS.C) = ¬(∃x1) . . . (∃xn+1)

∧
i6=j

(xi 6= xj) ∧
∧
i

(S(x, xi) ∧ πxi(C))


πx({a}) = (x = a)

πx(∃S.Self) = S(x, x)

FIGURE 5.7: Translating SROIQ general inclusion axioms into first-
order predicate logic with equality. Note that πx(≥0S.C) = >(x). We use
auxiliary functions πx, πx1 , etc., where x, x1, etc. are variables. Also note
that variables x1 . . . , xn+1 introduced on the right-hand sides should always be
variables which are new, i.e. which have not yet been used in the knowledge
base. Obviously, renamings are possible – and indeed advisable for better
readability. The axiom D v ∃R.∃S.C, for example, could be translated to
(∀x)((D(x))→ (∃y)(R(x, y) ∧ (∃z)(S(y, z) ∧ C(z)))).

http://freepdf-books.com



OWL Formal Semantics 181

π(R1 v R2) = (∀x)(∀y)(πx,y(R1)→ πx,y(R2))
πx,y(S) = S(x, y)

πx,y(R−) = πy,x(R)
πx,y(R1 ◦ · · · ◦Rn) = (∃x1) . . . (∃xn−1)(

πx,x1(R1) ∧
n−2∧
i=1

πxi,xi+1(Ri+1) ∧ πxn−1,y(Rn)

)
π(Ref(R)) = (∀x)πx,x(R)
π(Asy(R)) = (∀x)(∀y)(πx,y(R)→ ¬πy,x(R)

π(Dis(R1, R2)) = ¬(∃x)(∃y)(πx,y(R1) ∧ πx,y(R2))

FIGURE 5.8: Translating SROIQ RBoxes into first-order predicate logic

can understand SROIQ essentially as a fragment of first-order predicate logic,
which means that it is in the tradition of mathematical logic, and results which
have been achieved in this mathematical field can be carried over directly.

We have left out the treatment of datatypes in the translation, since it is un-
usual to consider predicate logic with datatypes. However, adding datatypes
to predicate logic does not pose any particular problems unless complex op-
erators on the datatype are allowed – which is not the case for OWL.

We close our discussion of the translation to predicate logic with an example,
given in Fig. 5.9. It also shows that the established description logic notation
is much easier to read than the corresponding first-order logic formulae.

5.3 Automated Reasoning with OWL

The formal model-theoretic semantics which we presented in Section 5.2
provides us with the logical underpinnings of OWL. At the heart of the formal
semantics is that it provides means for accessing implicit knowledge, by the
notion of logical consequence.

The definition of logical consequence given on page 177, however, does not
lend itself easily to casting into an algorithm. Taken literally, it would ne-
cessitate examining every model of a knowledge base. Since there might be
many models, and in general even infinitely many, a naive algorithmization of
the definition of logical consequence is not feasible.

With OWL being a fragment of first-order predicate logic,it appears natural

http://freepdf-books.com



182 Foundations of Semantic Web Technologies

Let K be the knowledge base containing the following axioms.

Professor v FacultyMember

Professor v (Person u FacultyMember)
t (Person u ¬PhDStudent)

Exam v ∀hasExaminer.Professor
Exam v ≤2hasExaminer

hasParent ◦ hasBrother v hasUncle

Professor(rudiStuder)
hasAffiliation(rudiStuder, aifb)

Then π(K) contains the following logical formulae.

(∀x)(Professor(x)→ FacultyMember(x)),
(∀x)(Professor(x)→ ((Person(x) ∧ FacultyMember(x)) ∨ (Person(x)

∧ ¬PhDStudent)(x))),
(∀x)(Exam(x)→ (∀y)(hasExaminer(x, y)→ Professor(y))),

(∀x)(Exam(x)→ ¬(∃x1)(∃x2)(∃x3)((x1 6= x2) ∧ (x2 6= x3) ∧ (x1 6= x3)
∧ hasExaminer(x, x1) ∧ hasExaminer(x, x2) ∧ hasExaminer(x, x3))),

(∀x)(∀y)(((∃x1)(hasParent(x, x1) ∧ hasBrother(x1, y)))
→ hasUncle(x, y)),

Professor(rudiStuder),
hasAffiliation(rudiStuder, aifb)

FIGURE 5.9: Example of translation from description logic syntax to first-
order predicate logic syntax

http://freepdf-books.com



OWL Formal Semantics 183

to employ deduction algorithms from predicate logic and to simply adjust
them to the description logic setting. This has indeed been done for all the
major inference systems from predicate logic.

By far the most successful approach for description logics to date is based
on tableaux algorithms, suitably adjusted to OWL. We present this in the
following. Since these algorithms are somewhat sophisticated, we do this first
for ALC, and then extend the algorithm to SHIQ. We refrain from presenting
the even more involved algorithm for SROIQ, as SHIQ allows us to convey
the central ideas.

But before coming to the algorithms, we need some preparation.

5.3.1 Inference Problems

In Section 4.1.10 we introduced the typical types of inferences which are
of interest in the context of OWL. Let us recall them here from a logical
perspective.

• Subsumption. To find out whether a class C is a subclass of D (i.e.
whether C is subsumed by D), we have to find out whether C v D is a
logical consequence of the given knowledge base.

• Class equivalence. To find out whether a class C is equivalent to a class
D, we have to find out if C ≡ D is a logical consequence of the given
knowledge base.

• Class disjointness. To find out whether two classes C and D are disjoint,
we have to find out whether C uD v ⊥ is a logical consequence of the
given knowledge base.

• Global consistency. To find out whether the given knowledge base is
globally consistent, we have to show that it has a model.

• Class consistency. To find out whether a given class D is consistent,
we have to show that C v ⊥ is not a logical consequence of the given
knowledge base.

• Instance checking. To find out if an individual a belongs to a class C,
we have to check whether C(a) is a logical consequence of the knowledge
base.

• Instance retrieval. To find all individuals belonging to a class C, we
have to check for all individuals whether they belong to C.

It would be very inconvenient if we had to devise a separate algorithm
for each inference type. Fortunately, description logics allow us to reduce
these inference problems to each other. For the tableaux algorithms, we need
to reduce them to the checking of knowledge base satisfiability, i.e. to the
question whether a knowledge base has at least one model. This is done as
follows, where K denotes a knowledge base.

http://freepdf-books.com



184 Foundations of Semantic Web Technologies

• Subsumption. K |= C v D if and only if K ∪ {(C u ¬D)(a)} is unsatis-
fiable, where a is a new individual not occurring in K.

• Class equivalence. K |= C ≡ D if and only if we have K |= C v D and
K |= D v C.

• Class disjointness. K |= C uD v ⊥ if and only if K ∪ {(C uD)(a)} is
unsatisfiable, where a is a new individual not occurring in K.

• Global consistency. K is globally consistent if it has a model.

• Class consistency. K |= C v ⊥ if and only if K∪{C(a)} is unsatisfiable,
where a is a new individual not occurring in K.

• Instance checking. K |= C(a) if and only if K ∪{¬C(a)} is unsatisfiable

• Instance retrieval. To find all individuals belonging to a class C, we
have to check for all individuals a whether K |= C(a).

Note that, strictly speaking, statements such as ¬C(a) or (C u ¬D)(a) are
not allowed according to our definition of ABox in Section 5.1.1.3. However,
complex class expressions like C(a) in the ABox, where C is an arbitrary class
expression, can easily be transformed to comply with our formal definition,
namely, by introducing a new class name, say A, and rewriting C(a) to the
two statements A(a) and A ≡ C. This technique is known as ABox reduction,
and can also be applied to SROIQ. The knowledge bases before and after
the reduction are essentially equivalent. Without loss of generality, we will
therefore allow complex classes in the ABox in this chapter.

