N ^o de prueba	Cédula	Apellido y nombre	Salón	

Respuestas

Ej. 1	Ej. 2	Ej. 3	Ej. 4	Ej. 5	Ej. 6
Е	Е	В	Е	Е	E
Ej. 7	Ej. 8	Ej. 9	Ej. 10	Des. 1	Des. 2
D	С	D	В		

Importante

- El examen dura 3 horas y 30 minutos.
- Consta de 8 ejercicios múltiple opción de 10 puntos cada uno y uno de desarollo de 20 puntos.
- El estudiante elegirá 8 preguntas múltiple opción de las 10, ingresando sus respuestas en el cuadro de respuestas de esta hoja e ingresando una cruz (o X) en las preguntas que decida no contestar.
- En caso de ingresar más respuestas se corregirán sólo las primeras 8.
- No se restan puntos por respuesta incorrecta.
- El ejercicio de desarrollo se entregará en hojas a parte, con nombre, documento, número de prueba y cantidad de hojas entregadas indicado claramente en la parte superior de cada hoja.

Solución

Ejercicio 1

Este es un ejercicio de probabilidad combinatoria. Es decir hay que contar los casos favorables (donde no forman ningún ta-te-ti) y dividir entre los posibles.

Los casos posibles son $\binom{9}{4}$ = 126 maneras de colocar 4 cruces en 9 lugares posibles.

Sea A el evento donde no existen tres cruces formando ta-te-ti. Consideramos el evento complementario A^c que consiste en las configuraciones donde forman un ta-te-ti.

Existen 8 maneras de que se forme ta-te-tí, 3 filas, 3 columas, y 2 diagonales. Estas maneras son disjuntas como hace notar la letra. Y además cada una abarca exáctamente 6 casos (hay tres cruces que deben ir en la fila, columan, o diagonal indicada, y la cuarta puede ir en cualquiera de los 6 lugares restantes).

Se obtiene entonces:

$$P(A) = 1 - P(A^c) = 1 - \frac{8 \times 6}{126} \approx 0.62.$$

Solución

Ejercicio 2

Este es un ejercicio de regresión lineal.

La función de regresión es:

$$f(x) = r \frac{s_y}{s_x}(x - \overline{x}) + \overline{y} = 0.85 \frac{15.3}{12.3}(x - 25.7) + 32.7.$$

Evaluando en x = 30 obtenemos:

$$f(30) = 0.85 \frac{15.3}{12.3} (30 - 25.7) + 32.7 \approx 37.25$$

Solución

Ejercicio 3

Dado que el ancho de la cancha mide 68 metros y el largo del área chica 7.32, la pelota tiene que caer entre 34-7,32/2 y 34+7,32/2. Sea X la variable aleatoria que define la distancia que recorre la pelota, debemos calcular

$$P(30.34 \le X \le 37.66) = P(\frac{30.34-30}{2} \le Z \le \frac{37.66-30}{2}) = \Phi(3.83) - \Phi(0.17) = 1 - 0.5675 \approx 0.43$$

Solución

Ejercicio 4

Sea L la cantidad de lunares y V la variante, entonces:

- P(L=0|V=A)=1
- $P(L=0|V=B) \approx 0.14$
- P(V = A) = 0.3
- P(V = B) = 0.7

Entonces, aplicando Bayes obtenemos:

$$*P(V = A | L = 0) = \frac{P(L=0|V=A)P(V=A)}{P(V=A|L=0)}$$

$$= \frac{P(L=0|V=A)P(V=A)}{P(V=A|L=0)P(V=A) + P(L=0|V=B)P(V=B)}$$
(2)

$$= \frac{P(L=0|V=A)P(V=A)}{P(V=A|L=0)P(V=A)+P(L=0|V=B)P(V=B)}$$
(2)

$$= \frac{1.0.3}{1.0.3 + e^{-2} \cdot 0.7} \approx 0.76 \tag{3}$$

Solución

Ejercicio 5

Primero calcularemos los valores del estadístico *suma de los puntos de la nueva estrategia* para todas las permutaciones posibles de los puntajes obtenidas.

usi	usual		eva	suma nueva	
33	22	40	28	68	
22	28	40	33	73	
33	28	40	22	62	
40	22	33	28	61	
40	33	28	22	50	
40	28	33	22	55	

Para el caso que observamos, nuestro estadístico vale 68 puntos, por lo tanto hay otra permutación que toma un valor igual o mayor al obervado. Como queremos saber si la nueva estrategia es mejor, el test es a una cola. Entonces, el p-valor obtenido es $2/6 \approx 0.33$ y no tenemos evidencia suficiente, para afirmar que la nueva estrategia sea mejor que la anterior.

