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9.1 INTRODUCTION

Armed with the previous material, we now have the means to calculate joint-
position time histories that correspond to desired end-effector motions through
space. In this chapter, we begin to discuss how to cause the manipulator actually to
perform these desired motions.

The control methods that we wifi discuss fall into the class called linear-control
systems. Strictly speaking, the use of linear-control techniques is valid only when
the system being studied can be modeled mathematically by linear differential
equations. For the case of manipulator control, such linear methods must essentially
be viewed as approximate methods, for, as we have seen in Chapter 6, the dynamics
of a manipulator are more properly represented by a nonlinear differential equation.
Nonetheless, we wifi see that it is often reasonable to make such approximations,
and it also is the case that these linear methods are the ones most often used in
current industrial practice.

Finally, consideration of the linear approach will serve as a basis for the
more complex treatment of nonlinear control systems in Chapter 10. Although we
approach linear control as an approximate method for manipulator control, the
justification for using linear controllers is not only empirical. In Chapter 10, we
will prove that a certain linear controller leads to a reasonable control system
even without resorting to a linear approximation of manipulator dynamics. Readers
familiar with linear-control systems might wish to skip the first four sections of the
current chapter.
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9.2 FEEDBACK AND CLOSED-LOOP CONTROL

We will model a manipulator as a mechanism that is instrumented with sensors
at each joint to measure the joint angle and that has an actuator at each joint to
apply a torque on the neighboring (next higher) link.1. Although other physical
arrangements of sensors are sometimes used, the vast majority of robots have a
position sensor at each joint. Sometimes velocity sensors (tachometers) are also
present at the joints. Various actuation and transmission schemes are prevalent in
industrial robots, but many of these can be modeled by supposing that there is a
single actuator at each joint.

We wish to cause the manipulator joints to follow prescribed position trajec-
tories, but the actuators are commanded in terms of torque, so we must use some
kind of control system to compute appropriate actuator commands that will realize
this desired motion. Almost always, these torques are determined by using feedback
from the joint sensors to compute the torque required.

Figure 9.1 shows the relationship between the trajectory generator and the
physical robot. The robot accepts a vector of joint torques, r, from the control
system. The manipulator's sensors allow the controller to read the vectors of joint
positions, e, and joint velocities, e. All signal lines in Fig. 9.1 carry N x 1 vectors
(where N is the number of joints in the manipulator).

Let's consider what algorithm might be implemented in the block labeled
"control system" in Fig. 9.1. One possibility is to use the dynamic equation of the
robot (as studied in Chapter 6) to calculate the torques required for a particular
trajectory. We are given ed, ®d, and °d by the trajectory generator, so we could
use (6.59) to compute

r = + V(Od, ed) + G(ed). (9.1)

This computes the torques that our model dictates would be required to realize
the desired trajectory. If our dynamic model were complete and accurate and no
"noise" or other disturbances were present, continuous use of (9.1) along the desired
trajectory would realize the desired trajectory. Unfortunately, imperfection in the
dynamic model and the inevitable presence of disturbances make such a scheme
impractical for use in real applications. Such a control technique is termed an open-
loop scheme, because there is no use made of the feedback from the joint sensors

FIGURE 9.1: High-level block diagram of a robot-control system.

1Remember all remarks made concerning rotational joints holdanalogously for linear joints, and vice
versa
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(i.e., (9.1) is a function oniy of the desired trajectory, ®d' and its derivatives, and not
a function of 0, the actual trajectory).

Generally, the only way to build a high-performance control system is to make
use of feedback from joint sensors, as indicated in Fig. 9.1. Typically, this feedback
is used to compute any servo error by finding the difference between the desired
and the actual position and that between the desired and the actual velocity:

E = —0,

(9.2)

The control system can then compute how much torque to require of the actuators
as some function of the servo error. Obviously, the basic idea is to compute actuator
torques that would tend to reduce servo errors. A control system that makes use of
feedback is called a closed-loop system. The "loop" closed by such a control system
around the manipulator is apparent in Fig. 9.1.

The central problem in designing a control system is to ensure that the resulting
closed-loop system meets certain performance specifications. The most basic such
criterion is that the system remain stable. For our purposes, we wifi define a system
to be stable if the errors remain "small" when executing various desired trajectories
even in the presence of some "moderate" disturbances. It should be noted that an
improperly designed control system can sometimes result in unstable performance,
in which servo errors are enlarged instead of reduced. Hence, the first task of a
control engineer is to prove that his or her design yields a stable system; the second
is to prove that the closed-loop performance of the system is satisfactory. In practice,
such "proofs" range from mathematical proofs based on certain assumptions and
models to more empirical results, such as those obtained through simulation or
experimentation.

Figure 9.1, in which all signals lines represent N xl vectors, summarizes the fact
that the manipulator-control problem is a multi-input, multi-output (MIMO) control
problem. In this chapter, we take a simple approach to constructing a control system
by treating each joint as a separate system to be controlled. Hence, for an N-jointed
manipulator, we will design N independent single-input, single-output (SISO)
control systems. This is the design approach presently adopted by most industrial-
robot suppliers. This independent joint control approach is an approximate method
in that the equations of motion (developed in Chapter 6) are not independent, but
rather are highly coupled. Later, this chapter wifi present justification for the linear
approach, at least for the case of highly geared manipulators.

9.3 SECOND-ORDER LINEAR SYSTEMS

Before considering the manipulator control problem, let's step back and start by
considering a simple mechanical system. Figure 9.2 shows a block of mass in attached
to a spring of stiffness k and subject to friction of coefficient b. Figure 9.2 also indicates
the zero position and positive sense of x, the block's position. Assuming a frictional
force proportional to the block's velocity, a free-body diagram of the forces acting
on the block leads directly to the equation of motion,

niI+bi+kx =0. (9.3)
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FIGURE 9.2: Spring—mass system with friction.

Hence, the open-loop dynamics of this one-degree-of-freedom system are described
by a second-order linear constant-coefficient differential equation [1]. The solution
to the differential equation (9.3) is a time function, x (t), that specifies the motion
of the block. This solution will depend on the block's initial conditions—that is, its
initial position and velocity.

We wifi use this simple mechanical system as an example with which to review
some basic control system concepts. Unfortunately, it is impossible to do justice to
the field of control theory with only a brief introduction here. We wifi discuss the
control problem, assuming no more than that the student is familiar with simple
differential equations. Hence, we wifi not use many of the popular tools of the
control-engineering trade. For example, Laplace transforms and other common
techniques neither are a prerequisite nor are introduced here. A good reference for
the field is [4].

Intuition suggests that the system of Fig. 9.2 might exhibit several different
characteristic motions. For example, in the case of a very weak spring (i.e., k small)
and very heavy friction (i.e., b large) one imagines that, if the block were perturbed,
it would return to its resting position in a very slow, sluggish manner. However,
with a very stiff spring and very low friction, the block might oscifiate several times
before coming to rest. These different possibilities arise because the character of the
solution to (9.3) depends upon the values of the parameters in, b, and k.