We have now reduced all inference types to satisfiability checking. In prin-
ciple, we could now use the transformation into predicate logic from Section
5.2.2 and do automated reasoning on OWL using predicate logic reasoning
systems. This approach, however, is not very efficient, so special-purpose al-
gorithms tailored to description logics are preferable. But there is also a more
fundamental problem with the translational approach: SROIQ, and also the
description logics it encompasses, are decidable, while first-order predicate
logic is not. This means that, in general, termination of description logic
reasoning cannot be guaranteed by using reasoning algorithms for first-order
predicate logic.

Nevertheless, the tableaux algorithms which we present in the following are
derived from the corresponding first-order predicate logic proof procedures.
And we will return to the termination issue later.

5.3.2 Negation Normal Form

Before presenting the actual algorithms, we do a preprocessing on the knowl-
edge base known as negation normal form transformation, i.e. we transform
the knowledge base into a specific syntactic form known as negation normal

http://freepdf-books.com



OWL Formal Semantics 185

NNF(K) = A ∪R ∪
⋃

CvD∈K

NNF(C v D) where A and R

are the ABox and the RBox of K

NNF(K)(C v D) = NNF(¬C tD)
NNF(C) = C if C is a class name

NNF(¬C) = ¬C if C is a class name
NNF(¬¬C) = NNF(C)

NNF(C tD) = NNF(C) tNNF(D)
NNF(C uD) = NNF(C) uNNF(D)

NNF(¬(C tD)) = NNF(¬C) uNNF(¬D)
NNF(¬(C uD)) = NNF(¬C) tNNF(¬D)

NNF(∀R.C) = ∀R.NNF(C)
NNF(∃R.C) = ∃R.NNF(C)

NNF(¬∀R.C) = ∃R.NNF(¬C)
NNF(¬∃R.C) = ∀R.NNF(¬C)
NNF(≤nR.C) = ≤nR.NNF(C)
NNF(≥nR.C) = ≥nR.NNF(C)

NNF(¬≤nR.C) = ≥(n + 1)R.NNF(C)
NNF(¬≥(n + 1)R.C) = ≤nR.NNF(C)

NNF(¬≥0R.C) = ⊥

FIGURE 5.10: Transformation of a SHIQ knowledge base K into nega-
tion normal form

form. It is not absolutely necessary to do this, and the algorithms could also
be presented without this preprocessing step, but they are already compli-
cated enough as they are, and restricting our attention to knowledge bases in
negation normal form eases the presentation considerably.

In a nutshell, the negation normal form NNF(K) of a knowledge base K
is obtained by first rewriting all v symbols in an equivalent way, and then
moving all negation symbols down into subformulae until they only occur
directly in front of class names. How this is done formally is presented in
Fig. 5.10 for SHIQ. Note that only the TBox is transformed.

In the negation normal form transformation, subclass relationships like
C v D become class expressions ¬C tD which, intuitively, may look strange
at first sight. Cast into first-order predicate logic, however, they become

http://freepdf-books.com



186 Foundations of Semantic Web Technologies

(∀x)(C(x) → D(x)) and (∀x)(¬C(x) ∨ D(x)) – and these two formulae are
logically equivalent.

By slight abuse of terminology, we will henceforth refer to NNF(C v D) as
a TBox statement whenever C v D is contained in the TBox of the knowledge
base currently under investigation.

The knowledge bases K and NNF(K) are logically equivalent, i.e. they have
identical models. We assume for the rest of this chapter that all knowledge
bases are given in negation normal form.

5.3.3 Tableaux Algorithm for ALC

The tableaux algorithm determines if a knowledge base is satisfiable. It
does this by attempting to construct a generic representation of a model. If
this construction fails, the knowledge base is unsatisfiable.

Obviously, it requires formal proofs to verify that such an algorithm in-
deed does what it claims. In this book, however, we do not have the space
or the means to present this verification, which is based on comprehensive
mathematical proofs. We refer the interested reader to the literature listed
in Section 5.6. Nevertheless, by keeping in mind that tableaux algorithms es-
sentially attempt to construct models, it should become intuitively clear why
they indeed implement automated reasoning.

We now start with the description logic ALC. The presentation of the corre-
sponding tableaux algorithm is done in three stages to make this introduction
easier to follow. We first informally discuss some examples. Then we formally
define the naive tableaux algorithm for ALC. It only is a small step then to
provide the full tableaux algorithm.

5.3.3.1 Initial Examples

Consider a very simple case, where we have only class names, conjunction,
disjunction, negation, and only one individual. We are given such a knowledge
base and we are to determine whether it is satisfiable. Let us have a look at
an example.

Assume the knowledge base K consists of the following two statements.

C(a) (¬C uD)(a)

Then obviously C(a) is a logical consequence of K. From the statement
(¬C uD)(a) we also obtain ¬C(a) as logical consequence – this is due to the
semantics of conjunction. But this means that we have been able to derive
C(a) and ¬C(a), which is a contradiction. So K cannot have a model and is
therefore unsatisfiable.

What we have just constructed is essentially a part of a tableau. Informally
speaking, a tableau is a structured way of deriving and representing logical
consequences of a knowledge base. If in this process a contradiction is found,
then the initial knowledge base is unsatisfiable.

http://freepdf-books.com



OWL Formal Semantics 187

Let us consider a slightly more difficult case. Assume the negation normal
form of a knowledge base K consists of the following three statements.

C(a) ¬C tD ¬D(a)

We are now going to derive knowledge about class membership for a, as done
in the previous example. The set of all classes for which we have derived
class membership of a will be called L(a). We use the notation L(a)← C to
indicate that L(a) is updated by adding C. For example, if L(a) = {D} and we
update via L(a) ← C, then L(a) becomes {C,D}. Similarly, L(a) ← {C,D}
denotes the subsequent application of L(a) ← C and L(a) ← D, i.e. both C
and D get added to L(a).

From the example knowledge base just given, we immediately obtain L(a) =
{C,¬D}. The TBox statement ¬C tD corresponds to C v D and must hold
for all individuals, i.e. in particular for a, so we obtain L(a)← ¬C tD. Now
consider the expression (¬C tD) ∈ L(a), which states that we have ¬C(a) or
D(a). So we distinguish two cases. (1) In the first case we assume ¬C(a) and
obtain L(a) ← ¬C = {C,¬D,¬C tD,¬C}, which is a contradiction. (2) In
the second case we assume D(a) and obtain L(a)← D = {C,¬D,¬CtD,D},
which is also a contradiction. In either case, we arrive at a contradiction which
indicates that K is unsatisfiable.

Note the branching we had to do in the example in order to deal with dis-
junction. This and similar situations lead to nondeterminism of the tableaux
algorithm, and we will return to this observation later.

In the previous section we have provided examples of how to deal with
class membership information for individuals in a tableau, i.e. how to derive
contradictions from this information. Our examples were restricted to single
individuals, and we did not use any roles.

So how do we represent role information? We represent it graphically as
arrows between individuals. Consider an ABox consisting of the assignments
R(a, b), S(a, a), R(a, c), S(b, c). This would be represented as the following
figure.

a
S
MM

R //

R ��>
>>

>>
>>

> b

S

��
c

Likewise, we use arrows to represent roles between unknown individuals,
the existence of which is ascertained by the knowledge base: Consider the
single statement ∃R.∃S.C(a). Then there is an arrow labeled with R leading
from a to an unknown individual x, from which in turn there is an arrow
labeled with S to a second unknown individual y. The corresponding picture
would be the following.

a
R // x S // y

Let us give an example tableau involving roles. Consider the knowledge base
K = {C(a), C v ∃R.D, D v E}, so that NNF(K) = {C(a),¬C t∃R.D,¬Dt

http://freepdf-books.com



188 Foundations of Semantic Web Technologies

E}. We would like to know if (∃R.E)(a) is a logical consequence of K.
We first reduce the instance checking problem to a satisfiability problem as

described in Section 5.3.1: ¬∃R.E in negation normal form becomes ∀R.¬E,
and we obtain the knowledge base {C(a),¬C t∃R.D,¬DtE,∀R.¬E(a)}, of
which we have to show that it is unsatisfiable. We start with the node a with
label L(a) = {C,∀R.¬E}, which is information we take from the ABox. The
first TBox statement results in L(a)← ¬C t ∃R.D. We can now resolve the
disjunction as we have done above, i.e. we have to consider two cases. Adding
¬C to L(a), however, results in a contradiction since C ∈ L(a), so we do
not have to consider this case, i.e. we end up with L(a) ← ∃R.D. So, since
∃R.D ∈ L(a), we create a new individual x and a connection labeled R from
a to x, and we set L(x) = {D}. The situation is as follows.

