ÍNDICE GENERAL

PROBABILIDAD Y ESTADISTICA 2001 SEGUNDO PARCIAL PARTE B

Índice General

1 TEST DE ALEATORIEDAD.				2
	1.1	Test de ra	achas de "subidas y bajadas"	2
		1.1.1 N	Iuestra 1	2
		1.1.2 N	Iuestra 2	3
	1.2	Test de c	orrelación de rangos de Spearman	4
		1.2.1 N	Iuestra 1	4
		1.2.2 N	Iuestra 2	5
2	TES	T DE CO	MPARACIÓN DE DOS MUESTRAS	7
	2.1	Test de K	Colmogorov-Smirnov	7
	2.2	Tets de N	Mann - Whitney-Wilcoxon sobre "corrimientos"	7
3	TES	T DE NO	RMALIDAD (ajuste).	8
	3.1	El Test d	e Normalidad de D'Agostino.	9
		3.1.1 N	Iuestra 1	9
		3.1.2 N	Iuestra 2	9
	3.2	El Test d	e Normalidad de Shapiro - Wilks	10
		3.2.1 N	Iuestra 1	10
		3.2.2 N	Iuestra 2	10
4	TES	T PARAM	ETRICOS	11
	4.1	Test para	métrico sobre "dispersión"	11
	4.2	Test de	comparación de medias	12
5	Cor	odución f	inal	19

1 TEST DE ALEATORIEDAD.

Vamos a verficar si la serie de observaciones (muestra) se puede considerar como aleatoria simple (m.a.s.), es decir, si se puede aceptar que las observaciones proceden en forma aleatoria e independiente de una misma distribución (i.i.d.)

1.1 Test de rachas de "subidas y bajadas"

1.1.1 Muestra 1

Se definen las variables

$$U_i = \begin{cases} 1 & \text{si } X_i \leq X_{i+1} \\ 0 & \text{caso contrario} \end{cases}$$
 $i = 1, 2, \dots, n-1$

y se cuentas las "rachas"

X	U	Rachas
70.1		
70.4	1	
75.8	1	1
67.5	0	2
68.4	1	
73.6	1	
76.9	1	3
75.7	0	
71.4	0	
70.3	0	4
72.1	1	5
69.8	0	6

Estadístico de prueba		
$\mathbf{R} = \text{número de total rachas} = 6$		

Como

$$\mathbf{R} < \frac{2n-1}{3} = \frac{2(12)-1}{3} = 7.6667$$

planteamos

\mathbf{H}_0	\mathbf{H}_1
$X_1,, X_n$ es una m.a.s.	"pocas rachas"

("pocas rachas" = hay una tendencia de los datos a estar agrupados en orden creciente o en orden decreciente).

Usando la Tabla:

n	${f R}$	$lpha^*$	R	$lpha^*$
	"pocas rachas"	и	"muchas rachas"	a
\	\downarrow			\downarrow
$\begin{vmatrix} \downarrow \\ 12 \end{vmatrix}$				
12	1	.0000		
	2	.0000		
	3	.0005		
	4	.0082	11	.0113
	5	.0529	10	.0821
	6	.1918	9	.2720
	7	.4453	8	.5547

Por lo tanto

$$\alpha^* = 0.1918 \ge 0.1$$

Conclución: No rechazo \mathbf{H}_0

1.1.2 Muestra 2

Se definen las variables

$$U_i = \left\{ egin{array}{ll} 1 & ext{si } Y_i \leq Y_{i+1} \\ 0 & ext{caso contrario} \end{array}
ight. \quad i = 1, 2, \ldots, n-1$$

y se cuentas las "rachas"

Y	U	Rachas
74.3		
74.1	0	1
75.4	1	2
67.4	0	3
69.3	1	
70.5	1	4
70.1	0	
69.9	0	
68.7	0	5
70.3	1	
70.7	1	
71.1	1	
74.4	1	6
70.2	0	7

Estadístico de prueba		
$\mathbf{R} = \text{número de total rachas} = 7$		

Como

$$\mathbf{R} < \frac{2n-1}{3} = \frac{2(14)-1}{3} = 9$$

planteamos

\mathbf{H}_0	\mathbf{H}_1	
$X_1,,X_n$ es una m.a.s.	"pocas rachas"	

("pocas rachas" = hay una tendencia de los datos a estar agrupados en orden creciente o en orden decreciente).