From the study of differential equations [1], we know that the form of the
solution to an equation of the form of (9.3) depends on the roots of its characteristic
equation,

ins2+bs-j-k=O. (9.4)

This equation has the roots

b
S1

— 2in
+

2iii

b — 4mk
(9.5)

2m 2in

The location of and s2 (sometimes called the poles of the system) in the
real—imaginary plane dictate the nature of the motions of the system. If and s2
are real, then the behavior of the system is sluggish and nonoscillatory. If and
are complex (i.e., have an imaginary component) then the behavior of the system is
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oscifiatory. If we include the special limiting case between these two behaviors, we
have three classes of response to study:

1. Real and Unequal Roots. This is the case when b2 > 4 ink; that is, friction
dominates, and sluggish behavior results. This response is called overdamped.

2. Complex Roots. This is the case when b2 <4 ink; that is, stiffness dominates,
and oscifiatory behavior results. This response is called underdamped.

3. Real and Equal Roots. This is the special case when b2 = 4 ink; that is,
friction and stiffness are "balanced," yielding the fastest possible nonosdillatory
response. This response is called critically damped.

The third case (critical damping) is generally a desirable situation: the system
nulls out nonzero initial conditions and returns to its nominal position as rapidly as
possible, yet without oscillatory behavior.

Real and unequal roots

It can easily be shown (by direct substitution into (9.3)) that the solution, x(t), giving
the motion of the block in the case of real, unequal roots has the form

x(t) = + c2eS2t, (9.6)

where s1 and s2 are given by (9.5). The coefficients c1 and c2 are constants that can
be computed for any given set of initial conditions (i.e., initial position and velocity
of the block).

Figure 9.3 shows an example of pole locations• and the corresponding time
response to a nonzero initial condition. When the poles of a second-order system
are real and unequal, the system exhibits sluggish or overdamped motion.

In cases where one of the poles has a much greater magnitude than the other,
the pole of larger magnitude can be neglected, because the term corresponding
to it wifi decay to zero rapidly in comparison to the other, dominant pole. This
same notion of dominance extends to higher order systems—for example, often a

Tm )s}
x(t)

,\ /\
Rejs} t

FIGURE 9.3: Root location and response to initial conditions for an overdamped
system.
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third-order system can be studied as a second-order system by considering only two
dominant poles.

EXAMPLE 9.1

Determine the motion of the system in Fig. 9.2 if parameter values are in = 1, b = 5,
and k = 6 and the block (initially at rest) is released from the position x = —1.

The characteristic equation is

(9.7)

which has the roots s1 = —2 and = Hence, the response has the form

x(t) = + c2e_3t (9.8)

We now use the given initial conditions, x(0) = —1 and i(0) = 0, to compute c1 and
c2. To satisfy these conditions at t = 0, we must have

Ci + C2 = —1

and
—2c1 — 3c2 = 0, (9.9)

which are satisfied by c1 = —3 and c2 = 2. So, the motion of the system for t ? 0 is
given by

x(t) = _3e_2t + 2e_3t. (9.10)

Complex roots

For the case where the characteristic equation has complex roots of the form

= A + /Li,

= A — (9.11)

it is stifi the case that the solution has the form

x(t) = c1eS1t + c2eS2t. (9.12)

However, equation (9.12) is difficult to use directly, because it involves imaginary
numbers explicitly. It can be shown (see Exercise 9.1) that Euler's formula,

= cosx + i sinx, (9.13)

allows the solution (9.12) to be manipulated into the form

x(t) = cieAt cos(/Lt) + (9.14)

As before, the coefficients c1 and c2 are constants that can be computed for any
given set of initial conditions (i.e., initial position and velocity of the block). If we
write the constants c1 and c2 in the form

C1 = r cos 8,

c2=rsin8, (9.15)
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then (9.14) can be written in the form

x(t) = rext — 8), (9.16)

where

r

8 = Atan2(c2, c1). (9.17)

In this form, it is easier to see that the resulting motion is an oscifiation whose
amplitude is exponentially decreasing toward zero.

Another common way of describing oscillatory second-order systems is in
terms of damping ratio and natural frequency. These terms are defined by the
parameterization of the characteristic equation given by

+ + = 0, (9.18)

where is the damping ratio (a dimensionkss number between 0 and 1) and
w71 is the natural frequency.2 Relationships between the pole locations and these
parameters are

=

and

= (9.19)

In this terminology, the imaginary part of the poles, is sometimes called the
damped natural frequency. For a damped spring—mass system such as the one in
Fig. 9.2, the damping ratio and natural frequency are, respectively,

b

= (9.20)

When no damping is present (b = 0 in our example), the damping ratio becomes
zero; for critical damping (b2 = 4km), the damping ratio is 1.

Figure 9.4 shows an example of pole locations and the corresponding time
response to a nonzero initial condition. When the poles of a second-order system
are complex, the system exhibits oscifiatory or underdamped motion.

EXAMPLE 9.2

Find the motion of the system in Fig. 9.2 if parameter values are m = 1, b = 1, and
k = 1 and the block (initially at rest) is released from the position x = —1.

The characteristic equation is

s2+s+1=0, (9.21)

2The terms damping ratio and natural frequency can also be applied to overdamped systems, in which
case > 1.0.
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X

FIGURE 9.4: Root location and response to initial conditions for an underdamped
system.

which has the roots = + Hence, the response has the form

x(t) = e 2 c1 cos + c2 sin . (9.22)

We now use the given initial conditions, x (0) = —1 and (0) = 0, to compute
c1 and c2. To satisfy these conditions at t = 0, we must have

C1 = —1

and
1

— = 0, (9.23)

which are satisfied by c1 = —1 and c2 = So, the motion of the system for t 0
is given by

x(t) = e 2 cos — sin (9.24)

This result can also be put in the form of (9.16), as

= cos (4t + 1200). (9.25)

Real and equal roots

By substitution into (9.3), it can be shown that, in the case of real and equal roots
(i.e., repeated roots), the solution has the form

x(t) = c1eSlt + c2teS2t, (9.26)
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Tm(s) x(t)

Re(s)

FIGURE 9.5: Root location and response to initial conditions for a critically damped
system.

where, in this case, s1 = s2 = (9.26) can be written

x(t) = (c1 + (9.27)

In case it is not clear, a quick application of l'Hôpital's rule [2] shows that, for
any c1, c2, and a,

urn (c1 + c7t)e_at = 0. (9.28)
t-+oo

Figure 9.5 shows an example of pole locations and the corresponding time
response to a nonzero initial condition. When the poles of a second-order system
are real and equal, the system exhibits critically damped motion, the fastest possible

nonoscifiatory response.

EXAMPLE 9.3

Work out the motion of the system in Fig. 9.2 if parameter values are in = 1, b = 4,
and k = 4 and the block (initially at rest) is released from the position x = —1.

