Solución - Examen de Probabilidad y Estadística

Viernes 25 de julio 2014

v	ricines 20 de juno 2011			
	MO1	MO2	MO3	MO4

Problema 1 (10, 5, 5, 5, 5)

- (1) X es uniforme y $R_X = \{1, \dots, M\}$. (2) $E(X) = \sum_{i=1}^{M} i \frac{1}{M} = \frac{M+1}{2}$; $E(X^2) = \sum_{i=1}^{M} i^2 \frac{1}{M} = \frac{(M+1)(2M+1)}{6}$, por lo que $Var(X) = E(X^2) (E(X))^2 = \frac{M^2 1}{12}$.
- (3) Como $\overline{X_n} \xrightarrow{cs} n(M+1)/2$, entonces $\hat{M} = 2\overline{X_n} + 1$ es consistente para M.
- (4) La función de verosimilitud es $L(X_1, \ldots, X_n) = \frac{1}{M^n}$ si y solo si el máximo de la muestra es no mayor que M. Luego para maximizar L se debe elegir M Reiterar la parte anterior para hallar $M = \max\{X_1, \dots, X_n\}$.
- (5) Se tiene que $n=10000,\,\hat{M}=100.$ La variable \hat{M} es insesgada para M, con varianza $Var(\hat{M}) = \frac{M^2-1}{3n}$. Aplicando el TCL se consigue que:

$$\hat{p} = P(|M - \hat{M}| > 1) = P(\frac{|\hat{M} - M|}{\sqrt{\hat{M}^2 - 1}} \sqrt{3n} > \frac{\sqrt{3n}}{\sqrt{\hat{M}^2 - 1}})$$

$$\approx 2\phi(-\sqrt{3})$$

Otra soluciones que usan corrección por continuidad con consistencia son bien valoradas.

Problema 2 (10, 8, 8, 4)

- (a) Rachas: R = 3 y p-valor 0,4139. Spearman: r = 0,428 y p-valor=0,21, por lo que no se rechaza H_0 .
- (b) Kolmogorov-Smirnov: Estadístico 0,173 y p-valor mayor que 0,20 por lo que no se rechaza H_0 .
- (c) Todos los cálculos en K-S son invariantes por transformaciones estrictamente crecientes. Como la F_0 propuesta es la distribución del log(U) (con U uniforme en (0,1)), se obtiene el mismo estadístico, mismo p-valor y misma conclusión que en (b).
- (d) Afirmativo, es la generalización de lo recién observado: una tal F_0 es la distribución de g(U) con U como antes, y K-S es invariante por g.

Múltiple Opción 1

Sean $X_1, X_2, ..., X_{10}$ iid $\sim N(0, \sigma^2)$ y la prueba de hipótesis $H_0: \sigma^2 = 1$ contra $H_1: \sigma^2 = 2$. Entonces, la región crítica óptima de nivel 5% ${\mathcal R}$ y el error β valen:

A):
$$\mathcal{R} = \{(x_1, x_2, ..., x_{10}) : \sum_{i=1}^{10} x_i^2 \le 18.307\}, \text{ y } 0.75 < \beta < 0.9.$$
B): $\mathcal{R} = \{(x_1, x_2, ..., x_{10}) : \sum_{i=1}^{10} x_i^2 \le 18.307\} \text{ y } 0.9 < \beta < 0.95.$
C): $\mathcal{R} = \{(x_1, x_2, ..., x_{10}) : \sum_{i=1}^{10} x_i^2 \ge 18.307\} \text{ y } 0.05 < \beta < 0.1.$
D): $\mathcal{R} = \{(x_1, x_2, ..., x_{10}) : \sum_{i=1}^{10} x_i^2 \ge 18.307\} \text{ y } 0.1 < \beta < 0.25.$
E): Existe una región crítica de nivel 5% tal que $\beta = 0.03.$

B):
$$\mathcal{R} = \{(x_1, x_2, ..., x_{10}) : \sum_{i=1}^{10} x_i^2 \le 18.307\} \text{ y } 0.9 < \beta < 0.95$$

C):
$$\mathcal{R} = \{(x_1, x_2, ..., x_{10}) : \sum_{i=1}^{10} x_i^2 \ge 18.307\} \text{ y } 0.05 < \beta < 0.1$$

D):
$$\mathcal{R} = \{(x_1, x_2, ..., x_{10}) : \sum_{i=1}^{10} x_i^2 \ge 18.307\} \text{ y } 0.1 < \beta < 0.25$$

- **F):** Ninguna de las opciones anteriores es correcta.

