PROBABILIDAD Y ESTADÍSTICA SEGUNDO PARCIAL, 28 de Junio de 2010

DATOS DEL ESTUDIANTE

No. de Parcial	Nombre y Apellido	Cédula

- La duración del parcial es de 4 horas.
- Publicación de resultados: Lunes 12 de Julio, 20hs.
- Muestra de parciales: Martes 13 de Julio, 18hs.

	1	2	3	4	Totales
Pr.1					
Pr.2					
Pr.3					
Total					

Problema 1 (20 puntos)

Se considera una variable aleatoria X absolutamente continua con función de densidad:

$$f_X(x) = \frac{1}{2b}e^{-\frac{|x-a|}{b}}$$
 con $a, b \in \mathbb{R}$ y $b > 0$

Se sabe que E(X) = a y $Var(X) = 2b^2$. Sean X_1, X_2, \dots, X_n variables aleatorias independientes e idénticamente distribuidas (iid) con la misma distribución que X.

- 1. Determinar estimadores de a y b aplicando el método de los momentos.
- 2. Calcular la mediana de X. Determinar un nuevo estimador consistente de a distinto del hallado en la parte anterior.
- 3. Para el caso a = 0, determinar el estimador de b de máxima verosimilitud.
- 4. Para el caso a=0, hallar la función de distribución de Y=|X|. Si es una distribución conocida, indique cuál es.

Problema 2 (20 puntos)

Sean X_1, X_2, \ldots, X_n variables aleatorias iid con distribución $\mathcal{U}[0, \theta]$ con $\theta > 0$.

- 1. Hallar un estimador consistente de θ . Justificar.
- 2. Sea $\sigma^2 = \text{Var}(X_1)$, probar que $\widehat{\sigma} = \frac{\overline{X_n}}{\sqrt{3}}$ es un estimador consistente de σ . Calcular $E(\widehat{\sigma})$ y $\text{Var}(\widehat{\sigma})$.
- 3. Probar que $I_{\alpha} = \left[2\overline{X}_n 2\frac{\overline{X}_n z_{\alpha/2}}{\sqrt{3n}}, 2\overline{X}_n + 2\frac{\overline{X}_n z_{\alpha/2}}{\sqrt{3n}}\right]$ es un intervalo de confianza aproximado (usando TCL) a nivel α para θ .
- 4. Se desea realizar el siguiente test de hipótesis sobre θ : $\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta = \theta_1 > \theta_0 \end{cases}$.
 - (a) Probar que $\mathcal{R}_{\alpha} = \left\{ \frac{\theta_0}{2\overline{X}_n} \leq 1 \frac{z_{\alpha}}{\sqrt{3n}} \right\}$ es una región crítica aproximada a nivel α para el test planteado.
 - (b) Suponiendo que $n=27,~\alpha=0.05,~\theta_0=1,~\theta_1=2~\mathrm{y}~\overline{X}_n=1.25,$ calcular aproximadamente $\beta=P(\mathrm{error~tipo~II}).$

Problema 3 (20 puntos)

Se tienen los siguientes datos sobre victorias de la selección de fútbol de Uruguay sobre las principales selecciones sudamericanas y México¹.

Selección	Argentina	Brasil	Chile	Paraguay	Perú
Partidos Jugados	182	71	72	67	61
Victorias Uruguay	58	21	42	31	33
Promedio Victorias (PV)	0.32	0.3	0.58	0.46	0.54

Selección	Ecuador	Bolivia	Colombia	Venezuela	México
Partidos Jugados	41	39	36	27	17
Victorias Uruguay	29	27	18	18	3
Promedio Victorias (PV)	0.71	0.69	0.5	0.67	0.18

- Estudiar si el promedio de victorias celestes puede considerarse una muestra iid. Realizar dos tests de hipótesis.
- 2. ¿Es posible afirmar que el promedio de victorias celestes se ajusta a una distribución normal? Basta realizar un test de hipótesis.
- 3. ¿Se puede afirmar con un nivel de confianza de 0.95 que la media de la variable PV es inferior a 0.5?
- 4. ¿Se puede afirmar con un nivel de confianza de 0.95 que la varianza de la variable PV es $\sigma_0^2 = 0.05$?

¹datos obtenidos en www.wikipedia.org