The characteristic equation is

(9.29)

which has the roots s1 = s2 = —2. Hence, the response has the form

x(t) = (c1 + c7t)e_2t. (9.30)

We now use the given initial conditions, x(0) = —1 and ±(0) = 0, to calculate
c1 and c2. To satisfy these conditions at t = 0, we must have

Cl = —1

and
—2c1 + c2 = 0, (9.31)

which are satisfied by c1 = —1 and c2 = —2. So, the motion of the system for t 0

is given by
x(t) = (—1 — 2t)e_2t. (9.32)
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In Examples 9.1 through 9.3, all the systems were stable. For any passive
physical system like that of Fig. 9.2, this will be the case. Such mechanical systems
always have the properties

in >0,

b > 0, (9.33)

k >0.

In the next section, we wifi see that the action of a control system is, in effect, to
change the value of one or more of these coefficients. It will then be necessary to
consider whether the resulting system is stable.

9.4 CONTROL OF SECOND-ORDER SYSTEMS

Suppose that the natural response of our second-order mechanical system is not
what we wish it to be. Perhaps it is underdamped and oscillatory, and we would like
it to be critically damped; or perhaps the spring is missing altogether (k = 0), so the
system never returns to x = 0 if disturbed. Through the use of sensors, an actuator,
and a control system, we can modify the system's behavior as desired.

Figure 9.6 shows a damped spring—mass system with the addition of an actuator
with which it is possible to apply a force f to the block. A free-body diagram leads
to the equation of motion,

nil + + kx = f. (9.34)

Let's also assume that we have sensors capable of detecting the block's position and
velocity. We now propose a control law which computes the force that should be
applied by the actuator as a function of the sensed feedback:

f = — (9.35)

Figure 9.7 is a block diagram of the closed-loop system, where the portion to the left
of the dashed line is the control system (usually implemented in a computer) and
that to the right of the dashed line is the physical system. Implicit in the figure are
interfaces between the control computer and the output actuator commands and
the input sensor information.

The control system we have proposed is a position-regulation system—it
simply attempts to maintain the position of the block in one fixed place regardless

/

FIGURE 9.6: A damped spring—mass system with an actuator.
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FIGURE 9.7: A closed-loop control system. The control computer (to the left of the
dashed line) reads sensor input and writes actuator output commands.

of disturbance forces applied to the block. In a later section, we will construct a
trajectory-following control system, which can cause the block to follow a desired
position trajectory.

By equating the open-loop dynamics of (9.34) with the control law of (9.35),
we can derive the closed-loop dynamics as

ml + bi + kx = — (9.36)

or
=0, (9.37)

or
ml +

b' k' = k and (9.38), it is clear that, by setting
the control gains, and we can cause the closed-loop system to appear to have
any second system behavior that we wish. Often, gains would be chosen to obtain
critical damping (i.e., b' = and some desired closed-loop stiffness given
directly by k'.

Note that and could be positive or negative, depending on the parameters
of the original system. However, if b' or k' became negative, the result would be
an unstable control system. This instability will be obvious if one writes down the
solution of the second-order differential equation (in the form of (9.6), (9.14), or
(9.26)). It also makes intuitive sense that, if b' or k' is negative, servo errors tend to
get magnified rather than reduced.

EXAMPLE 9.4

If the parameters of the system in Fig. 9.6 are in = 1, b = 1, and k = 1, find gains
and for a position-regulation control law that results in the system's being

critically damped with a closed-loop stiffness of 16.0.

x
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If we wish k' to be 16.0, then, for critical damping, we require that b' =
= 8.0. Now, k = 1 and b = 1, so we need

= 15.0,

= 7.0. (9.39)

9.5 CONTROL-LAW PARTITIONING

In preparation for designing control laws for more complicated systems, let us
consider a slightly different controller structure for the sample problem of Fig. 9.6.
In this method, we wifi partition the controller into a model-based portion and a
servo portion. The result is that the system's parameters (i.e., in, b, and k, in this case)
appear only in the model-based portion and that the servo portion is independent
of these parameters. At the moment, this distinction might not seem important,
but it wifi become more obviously important as we consider nonlinear systems
in Chapter 10. We will adopt this control-law partitioning approach throughout
the book.

The open-loop equation of motion for the system is

ml + hi + kx = f. (9.40)

We wish to decompose the controller for this system into two parts. In this case, the
model-based portion of the control law wifi make use of supposed knowledge of in,
b, and k. This portion of the control law is set up such that it reduces the system so
that it appears to be a unit mass. This will become clear when we do Example 9.5.
The second part of the control law makes use of feedback to modify the behavior of
the system. The model-based portion of the control law has the effect of making the
system appear as a unit mass, so the design of the servo portion is very simple—gains
are chosen to control a system composed of a single unit mass (i.e., no friction, no
stiffness).

The model-based portion of the control appears in a control law of the form

(9.41)

where u and are functions or constants and are chosen so that, if f'is taken as the
new input to the system, the system appears to be a unit mass. With this structure of
the control law, the system equation (the result of combining (9.40) and (9.41)) is

inl+bi+kx =af'+tl. (9.42)

Clearly, in order to make the system appear as a unit mass from the f' input, for
this particular system we should choose a and as follows:

a = in,

(9.43)

Making these assignments and plugging them into (9.42), we have the system
equation

I = f'. (9.44)
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FIGURE 9.8: A closed-loop control system employing the partitioned control method.

This is the equation of motion for a unit mass. We now proceed as if (9.44) were
the open-loop dynamics of a system to be controlled. We design a control law to
compute f ', just as we did before:

f' = —

Combining this control law with (9.44) yields

=0.

(9.45)

(9.46)

Under this methodology, the setting of the control gains is simple and is independent
of the system parameters; that is,

= (9.47)

must hold for critical damping. Figure 9.8 shows a block diagram of the partitioned
controller used to control the system of Fig. 9.6.

EXAMPLE 9.5

If the parameters of the system in Fig. 9.6 are in = 1, b = 1, and k = 1, find a, and
the gains and for a position-regulation control law that results in the system's
being critically damped with a closed-loop stiffness of 16.0.

We choose

a = 1,

(9.48)

so that the system appears as a unit mass from the fictitious f'input. We then set
gain to the desired closed-loop stiffness and set = for critical damping.
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This gives

= 16.0,

= 8.0. (9.49)

9.6 TRAJECTORY-FOLLOWING CONTROL

Rather than just maintaining the block at a desired location, let us enhance our
controller so that the block can be made to follow a trajectory. The trajectory is
given by a ftnction of time, xd(t), that specifies the desired position of the block.
We assume that the trajectory is smooth (i.e., the first two derivatives exist) and that
our trajectory generator provides xd, ia, and 1d at all times t. We define the servo
error between the desired and actual trajectory as e = xd — x. A servo-control law
that will cause trajectory following is

(9.50)

We see that (9.50) is a good choice if we combine it with the equation of motion of
a unit mass (9.44), which leads to

I (9.51)

or

(9.52)

This is a second-order differential equation for which we can choose the coefficients,
so we can design any response we wish. (Often, critical damping is the choice made.)
Such an equation is sometimes said to be written in error space, because it describes
the evolution of errors relative to the desired trajectory. Figure 9.9 shows a block
diagram of our trajectory-following controller.

