Probabilidad y Estadística

Parte B - Solución

July 8, 2002

Parte 1: Aplicamos los test de rachas y de correlación de rangos de Spearman a ambas muestras por separado.

Muestra X

- Test de rachas: La cantidad de rachas es R=5. De la tabla del test de rachas para n=8 se obtiene el p-valor $\alpha^*=0.6876$. El test no rechaza la hipótesis i.i.d.
- Test de correlación de rangos de Spearman: Ordenando la muestra se obtienen los rangos

$$R(X_1) = 8$$
, $R(X_2) = 4$, $R(X_3) = 3$, $R(X_4) = 7$,

$$R(X_5) = 1$$
, $R(X_6) = 2$, $R(X_7) = 6$, $R(X_8) = 5$.

Por lo tanto el estadístico del test resulta

$$r_S = 1 - 6 \frac{\sum_{i=1}^{8} (R(X_i) - i)^2}{8(8^2 - 1)} = -0.238$$

y de la tabla para n=8 se obtiene el p-valor $\alpha^*=0.291$. El test no rechaza la hipótesis i.i.d.

Muestra Y

• Test de rachas: La cantidad de rachas es R=6. De la tabla del test de rachas para n=10 se obtiene el p-valor $\alpha^*=0.7573$. El test no rechaza la hipótesis i.i.d.

• Test de correlación de rangos de Spearman: Ordenando la muestra se obtienen los rangos

$$R(Y_1) = 4$$
, $R(Y_2) = 8$, $R(Y_3) = 5$, $R(Y_4) = 1$, $R(Y_5) = 2$, $R(Y_6) = 10$, $R(Y_7) = 6$, $R(Y_8) = 3$, $R(Y_9) = 9$, $R(Y_{10}) = 7$.

Por lo tanto el estadístico del test resulta

$$r_S = 1 - 6\frac{\sum_{i=1}^{10} (R(Y_i) - i)^2}{10(10^2 - 1)} = 0.285$$

y de la tabla para n=10 se obtiene el p-valor $\alpha^*=0.214$. El test no rechaza la hipótesis i.i.d.

Parte 2: Aplicamos el test de signos y el test de rangos signados de Wilcoxon para decidir si los valores $m_X=0.69$ y $m_Y=0.35$ son valores aceptables para las medianas

Muestra X

• Test de signos: Considerando las variables $U_i = I_{\{X_i > 0.69\}}$ se obtiene

$$U_1 = 1$$
, $U_2 = 0$, $U_3 = 0$, $U_4 = 1$, $U_5 = 0$, $U_6 = 0$, $U_7 = 1$, $U_8 = 1$.

Por lo tanto $\overline{U}_8=\frac{1}{8}\sum_{i=1}^8 U_i=\frac{1}{2}$ y en consecuencia no se rechaza la mediana propuesta para ningún valor de α .

• Test de rangos signados de Wilcoxon: Ordenando los valores de $|X_i - 0.69|, i = 1, 2, ..., 8$, de menor a mayor se obtienen los rangos signados

$$R^+(X_1) = 8$$
, $R^+(X_2) = 1$, $R^+(X_3) = 2$, $R^+(X_4) = 7$, $R^+(X_5) = 6$, $R^+(X_6) = 3$, $R^+(X_7) = 5$, $R^+(X_8) = 4$.

El estadístico del test resulta

$$W^{+} = \sum_{i=1}^{8} U_{i} R^{+}(X_{i}) = R^{+}(X_{1}) + R^{+}(X_{4}) + R^{+}(X_{7}) + R^{+}(X_{8}) = 24$$

y de la tabla para n=8 se obtiene el p-valor $\alpha^*=0.230$. El test no rechaza la mediana propuesta, por lo tanto el valor $m_X=0.69$ es un valor aceptable para la mediana de la muestra X.

Muestra Y

• Test de signos: Considerando las variables $U_i = I_{\{Y_i \geq 0.35\}}$ se obtiene

$$U_1 = 0$$
, $U_2 = 1$, $U_3 = 0$, $U_4 = 0$, $U_5 = 0$, $U_6 = 1$, $U_7 = 1$, $U_8 = 0$, $U_9 = 1$, $U_{10} = 1$.

Por lo tanto $\overline{U}_{10}=\frac{1}{10}\sum_{i=1}^{10}U_i=\frac{1}{2}$ y en consecuencia no se rechaza la mediana propuesta para ningún valor de α .

