N ^o de parcial	Cédula	Apellido y nombre	Salón

Respuestas

Ej. 1	Ej. 2	Ej. 3	Ej. 4	Ej. 5	Ej. 6
Cuadro					
Ej. 7	Ej. 8	Ej. 9	Ej. 10	Ej. 11	Ej. 12

Importante

- El parcial dura 4 horas.
- Cada ejercicio vale 5 puntos. El parcial es de 60 puntos en total.
- Solo serán válidas las respuestas indicadas en el cuadro de respuestas, a excepción del ejercicio 1 que debe completarse ahí mismo.
- En cada ejercicio hay una sola opción correcta.
- No se restan puntos por respuesta incorrecta.

Tabla de $\Phi(z)$ (normal estándar)

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9924	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9958	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986

Tabla de χ^2

				Probabi	lidad de	cola der	echa P()	$\chi^2 \ge c$			
GdL	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.52
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59

Tabla de t Student

				Prol	babilida	ad de col	a derech	a $P(t \ge $	<i>c</i>)		
GdL	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001
1	1.00	1.38	1.96	3.08	6.31	12.71	15.89	31.82	63.66	127.32	318.31
2	0.82	1.06	1.39	1.89	2.92	4.30	4.85	6.96	9.92	14.09	22.33
3	0.76	0.98	1.25	1.64	2.35	3.18	3.48	4.54	5.84	7.45	10.21
4	0.74	0.94	1.19	1.53	2.13	2.78	3.00	3.75	4.60	5.60	7.17
5	0.73	0.92	1.16	1.48	2.02	2.57	2.76	3.36	4.03	4.77	5.89
6	0.72	0.91	1.13	1.44	1.94	2.45	2.61	3.14	3.71	4.32	5.21
7	0.71	0.90	1.12	1.41	1.89	2.36	2.52	3.00	3.50	4.03	4.79
8	0.71	0.89	1.11	1.40	1.86	2.31	2.45	2.90	3.36	3.83	4.50
9	0.70	0.88	1.10	1.38	1.83	2.26	2.40	2.82	3.25	3.69	4.30
10	0.70	0.88	1.09	1.37	1.81	2.23	2.36	2.76	3.17	3.58	4.14

Ejercicio 1 (5 puntos)

Los siguientes datos representan el nivel de sodio (en mg) de diferentes tipos de cereales para desayuno:

Dibujar en el siguiente cuadro el diagrama de caja (boxplot) de los datos, e indicar si hay datos atípicos:

Ejercicio 2 (5 puntos)

El salario promedio en una empresa era de \$1500 (dólares) y el desvío estándar era \$400. Un año después, cada empleado recibió un aumento de \$100. Después de otro año, el salario de cada empleado (incluido el aumento antes mencionado) se incrementó en un 20%. ¿Cuáles son la media y el desvío estándar de los salarios actuales?

- (A) Media 1900, desvío estándar 480
- (**D**) Media 1920, desvío estándar 416
- (B) Media 1900, desvío estándar 580
- (E) Media 1900, desvío estándar 600
- (C) Media 1920, desvío estándar 600
- (F) Media 1920, desvío estándar 480

Ejercicio 3 (5 puntos)

Se desea establecer la dosis adecuada de un nuevo medicamento para pacientes con alergias. Debido a que es la primera vez que se evalúa el fármaco, *no se tienen conocimientos previos* sobre las respuestas a diferentes niveles de dosis. El fármaco se prueba solo en cuatro pacientes alérgicos, dos de ellos son asignados al azar para recibir una dosis alta, y los dos restantes reciben una dosis baja. La variable de respuesta medida es la cantidad de días que un paciente permanece sin síntomas.

A continuación se muestran los datos obtenidos en este pequeño experimento:

Paciente	1	2	3	4
Dosis	Alta	Alta	Baja	Baja
Días sin síntomas	11	7	6	8

Usando como estadístico la suma de las respuestas del grupo *Dosis Alta*, calcular el p-valor del test de permutaciones de este experimento.

- (A) 2/3
- **(B)** 5/6
- **(C)** 1/6
- **(D)** 1
- **(E)** 1/2
- **(F)** 1/3

Ejercicio 4 (5 puntos)

Sea X el resultado de lanzar un dado trucado cuya f.p.p. es

х	1	2	3	4	5	6
p(x)	$\theta/4$	$(1-\theta)/3$	$\theta/4$	$\theta/2$	$(1-\theta)/2$	$(1-\theta)/6$

en donde $0 \le \theta \le 1$ es un parámetro. Las siguientes observaciones se obtuvieron al lanzar el dado 10 veces de forma independiente: 1, 1, 5, 1, 4, 4, 5, 4, 2, 2.

Calcular una estimación de θ basada en el método de máxima verosimilitud.

(A) 3/5

(B) 1/6

(C) 1/2

(D) 5/6

(E) 2/3

(F) 2/5

Ejercicio 5 (5 puntos)

Un estimador $\hat{\theta}$ de un parámetro θ tiene distribución normal. Se sabe además que

ECM
$$(\hat{\theta}) = 8$$
 y $P(\hat{\theta} \le \theta) = 0.8413$.

Hallar el sesgo de $\hat{\theta}$.

(**A**) 4

(B) $-\sqrt{7}$

 (\mathbf{C}) -2

(**D**) 0

 $(\mathbf{E}) - \sqrt{8}$

(F) $2-\theta$

Ejercicio 6 (5 puntos)

Una moneda tiene probabilidad de cara igual a θ . Se desea hacer el siguiente test de hipótesis sobre el valor de θ :

$$\begin{cases} H_0: \theta = 0.4 \\ H_A: \theta = 0.7 \end{cases}$$

Para esto se la lanza 12 veces, y se usa como estadístico la cantidad de caras X.