If our model is perfect (i.e., our knowledge of in, b, and k), and if there is
no noise and no initial error, the block will follow the desired trajectory exactly. If
there is an initial error, it will be suppressed according to (9.52), and thereafter the
system wifi follow the trajectory exactly.

FIG URE 9.9: A trajectory-following controller for the system in Fig. 9.6.
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9.7 DISTURBANCE REJECTION

One of the purposes of a control system is to provide rejection, that
is, to maintain good performance (i.e., minimize errors) even in the presence of
some external disturbances or noise. In Fig. 9.10, we show the trajectory-following
controller with an additional input: a disturbance force An analysis of our
closed-loop system leads to the error equation

+ + = (9.53)

Equation (9.53) is that of a differential equation driven by a forcing function.
If it is known that is bounded—that is, that a constant a exists such that

<a, (9.54)

then the solution of the differential equation, e(t), is also bounded. This result is due
to a property of stable linear systems known as bounded-input, bounded-output or
BIIBO stability {3, 4]. This very basic result ensures that, for a large class of possible
disturbances, we can at least be assured that the system remains stable.

Steady-state error

Let's consider the simplest kind of disturbance—namely, that is a constant. In
this case, we can perform a steady-state analysis by analyzing the system at rest (i.e.,
the derivatives of all system variables are zero). Setting derivatives to zero in (9.53)
yields the steady-state equation

= fthst' (9.55)

or
e = fdist/kp. (9.56)

The value of e given by (9.56) represents a steady-state error. Thus, it is clear that
the higher the position gain the smaller will be the steady-state error.

FIG U RE 9.10: A trajectory-following control system with a disturbance acting.
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Addition of an integral term

In order to eliminate steady-state error, a modified control law is sometimes used.
The modification involves the addition of an integral term to the control law. The
control law becomes

= + + + k1 f edt, (9.57)

which results in the error equation

(9.58)

The term is added so that the system wifi have no steady-state error in the presence
of constant disturbances. If e(t) = 0 for t < 0, we can write (9.58) for t > 0 as

= fdist' (9.59)

which, in the steady state (for a constant disturbance), becomes

= 0, (9.60)

so

e = 0. (9.61)

With this control law, the system becomes a third-order system, and one can
solve the corresponding third-order differential equation to work out the response
of the system to initial conditions. Often, is kept quite small so that the third-order
system is "close" to the second-order system without this term (i.e., a dominant-
pole analysis can be performed). The form of control law (9.57) is called a P11.)
control law, or "proportional, integral, derivative" control law [4]. For simplicity,
the displayed equations generally do not show an integral term in the control laws
that we develop in this book.

9.8 CONTINUOUS VS. DISCRETE TIME CONTROL

In the control systems we have discussed, we implicitly assumed that the control
computer performs the computation of the control law in zero time (i.e., infinitely
fast), so that the value of the actuator force f is a continuous function of time. Of
course, in reality, the computation requires some time, and the resulting commanded
force is therefore a discrete "staircase" function. We shall employ this approximation
of a very fast control computer throughout the book. This approximation is good
if the rate at which new values of f are computed is much faster than the natural
frequency of the system being controlled. In the field of discrete time control or
digital control, one does not make this approximation but rather takes the servo
rate of the control system into account when analyzing the system [3].

We will generally assume that the computations can be performed quickly
enough that our continuous time assumption is valid. This raises a question: How
quick is quick enough? There are several points that need to be considered in
choosing a sufficiently fast servo (or sample) rate:
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Tracking reference inputs: The frequency content of the desired or reference input
places an absolute lower bound on the sample rate. The sample rate must be
at least twice the bandwidth of reference inputs. This is usually not the limiting
factor.

Disturbance rejection: In disturbance rejection, an upper bound on performance
is given by a continuous-time system. If the sample period is longer than the
correlation time of the disturbance effects (assuming a statistical model for
random disturbances), then these disturbances wifi not be suppressed. Perhaps
a good rule of thumb is that the sample period should be 10 times shorter than
the correlation time of the noise [3].

Antialiasing: Any time an analog sensor is used in a digital control scheme, there
wifi be a problem with aliasing unless the sensor's output is strictly band
limited. In most cases, sensors do not have a band limited output, and so
sample rate should be chosen such that the amount of energy that appears in
the aliased signal is small.

Structural resonances: We have not included bending modes in our characterization
of a manipulator's dynamics. All real mechanisms have finite stiffness and so
wifi be subject to various kinds of vibrations. If it is important to suppress these
vibrations (and it often is), we must choose a sample rate at least twice the
natural frequency of these resonances. We wifi return to the topic of resonance
later in this chapter.

9.9 MODELING AND CONTROL OF A SINGLE JOINT

In this section, we wifi develop a simplified model of a single rotary joint of a
manipulator. A few assumptions wifi be made that wifi allow us to model the
resulting system as a second-order linear system. For a more complete model of an
actuated joint, see [5].

A common actuator found in many industrial robots is the direct current (DC)
torque motor (as in Fig. 8.18). The nonturning part of the motor (the stator) consists
of a housing, bearings, and either permanent magnets or electromagnets. These
stator magnets establish a magnetic field across the turning part of the motor (the
rotor). The rotor consists of a shaft and windings through which current moves to
power the motor. The current is conducted to the windings via brushes, which make
contact with the commutator. The commutator is wired to the various windings (also
called the armature) in such a way that torque is always produced in the desired
direction. The underlying physical phenomenon [6] that causes a motor to generate
a torque when current passes through the windings can be expressed as

F=qVxB, (9.62)

where charge q, moving with velocity V through a magnetic field B, experiences a
force F. The charges are those of electrons moving through the windings, and the
magnetic field is that set up by the stator magnets. Generally, the torque-producing
ability of a motor is stated by means of a single motor torque constant, which relates
armature current to the output torque as

= (9.63)
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When a motor is rotating, it acts as a generator, and a voltage develops across the
armature. A second motor constant, the back emf constant,3 describes the voltage
generated for a given rotational velocity:

v = ke8i)i. (9.64)

Generally, the fact that the commutator is switching the current through various sets
of windings causes the torque produced to contain some torque ripple. Although
sometimes important, this effect can usually be ignored. (In any case, it is quite hard
to model—and quite hard to compensate for, even if it is modeled.)

Motor-armature inductance

Figure 9.11 shows the electric circuit of the armature. The major components are a
voltage source, V0, the inductance of the armature windings, the resistance of the
armature windings, ra, and the generated back emf, v. The circuit is described by a
first-order differential equation:

iota + Va — keOin. (9.65)

It is generally desirable to control the torque generated by the motor (rather than
the velocity) with electronic motor driver circuitry. These drive circuits sense the
current through the armature and continuously adjust the voltage source Va 50 that
a desired current flows through the armature. Such a circuit is called a
amplifier motor driver [7]. In these current-drive systems, the rate at which the
armature current can be commanded to change is limited by the motor inductance
1a and by an upper liniit on the voltage capability of the voltage source The net
effect is that of a low-pass filter between the requested current and output torque.