a

R

��

L(a) = {C,∀R.¬E,¬C t ∃R.D, ∃R.D}

x L(x) = {D}
The TBox information ¬D t E can now be added to L(x), i.e. L(x) ←

¬D t E, and expanded using the already known case distinction because of
the disjunction. As before, however, selecting the left hand side ¬D results
in a contradiction because D ∈ L(x), so we have to put L(x) ← E. The
situation is now as follows.

a

R

��

L(a) = {C,∀R.¬E,¬C t ∃R.D, ∃R.D}

x L(x) = {D,¬D t E,E}
Now note that ∀R.¬E ∈ L(a), which means that everything to which a

connects using the R role must be contained in ¬E. Since a connects to x
via an arrow labeled R, we set L(x) ← ¬E, which results in a contradiction
because we already have E ∈ L(x). Thus, the knowledge base is unsatisfiable,
and the instance checking problem is solved, i.e. (∃R.E)(a) is indeed a logical
consequence of K. The final tableau is depicted below.

a

R

��

L(a) = {C,∀R.¬E,¬C t ∃R.D, ∃R.D}

x L(x) = {D,¬D t E,E,¬E}
It is now time to leave the intuitive introduction and to formalize the tableau

procedure.

5.3.3.2 The Naive Tableaux Algorithm for ALC

A tableau for an ALC knowledge base consists of

• a set of nodes, labeled with individual names or variable names,

http://freepdf-books.com



OWL Formal Semantics 189

b
S��

L(b) = ∅

a

R

OO

R

��

L(a) = {A,∃R.B}

c L(c) = {A tB}

FIGURE 5.11: Example of an initial tableau given the knowledge base
K = {A(a), (∃R.B)(a), R(a, b), R(a, c), S(b, b), (A tB)(c),¬A t (∀S.B)}

• directed edges between some pairs of nodes,

• for each node labeled x, a set L(x) of class expressions, and

• for each pair of nodes x and y, a set L(x, y) of role names.

When we depict a tableau, we omit edges which are labeled with the empty
set. Also, we make the agreement that > is contained in L(x), for any x, but
we often do not write it down, and in fact the algorithm does not explicitly
derive this.

Given an ALC knowledge base K in negation normal form, the initial
tableau for K is defined by the following procedure.

1. For each individual a occurring in K, create a node labeled a and set
L(a) = ∅.

2. For all pairs a, b of individuals, set L(a, b) = ∅.

3. For each ABox statement C(a) in K, set L(a)← C.

4. For each ABox statement R(a, b) in K, set L(a, b)← R.

An example of an initial tableau can be found in Fig. 5.11.
After initialization, the tableaux algorithm proceeds by nondeterministi-

cally applying the rules from Fig. 5.12. This means that at each step one of
the rules is selected and executed. The algorithm terminates if

• either there is a node x such that L(x) contains a contradiction, i.e. if
there is C ∈ L(x) and at the same time ¬C ∈ L(x),9

9This includes the case when both ⊥ and > are contained in L(x), which is also a contra-
diction as > ≡ ¬⊥.

http://freepdf-books.com



190 Foundations of Semantic Web Technologies

u-rule: If C uD ∈ L(x) and {C,D} 6⊆ L(x), then set L(x)← {C,D}.

t-rule: If C t D ∈ L(x) and {C,D} ∩ L(x) = ∅, then set L(x) ← C or
L(x)← D.

∃-rule: If ∃R.C ∈ L(x) and there is no y with R ∈ L(x, y) and C ∈ L(y),
then

1. add a new node with label y (where y is a new node label),

2. set L(x, y) = {R}, and

3. set L(y) = {C}.

∀-rule: If ∀R.C ∈ L(x) and there is a node y with R ∈ L(x, y) and C 6∈ L(y),
then set L(y)← C.

TBox-rule: If C is a TBox statement and C 6∈ L(x), then set L(x)← C.

FIGURE 5.12: Expansion rules for the naive ALC tableaux algorithm

• or none of the rules from Fig. 5.12 is applicable.

The knowledge base K is satisfiable if the algorithm terminates without
producing a contradiction, i.e. if there is a selection of subsequent rule appli-
cations such that no contradiction is produced and the algorithm terminates.
Otherwise, K is unsatisfiable. Note that due to the nondeterminism of the
algorithm we do not know which choice of subsequent rule applications leads
to termination without producing a contradiction. Implementations of this
algorithm thus have to guess the choices, and possibly have to backtrack to
choice points if a choice already made has led to a contradiction.

Let us explain this point in more detail since it is critical to understanding
the algorithm. There are two sources of nondeterminism, namely (1) which
expansion rule to apply next and (2) the choice which has to be made when
applying the t-rule, namely whether to set L(x) ← C or L(x) ← D (using
the notation from Fig. 5.12). There is a fundamental difference between these
two: The choice made in (1) is essentially a choice about the sequence in which
the rules are applied, i.e. whatever results from such a choice could also be
obtained by doing the same expansion later. Intuitively speaking, we cannot
get “on the wrong track” by a bad choice, although some choices will cause
the algorithm to take more steps before termination. Hence, if such a choice
causes a contradiction, then this contradiction cannot be avoided by making
a different choice, simply because the original choice can still be made later –
and entries are never removed from node labels during execution. This kind
of nondeterminism is usually called don’t care nondeterminism. In contrast
to this, (2) is a don’t know nondeterminism, since a bad choice can indeed

http://freepdf-books.com



OWL Formal Semantics 191

get us “on the wrong track.” This is because, if we choose to set L(x) ← C,
then it is no longer possible to also add L(x)← D by applying the same rule
– the condition {C,D} ∩ L(x) = ∅ prevents this. So if we have chosen to add
L(x) ← C and this leads to a contradiction, then we have to go back to this
choice and try the other alternative as well, because this other alternative
may not lead to a contradiction.

To sum this up, note the following. If the sequence of choices (of both
types) leads to termination without producing a contradiction, then the orig-
inal knowledge base is satisfiable. However, if the algorithm produces a con-
tradiction, then we do not yet know if there is a sequence of choices which
avoids the contradiction. Hence, we have to check on all choices made due to
(2) and see if we also get contradictions if we alter these choices – in other
words, we have to backtrack to these choice points. But it is not necessary
to reconsider the choices made due to (1). We recommend the reader to go
back to the initial examples in Section 5.3.3.1 and observe how we have done
this: It occurs in all the cases where we have dismissed one of the choices from
applying the t-rule because it would lead to a contradiction.

We will see in the next section that the naive tableaux algorithm does
not necessarily terminate. This will be fixed then. But we first present, in
Fig. 5.13, another worked example.

5.3.3.3 The Tableaux Algorithm with Blocking for ALC

We have already remarked that the naive tableaux algorithm for ALC
does not always terminate. To see this, consider K = {∃R.>,>(a1)}. First
note that K is satisfiable: consider the interpretation I with infinite domain
{a1, a2, . . . } such that aI1 = a1 and (ai, ai+1) ∈ RI for all i = 1, 2, . . . . Then
I is obviously a model.

Now we construct a tableau for K, as depicted below. Initialization leaves
us with one node a1 and L(a1) = {>}. Applying the TBox-rule yields L(a1)←
∃R.>. Then we apply the ∃-rule and create a node x with L(a1, x) = {R} and
L(x) = {>}. Again we apply the TBox-rule which yields L(x)← ∃R.>, and
then the ∃-rule allows us to create yet another new node y with L(x, y) = {R}
and L(y) = {>}. Obviously, this process repeats and does not terminate.

a1
R // x R // y R // . . .