Solución

Ejercicio 6

Tenemos que $\mathbb{E}(X) = \lambda$ y $\mathbf{var}(X) = \lambda$, luego $\mathbb{E}(X^2) = \lambda^2 + \lambda$. Entonces planteamos:

$$\begin{cases} \mathbb{E}(X) = \frac{x_1 + \dots + x_{200}}{200} \\ \mathbb{E}(X^2) = \frac{x_1^2 + \dots + x_{200}^2}{200} \end{cases} \Rightarrow \begin{cases} \lambda = \frac{x_1 + \dots + x_{200}}{200} \\ \lambda^2 + \lambda = \frac{x_1^2 + \dots + x_{200}^2}{200} \end{cases}$$

Puesto que hay solo una variable desconocida λ , nos quedamos solo con la primer ecuación (para que no quede incompatible) y obtenemos $\hat{\lambda} = \frac{500}{200} = 2.5$ y $\hat{\mu}_2 = \hat{\lambda}^2 + \hat{\lambda} = 2.5^2 + 2.5 = 8.75$.

Solución

Ejercicio 7

Si p es la probabilidad de que un conductor maneje sin usar el celular, entonces p corresponde a la esperanza de una variable aleatoria Bernoulli $\mathbf{Ber}(p)$ que vale 1 si el conductor no usa el celular mientras maneja y 0 si no.

Un intervalo de confianza aproximado para p es:

$$I_{1-\alpha} = [\hat{p} \pm \frac{\sigma}{\sqrt{n}} z_{1-\frac{\alpha}{2}}]$$

con n = 400, $\hat{p} = \frac{320}{400} = 0.80$, $z_{0.975} = 1.96$ y estimamos $\sigma = \sqrt{p(1-p)}$ por $\hat{\sigma} = \sqrt{\hat{p}(1-\hat{p})} = 0.40$. Luego $I = [0.80 \pm 0.04] = [0.76, 0.84]$.

Solución

Ejercicio 8

Se X la variable aleatoria que mide la duración total de una bomita. Como el tiempo medio de duración es de 2 años, X tiene distribución exponencial de parámetro 1/2, con el tiempo de duración medido en años.

Por lo tanto $P(X > 2) = 1 - (1 - e^{1/2 \cdot 2}) = e^{-1} \approx 0.37$.

Solución

Ejercicio 9

Si le llamamos Y a la cantidad de peces de tipo A pescados en 70 horas, tenemos que Y tiene ditribución binomial con parámetros $n=70,\ p=0.3$. Aplicando el teorema central del límite, tenemos que Y tiene distribución aproximada N(np,np(1-p))=N(21,14.7). Entonces $P(Y \ge 25) \sim 1 - \phi(\frac{25-21}{\sqrt{14.7}}) = 0.1484$.

Solución

Ejercicio 10

Si H_0 es cierto y le llamo X =cantidad de respuestas correctas, entonces tenemos que $X \sim \text{Bin}(n=10, p=1/2)$. La región crítica es de la forma $\{X \geq 8\}$ por lo que el nivel de significación de la prueba es igual a

$$\alpha = P_{H_0}(X \ge 8) = P(X = 8) + P(X = 9) + P(X = 10) =$$

$$\binom{10}{8} \times \left(\frac{1}{2}\right)^{10} + \binom{10}{9} \times \left(\frac{1}{2}\right)^{10} + \binom{10}{10} \times \left(\frac{1}{2}\right)^{10} = \frac{7}{128} = 0.0547.$$

Solución

Parte 1a.

Mirando el diagrama observamos que:

i	1	2	3
$p_i = \mathbb{P}(X = i)$	$\frac{1}{7}$	$\frac{2}{7}$	$\frac{4}{7}$

Parte 1b.