Our first simplifying assumption is that the inductance of the motor can be
neglected. This is a reasonable assumption when the natural frequency of the closed-
loop control system is quite low compared to the cut-off frequency of the implicit
low-pass ifiter in the current-drive circuitry due to the inductance. This assumption,
along with the assumption that torque ripple is a negligible effect, means that we can
essentially command torque directly. Although there might be a scale factor (such
as to contend with, we wifi assume that the actuator acts as a pure torque source
that we can command directly.

r11 1A

FIGURE 9.11: The armature circuit of a DC torque motor.

3"emf" stands for electromotive force.
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b

FIGURE 9.12: Mechanical model of a DC torque motor connected through gearing to
an inertial load.

Effective inertia

Figure 9.12 shows the mechanical model of the rotor of a DC torque motor connected
through a gear reduction to an inertial load. The torque applied to the rotor, tm, is

given by (9.63) as a function of the current flowing in the armature circuit. The
gear ratio (11) causes an increase in the torque seen at the load and a reduction in
the speed of the load, given by

t =

9 = (9.66)

where > 1. Writing a torque balance for this system in terms of torque at the rotor
yields

= + + (1/17) (Jo + be), (9.67)

where and I are the inertias of the motor rotor and of the load, respectively, and
and b are viscous friction coefficients for the rotor and load bearings, respectively.

Using the relations (9.66), we can write (9.67) in terms of motor variables as

=
+ + + (9.68)

or in terms of load variables as

= (I + + (b + (9.69)

The term I + 172 is sometimes called the effective inertia "seen" at the output
(link side) of the gearing. Likewise, the term b + can be called the effective
damping. Note that, in a highly geared joint (i.e., 17 >> 1), the inertia of the motor
rotor can be a significant portion of the combined effective inertia. It is this effect that
allows us to make the assumption that the effective inertia is a constant. We know

a/fl
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from Chapter 6 that the inertia, I, of a joint of the mechanism actually varies with
configuration and load. However, in highly geared robots, the variations represent
a smaller percentage than they would in a direct-drive manipulator (i.e., = 1). To
ensure that the motion of the robot link is never underdamped, the value used for I
should be the maximum of the range of values that I takes on; we'll call this value

This choice results in a system that is critically damped or overdamped in all
situations. In Chapter 10, we will deal with varying inertia directly and will not have
to make this assumption.

EXAMPLE 9.6

If the apparent link inertia, I, varies between 2 and 6 Kg-m2, the rotor inertia is
= 0.01, and the gear ratio is = 30, what are the minimum and maximum of the

effective inertia?
The minimum effective inertia is

'mm + = 2.0 + (900)(0.01) = 11.0; (9.70)

the maximum is
'max + = 6.0 + (900) (0.01) = 15.0. (9.71)

Hence, we see that, as a percentage of the total effective inertia, the variation of
inertia is reduced by the gearing.

Unmodeled flexibility

The other major assumption we have made in our model is that the gearing, the
shafts, the bearings, and the driven link are not flexible. In reality, all of these
elements have finite stiffness, and their flexibility, if modeled, would increase the
order of the system. The argument for ignoring flexibility effects is that, if the system
is sufficiently stiff, the natural frequencies of these unmodeled resonances are very
high and can be neglected compared to the influence of the dominant second-order
poles that we have modeled.4 The term "unmodeled" refers to the fact that, for
purposes of control-system analysis and design, we neglect these effects and use a
simpler dynamic model, such as (9.69).

Because we have chosen not to model structural flexibiities in the system,
we must be careful not to excite these resonances. A rule of thumb [8] is that, if
the lowest structural resonance is cores, then we must limit our closed-loop natural
frequency according to

< (9.72)

This provides some guidance on how to choose gains in our controller. We have seen
that increasing gains leads to faster response and lower steady-state error, but we
now see that unmodeled structural resonances limit the magnitude of gains. Typical
industrial manipulators have structural resonances in the range from 5 Hz to 25 Hz
[8]. Recent designs using direct-drive arrangements that do not contain flexibility

4This is basically the same argument we used to neglect the pole due to the motor inductance.
Including it would also have raised the order of the overall system.



282 Chapter 9 Linear control of manipulators

introduced by reduction and transmission systems have their lowest structural
resonances as high as 70 Hz [9].

EXAMPLE 9.7

Consider the system of Fig. 9.7 with the parameter values in = 1, b = 1, and k = 1.

Additionally, it is known that the lowest unmodeled resonance of the system is at
8 radians/second. Find a, and gains and for a position-control law so the
system is critically damped, doesn't excite unmodeled dynamics, and has as high a
closed-loop stiffness as possible.

We choose

a = 1,

(9.73)

so that the system appears as a unit mass from the fictitious f' input. Using
our rule of thumb (9.72), we choose the closed-loop natural frequency to be

= 4 radians/second. From (9.18) and (9.46), we have = co2, so

= 16.0,

= 8.0. (9.74)

Estimating resonant frequency

The same sources of structural flexibility discussed in Chapter 8 give rise to reso-
nances. In each case where a structural flexibility can be identified, an approximate
analysis of the resulting vibration is possible if we can describe the effective mass
or inertia of the flexible member. This is done by approximating the situation by a
simple spring—mass system, which, as given in (9.20), exhibits the natural frequency

= (9.75)

where k is the stiffness of the flexible member and in is the equivalent mass displaced
in vibrations.

EXAMPLE 9.8

A shaft (assumed massless) with a stiffness of 400 Nt-rn/radian drives a rotational
inertia of 1 Kg-m2. If the shaft stiffness was neglected in the modeling of the
dynamics, what is the frequency of this unmodeled resonance?

Using (9.75), we have

= \/400/1 = 20 rad/second = 20/(27r)Hz 3.2 Hz. (9.76)

For the purposes of a rough estimate of the lowest resonant frequency of
beams and shafts, [10] suggests using a lumped model of the mass. We already



Section 9.9 Modeling and control of a single joint 283

0.23 in

0.33 I

FIGURE 9.13: Lumped models of beams for estimation of lowest lateral and torsional
resonance.

have formulas for estimating stiffness at the ends of beams and shafts; these lumped
models provide the effective mass or inertia needed for our estimation of resonant
frequency. Figure 9.13 shows the results of an energy analysis [10] which suggests
that a beam of mass rn be replaced by a point mass at the end of 0.23 in and, likewise,
that a distributed inertia of I be replaced by a lumped 0.33 I at the end of the shaft.

EXAMPLE 9.9

A link of mass 4.347 Kg has an end-point lateral stiffness of 3600 Nt/m. Assuming
the drive system is completely rigid, the resonance due to the flexibility of the link
wifi limit control gains. What is Wres?