Usando la Tabla:

n	R "pocas rachas"	$lpha^*$	R "muchas rachas"	$lpha^*$
+ + + +	\downarrow	\	↓	↓
14	1	.0000		
	2	.0000		
	3	.0000		
	4	.0007	13	.0046
	5	.0079	12	.0391
	6	.0441	11	.1536
\longrightarrow	7	.1534	10	.3722
	8	.3633	9	.6367

Por lo tanto

$$\alpha^* = 0.1534 \ge 0.1$$

Conclución: No rechazo \mathbf{H}_0

- 1.2 Test de correlación de rangos de Spearman.
- 1.2.1 Muestra 1

Datos ordenados	$Indice\ (dato\ original)$	Rango
X_i^*	i	$R\left(X_{i} ight)$
67,5	4	1
68,4	5	2
69,8	12	3
70,1	1	4
70,3	10	5
70,4	2	6
71,4	9	7
72,1	11	8
73,6	6	9
75,7	8	10
75,8	3	11
76,9	7	12

y como n=12 tenemos que:

Estadístico de prueba		
$\mathbf{R}_{s} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(X_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 -$	$-6\frac{264}{12\left((12)^2 - 1\right)} = 0,076923077$	

Como es estadístico de correlación de Spearman dió positivo planteamos:

\mathbf{H}_0	\mathbf{H}_1	
$X_1,,X_n$ es un m.a.s.	hay tendencia "creciente"	

Usando la tabla tenemos que:

n	α^*	0.1	0.05
↓	↑	\rightarrow	+
:	:	:	:
$12 \longrightarrow$	$\mathbf{R}_s = 0.076923077$	0.406	0.503

por lo tanto

$$\alpha^* \ge 0.1 \text{ (p-valor)}$$

Conclusión: No se rechaza \mathbf{H}_0 .

1.2.2 Muestra 2

Datos ordenados	$Indice\ (dato\ original)$	Rango
Y_i^*	i	$R\left(Y_{i} ight)$
67.4	4	1
68.7	9	2
69.3	5	3
69.9	8	4
70.1	7	5
70.2	14	6
70.3	10	7
70.5	6	8
70.7	11	9
71.1	12	10
74.1	2	11
74.3	1	12
74.4	13	13
75.4	3	14

y como n = 14 tenemos que:

Estadístico de prueba			
$\mathbf{R}_{s} = 1 - 6 \frac{\sum_{i=1}^{i=n} (R(Y_{i}) - i)^{2}}{n(n^{2} - 1)} = 1 - \frac{1}{n(n^{2} - 1)}$	$-6\frac{490}{14\left(\left(14\right)^2 - 1\right)} = -0.076923077$		

Como es estadístico de correlación de Spearman dió negativo planteamos:

\mathbf{H}_0	\mathbf{H}_1	
$X_1,,X_n$ es un m.a.s.	hay tendencia "decreciente"	

Usando la tabla tenemos que:

n	α^*	0.1	0.05
+	↑	→	\rightarrow
:	:	:	:
$14 \longrightarrow$	$-\mathbf{R}_s = 0.076923077$	0.367	0.484

por lo tanto

$$\alpha^* \ge 0.1 \text{ (p-valor)}$$

Conclusión: No se rechaza \mathbf{H}_0 .

2 TEST DE COMPARACIÓN DE DOS MUESTRAS

2.1 Test de Kolmogorov-Smirnov

Tenemos una muestra $X_1, ..., X_{12}$ iid con distribución F (continua) y una muestra $Y_1, ..., Y_{14}$ iid con distribución G (continua) e independientes entre si.