L(a1) = {>,∃R.>} L(x) = {>,∃R.>} L(y) = {>,∃R.>}
But we remarked earlier that ALC (and actually also SROIQ) is decidable,

i.e. algorithms exist which allow reasoning with ALC and which are always
guaranteed to terminate! To ensure termination in all cases, we have to modify
the naive tableaux algorithm. The technique used for this purpose is called
blocking, and rests on the observation that in the above example, the process is
essentially repeating itself: The newly created node x has the same properties
as the node a1, so instead of expanding x to a new node y it should be possible
to “reuse” a1 in some sense.

http://freepdf-books.com



192 Foundations of Semantic Web Technologies

Consider the following knowledge base K.

Human v ∃hasParent.Human
Orphan v Human u ∀hasParent.¬Alive
Orphan(harrypotter)

hasParent(harrypotter, jamespotter)

We want to know if α = ¬Alive(jamespotter) is a logical consequence of
K.
We first add ¬¬Alive(jamespotter) to K and call the result K ′. In order
to show that α is a logical consequence of K, we have to show that K ′ is
unsatisfiable. We now transform K ′ into negation normal form. We also
use some straightforward shortcuts to ease the notation. So NNF(K ′) is the
following.

¬H t ∃P.H

¬O t (H u ∀P.¬A)
O(h)
P (h, j)
A(j)

The initial tableau for NNF(K ′) is depicted below.
h

P

��

L(h) = {O}

j L(j) = {A}
We now apply the TBox-rule and set L(h)← ¬O t (H u ∀P.¬A). Applying
the t-rule to the same TBox axiom leaves us with a choice how to resolve the
disjunction. However, choosing the left hand side ¬O immediately results in
a contradiction since O ∈ L(h), so, backtracking, we choose to set L(h) ←
H u ∀P.¬A. Applying the u-rule results in L(h) ← {H,∀P.¬A}. Finally,
we apply the ∀-rule to ∀P.¬A ∈ L(h), which results in L(j) ← ¬A. Since
A ∈ L(j), we have thus arrived at an unavoidable contradiction, i.e. K ′ is
unsatisfiable, and therefore ¬A(j) is a logical consequence of K. The final
tableau is depicted below.

h

P

��

L(h) = {O,¬O t (H u ∀P.¬A),H u ∀P.¬A,H,∀P.¬A}

j L(j) = {A,¬A}

FIGURE 5.13: Worked example of ALC tableau

http://freepdf-books.com



OWL Formal Semantics 193

The formal definition is as follows: A node with label x is directly blocked
by a node with label y if

• x is a variable (i.e. not an individual),

• y is an ancestor of x, and

• L(x) ⊆ L(y).

The notion of ancestor is defined inductively as follows: Every z with L(z, x) 6=
∅ is called a predecessor of x. Every predecessor of x, which is not an indi-
vidual, is an ancestor of x, and every predecessor of an ancestor of x, which
is not an individual, is also an ancestor of x.

A node with label x is blocked if it is directly blocked or one of its ancestors
is blocked.

The naive tableaux algorithm for ALC is now modified as follows, resulting
in the (full) tableaux algorithm for ALC: The rules in Fig. 5.12 may only
be applied if x is not blocked. Otherwise, the algorithm is exactly the naive
algorithm.

Returning to the example above, we note that L(x) ⊆ L(a1), so x is blocked
by a1. This means that the algorithm terminates with the following tableau,
and therefore shows that the knowledge base is satisfiable.

a1
R // x

L(a1) = {>,∃R.>} L(x) = {>}
Recall the model for this knowledge base which we gave on page 191. Intu-

itively, the blocked node x is a representative for the infinite set {a2, a3, . . . }.
Alternatively, we could view the tableau as standing for the model J with
domain {a1, a} such that aJ1 = a1, xJ = a and RJ = {(a1, a), (a, a)}, i.e. the
model would be cyclic.

5.3.3.4 Worked Examples

We give a number of worked examples which show some aspects of the
algorithm in more detail.

5.3.3.4.1 Blocking Consider K = {H v ∃P.H, B(t)} as knowledge base,
which stands for

Human v ∃hasParent.Human
Bird(tweety)

We try to show that tweety is not in the class ¬Human, i.e. that ¬H(t) is
not a logical consequence of K. To do this, we add ¬¬H(t) to K, resulting
in K ′, and attempt to show that K ′ is unsatisfiable. Obviously, this attempt

http://freepdf-books.com



194 Foundations of Semantic Web Technologies

will not be successful, which shows that tweety could be in the class Human
according to the knowledge base.

We obtain NNF(K ′) = {¬H t ∃P.H, B(t),H(t)}. The tableau is initial-
ized with one node t and L(t) = {B,H}. Applying the TBox rule yields
L(t) ← ¬H t ∃P.H. Expanding this TBox axiom using the t-rule results
in L(t) ← ∃P.H since the addition of ¬H to L(t) would immediately yield
a contradiction. We now apply the ∃-rule and create a node with label x,
L(t, x) = {P}, and L(x) = {H}. At this stage, the node x is blocked by t,
and no further expansion of the tableau is possible.

t

P

��

L(t) = {H,B,¬H t ∃P.H, ∃P.H}

x L(x) = {H}

5.3.3.4.2 Open World Consider the knowledge base

K = {h(j, p), h(j, a),m(p),m(a)},

which consists only of an ABox. The knowledge base stands for the following.

hasChild(john, peter)
hasChild(john, alex)

Male(peter)
Male(alex)

We want to show that ∀hasChild.male(john) is not a logical consequence
of the knowledge base. We do this by adding the negation of the statement,
¬∀h.m(j), resulting in the knowledge base K ′. We then need to show that
K ′ is satisfiable.

Let us first try to understand why K ′ is satisfiable. Due to the Open
World Assumption as discussed on page 131, the knowledge base contains no
information whether or not john has only peter and alex as children. It
is entirely possible that john has additional children who are not listed in
the knowledge base. Therefore, it is not possible to infer that all of john’s
children are Male. We will see how the tableaux algorithm mimics this.

Transformation into negation normal form yields

NNF(K ′) = {h(j, p), h(j, a),m(p),m(a),∃h.¬m(j)}.

The initial tableau for NNF(K ′) can be depicted as follows.
p L(p) = {m}

L(j) = {∃h.¬m} j

h

AA�������� h // a L(a) = {m}

http://freepdf-books.com



OWL Formal Semantics 195

Now, application of the ∃-rule yields a new node x with L(j, x) = {h} and
L(x) = {¬m}, as depicted below.

p L(p) = {m}

L(j) = {∃h.¬m} j

h

AA�������� h //

h

��;
;;

;;
;;

; a L(a) = {m}

x L(x) = {¬m}
At this stage, the algorithm terminates since none of the rules is applicable.

This means that K ′ is satisfiable.
The new node x represents a potential child of john who is not male. Note

how the constructed tableau indeed corresponds to a model of the knowledge
base K ′.

5.3.3.4.3 A Sophisticated Example We close our discussion of the
ALC tableaux algorithm with a more sophisticated example. We start with
the knowledge base K containing the statements

C(a), C(c), R(a, b), R(a, c), S(a, a), S(c, b),
C v ∀S.A, A v ∃R.∃S.A, A v ∃R.C,

and want to show that ∃R.∃R.∃S.A(a) is a logical consequence of K.
We first add ¬∃R.∃R.∃S.A(a), which results in K ′. The knowledge base

NNF(K ′) then consists of

C(a), C(c), R(a, b), R(a, c), S(a, a), S(c, b),
¬C t ∀S.A, ¬A t ∃R.∃S.A, ¬A t ∃R.C, ∀R.∀R.∀S.¬A(a),

and the initial tableau for NNF(K ′) is the following.

a

R

��

R

��;
;;

;;
;;

;

S

��
L(a) = {C,∀R.∀R.∀S.¬A}

c

S
����

��
��

��
L(c) = {C}

b L(b) = ∅
At this stage, there are many choices of which rules to apply and at which

node. We urge the reader to attempt solving the tableau by herself before
reading on. Indeed, the tableau can grow considerably larger if the expansion
rules are chosen more or less randomly.

http://freepdf-books.com



196 Foundations of Semantic Web Technologies

We choose to first use the TBox-rule and set L(c)← ¬Ct∀S.A. Expanding
this TBox axiom using the t-rule gives us a choice, but we refrain from adding
¬C to L(c) as this would contradict C ∈ L(c). So we set L(c)← ∀S.A.