The 4.347 Kg mass is distributed along the link. Using the method of Fig. 9.13,
the effective mass is (0.23) (4.347) 1.0 Kg. Hence, the vibration frequency is

Wres = = 60 radians/second = 60/(27r)Hz 9.6 Hz. (9.77)

The inclusion of structural flexibilities in the model of the system used for
control-law synthesis is required if we wish to achieve closed-loop bandwidths higher
than that given by (9.75). The resulting system models are of high order, and the
control techniques applicable to this situation become quite sophisticated. Such
control schemes are currently beyond the state of the art of industrial practice but
are an active area of research [11, 12].

Control of a single joint

In summary, we make the following three major assumptions:

1. The motor inductance 1a can be neglected.
2. Taking into account high gearing, we model the effective inertia as a constant

equal to 'max +
3. Structural flexibilities are neglected, except that the lowest structural resonance

is used in setting the servo gains.
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With these assumptions, a single joint of a manipulator can be controlled with
the partitioned controller given by

a = 'max +

= (b + (9.78)

r=8d+kVe+kPe. (9.79)

The resulting system closed-loop dynamics are

+ + = tdjst, (9.80)

where the gains are chosen as

k
P a 4 res

= = Wres. (9.81)

9.10 ARCHITECTURE OF AN INDUSTRIAL-ROBOT CONTROLLER

In this section, we briefly look at the architecture of the control system of the
Unimation PUMA 560 industrial robot. As shown in Fig. 9.14, the hardware archi-
tecture is that of a two-level hierarchy, with a DEC LSI-11 computer serving as
the top-level "master" control computer passing cormnands to six Rockwell 6503
microprocessors.5 Each of these microprocessors controls an individual joint with
a PID control law not unlike that presented in this chapter. Each joint of the
PUMA 560 is instrumented with an incremental optical encoder. The encoders are
interfaced to an up/down counter, which the microprocessor can read to obtain the
current joint position. There are no tachometers in the PUMA 560; rather, joint
positions are differenced on subsequent servo cycles to obtain an estimate of joint
velocity. In order to command torques to the DC torque motors, the microprocessor

FIG U RE 9.14: Hierarchical computer architecture of the PUMA 560 robot-control
system.

5These simple 8-bit computers are already old technology. It is common these days for robot
controllers to be based on 32-bit microprocessors.
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FIG U RE 9.15: Functional blocks of the joint-control system of the PUMA 560.

is interfaced to a digital-to-analog converter (DAC) so that motor currents can be
commanded to the current-driver circuits. The current flowing through the motor is
controlled in analog circuitry by adjusting the voltage across the armature as needed
to maintain the desired armature current. A block diagram is shown in Fig. 9.15.

Each 28 milliseconds, the LSI-11 computer sends a new position command
(set-point) to the joint microprocessors. The joint microprocessors are running on a
0.875 millisecond cycle. In this time, they interpolate the desired position set-point,
compute the servo error, compute the PID control law, and command a new value
of torque to the motors.

The LSI-11 computer carries out all the "high-level" operations of the overall
control system. First of all, it takes care of interpreting the VAL (Uriimation's
robot programming language) program commands one by one. When a motion
command is interpreted, the LSI-11 must perform any needed inverse kinematic
computations, plan a desired trajectory, and begin generating trajectory via points
every 28 miffiseconds for the joint controllers.

The LSI-11 is also interfaced to such standard peripherals as the terminal and
a floppy disk drive. In addition, it is interfaced to a teach pendant. A teach pendant
is a handheld button box that allows the operator to move the robot around in a
variety of modes. For example, the PUMA 560 system allows the user to move the
robot incrementally in joint coordinates or in Cartesian coordinates from the teach
pendant. In this mode, teach-pendant buttons cause a trajectory to be computed
"on the fly" and passed down to the joint-control microprocessors.
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EXERCISES

9.1 [20] For a second-order differential equation with complex roots

= —

show that the general solution

x(t) = + c9eS2t,

can be written
x(t) = c1eAt cos(jst) + c2eAt

9.2 [13] Compute the motion of the system in Fig. 9.2 if parameter values are in = 2,
b = 6, and k = 4 and the block (initially at rest) is released from the position
x =1.

9.3 [13] Compute the motion of the system in Fig. 9.2 if parameter values are in = 1,
b = 2, and k = 1 and the block (initially at rest) is released from the position
x =4.

9.4 [13] Compute the motion of the system in Fig. 9.2 if parameter values are in = 1,
b = 4, and k = 5 and the block (initially at rest) is released from the position
x =2.

9.5 [15] Compute the motion of the system in Fig. 9.2 if parameter values are in = 1,
b = 7, and k = 10 and the block is released from the position x = 1 with an initial
velocity of x = 2.

9.6 [15] Use the (1, 1) element of (6.60) to compute the variation (as a percentage
of the maximum) of the inertia "seen" by joint 1 of this robot as it changes
configuration. Use the numerical values

= 12 0.5 m,

in1 = 4.0 Kg,

ifl2 =2.0Kg.
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Consider that the robot is direct drive and that the rotor inertia is negligible.
9.7 [17] Repeat Exercise 9.6 for the case of a geared robot (use = 20) and a rotor

inertia of = 0.01 Kg m2.
9.8 [18] Consider the system of Fig. 9.6 with the parameter values in = 1, b = 4,

and k = 5. The system is also known to possess an unmodeled resonance at
Wres = 6.0 radians/second. Determine the gains and that will critically damp
the system with as high a stiffness as is reasonable.

9.9 [25] In a system like that of Fig. 9.12, the inertial load, I, varies between 4 and
5 Kg-rn2. The rotor inertia is = 0.01 Kg-rn2, and the gear ratio is = 10.

The system possesses uninodeled resonances at 8.0, 12.0, and 20.0 radians/second.
Design a and fi of the partitioned controller and give the values of and such
that the system is never underdamped and never excites resonances, but is as stiff
as possible.

9.10 [18] A designer of a direct-drive robot suspects that the resonance due to beam
flexibility of the link itself will be the cause of the lowest unmodeled resonance. If
the link is approximately a square-cross-section beam of dimensions 5 x 5 x 50 cm
with a 1-cm wall thickness and a total mass of 5 Kg, estimate cores.

9.11 [15] A direct-drive robot link is driven through a shaft of stiffness 1000 Nt-rn/radian.
The link inertia is 1 Kg-m2. Assuming the shaft is massless, what is Wres?

9.12 [18] A shaft of stiffness 500 Nt-mlradian drives the input of a rigid gear pair with
1) = 8. The output of the gears drives a rigid link of inertia 1 Kg-rn2. What is the
C0res caused by flexibility of the shaft?