Múltiple Opción 2

En cierta carrera universitaria, durante el primer semestre se debe elegir como opcional una única asignatura entre las siguientes: Arte 1, Ciencias 1, y Tecnología 1, siendo respectivamente 30%, 20%, y 50% la probabilidad de que una persona las elija.

Estas asignaturas se pueden exonerar (no se rinde examen), aprobar (hay que rendir examen),

o reprobar (hay que recursar).

Se sabe además que:

- en Arte 1: 56% de los estudiantes exonera, 24% aprueba, y 10% reprueba.
- en Ciencias 1: 22% de los estudiantes exonera, 58% aprueba, y 20% reprueba.
- en Tecnología 1: 35% de los estudiantes exonera, 25% aprueba, y 40% reprueba.

Si finalizado el primer semestre seleccionamos a una persona al azar que ya haya cursado por primera vez y que exoneró su asignatura opcional: ¿cuál es la probabilidad de que haya cursado Tecnología 1?

A): 0,50

B): 0,45

C): 0,76

D): 0,35

E): 0, 28.

F): Ninguna de las opciones anteriores es correcta.

Múltiple Opción 3

Se dispone de una muestra X_1, \ldots, X_n iid de variables Bernoulli de parámetro p desconocido, y se realiza el siguiente test de hipótesis simple $H_0: p = p_0$ contra $H_1: p = p_1$, con $p_1 < p_0$. Sea R_{NP} la región de Neyman-Pearson y $\pi = 1 - \beta$ es su potencia al nivel α . Denotemos ϕ a la distribución normal estándar. Entonces:

A):
$$R_{NP} = \{\overline{X_n} > (p_0 + p_1)/2\}$$
 y $\pi \approx \phi(\frac{p_0 + p_1}{2} \frac{\sqrt{n}}{\sqrt{p_1(1 - p_1)}})$

Housin normal estandar. Entonces:
A):
$$R_{NP} = \{\overline{X_n} > (p_0 + p_1)/2\}$$
 y $\pi \approx \phi(\frac{p_0 + p_1}{2} \frac{\sqrt{n}}{\sqrt{p_1(1 - p_1)}})$
B): $R_{NP} = \{\overline{X_n} > (p_0 + p_1)/2\}$ y $\pi \approx \phi(\frac{p_0 - p_1}{2} \frac{\sqrt{n}}{\sqrt{p_1(1 - p_1)}})$

C):
$$R_{NP} = \{\overline{X_n} > (p_0 + p_1)/2\} \text{ y } \pi \approx \phi(\frac{p_0 + p_1}{2} \frac{\sqrt{n}}{\sqrt{p_0(1 - p_0)}})$$

D):
$$R_{NP} = \{\overline{X_n} < (p_0 + p_1)/2\} \text{ y } \pi \approx \phi(\frac{p_1 - p_0}{2} \frac{\sqrt{N}}{\sqrt{p_0(1 - p_0)}})$$

E):
$$R_{NP} = \{\overline{X_n} < (p_0 + p_1)/2\} \text{ y } \pi \approx \phi(\frac{p_0 - p_1}{2} \frac{\sqrt{n}}{\sqrt{p_1(1 - p_1)}})$$

F): Ninguna de las opciones anteriores es correcta.

Múltiple Opción 4

Sean X_1, \ldots, X_n iid con función de probabilidad $p_X(x) = P\{X = x\} = \theta^x (1-\theta)^{1-x}$, para $x \in \{0,1\}$ y $\theta \in [0,1/2]$. Se consideran los estimadores por método de los momentos y máxima verosimilitud de θ , $\hat{\theta}_{MM}$ y $\hat{\theta}_{MV}$ respectivamente, y los estadísticos $\overline{X}_n = \sum_{j=1}^n X_j/n$, $X_1^* = \sum_{j=1}^n X_j/n$ $\min\{X_1,\ldots,X_n\}$ y $X_n^*=\max\{X_1,\ldots,X_n\}$. Entonces:

A):
$$\hat{\theta}_{MM} = \overline{X}_n \text{ y } \hat{\theta}_{MV} = \min{\{\overline{X}_n, 1/2\}}.$$

B):
$$\hat{\theta}_{MM} = X_1^* \text{ y } \hat{\theta}_{MV} = \overline{X}_n.$$

C):
$$\hat{\theta}_{MM} = \overline{X}_n \text{ y } \hat{\theta}_{MV} = X_n^*.$$

$$\mathbf{D):} \ \hat{\theta}_{MM} = \hat{\theta}_{MV} = \overline{X}_n.$$

E):
$$\hat{\theta}_{MM} = \overline{X}_n \text{ y } \hat{\theta}_{MV} = 1/2.$$

F): Ninguna de las opciones anteriores es correcta.