A continuación se muestra la f.p.p. de una $Bin(12, \theta)$ para los dos valores de θ :

					Función	de prob	abilidad	puntual	$p(x; \theta)$				
		1											12
0.4	0.002	0.017	0.064	0.142	0.213	0.227	0.177	0.101	0.042	0.012	0.003	0.000	0.000
0.7	0.000	0.000	0.000	0.002	0.008	0.029	0.079	0.158	0.231	0.240	0.168	0.071	0.014

Se toma como región de rechazo $\{X \ge c\}$, en donde c es el menor entero entre 0 y 12 que cumple $P(X \ge c|H_0) \le 0.1$.

Entonces, la potencia del test es:

(A) 0.057

(C) 0.010

(E) 0.276

(B) 0.900

(D) 0.724

(F) 0.158

Ejercicio 7 (5 puntos)

Una máquina dispensadora de café debe verter exactamente 150 ml de café por vaso. Se sabe que el volumen de café vertido en un vaso es normal de media μ y desvío $\sigma = 5$ ml.

Para llevar a cabo un control de calidad se planea realizar el siguiente test

$$\begin{cases} H_0: \mu = 150 \\ H_A: \mu \neq 150 \end{cases}$$

con n = 25 mediciones. Se utilizará como región de rechazo $|\overline{X} - 150| \ge 2$.

La probabilidad de error de tipo I es:

(A) .3446

(B) .0456

(C) .6554

(D) .6892

(E) .1000

(F) .0228

Ejercicio 8 (5 puntos)

En un estudio se investiga la relación entre hacer ejercicio frecuentemente y fumar. Para una muestra de 200 individuos los resultados son los siguientes:

		Fumador	No fumador	Total
Ejercicio	Si	37	53	90
frecuente	No	63	47	110
	Total	100	100	200

Realizar un test χ^2 de independencia.

Indicar en qué intervalo se encuentra el p-valor (p):

(A)
$$p < 0.01$$

(C)
$$0.02 \le p < 0.025$$
 (E) $0.05 \le p < 0.1$

(E)
$$0.05 \le p \le 0.1$$

(B)
$$0.01 \le p < 0.02$$

(D)
$$0.025 \le p < 0.05$$

(F)
$$0.1 \le p$$

Ejercicio 9 (5 puntos)

Se desea estudiar la distribución de fallecidos en accidentes viales (en rutas nacionales) según el cuatrimestre del año. Los datos observados durante el año 2014 son los siguientes:

$$\frac{1 \operatorname{er} \operatorname{Cr} \quad 2 \operatorname{do} \operatorname{Cr} \quad 3 \operatorname{er} \operatorname{Cr}}{81 \quad 63 \quad 81}$$

Se realiza un test χ^2 de bondad de ajuste a la distribución uniforme en los tres cuatrimestres al nivel $\alpha = 0.01$. Entonces, la decisión es:

- (A) Rechazo H_0 porque $(Q_L)_{\text{obs}} = 2.97$ es menor al valor crítico c = 9.21.
- (**B**) No rechazo H_0 porque $(Q_L)_{\text{obs}} = 2.97$ es menor al valor crítico c = 9.21.
- (C) Rechazo H_0 porque $(Q_L)_{\text{obs}} = 14.85$ es mayor al valor crítico c = 11.34.
- (**D**) No rechazo H_0 porque $(Q_L)_{\text{obs}} = 2.97$ es menor al valor crítico c = 11.34.
- (E) Rechazo H_0 porque $(Q_L)_{\text{obs}} = 14.85$ es mayor al valor crítico c = 11.34.
- (F) No rechazo H_0 porque $(Q_L)_{\text{obs}} = 14.85$ es mayor al valor crítico c = 9.21.

Ejercicio 10 (5 puntos)

Para evaluar la precisión de una balanza de laboratorio, un objeto se pesa repetidamente 4 veces. Las medidas resultantes (en gramos) son: 95, 103, 91, 103. Suponga que los mediciones de la balanza tienen distribución normal. Denotamos por μ la media.

Utilice estos datos para calcular un intervalo de confianza al 95 % para μ .

- (A) 98 ± 7.05
- (C) 98 ± 2.94
- **(E)** 98 ± 5.88

- **(B)** 98 ± 9.54
- **(D)** 98 ± 8.34
- **(F)** 98 ± 4.77

Ejercicio 11 (5 puntos)

Sean X e Y las coordenadas de un punto elegido al azar (uniformemente) en el paralelogramo de vértices (0,0), (2,1), (2,2), y (0,1).

Para $0 \le x \le 2$, calcular E(Y|X=x).

- **(A)** x + 1
- **(B)** 2x+1 **(C)** $\frac{x}{2}+\frac{1}{2}$ **(D)** $\frac{x}{2}+1$ **(E)** $x+\frac{1}{2}$

- (\mathbf{F}) 2x

Ejercicio 12 (5 puntos)

La siguiente tabla resume los datos de altura (en cm) y longitud de la mano (en cm) de un grupo de estudiantes:

Altura	media: 173	desvío: 9				
Longitud de mano	media: 19	desvío: 4				
correlación: 1/2						

Asumimos que los datos tienen distribución normal bivariada.

Calcular la probabilidad de que un estudiante tenga longitud de la mano mayor a la media, dado que su altura es mayor a la media.

Dato útil: $tan(\pi/6) = 1/\sqrt{3}$.

- **(A)** 1/4
- **(B)** 1/12
- (C) 1/2
- **(D)** 11/12
- **(E)** 2/3
- **(F)** 3/4