9.13 [25] A shaft of stiffness 500 Nt-rn/radian drives the input of a rigid gear pair with
= 8. The shaft has an inertia of 0.1 Kg-rn2. The output of the gears drives a rigid

link of inertia 1 Kg-rn2. What is the Wres caused by flexibility of the shaft?
9.14 [28] In a system like that of Fig. 9.12, the inertial load, I, varies between 4 and

5 Kg-rn2. The rotor inertia is = 0.01 Kg-rn2, and the gear ratio is = 10. The
system possesses an unmodeled resonance due to an end-point stiffness of the
link of 2400 Nt-rn/radian. Design a and fi of the partitioned controller, and give
the values of and k0 such that the system is never underdamped and never
excites resonances, but is as stiff as possible.

9.15 [25] A steel shaft of length 30 cm and diarneter 0.2 cm drives the input gear of a
reduction of 17 = 8. The rigid output gear drives a steel shaft of length 30 cm and
diameter 0.3 cm. What is the range of resonant frequencies observed if the load
inertia varies between 1 and 4 Kg-rn2?

PROGRAMMING EXERCISE (PART 9)

We wish to simulate a simple trajectory-following control systern for the three-link planar
arrn. This control system will be implemented as an independent-joint PD (proportional
plus derivative) control law. Set the servo gains to achieve closed-loop stiffnesses of
175.0, 110.0, and 20.0 for joints 1 through 3 respectively. Try to achieve approximate
critical damping.

Use the simulation routine UPDATE to simulate a discrete-time servo running
at 100 Hz—that is, calculate the control law at 100 Hz, not at the frequency of the
numerical integration process. Test the control scheme on the following tests:

1. Start the arm at 0 = (60, —110, 20) and command it to stay there until time = 3.0,
when the set-points should instantly change to 0 = (60, —50, 20). That is, give a
step input of 60 degrees to joint 2. Record the error—time history for each joint.

2. Control the arm to follow the cubic-spline trajectory from Programming Exercise
Part 7. Record the error—time history for each joint.
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MATLAB EXERCISE 9

This exercise focuses on linearized independent joint-control simulation for the shoulder
joint (joint 2) of the NASA eight-axis AAI ARJVIII (Advanced Research Manipulator II)
manipulator arm—see [14]. Familiarity with linear classical feedback-control systems,
including block diagrams and Laplace transforms, is assumed. We will use Simulink, the
graphical user interface of MATLAB.

Figure 9.16 shows a linearized open-loop system-dynamics model for the ARMII
electromechanical shoulder joint/link, actuated by an armature-controller DC servomo-
tor. The open-loop input is reference voltage (boosted to armature voltage via an
amplifier), and the output of interest is the load shaft angle ThetaL. The figure also
shows the feedback-control diagram, where the load-shaft angle is sensed via an optical
encoder and provided as feedback to the PTD controller. The table describes all system
parameters and variables.

If we reflect the load shaft inertia and damping to the motor shaft, the effective
polar inertia and damping coefficient are J = + JL(t)/n2 and C = CM + CL/n2.
By virtue of the large gear ratio n, these effective values are not much different
from the motor-shaft values. Thus, the gear ratio allows us to ignore variations in the
configuration-dependent load-shaft inertia (t) and just set a reasonable average value.

The ARJVHI shoulder joint constant parameters are given in the accompanying
table [13]. Note that we can use the English units directly, because their effect cancels out
inside the control diagram. Also, we can directly use deg units for the angle. Develop a
Simulink model to simulate the single-joint control model from the model and feedback-
control diagram shown; use the specific parameters from the table. For the nominal case,
determine the PID gains by trial and error for "good" performance (reasonable percent
overshoot, rise time, peak time, and settling time). Simulate the resulting motion for
moving this shoulder joint for a step input of 0 to 60 deg. Plot the simulated load-angle
value over time, plus the load-shaft angular velocity over time. In addition, plot the

Commanded
metaL

Encoder

Closed-Loop Feedback Control Diagram

FIGURE 9.16: Linearized open-loop system-dynamics model for the ARMII elec-
tromechanical shoulder joint/link, actuated by an armature-controller DC servomo-
tor.

Door rotio Integrator

Open-Loop Electromechanieal System Diagrom
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TABLE 9.1: ARMII shoulder loirit constant parameters.

Va(t) armature
voltage

-rM(t) generated
motor
torque

TL(t) load torque

L = 0.0006H armature
induc-
tance

9M(t) motor shaft
angle

OL(t) load shaft
angle

R = 1.40Q armature
resis-
tance

coM(t) motor shaft
velocity

WL(t) load shaft
velocity

(t) armature
current

= 0.00844
lbf -in-s2

lumped
motor polar
inertia

(t) = 1

lbf -in-s2
lumped load
polar inertia

Vb (t) back emf
voltage

CM = 0.00013
lbf-in/deg/s

motor shaft
viscous
damping
coefficient

CL = 0.5

lbf-
in/deg/s

load shaft
viscous
damping
coefficient

= 12 amplifier
gain

n = 200 gear ratio g = 0

in/s2
gravity
(ignore
gravity at
first)

Kb = 0.00867
V/deg/s

back emf
constant

KM = 4.375
lbf -in/A

torque con-
stant

= 1 encoder
transfer
function

control effort—that is, the armature voltage Va over time. (On the same graph, also give
the back emf Vb.)

Now, try some changes—Simulink is so easy and enjoyable to change:

1) The step input is frustrating for controller design, so try a ramped step input
instead: Ramp from 0 to 60 deg in 1.5 sec, then hold the 60-deg command for all
time greater than 1.5 sec. Redesign PID gains and restimulate.

2) Investigate whether the inductor L is significant in this system. (The electrical sys-
tem rises much faster than the mechanical system—this effect can be represented
by time constants.)

3) We don't have a good estimate for the load inertia and damping and CL). With
your best PID gains from before, investigate how big these values can grow (scale
the nominal parameters up equally) before they affect the system.

4) Now, include the effect of gravity as a disturbance to the motor torque TM. Assume
that the moving robot mass is 200 lb and the moving length beyond joint 2 is 6.4
feet. Test for the nominal "good" PID gains you found; redesign if necessary. The
shoulder load angle 87 zero configuration is straight up.
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Nonlinear control
of manipulators

10.1 INTRODUCTION
10.2 NONLINEAR AND TIME-VARYING SYSTEMS
10.3 MULTI-INPUT, MULTI-OUTPUT CONTROL SYSTEMS
10.4 THE CONTROL PROBLEM FOR MANIPULATORS
10.5 PRACTICAL CONSIDERATIONS
10.6 CURRENT INDUSTRIAL-ROBOT CONTROL SYSTEMS
10.7 LYAPUNOV STABILITY ANALYSIS
10.8 CARTESIAN-BASED CONTROL SYSTEMS
10.9 ADAPTIVE CONTROL

10.1 INTRODUCTION

In the previous chapter, we made several approximations to allow a linear analysis of
the manipulator-control problem. Most important among these approximations was
that each joint could be considered independent and that the inertia "seen" by each
joint actuator was constant. In implementations of linear controllers as introduced in
the previous chapter, this approximation results in nonuniform damping throughout
the workspace and other undesirable effects. In this chapter, we wifi introduce a
more advanced control technique for which this assumption wifi not have to be
made.

