Universidad de la República Facultad de Ingeniería - IMERL

Probabilidad y Estadística Cursos 2018

Examen – Lunes 17 de Diciembre 2018

N^o de examen	Cédula	Apellido y nombre	Salón

Múltiple opción (Total: 70 puntos)

En cada pregunta hay una sola opción correcta.

Respuesta correcta: 7 puntos Respuesta incorrecta: -3 puntos No responde: 0 punto

Respuestas

Ej. 1 1)	Ej. 1 2)	Ej. 2 1)	Ej. 2 2)	Ej. 3 1)	Ej. 3 2)	Ej. 4 1)	Ej. 42)	Ej. 5 1)	Ej 5 2)

Ejercicio 1.

Sea X_1, \ldots, X_n una muestra aleatoria simple $\mathrm{Ber}(p)$ con $p \in [0, 1/2]$. Si $\hat{\theta}$ es el estimador de p por el método de máxima verosimilitud entonces:

1. (A)
$$\hat{\theta} = \overline{X}_n$$

(B)
$$\hat{\theta} = \max\{X_1, \dots, X_n\}$$

(C)
$$\hat{\theta} = \min\{\overline{X}_n, 1/2\}$$

2. (A)
$$Var(\hat{\theta}) = p(1-p)$$

(B)
$$Var(\hat{\theta}) = np(1-p)$$

2. (A)
$$Var(\hat{\theta}) = p(1-p)$$
 (B) $Var(\hat{\theta}) = np(1-p)$ (C) $Var(\hat{\theta}) = \frac{p(1-p)}{n}$

Ejercicio 2.

Sean X e Y variables aleatorias absolutamente continuas con densidad conjunta dada por la función

$$f_{XY}(x,y) = \begin{cases} Kx^2y & \text{si } -1 < x < 1, \ x^2 < y < 1 \\ 0 & \text{en otros casos} \end{cases}$$

donde K es una constante real positiva.

1. El valor de la constante K es:

(A)
$$21/4$$
 (B) 1 (C) $21/11$

2. La opción correcta es:

- (A) $X \in Y$ son dependientes y $\mathbb{E}(XY) = 0$
- (B) $X \in Y$ son dependientes y $\mathbb{E}(XY) \neq 0$
- (C) $X \in Y$ son independientes

Ejercicio 3.

Ana y Beto lanzan un dado equilibrado cada una. El que obtiene la puntuación más alta gana, y si empatan gana Beto.

1. La probabilidad que Beto le gane a Ana es:

(A)
$$7/12$$
 (B) $1/2$ (C) $7/18$

2. Si juegan 10 partidas de manera independiente, la probabilidad de que Beto gane al menos 2 partidos es:

(A)
$$0.9976$$
 (B) 0.9996 (C) 0.9921

Ejercicio 4.

La variable aleatoria X representa la cantidad de exámenes a la que se presenta un estudiante en el período de Diciembre. El recorrido de X es $\{1, 2, 3, 4\}$. Se sabe además que $\mathbb{P}(X=1)=0.5$, $\mathbb{P}(X=4)=0.05$ y que $F_X(2)=0.85$ siendo F_X la función de distribución de X.

1. La varianza de X es:

(A)
$$3.6$$
 (B) 0.71 (C) 1.9

2. Si se selecciona un estudiante al azar, sabiendo que se presenta a más de un examen, la probabilidad de que se presente a 3 o más es:

(A)
$$0.2$$
 (B) 0.15

Ejercicio 5.

Se consideran tres sucesos A, B y C tales que

- B y C son incompatibles, $\mathbb{P}(B) = \mathbb{P}(C)$;
- \blacksquare A y C son independientes;
- $\mathbb{P}(B \cup C) = 0.6$
- $\mathbb{P}(A|B) = 1/6$
- $\mathbb{P}(A \cup B) = 0.85$

Entonces:

1.
$$\mathbb{P}(A) =$$

(A)
$$0.6$$
 (B) 0.4 (C) 0.5

2. $\mathbb{P}(A \cap B^c \cap C^c) =$

(A)
$$0.7$$
 (B) 0.37 (C) 0.55

Desarrollo (Total: 30 puntos)

Ejercicio 6. (15 puntos)

1. Demostrar el teorema de Markov: si X es una variable aleatoria no negativa, entonces para todo $\epsilon>0$ se cumple

$$\mathbb{P}(X \ge \epsilon) \le \frac{\mathbb{E}(X)}{\epsilon}$$

2. Demostrar la desigualdad de Tchesbyshev: si T_n es un estimador de θ entonces para todo $\epsilon>0$ se cumple

$$\mathbb{P}(|T_n - \theta| \ge \epsilon) \le \frac{\mathrm{ECM}(T_n)}{\epsilon^2}$$

donde ECM es el error cuadrático medio de la variable T_n .

Ejercicio 7.

(15 puntos) La siguiente tabla resume los puntajes de un grupo de estudiantes en dos pruebas correspondientes a asignaturas distintas en el mismo período de exámenes:

1era prueba	media: 65	desvío: 10		
2da prueba	media: 75	desvío: 9		
correlación: 0.6				

Asumimos que los datos se distribuyen como una normal bivariada.

- 1. Un estudiante obtuvo 60 puntos en la primera prueba ¿Qué puntaje pronosticarías para la segunda prueba?
- 2. ¿Cuál es la probabilidad de que tu pronóstico anterior sea erróneo por más de 5 puntos?