Planteamos

$$\begin{cases} (H_0) \ F = G \\ (H_1) \ F \neq G \end{cases}$$

Apliquemos el test de Kolmogorov - Smirnov

$$\begin{aligned} \mathbf{Estad\acute{s}tico} & \ \mathbf{de} \ \mathbf{prueba} \\ \mathbf{D} &= \sup_{t \in R} \left\{ \left| F_n^X\left(t\right) - F_m^Y\left(t\right) \right| \right\} \quad \text{donde} \\ F_n^X\left(t\right) &= \text{(cantidad de valores muestrales de } X \leq t \text{)} n \\ F_m^X\left(t\right) &= \text{(cantidad de valores muestrales de } Y \leq t \text{)} m \end{aligned}$$

(con n = 12 y m = 14) resultando

$$\mathbf{D} = \sup_{t \in R} \left\{ \left| F_m^X\left(t\right) - F_n^Y\left(t\right) \right| \right\} = 0,25$$

por lo tanto

$$mn\mathbf{D} = (12)(14)(0.25) = 42$$

resultando, de la tabla que

$$\alpha^* > 0.2$$

Conclusión: No se rechaza \mathbf{H}_0 .

2.2 Tets de Mann - Whitney-Wilcoxon sobre "corrimientos".

Sea $X_1, ..., X_{12}$ una m.a.s. con distribución F (continua y desconocida) e $Y_1, ..., Y_{14}$ una m.a.s. con distribución G (continua y desconocida) e indedendientes entre sí.

(Recordar que X es la muestra de menor cantidad de datos)

- El estadístico de prueba T_X se determina de la siguiente manera:
 - Se juntan **todos** los datos y se obtiene una muestra

$$Z_1, Z_2, ..., Z_N$$
 donde $N = 12 + 14 = 26$

- Se ordenan de menor a mayor (los valores que se repitan se escriben repetidos)

$$Z_1^* < Z_2^* < \dots < Z_N^*$$

- Se asignan rangos $R(Z_i)$ = "lugar que ocupa Z_i en la muestra ordenada"
- En este caso hay rangos "empatados" (datos iguales). Se reasignan los rangos, atribuyendole a cada empate el promedio de los rangos asignados inicialmente.
- Se calcula $\mathbf{T}_X = \text{suma de rangos de los datos } X_1, ..., X_{12}$ (siendo $\mathbf{T}_Y = \text{suma de rangos de los datos } X_1, ..., X_{12}$) los datos $Y_1,...,Y_{14},$ se debe verificar que $\mathbf{T}_X+\mathbf{T}_Y=\dfrac{N\left(N+1\right)}{2})$

Luego se obtiene

$$T_X = 173$$

Como

$$\mathbf{T}_X \ge \frac{n(n+m+1)}{2} = \frac{12(12+14+1)}{2} = 162$$

Planteamos

$$egin{array}{c|c} \mathbf{H}_0 & \mathbf{H}_1 \\ F = G & F\left(t\right) = G\left(t- heta
ight) & (orall t \in R, \ heta > 0) \end{array}$$

Luego, usando la aproximación "normal" (incluida la "corección de continuidad") determinamos el p-valor:

$$z_{R}\left(\alpha^{*}\right) = \frac{\mathbf{T}_{X} - \frac{1}{2} - \frac{n\left(n+m+1\right)}{2}}{\sqrt{\frac{nm\left(n+m+1\right)}{12}}} = 0,848668425 \Leftrightarrow \boxed{\alpha^{*} = 1 - \Phi\left(z_{R}\left(\alpha^{*}\right)\right) = 0,198032859}$$

Conclusión: No se rechaza \mathbf{H}_0

Coclusión primaria: No hay evidencia de diferencia significativa entre los niveles de contaminación de las ciudades

NOTA: no se realizan tets no-parámetricos sobre "dispersión o escala", pues las muestras son pequeñas; y en el curso vimos la versión "asintótica" de dichos tests.

3 TEST DE NORMALIDAD (ajuste).

Vamos a aplicar el test de D'Agostino y el test de Shapiro - Wilks para determinar si los datos son normales (aunque los parámetros μ y σ sean desconocidos)

Sea una m.a.s. $X_1, ..., X_n$ con distribución F (desconocida), planteamos

\mathbf{H}_0	\mathbf{H}_1	
$F = \mathbf{Normal}$	$F \neq \mathbf{Normal}$	

3.1 El Test de Normalidad de D'Agostino.

$$\mathbf{E} = \sum_{k=1}^{k=n} \frac{\left(k-\left(\frac{n+1}{2}\right)\right)X_{(k)}}{\sqrt{n^3\left(n-1\right)s_n^2}} \text{ donde } X_{(1)} \leq \ldots \leq X_{(n)} \text{ es la muestra ordenada}$$