As the next step, we choose ∀S.A ∈ L(c) and apply the ∀-rule, resulting
in L(b) ← A. Then we choose ∀R.∀R.∀S.¬A ∈ L(a) and again apply the
∀-rule, resulting in L(b) ← ∀R.∀R.∀S.¬A. Applying the TBox-rule we set
L(b)← ¬A t ∃R.∃S.A. The following picture shows the current situation.

a

R

��

R

��;
;;

;;
;;

;

S

��
L(a) = {C,∀R.∀R.∀S.¬A}

c

S
����

��
��

��
L(c) = {C,¬C t ∀S.A,∀S.A}

b L(b) = {A,∀R.∀S.¬A,¬A t ∃R.∃S.A}
The node b is now going to be the key to finding a contradiction. Using the

t-rule on ¬A t ∃R.∃S.A ∈ L(b) yields L(b)← ∃R.∃S.A since the addition of
¬A would already result in a contradiction. We apply the ∃-rule to ∃R.∃S.A ∈
L(b), creating a new node x with L(b, x) = {R} and L(x) = {∃S.A}. The
∀-rule for ∀R.∀S.¬A yields L(x)← ∀S.¬A.

Finally, we use the ∃-rule on ∃S.A ∈ L(x), resulting in a new node y with
L(x, y) = {S} and L(y) = {A}. Application of the ∀-rule to ∀S.¬A ∈ L(x)
yields L(y)← ¬A. We end up with L(y) = {A,¬A}, i.e. with a contradiction.

The final tableau is depicted in Fig. 5.14.

5.3.4 Tableaux Algorithm for SHIQ

The algorithm which we have presented in Section 5.3.3 displays the central
concepts of tableaux algorithms for description logics. In order to convey an
idea about the modifications to the ALC algorithm which need to be made
to generalize it to more expressive description logics, we now provide the
tableaux algorithm for SHIQ.

We give a self-contained presentation of the SHIQ tableaux algorithm, and
at the same time discuss the differences to the ALC algorithm.

A tableau for a SHIQ knowledge base consists of

• a set of nodes, labeled with individual names or variable names,

• directed edges between some pairs of nodes,

• for each node labeled x, a set L(x) of class expressions,

• for each pair of nodes x and y, a set L(x, y) containing role names or
inverses of role names, and

http://freepdf-books.com



OWL Formal Semantics 197

a

R

��

R

��;
;;

;;
;;

;

S

��
L(a) = {C,∀R.∀R.∀S.¬A}

c

S
����

��
��

��
L(c) = {C,¬C t ∀S.A,∀S.A}

b

R

��

L(b) = {A,∀R.∀S.¬A,¬A t ∃R.∃S.A,∃R.∃S.A}

x

S

��

L(x) = {∃S.A,∀S.¬A}

y L(y) = {A,¬A}

FIGURE 5.14: Final tableau for the example from Section 5.3.3.4.3

• two relations between nodes, denoted by ≈ and 6≈.

The relations≈ and 6≈ are implicitly assumed to be symmetrical, i.e. whenever
x ≈ y, then y ≈ x also holds, and likewise for 6≈. When we depict a tableau,
we omit edges which are labeled with the empty set. We indicate the relations
≈ and 6≈ by drawing undirected edges, labeled with ≈ or 6≈.

There are only two differences to ALC tableaux. The first is that edges may
be labeled with inverse role names, which accommodates the use of inverse
roles in SHIQ. The second is the presence of the relations ≈ and 6≈, which
are used to keep track of equality or inequality of nodes.10 This accommo-
dates the fact that SHIQ, when translated to predicate logic as in Section
5.2.2, actually translates to predicate logic with equality. From the discussion
in Section 5.2.2 it can easily be seen that ALC translates into equality-free
predicate logic, so ≈ and 6≈ are not needed for the ALC algorithm.

Given a SHIQ knowledge base K in negation normal form, the initial
tableau for K is defined by the following procedure, which differs from the
ALC procedure only in the final two steps.

1. For each individual a occurring in K, create a node labeled a and set
L(a) = ∅. These nodes are called root nodes.

10In fact, the relation ≈ used for equality is not really needed. It can easily be removed
from the algorithm description, where it occurs only once. We keep it, though, because it
makes understanding the algorithm a bit easier.

http://freepdf-books.com



198 Foundations of Semantic Web Technologies

2. For all pairs a, b of individuals, set L(a, b) = ∅.

3. For each ABox statement C(a) in K, set L(a)← C.

4. For each ABox statement R(a, b) in K, set L(a, b)← R.

5. For each ABox statement a 6= b in K, set a 6≈ b.

6. Set ≈ to be the empty relation, i.e. initially, no two nodes are considered
to be equal.

Again, we make the agreement that > is contained in L(x), for any x, but
we will often not write it down, and in fact the algorithm will not explicitly
derive this.

We exemplify the visualization of initial tableaux by considering the knowl-
edge base

K = {R−(a, b), S(a, b), S(a, c), c 6= b, C(a), C(b), D(b), D(c)}.

a

S

��

R−,S

��;
;;

;;
;;

; L(a) = {C}

bC

6≈
C��

��
��

��
L(b) = {C,D}

c L(c) = {D}

For convenience, we use the following notation: If R ∈ R (i.e. if R is a
role name), then set Inv(R) = R− and Inv(R−) = Inv(R). Furthermore, call
R ∈ R transitive if R◦R v R or Inv(R)◦ Inv(R) v R. This, and the following
somewhat involved definitions, are needed to accommodate inverse roles.

Consider a tableau for a knowledge base K. Let HK be the set of all
statements of the form R v S and Inv(R) v Inv(S), where R,S ∈ R and
R v S ∈ K. We now call R a subrole of S if R = S, if R v S ∈ HK , or if there
are S1, . . . , Sn ∈ R with {R v S1, S1 v S2, . . . , Sn−1 v Sn, Sn v S} ⊆ HK .
In other words, R is a subrole of S if and only if R and S are related via the
reflexive-transitive closure of v in HK .

If R ∈ L(x, y) for two nodes x and y, and if R is a subrole of S, then y is
called an S-successor of x, and x is called an S-predecessor of y. If y is an
S-successor or an Inv(S)-predecessor of x, then y is called an S-neighbor of x.
Furthermore, inductively, every predecessor of x, which is not an individual,
is called an ancestor of x, and every predecessor of an ancestor of x, which is
not an individual, is also called an ancestor of x. Examples of these notions
are given in Fig. 5.15.

http://freepdf-books.com



OWL Formal Semantics 199

Consider a knowledge base H = {R v S−, S v S−1 , S1 v S2} which consists
only of a role hierarchy. Then HK = H ∪ {R− v S, S− v S1, S

−
1 v S−2 }.

Furthermore, R is a subrole of S−, S1, and S2. S is a subrole of S−1 and S−2 ;
S1 is a subrole of S2; R− is a subrole of S, S−1 and S−2 , etc.
Now consider the knowledge base

K = {R−(a, b), R(b, c), S(c, d), S−(d, e), S1(e, f), R v S},

which, apart from R v S, can be depicted by the following diagram.

a
R−
// b

R // c S // d
S− // e

S1 // f

Then a is an R−-predecessor of b, and hence also an S−-predecessor of b.
At the same time, c is an R-successor of b, and hence also an S-successor
of b. We thus have that the S-neighbors of b are a and c. Also, we have
that c is an S-predecessor of d and e is an S−-successor of d. Hence d has
S−-neighbors c and e. Note that f has no ancestors because ancestors must
not be individuals.

