Nº de Prueba	Cédula	Apellido y Nombre	Salón

Ejercicio 1. (33 puntos) Una urna contiene 15 bolas de colores, de las cuales: 4 son rojas, 5 azules y 6 verdes. Se realizan cuatro extracciones con reposición y se llama X al número de colores obtenidos al cabo de esas cuatro extracciones. Claramente, la variable aleatoria X puede tomar solamente los valores 1,2 y 3.

- 1. Calcular $P\{X=1\}$.
- 2. Calcular $P\{X=3\}$.
- 3. Usando las partes anteriores, calcular $P\{X=2\}$.
- 4. Calcular la probabilidad condicional de que en la tercera extracción ya se hayan obtenido los tres colores, dado que X=3.
- 5. Supongamos ahora que las extracciones se hacen sin reposición y sea Y el número de colores obtenidos al cabo de esas cuatro extracciones. Calcular $P\{Y=1\}$ y $P\{Y=3\}$.

Ejercicio 2. (33 puntos) Sean las muestras variables aleatorias independientes $X_i \sim Bin(n, p_1)$ e $Y_i \sim Ber(p_2)$ (para cada i: X_i independiente de Y_i) donde n y p_2 son conocidos y donde $1 \le i \le m$. A partir de ellas definimos la variables aleatorias $Z_i = X_i Y_i$.

- 1. Calcular $E(Z_i)$.
- 2. Supongamos que, de la muestra $Z_1, Z_2, \dots; Z_m$ se conoce solamente el dato $\sum_{i=1}^m Z_i$, dar, en función de m, n y p_2 , un estimador de p_1 .
- 3. Calcular $P\{Z_i = 0\}$.
- 4. Supongamos que, de la muestra Z se conoce solamente el dato $\sum_{i=1}^{m} 1_{\{Z_i=0\}}$ (es decir, se sabe cuántos ceros hay en la muestra) dar, en función de m, n y p_2 , un estimador de p_1 .

Ejercicio 3. (34 puntos) Se dispone de la siguiente muestra:

$$2,90$$
 $1,04$ $6,63$ $15,15$ $3,11$ $4,13$ $3,89$ $1,65$ $2,90$ $1,21$

- 1. Realizar dos pruebas de aleatoriedad al nivel 0,1 para estudiar si es razonable afirmar que los datos son i.i.d.
- 2. Realizar una prueba de D'agostino al nivel 0,1 para estudiar si es razonable afirmar que los datos son normales.
- 3. Realizar una prueba de Kolmogorov y Smirnov al nivel 0,1 para estudiar si es razonable afirmar que los datos tienen distribución F(x) = 1 1/x para x > 1 y F(x) = 0 en otro caso.

.

Soluciones Examen Probabilidad y Estadística Dic. 08 Facultad de Ingeniería – Instituto de Matemática - UDELAR

Ejercicio 1

1)

$$P(X = 1) = P(4 \text{ rojas}) + P(4 \text{ azules}) + P(4 \text{ verdes}) = (4/15)^4 + (5/15)^4 + (6/15)^5 = 2177/50625 = 0,043$$

2) Hay $C_2^4 = 6$ configuraciones de salida de dos bolas de colores repetidos. Para cada una de estas hay dos configuraciones de disposición de salidas de los otros dos colores (distintos). Entonces:

$$\mathbf{P(X=3)} = 6.2[(4/15)^2.(5/15).(6/15) + (5/15)^2.(4/15).(6/15) + (6/15)^2.(5/15).(4/15)] = 96 / 15^2 = 32 / 75 = 0.4267$$

3)
$$P(X = 2) = 1 - P(X = 1) - P(X = 3) = 1 - 0.043 - 0.4267 = 0.5303$$

4) Si llamamos D al suceso, tenemos:

$$\mathbf{P}(\mathbf{D} \mid \mathbf{X=3}) = P(D) / P(X=3) = P(D \cap \{X=3\}) / P(X=3) = P(D) / P(X=3)$$

$$\mathbf{P}(\mathbf{D}) = 6.(4/14)(5/15)(6/15) = 48 / 15^{2}$$

$$\mathbf{P}(\mathbf{D} \mid \mathbf{X=3}) = 48/15^{2} / 96/15^{2} = 48 / 96 = 1 / 2$$

5)

$$P(Y=1) = P(4 \text{ rojas}) + P(4 \text{ azules}) + P(4 \text{ verdes}) =$$
 $(4/15)(3/14)(2/13)(1/12) + (5/15)(4/14)(3/13)(2/12) + (6/15)(5/14)(4/13)(3/12) =$
 $(24+120+360)/15.14.13.12 = 504/15.14.13.12 = 1/65$

$$P(Y=3) = P(2 \text{ rojas}, 1 \text{ azul}, \text{una verde}) + P(2 \text{ verdes}, 1 \text{ roja}, 1 \text{ azul}) + P(2 \text{ azules}, 1 \text{ roja}, 1 \text{ verde})$$