3.1.1 Muestra 1

Siendo
$$n=12$$
 y $s_n^2=rac{\sum\limits_{i=1}^{i=n}\left(X_i-\overline{X}_n
ight)^2}{n-1}=9,258787879$

se tiene que:

$$\mathbf{E} = 0,280325137$$

usando la tabla

n	$\alpha = 0.20$		$\alpha = 0.10$	
+	\		\	
12	$\mathbf{K}_{1,lpha}\left(n ight)$	$\mathbf{K}_{2.\alpha}\left(n\right)$	$\mathbf{K}_{1,lpha}\left(n ight)$	$\mathbf{K}_{2.\alpha}\left(n\right)$
12	0.2653	0.2841	0.2598	0.2849

luego

$$\alpha^* > 0.2$$

Conclusión: No se rechaza \mathbf{H}_0 .

3.1.2 Muestra 2

Siendo
$$n=12$$
 y $s_n^2 = \frac{\sum\limits_{i=1}^{i=n} \left(X_i - \overline{X}_n\right)^2}{n-1} = 5,819120879$

se tiene que:

$$\mathbf{E} = 0,271943628$$

usando la tabla

n	lpha = 0.20		$\alpha = 0.10$	
+	\downarrow		\downarrow	
14	$\mathbf{K}_{1,lpha}\left(n ight)$	$\mathbf{K}_{2.\alpha}\left(n\right)$	$\mathbf{K}_{1,lpha}\left(n ight)$	$\mathbf{K}_{2.\alpha}\left(n\right)$
14	0.2669	0.2846	0.2518	0.2853

luego

$$\alpha^* > 0.2$$

Conclusión: No se rechaza \mathbf{H}_0 .

3.2 El Test de Normalidad de Shapiro - Wilks.

$$\mathbf{W} = \frac{\left(b_n\right)^2}{\left(n-1\right)s_n^2}$$
 donde $b_n = a_n\left(X_{(n)} - X_{(1)}\right) + a_{n-1}\left(X_{(n-1)} - X_{(2)}\right) + \cdots + a_k\left(X_{(n-k+1)} - X_{(k)}\right)$ con $k = \left[\frac{n}{2}\right]$ y $X_{(1)} \leq \ldots \leq X_{(n)}$ es la muestra ordenada (los coeficientes a_i se obtienen de la tabla del test)

3.2.1 Muestra 1

por lo tanto

$$\mathbf{W} = 0.932065878$$

usando la tabla

n	lpha=0.1	$oldsymbol{lpha} = 0.5$
\rightarrow	\rightarrow	\rightarrow
12	0.883	0.943

luego

$$0.1 < \alpha^* < 0.5$$

Conclusión: No se rechaza \mathbf{H}_0 .

3.2.2 Muestra 2

$$\begin{array}{c} \text{coeficientes a_i} \\ X_{(14)} = 75, 4 \quad X_{(1)} = 67, 4 \\ X_{(13)} = 74, 4 \quad X_{(2)} = 68, 7 \\ X_{(12)} = 74, 3 \quad X_{(3)} = 69, 3 \\ X_{(11)} = 74, 1 \quad X_{(4)} = 69, 9 \\ X_{(10)} = 71, 1 \quad X_{(5)} = 70, 1 \\ X_{(9)} = 70, 7 \quad X_{(6)} = 70, 2 \\ X_{(8)} = 70, 5 \quad X_{(7)} = 70, 3 \end{array} \quad \begin{array}{c} \text{coeficientes a_i} \\ 0,5251 \\ 0,3318 \\ 0,246 \\ 0,1802 \\ 0,1802 \\ 0,124 \\ 0,0727 \\ 0,0727 \\ 0,024 \end{array} \Rightarrow \quad b_n = 8,24405$$

por lo tanto

$$\mathbf{W} = 0,898422259$$

usando la tabla

n	lpha=0.1	lpha=0.5
\downarrow	\rightarrow	\rightarrow
14	0.895	0.947

luego

$$0.1 < \alpha^* < 0.5$$

Conclusión: No se rechaza \mathbf{H}_0 .