FIGURE 5.15: Example of notions of successor, predecessor, neighbor and
ancestor

5.3.4.1 Blocking for SHIQ

The blocking mechanism we used for ALC in Section 5.3.3.3 is not sufficient
for SHIQ, and we will give an example of this in Section 5.3.4.3.5 below. For
SHIQ, we need to employ pairwise blocking : While in ALC, a node x is
blocked by a node y if y essentially repeats x, in SHIQ a node x is blocked
if it has a predecessor x′ and there exists a node y with predecessor y′, such
that the pair (y′, y) essentially repeats the pair (x′, x). We formalize this as
follows.

A node x is blocked if it is not a root node and any one of the following
hold.

• There exist ancestors x′, y, and y′ of x such that

– y is not a root node,

– x is a successor of x′ and y is a successor of y′,

– L(x) = L(y) and L(x′) = L(y′), and

– L(x′, x) = L(y′, y).

• An ancestor of x is blocked.

• There is no node y with L(y, x) 6= ∅.

http://freepdf-books.com



200 Foundations of Semantic Web Technologies

If only the first case applies, then x is called directly blocked by y. In all other
cases, x is called indirectly blocked. Note that we require L(x) = L(y) if x is
(directly) blocked by y, which is stronger than the required L(x) ⊆ L(y) in
the case of ALC.

As an example of blocking, consider the following part of a tableau.

a
R // x R // y R // z R // w

L(a) = {D} L(x) = {C} L(y) = {C} L(z) = {C} L(w) = {D}
Then z is directly blocked by y, since the pair (y, z) essentially repeats the
pair (x, y). The node w is indirectly blocked because its ancestor z is blocked.

5.3.4.2 The Algorithm

The SHIQ tableaux algorithm is a nondeterministic algorithm which es-
sentially extends the ALC algorithm. It decides whether a given knowledge
base K is satisfiable.

Given a SHIQ knowledge base K, the tableaux algorithm first constructs
the initial tableau as given above. Then the initial tableau is expanded by
nondeterministically applying the rules from Figs. 5.16 and 5.17. The algo-
rithm terminates if

• there is a node x such that L(x) contains a contradiction, i.e. if there is
C ∈ L(x) and at the same time ¬C ∈ L(x),

• or there is a node x with ≤nS.C ∈ L(x), and x has n + 1 S-neighbors
y1, . . . , yn+1 with C ∈ L(yi) and yi 6≈ yj for all i, j ∈ {1, . . . , n+1} with
i 6= j,

• or none of the rules from Figs. 5.16 and 5.17 is applicable.

In the first two cases, we say that the tableau contains a contradiction. In
the third case, we say that the tableau is complete. The knowledge base
K is satisfiable if and only if there is a selection of subsequent expansion
rule applications which leads to a complete and contradiction-free tableau.
Otherwise, K is unsatisfiable.

5.3.4.3 Worked Examples

We continue with some worked examples which help to explain the different
expansion rules.

5.3.4.3.1 Cardinalities We first give an example of the application of
the ≤-rule. Consider the knowledge base

K = {h(j, p), h(j, a),m(p),m(a),≤2h.>(j)},

http://freepdf-books.com



OWL Formal Semantics 201

u-rule: If x is not indirectly blocked, C u D ∈ L(x), and {C,D} 6⊆ L(x),
then set L(x)← {C,D}.

t-rule: If x is not indirectly blocked, C tD ∈ L(x) and {C,D} u L(x) = ∅,
then set L(x)← C or L(x)← D.

∃-rule: If x is not blocked, ∃R.C ∈ L(x), and there is no y with R ∈ L(x, y)
and C ∈ L(y), then

1. add a new node with label y (where y is a new node label),

2. set L(x, y) = {R} and L(y) = {C}.

∀-rule: If x is not indirectly blocked, ∀R.C ∈ L(x), and there is a node y
with R ∈ L(x, y) and C 6∈ L(y), then set L(y)← C.

TBox-rule: If x is not indirectly blocked, C is a TBox statement, and C 6∈
L(x), then set L(x)← C.

FIGURE 5.16: Expansion rules (part 1) for the SHIQ tableaux algorithm

which extends the example from Section 5.3.3.4.2 by adding the statement
≤2hasChild.>(john). We will show that ∀h.m(j) is still not a logical conse-
quence of K.

As before, we add ∃h.¬m(j) to the knowledge base, resulting in K ′. The
initial tableau now looks as follows.

p L(p) = {m}

L(j) = {∃h.¬m,≤2h.>} j

h

AA�������� h // a L(a) = {m}

Now, application of the ∃-rule yields
p L(p) = {m}

L(j) = {∃h.¬m,≤2h.>} j

h

AA�������� h //

h

��;
;;

;;
;;

; a L(a) = {m}

x L(x) = {¬m}

and subsequent application of the ≤-root-rule allows us to identify p and a,
resulting in the following.

http://freepdf-books.com



202 Foundations of Semantic Web Technologies

trans-rule: If x is not indirectly blocked, ∀S.C ∈ L(x), S has a transitive
subrole R, and x has an R-neighbor y with ∀R.C 6∈ L(y), then set
L(y)← ∀R.C.

choose-rule: If x is not indirectly blocked, ≤nS.C ∈ L(x) or ≥nS.C ∈ L(x),
and there is an S-neighbor y of x with {C,NNF(¬C)}∩L(y) = ∅, then
set L(y)← C or L(y)← NNF(¬C).

≥-rule: If x is not blocked, ≥nS.C ∈ L(x), and there are no n S-neighbors
y1, . . . , yn of x with C ∈ L(yi) and yi 6≈ yj for i, j ∈ {1, . . . , n} and
i 6= j, then

1. create n new nodes with labels y1, . . . , yn (where the labels are
new),

2. set L(x, yi) = {S}, L(yi) = {C}, and yi 6≈ yj for all i, j ∈
{1, . . . , n} with i 6= j.

≤-rule: If x is not indirectly blocked, ≤nS.C ∈ L(x), there are more than
n S-neighbors yi of x with C ∈ L(yi), and x has two S-neighbors y, z
such that y is neither a root node nor an ancestor of z, y 6≈ z does not
hold, and C ∈ L(y) ∩ L(z), then

1. set L(z)← L(y),

2. if z is an ancestor of x, then L(z, x)← {Inv(R) | R ∈ L(x, y)},
3. if z is not an ancestor of x, then L(x, z)← L(x, y),

4. set L(x, y) = ∅, and

5. set u 6≈ z for all u with u 6≈ y.

≤-root-rule: If ≤nS.C ∈ L(x), there are more than n S-neighbors yi of x
with C ∈ L(yi), and x has two S-neighbors y, z which are both root
nodes, y 6≈ z does not hold, and C ∈ L(y) ∩ L(z), then

1. set L(z)← L(y),

2. for all directed edges from y to some w, set L(z, w)← L(y, w),

3. for all directed edges from some w to y, set L(w, z)← L(w, y),

4. set L(y) = L(w, y) = L(y, w) = ∅ for all w,

5. set u 6≈ z for all u with u 6≈ y, and

6. set y ≈ z.

FIGURE 5.17: Expansion rules (part 2) for the SHIQ tableaux algorithm

http://freepdf-books.com



OWL Formal Semantics 203

p_

≈

_

L(p) = {m}

L(j) = {∃h.¬m,≤2h.>} j

h

AA��������

h

��;
;;

;;
;;

; a L(a) = ∅

x L(x) = {¬m}
None of the expansion rules is now applicable, so the tableau is complete

and K ′ is satisfiable.