La función de distribución de X es:

$$F(x) = \begin{cases} 0, & \text{si } x < 1, \\ \frac{1}{7}, & \text{si } 1 \le x < 2, \\ \frac{3}{7}, & \text{si } 2 \le x < 3, \\ 1, & \text{si } 1 \le x \end{cases}$$

Parte 2a.

Hay varias formas de resolver este ejercicio, a continuación presentamos 2 soluciones posibles con las herramientas vistas en el curso.

Solución 1: Test de Bondad de Ajuste χ^2

La hipótesis nula H_0 del test será que Alberto elige sus números con equiprobabilidad y la alternativa que no lo hace. Tomaremos $\alpha = 0.1$ como valor crítico para decir si rechazamos o no la hipótesis nula.

Si Alberto elige sus números con equiprobabilidad de la parte 1a) conocemos la probabilidad de adivinar en 1, 2 o 3 intentos.

Calculamos la cantidad esperada para cada uno de los casos luego de jugar 49 veces y los sumandos del estadístico de Pearson (también se puede resolver utilizando Q_L).

i	1	2	3
$E_i = 49 * \mathbb{P}(X = i)$	7	14	28
O_i	5	10	34
$\frac{(O_i-E_i)^2}{E_i}$	0.57	1.14	1.29

Por lo tanto $Q_P = 0.57 + 1.14 + 1.29 = 3$. Los grados de libertad son 3-1-0 = 2. Por lo tanto el *p-valor* se encuentra entre 0.25 y 0.20 y no tenemps evidencia suficiente para rechazar la hipótesis nula. Por lo tanto, no podemos acusar a Alberto de no estar eligiendo los números al azar.

Si calculáramso Q_L obtendríamos el valor 1.56, llegando a la misma conclusión.

Solución 2: Tomar como estadístico el promedio de los intentos

La hipótesis nula H_0 del test será que Alberto elige sus números con equiprobabilidad. Como sospecho que Alberto está eligiendo de manera que demore mucho en encontrar el número, decidí que como alternativa voy a considerar que Alberto esté eligiendo con otra distribución para que yo demore más turnos en promedio en adivinar con mi estrategia.

Luego de jugar n veces, llamemos X_1, \ldots, X_n al número de intentos antes de adivinar. Bajo H_0 las variables aleatorias X_i son i.i.d. con la distribución de X calculada en la parte 1. Voy a usar como estadístico el número de intentos promedio $\overline{X_n} = \frac{X_1 + \cdots + X_n}{n}$.

Bajo H_0 se obtiene $\mathrm{E}\left(\overline{X_n}\right) = \frac{17}{7} \approx 2.43$, $\mathrm{Var}\left(\overline{X_n}\right) = \frac{26}{49n}$. A los efectos de realizar el test voy a aproximar $\overline{X_n}$ por una variable normal con la misma esperanza y varianza.

Decidí realizar el test a una sola cola con región de rechazo va ser de la forma $[c,+\infty)$ porque sólo me interesa saber si la forma en que Alberto elige su número hace que yo demore más en adivinar. Voy a fijar un nivel $\alpha=0.05$ para rechazar. El valor c lo voy calcular como $\mu+1.64485\sigma$ donde $\mu=\frac{17}{7}$ y $\sigma=\frac{\sqrt{26}}{7n}\approx 0.73/n$. El valor x=1.65585 lo elegí de la tabla normal para que $\Phi(x)=0.95$ (i.e. toda variable normal tiene 5% de probabilidad de estar x desvíos estandard o más por encima de su valor medio). En concreto obtenemos $c\approx 2.43+1.20/n$. Si el valor observado del estadístico es mayor o igual a c voy a rechazar la hipótesis nula.

En los datos tenemos n=49 y el valor observado del estadístico es $(\overline{X_{49}})_{obs}=\frac{1\times5+2\}\times10+3\times34}{49}=\frac{127}{49}\approx2.59$. La región de rechazo de mi test es $[c,+\infty)$ donde $c=2.43+\frac{1.20}{49}\approx2.45$. Por lo tanto, rechazo la hipótesis nula.