4 TEST PARAMETRICOS

Asumiendo la normalidad de los datos, de acuerdo con la parte anterior, realizamos:

4.1 Test paramétrico sobre "dispersión"

Sea X_1, X_2, \ldots, X_n una m.a.s con distribución $N\left(\mu_X, \sigma_X^2\right)$ e Y_1, Y_2, \ldots, Y_m una m.a.s con distribución $N\left(\mu_Y, \sigma_Y^2\right)$ e independientes entre si,, donde $\sigma_X^2 = \mathbf{Var}\left(X\right)$ y $\sigma_Y^2 = \mathbf{Var}\left(Y\right)$ son desconocidas Calculamos las estimaciones de las varianzas

$$s_n^2(X) = 9,258787879$$
 y $s_m^2(Y) = 5,819120879$

Planteamos

\mathbf{H}_0	\mathbf{H}_1	Estadístico de prueba	Región crítica
$\sigma_X^2 = \sigma_Y^2$	$\sigma_X^2 > \sigma_Y^2$	$\mathbf{F} = \frac{s_n^2\left(X\right)}{s_m^2\left(Y\right)}$	$\mathbf{F} \geq f_{\alpha} \left(n - 1, m - 1 \right)$

resultando

$$\mathbf{F} = \frac{s_n^2\left(X\right)}{s_m^2\left(Y\right)} = \frac{9,258787879}{5,819120879} = 1.591097362$$

y usando la Tabla con $\alpha=0.1$

$$\begin{array}{ccccc} n & \longrightarrow & 10 & 12 \\ m & & \downarrow & \downarrow \\ \downarrow & & \downarrow & \downarrow \\ 13 & \rightarrow & 2,14 & 2,1 \end{array}$$

por lo tanto $\alpha^* > 0.1$

Conclusión: No Rechazamos \mathbf{H}_0

4.2 Test de comparación de medias.

Sea X_1, X_2, \ldots, X_n una m.a.s con distribución $N(\mu_X, \sigma_X^2)$ e Y_1, Y_2, \ldots, Y_m una m.a.s con distribución $N(\mu_Y, \sigma_Y^2)$ e independientes entre si,, donde $\sigma_X^2 = \mathbf{Var}(X)$ y $\sigma_Y^2 = \mathbf{Var}(Y)$ son desconocidas pero iguales

\mathbf{H}_0	\mathbf{H}_1	Estadístico de prueba	Región crítica
$\mu_X = \mu_Y$	$\mu_X \neq \mu_Y$	$\mathbf{T} = rac{\overline{X}_n - \overline{Y}_m}{s_p \sqrt{rac{1}{n} + rac{1}{m}}}$	$ \mathbf{T} \geq t_{rac{lpha}{2}}(n+m-2)$

calculando

$$\overline{X}_n = 71,83333333$$
 y $\overline{Y}_m = 71,17142857$ $s_n^2(X) = 9,258787879$ y $s_m^2(Y) = 5,819120879$

tenemos que

$$s_p^2 = \frac{(n-1) s_n^2(X) + (m-1) s_m^2(X)}{n+m-2} = 7.395634921$$

y por lo tanto

$$\mathbf{T} = \frac{\overline{X}_n - \overline{Y}_m}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}} = \frac{71.83333333 - 71.17142857}{\sqrt{(7.395634921)\left(\frac{1}{12} + \frac{1}{14}\right)}} = 0.61869$$

usando la tabla

$$\begin{array}{cccc} \alpha \longrightarrow & 0.4 & \frac{\alpha^*}{2} & 0.25 \\ n \downarrow & & \uparrow \\ 24 & 0.256 & \mathbf{T} = 0.61869 & 0.685 \end{array}$$

por lo tanto el p-valor α^* cumple que

$$0.25 < \frac{\alpha^*}{2} < 0.4 \Leftrightarrow \boxed{0.5 < \alpha^* < 0.8}$$

Conclusión: No se rechaza \mathbf{H}_0 .

5 Conclusión final

Ambas muestras son normales con la misma media y la misma varianza.

No hay diferencia significativa entre los niveles de contaminación de ambas ciudades.