5.3.4.3.2 Choose We do a variant of the example just given in order
to show how the choose-rule is applied. Consider the knowledge base K =
{≥3h.>(j),≤2h.m}. We want to find out if K is satisfiable. The initial
tableau for K consists of a single node j with L(j) = {≥3h.>,≤2h.m}. Ap-
plication of the ≥-rule yields three new nodes x, y and z with L(x) = L(y) =
L(z) = {>}, x 6≈ y, x 6≈ z, and y 6≈ z. The choose-rule then allows us to
assign classes to these new nodes, e.g., by setting L(x)← m, L(y)← m, and
L(z)← ¬m. The resulting tableau, depicted below, is complete.

xC

6≈C��
��

��
��

_

6≈

_

L(x) = {m}

L(j) = {≥3h.>,≤2h.m} j
h //

h

22

h

,,

y
{

6≈

{
;;

;;
;;

;;
L(y) = {m}

z L(z) = {¬m}

5.3.4.3.3 Inverse Roles The next example displays the handling of in-
verse roles. Consider the knowledge base K = {∃C.h(j),¬ht∀P.h,C v P−},
which stands for

∃hasChild.Human(john)
Human v ∀hasParent.Human

hasChild v hasParent−

We show that Human(john) is a logical consequence from K, i.e. we start
by adding ¬h(j) to K, which is already in negation normal form.

In the initial tableau, we apply the ∃-rule to ∃C.h ∈ L(j), which yields the
following.

L(j) = {∃C.h,¬h} j
C // x L(x) = {h}

We now use the TBox rule and set L(x)← ¬h t ∀P.h. The t-rule on this
yields L(x)← ∀P.h, since the addition of ¬h would yield a contradiction.

L(j) = {∃C.h,¬h} j
C // x L(x) = {h,¬h t ∀P.h,∀P.h}

http://freepdf-books.com



204 Foundations of Semantic Web Technologies

We now apply the ∀-rule to ∀P.h ∈ L(x): j is a C-predecessor of x, and
hence a P−-predecessor of x due to C v P−. So j is a P−-neighbor of x, and
the ∀-rule yields L(j) ← h. Since we already have ¬h ∈ L(j), the algorithm
terminates with the tableau containing a contradiction.

L(j) = {∃C.h,¬h, h} j
C // x L(x) = {h,¬h t ∀P.h,∀P.h}

5.3.4.3.4 Transitivity and Blocking The next example displays block-
ing and the effect of the trans-rule. Consider the knowledge base K = {h v
∃F.>, F v A,∀A.h(j), h(j),≥F.>(j), A ◦ A v A}, which stands for the fol-
lowing.

Human v ∃hasFather.>
hasFather v hasAncestor

∀hasAncestor.Human(john)
Human(john)

≥2hasFather.>(john)
hasAncestor ◦ hasAncestor v hasAncestor

Since the knowledge base states that john has at least two fathers, we
attempt to show unsatisfiability of K, which will not be possible.11 We first
get NNF(K) = {¬h t ∃F.>, F v A,∀A.h(j), h(j),≥F.>(j), A ◦ A v A}.
From the initial tableau, we apply the ≥-rule to ≥2F.>, which results in the
following tableau.

j

F

��

F

��1
11

11
11

L(j) = {h,≥2F.>,∀A.h}

L(y) = {>} y x L(x) = {>}
We now perform the following steps.

1. Apply the TBox-rule and set L(j) = {¬h t ∃F.>}.

2. Apply the t-rule to the axiom just added, which yields L(j) ← ∃F.>
because adding ¬h would result in a contradiction.

3. Apply the ∀-rule to ∀A.h ∈ L(j), which yields L(x)← h.

4. Apply the trans-rule to ∀A.h ∈ L(j), setting L(x)← ∀A.h.

5. Apply the TBox-rule and set L(x)← ¬h t ∃F.>.

6. Apply the t-rule to the axiom just added, which yields L(x) ← ∃F.>
because adding ¬h would result in a contradiction.

11There is no information in the knowledge base which forbids anybody having two fathers.

http://freepdf-books.com



OWL Formal Semantics 205

j

F

��

F

��1
11

11
11

L(j) = {h,≥2F.>,∀A.h,¬h t ∃F.>,∃F.>}

L(y) = {>} y x L(x) = {>, h,∀A.h,¬h t ∃F.>,∃F.>}
We can now perform the following steps.

7. Apply the ∃-rule to ∃F.> ∈ L(x), creating a new node x1 with L(x1) =
>.

8. Apply the ∀-rule to ∀A.h ∈ L(x), resulting in L(x1)← h.

9. Apply the TBox rule and set L(x1)← ¬h t ∃F.>.

10. Apply the t-rule to the axiom just added, which yields L(x1) ← ∃F.>
because adding ¬h would result in a contradiction.

j

F

��

F

��3
33

33
33

L(j) = {h,≥2F.>,∀A.h,¬h t ∃F.>,∃F.>}

L(y) = {>} y x

F

��

L(x) = {>, h,∀A.h,¬h t ∃F.>,∃F.>}

x1 L(x1) = {>, h,∀A.h,¬h t ∃F.>,∃F.>}
Note that L(x1) = L(x), so we can apply steps 7 to 10 to x1 in place of

x, creating a node x2 in step 7. Likewise, we can do for y exactly what we
have done for x, starting at step 1, creating two new nodes y1 and y2 in the
process. The resulting tableau is as follows.

j

F

��

F

��5
55

55
55

L(j) = {h,≥2F.>,∀A.h,¬h t ∃F.>,∃F.>}

L(y) = L(x) y

F

��

x

F

��

L(x) = {>, h,∀A.h,¬h t ∃F.>,∃F.>}

L(y1) = L(x) y1

F

��

x1

F

��

L(x1) = L(x)

L(y2) = L(x) y2 x2 L(x2) = L(x)
At this stage, x2 is directly blocked by x1 since the pair (x1, x2) repeats

the pair (x, x1). Likewise, y2 is directly blocked by y1 since the pair (y1, y2)
repeats the pair (y, y1). There is no expansion rule applicable, so the tableau
is complete, showing that K is satisfiable.

5.3.4.3.5 Why We Need Pairwise Blocking The next example shows
that the more complicated pairwise blocking is indeed needed for SHIQ.

http://freepdf-books.com



206 Foundations of Semantic Web Technologies

Consider the knowledge base K consisting of the statements R ◦ R v R,
F v R, and ¬C u (≤1F ) u ∃F−.D u ∀R−.(∃F−.D)(a), where D is short for
the class expression C u (≤1F ) u ∃F.¬C.

K is unsatisfiable, which is not easy to see by simply inspecting the knowl-
edge base. So let us construct the tableau, which will help us to under-
stand the knowledge base. From the initial tableau, we repeatedly apply
the u-rule to break down the class expression in L(a). Then we apply the
∃-rule to ∃F−.D, creating a node y with L(y) = {D}. D ∈ L(y) can
be broken down by applying the u-rule repeatedly. Applying the ∀-rule to
∀R−.(∃F−.D) ∈ L(a) yields L(y) ← ∃F−.D due to F v R, and the trans-
rule applied to ∀R−.(∃F−.D) ∈ L(a) yields L(y) ← ∀R−.(∃F−.D). The
following picture shows the current state; note that we have omitted some
elements of L(a) and L(y).

a

F−

��

L(a) ⊇ {¬C,≤1F,∃F−.D, ∀R−.(∃F−.D)}

y L(y) ⊇ {D,∃F−.D, ∀R−.(∃F−.D), C,≤1F,∃F.¬C}
Similar arguments applied to y instead of a leave us with a new node z and

the following situation.
a

F−

��

L(a) ⊇ {¬C,≤1F,∃F−.D, ∀R−.(∃F−.D)}

y

F−

��

L(y) ⊇ {D,∃F−.D, ∀R−.(∃F−.D), C,≤1F,∃F.¬C}

z L(z) = L(y)