• Test de rangos signados de Wilcoxon: Ordenando los valores de $|Y_i-0.35|,\ i=1,2,\ldots,10,$ de menor a mayor se obtienen los rangos signados

$$R^+(Y_1) = 3$$
, $R^+(Y_2) = 8$, $R^+(Y_3) = 1$, $R^+(Y_4) = 7$, $R^+(Y_5) = 6$, $R^+(Y_6) = 10$, $R^+(Y_7) = 2$, $R^+(Y_8) = 4$, $R^+(Y_9) = 9$, $R^+(Y_{10}) = 5$.

El estadístico del test resulta

$$W^{+} = \sum_{i=1}^{10} U_{i}R^{+}(Y_{i}) = R^{+}(Y_{2}) + R^{+}(Y_{6}) + R^{+}(Y_{7}) + R^{+}(Y_{9}) + R^{+}(Y_{10}) = 34$$

y de la tabla para n=10 se obtiene el p-valor $\alpha^*=0.278$. El test no rechaza la mediana propuesta, por lo tanto el valor $m_Y=0.35$ es un valor aceptable para la mediana de la muestra Y.

Parte 3: Implementamos los test de Lilliefors a las muestras

Muestra X

La estimación del parámetro en la exponencial es

$$\hat{\lambda}_X = \frac{1}{\overline{X}_8} = 1.081$$

X_i^*	$F_0(X_i^*)$	$F_n(X_i^*)$	$ F_0(X_i^*) - F_n(X_i^*) $	$ F_0(X_{i+1}^*) - F_n(X_i^*) $
0.28	0.261	0.125	0.137	0.247
0.43	0.372	0.25	0.122	0.216
0.58	0.466	0.375	0.091	0.14
0.67	0.515	0.5	0.015	0.146
0.96	0.646	0.625	0.021	0.082
1.02	0.668	0.75	0.082	0.044
1.46	0.794	0.875	0.081	0.01
2.00	0.885	1	0.115	0.262

De manera que el estadístico resulta

$$D_8 = 0.262$$

y de la tabla de Lilliefors para n=8 se obtiene el p-valor $\alpha^*>0.2$. Por lo tanto no se rechaza la hipótesis de que la muestra X corresponde a una distribución exponencial de parámetro $\hat{\lambda}_X=1.081$.

Muestra Y

La estimación del parámetro en la exponencial es

$$\hat{\lambda}_Y = \frac{1}{\overline{Y}_{10}} = 1.855$$

Y_i^*	$F_0(Y_i^*)$	$F_n(Y_i^*)$	$ F_0(Y_i^*) - F_n(Y_i^*) $	$ F_0(Y_{i+1}^*) - F_n(Y_i^*) $
0.02	0.037	0.1	0.063	0.011
0.05	0.089	0.2	0.111	0.029
0.14	0.229	0.3	0.071	0.01
0.20	0.310	0.4	0.09	0.027
0.30	0.427	0.5	0.073	0.074
0.46	0.574	0.6	0.026	0.072
0.60	0.672	0.7	0.028	0.042
0.73	0.742	0.8	0.058	0.114
1.32	0.914	0.9	0.014	0.046
1.57	0.946	1	0.054	0.037

De manera que el estadístico resulta

$$D_{10} = 0.114$$

y de la tabla de Lilliefors para n=10 se obtiene el p-valor $\alpha^*>0.2$. Por lo tanto no se rechaza la hipótesis de que la muestra Y corresponde a una distribución exponencial de parámetro $\hat{\lambda}_Y=1.855$.

Parte 4: Asumiendo que las muestras corresponden a distribuciones exponenciales con los parámetros estimados en la parte anterior obtenemos

Muestra X

$$P(X > 0.7) = 1 - P(X \le 0.7) = 1 - \left(1 - e^{-\hat{\lambda}_X \times 0.7}\right) = 0.469.$$

$\mathbf{Muestra}\ \mathbf{Y}$

$$P(Y > 0.7) = 1 - P(Y \le 0.7) = 1 - \left(1 - e^{-\hat{\lambda}_Y \times 0.7}\right) = 0.273.$$

Parte 5: De los puntos anteriores se deduce que los tiempos de duración de la muestra X son superiores a los de la muestra Y. La justificación se deja a cargo del estudiante.