P (2 rojas, 1 azul, una verde): 6 son las configuraciones de salida de las posiciones de las dos rojas, 2 son las posibilidades de los otros 2 colores. Estas 6.2 = 12 configuraciones tienen todas la misma probabilidad: 4.3.5.6 / 15.14.13.12

$$P(2 \text{ azules, } 1 \text{ roja, } 1 \text{ verde}) = 12.(5.4.4.6/15.14.13.12)$$

Finalmente:

$$P(Y=3) = (2.6 + 4.5 + 4.4) / 7.13 = 48 / 91 = 0.5275$$

Ejercicio 2

- 1) Por independencia : $E(Z_i) = E(X_i Y_i) = E(X_i)E(Y_i) = np_1p_2$
- 2) $E(Z_i) = np_1p_2$. Por tanto un estimador de p_1 es:

$$\hat{p}_1 = \frac{\sum_{i=1}^m Z_i}{mnp_2}$$

3) $P(Z_i = 0) = P(X_iY_i) = 0$.

Entonces:

$$P(Z_i = 0) = P({X_i = 0} \cup {Y_i = 0}) = P(X_i = 0) + P(Y_i = 0) - P(X_i = 0).P(Y_i = 0) = (1-p_1)^n + (1-p_2) - (1-p_1)^n (1-p_2) = (1-p_1)^n p_2 + (1-p_2)$$

4)
$$E(1_{\{Z_i=0\}}) = P(Z_i) = (1-p_1)^n p_2 + (1-p_2)$$

Si llamamos

$$p' = (\sum_{i=1}^{m} 1_{\{z_i=0\}}) / m$$

tenemos que p' es un estimador de $(1-p_1)^n p_2 + (1-p_2)$

Despejando obtenemos el estimador de p₁:

$$p_1'=1 - ((p'+p_2-1)/p_2)^{1/n}p_2$$

Ejercicio 3

Test de Spearman:

1.04 6.63 15.15 3.11 4.13 3.89 1.65 2.9 Muestra: 2.9 1.21 1.04 1.21 1.65 2.9 2.9 3.11 3.89 4.13 6.63 Ordenada: 15.15 Vector de rangos: 4 1 9 10 6 8 2 Suma de $(r(i)-i)^2 = 9+1+36+36+1+4+0+25+16+64 = 192$ Coef. de Spearman : $r_S = 1 - 6*192/10*99 = 1 - 1152/990 = -0.1636$ P valor = 0.328 > 0.1, entonces no rechazo aleatoriedad

b) $\bar{x} = 4.261$; $\sigma_{10} = 3.948$; Vector i - 11/2 = -4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 Ordenada: 1.04 1.21 1.65 2.9 2.9 3.11 3.89 4.13 6.63 15.15 Productos: -4.68 -4.235 -4.125 -4.35 -1.45 1.55 5.835 10.325 23.205 68.175 Suma de Productos = 90.255 Coef de D'Agostino = 90.255 / 100*3.948 = 0.22861 No pertenece al intervalo [0.2573 , 0.2843] Por tanto rechazamos la hipótesis de normalidad de la muestra

c) F(x) = 1 - 1/x si x > 1, 0 en otro caso

i	X	F. emp en	F. emp en	$F(X_{i}^{*})$	Dif en	Dif en
	ordenada	X_{i}^*	X^*_{i+}		Valor abs	Valor abs
1	1.04	0	0.1	0.0385	0.0385	0.0615
2	1.21	0.1	0.2	0.1736	0.0736	0.0264
3	1.65	0.2	0.3	0.3939	0.1939	0.0939
4	2.9	0.3	0.4	0.6552	0.3552 *	0.2552
5	2.9	0.4	0.5	0.6552	0.2552	0.1552
6	3.11	0.5	0.6	0.6785	0.1785	0.0785
7	3.89	0.6	0.7	0.7429	0.1429	0.0429
8	4.13	0.7	0.8	0.7579	0.0579	0.0421
9	6.63	0.8	0.9	0.8492	0.0492	0.0508
10	15.15	0.9	1.0	0.934	0.034	0.066

Estimador = 0.3552; con un nivel de 0.1 el valor de Tabla para n = 10 vale 0.368 Como el estimador dio más chico entonces NO rechazamos la hipótesis de que la F sea la función de distribución asociada a las variables muestrales.