Since the SHIQ tableau requires pairwise blocking, the node z is not
blocked in this situation. If it were blocked, then the tableau would be com-
plete, and K would be satisfiable. Since z is not blocked, however, we can ex-
pand ∃F.¬C ∈ L(z) via the ∃-rule, creating a new node x with L(x) = {¬C}.
Application of the ≤-rule to ≤1F ∈ L(z) forces us to identify y and x, and
yields the following.

a

F−

��

L(a) ⊇ {¬C,≤1F,∃F−.D, ∀R−.(∃F−.D)}

x � ≈ � y

F−

��

L(y) ⊇ {D,∃F−.D, ∀R−.(∃F−.D), C,≤1F,∃F.¬C,¬C}

z L(z) ⊇ {D,∃F−.D, ∀R−.(∃F−.D), C,≤1F,∃F.¬C}

Since {C,¬C} ⊆ L(y), the tableau contains a contradiction and the algo-
rithm terminates.

http://freepdf-books.com



OWL Formal Semantics 207

description logic combined complexity data complexity
ALC ExpTime-complete NP-complete
SHIQ ExpTime-complete NP-complete
SHOIN (D) NExpTime-complete NP-hard
SROIQ N2ExpTime-complete NP-hard
EL++ P-complete P-complete
DLP P-complete P-complete
DL-Lite In P In LOGSPACE

FIGURE 5.18: Worst-case complexity classes of some description logics

5.3.5 Computational Complexities

Considerations of computational complexities of reasoning with various de-
scription logics have been a driving force in their development.12 The rationale
behind this is that understanding the computational complexity of a knowl-
edge representation language aids avoiding language constructs which are too
expensive to deal with in practice. This is an arguable position, and objec-
tions against the emphasis on computational complexity by description logic
developers has been criticized from application perspectives. Nevertheless, it
appears that the approach has been successful in the sense that it has indeed
helped to produce paradigms with a favorable trade-off between expressivity
and scalability. Complexities of description logics, more precisely of the un-
derlying decision problems, are usually measured in terms of the size of the
knowledge base. This is sometimes called the combined complexity of a de-
scription logic. If complexity is measured in terms of the size of the ABox only,
then it is called the data complexity of the description logic. These notions
are in analogy to database theory.

Figure 5.18 lists the complexity classes for the most important description
logics mentioned in this chapter. It should be noted that despite the emphasis
on complexity issues in developing description logics, their complexities are
very high, usually exponential or beyond. This means that reasoning even
with relatively small knowledge bases could prove to be highly intractable in
the worst case. However, this is not a fault of the design of description logics:
Dealing with complex logical knowledge is inherently difficult.

At the same time, it turns out that average-case complexity, at least for real
existing knowledge bases, is not so bad, and state of the art reasoning systems,
as discussed in Section 8.5, can deal with knowledge bases of considerable size.
Such performance relies mainly on optimization techniques and intelligent

12Introducing complexity theory is beyond the scope of this book. See [Pap94] for a com-
prehensive overview.

http://freepdf-books.com



208 Foundations of Semantic Web Technologies

heuristics which can be added to tableau reasoners in order to improve their
performance on real data.

5.4 Summary

In this chapter we have presented the logical underpinnings of OWL. We
have introduced description logics and explained their formal semantics. In
particular, we have given two alternative but equivalent ways of describing the
formal semantics of SROIQ, and therefore of OWL DL and of OWL 2 DL,
namely the direct extensional model-theoretic semantics, and the predicate
logic semantics which is obtained by a translation to first-order predicate
logic with equality.

We then moved on to discuss the major paradigm for automated reasoning
in OWL, namely tableaux algorithms. We have formally specified the algo-
rithms for ALC and SHIQ. We have also given many examples explaining
the algorithms, and briefly discussed issues of computational complexity for
description logics.

5.5 Exercises

Exercise 5.1 Translate the ontology which you created as a solution for Ex-
ercise 4.1 into DL syntax.

Exercise 5.2 Translate the ontology which you created as a solution for Ex-
ercise 4.1 into predicate logic syntax.

Exercise 5.3 Express the following sentences in SROIQ, using the individ-
ual names bonnie and clyde, the class names Honest and Crime, and the
role names reports, commits, suspects, and knows.

1. Everybody who is honest and commits a crime reports himself.

2. Bonnie does not report Clyde.

3. Clyde has committed at least 10 crimes.

4. Bonnie and Clyde have committed at least one crime together.

5. Everybody who knows a suspect is also a suspect.

http://freepdf-books.com



OWL Formal Semantics 209

Exercise 5.4 Translate the knowledge base

Human v ∃hasMother.Human
∃hasMother.(∃hasMother.Human) v Grandchild

Human(anupriyaAnkolekar)

into RDFS syntax.

Exercise 5.5 Validate the logical inferences drawn in Fig. 4.11 by arguing
with extensional semantics.

Exercise 5.6 Consider the two RDFS triples
r rdfs:domain B . and A rdfs:subClassOf B .

Understood as part of an OWL knowledge base, they can be expressed as
B v ∀r.> and A v B.

Give a triple which is RDFS-entailed by the two given triples, but which
cannot be derived from the OWL DL semantics.

Furthermore, give an OWL DL statement which is a logical consequence of
the two OWL statements but cannot be derived using the RDFS semantics.

Exercise 5.7 Show using the ALC tableaux algorithm that the knowledge
base

Student v ∃attends.Lecture
Lecture v ∃attendedBy.(Student u Eager)
Student(aStudent)
¬Eager(aStudent)

is satisfiable.

Exercise 5.8 Show using the ALC tableaux algorithm that (∃r.E)(a) is a
logical consequence of the knowledge base K = {C(a), C v ∃r.D,D v E t
F, F v E}.

Exercise 5.9 Show using the ALC tableaux algorithm that the knowledge
base K = {¬H t ∃p.H,B(t),¬H(t)} is satisfiable.

Exercise 5.10 Validate the logical inferences drawn in Fig. 4.11 using the
ALC tableaux algorithm.

Exercise 5.11 Show using the ALC tableaux algorithm that the following
knowledge base is unsatisfiable.

Bird v Flies

Penguin v Bird

Penguin u Flies v ⊥
Penguin(tweety)

http://freepdf-books.com



210 Foundations of Semantic Web Technologies

Exercise 5.12 Show using the SHIQ tableaux algorithm that the statement
∀hasChild.Male(john) is a logical consequence of the following knowledge
base.

hasChild(john, peter)
hasChild(john, alex)

Male(peter)
Male(alex)

≤2hasChild.Male(john)
peter 6= alex

Exercise 5.13 Show using the SHIQ tableaux algorithm that the statement
≥2hasChild.>(john) is a logical consequence of the following knowledge base.

≥2hasSon.>(john)
hasSon v hasChild

5.6 Further Reading

[HHPS04] is the normative document for the semantics of OWL 1, while
[MPSCG09] is the current version describing the semantics of the forthcoming
OWL 2 DL.

The Description Logic Handbook [BCM+07] is a comprehensive reference
for description logics.

[HPSvH03] gives an overview of OWL 1 in relation to RDF and SHIQ.
The SHIQ tableaux algorithms have been introduced in [HST00, HS99].

Our presentation differs slightly for didactic purposes, but there is no sub-
stantial difference.

A tableaux algorithm for SHOIQ can be found in [HS07]. Nominals ba-
sically add another element of nondeterminism which is very difficult to deal
with efficiently in automated reasoning systems.
SROIQ as an extension of OWL DL was proposed in [HKS06]. The ex-

tensions are uncritical in terms of realization in tableaux algorithms; in this
sense, SROIQ is only a minor extension of SHOIQ.
EL++ was introduced in [BBL05] and has recently sparked a considerable

interest in studying polynomial description logics.
DL-Lite is covered in [CGL+07].
For DLP, see [GHVD03].
Complexities for many description logics, including appropriate literature

references, can be retrieved from http://www.cs.man.ac.uk/∼ezolin/dl/.

http://freepdf-books.com


	Chapter 5: OWL Formal Semantics