In Chapter 9, we modeled the manipulator by n independent second-order
differential equations and based our controller on that model. In this chapter, we
will base our controller design directly on the n x 1-nonlinear vector differential
equation of motion, derived in Chapter 6 for a general manipulator.

The field of nonlinear control theory is large; we must therefore restrict our
attention to one or two methods that seem well suited to mechanical manipulators.
Consequently, the major focus of the chapter wifi be one particular method,
apparently first proposed in [1] and named the computed-torque method in [2, 3].
We wifi also introduce one method of stability analysis of nonlinear systems, known
as Lyapimov's method [4].

To begin our discussion of nonlinear techniques for controlling a manipulator,
we return again to a very simple single-degree-of-freedom mass—spring friction
system.

290
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10.2 NONLINEAR AND TIME-VARYING SYSTEMS

In the preceding development, we dealt with a linear constant-coefficient differential
equation. This mathematical form arose because the mass—spring friction system
of Fig. 9.6 was modeled as a linear time-invariant system. For systems whose
parameters vary in time or systems that by nature are nonlinear, solutions are more
difficult.

When non]inearities are not severe, local linearization can be used to derive
linear models that are approximations of the nonlinear equations in the neighbor-
hood of an operating point. Unfortunately, the manipulator-control problem is not
well suited to this approach, because manipulators constantly move among regions
of their workspaces so widely separated that no linearization valid for all regions
can be found.

Another approach is to move the operating point with the manipulator as it
moves, always linearizing about the desired position of the manipulator. The result
of this sort of moving linearization is a linear, but time-varying, system. Although
this quasi-static linearization of the original system is useful in some analysis and
design techniques, we will not make use of it in our control-law synthesis procedure.
Rather, we will deal with the nonlinear equations of motion directly and will not
resort to linearizations in deriving a controller.

If the spring in Fig. 9.6 were not linear but instead contained a nonlinear
element, we could consider the system quasi-statically and, at each instant, figure
out where the poles of the system are located. We would find that the poles "move"
around in the real—imaginary plane as a function of the position of the block. Hence,
we could not select fixed gains that would keep the poles in a desirable location (for
example, at critical damping). So we may be tempted to consider a more complicated
control law, in which the gains are time-varying (actually, varying as a function of
the block's position) in such a manner that the system is always critically damped.
Essentially, this would be done by computing such that the combination of the
nonlinear effect of the spring would be exactly cancelled by a nonlinear term in
the control law so that the overall stiffness would stay a constant at all times. Such a
control scheme might be called a linearizing control law, because it uses a nonlinear
control term to "cancel" a nonlinearity in the controlled system, so that the overall
closed ioop system is linear.

We wifi now return to our partitioned control law and see that it can perform
this linearizing function. In our partitioned control-law scheme, the servo law remains
the same as always, but the model-based portion now wifi contain a model of the
nonlinearity. Thus, the model-based portion of the control performs a linearization
function. This is best shown in an example.

EXAMPLE 10.1

Consider the nonlinear spring characteristic shown in Fig. 10.1. Rather than the
usual linear spring relationship, f = kx, this spring is described by f = qx3. If this
spring is part of the physical system shown in Fig. 9.6, construct a control law to
keep the system critically damped with a stiffness of kcL.

The open-loop equation is

+ + qx3 = f. (10.1)
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FIG URE 10.1: The force-vs.-distance characteristic of a nonlinear spring.

The model-based portion of the control is f = af' + where now we use

the servo portion is, as always

a = in,

= + qx3; (10.2)

(10.3)f' =xd+kVe+kPe,
where the values of the gains are calculated from some desired performance
specification. Figure 10.2 shows a block diagram of this control system. The resulting
closed-loop system maintains poles in fixed locations.

FIGURE 10.2: A nonlinear control system for a system with a nonlinear spring.

f = qx3

System
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f

f=

FIGURE 10.3: The force-vs.-velocity characteristic of Coulomb friction.

EXAMPLE 10.2

Consider the nonlinear friction characteristic shown in Fig. 10.3. Whereas linear
friction is described by f = this Coulomb friction is described by f =
For most of today's manipulators, the friction of the joint in its bearing (be it
rotational or linear) is modeled more accurately by this nonlinear characteristic
than by the simpler, linear model. If this type of friction is present in the system of
Fig. 9.6, design a control system that uses a nonlinear model-based portion to damp
the system critically at all times.

The open-loop equation is

+ + kx = f. (10.4)

The partitioned control law is f = af' + where

a = in,

= + kx, (10.5)

where the values of the gains are calculated from some desired performance
specification.

EXAMPLE 10.3

Consider the single-link manipulator shown in Fig. 10.4. It has one rotational joint.
The mass is considered to be located at a point at the distal end of the link, and so
the moment of inertia is mi2. There is Coulomb and viscous friction acting at the
joint, and there is a load due to gravity.
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FIGURE 10.4: An inverted pendulum or a one-link manipulator.

The model of the manipulator is

= + v9 + csgn(9) + inlgcos(9). (10.6)

As always, the control system has two parts, the linearizing model-based portion
and the servo-law portion.

The model-based portion of the control is f = af' + where

the servo portion is, as always,

a = mi2,

= + csgn(9) + mnigcos(O); (10.7)

f' (10.8)

where the values of the gains are calculated from some desired performance
specification.

We have seen that, in certain simple cases, it is not difficult to design a nonlinear
controller. The general method used in the foregoing simple examples is the same
method we wifi use for the problem of manipulator control:

1. Compute a nonlinear model-based control law that "cancels" the nonlinearities
of the system to be controlled.

2. Reduce the system to a linear system that can be controlled with the simple
linear servo law developed for the unit mass.

In some sense, the linearizing control law implements an inverse model of the
system being controlled. The nonlinearities in the system cancel those in the inverse
model; this, together with the servo law, results in a linear closed-loop system.
Obviously, to do this cancelling, we must know the parameters and the structure of
the nonlinear system. This is often a problem in practical application of this method.

g

T
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10.3 MULTI-INPUT, MULTI-OUTPUT CONTROL SYSTEMS

Unlike the simple examples we have discussed in this chapter so far, the problem
of controlling a manipulator is a multi-input, multi-output (MIMO) problem. That
is, we have a vector of desired joint positions, velocities, and accelerations, and
the control law must compute a vector of joint-actuator signals. Our basic scheme,
partitioning the control law into a model-based portion and a servo portion, is stifi
applicable, but it now appears in a matrix—vector form. The control law takes the
form

F = aF' + (10.9)

where, for a system of n degrees of freedom, F, F', and are n xl vectors anda is an
n x ii matrix. Note that the matrix a is not necessarily diagonal, but rather is chosen
to decouple the ii equations of motion. If a and are correctly chosen, then, from
the F' input, the system appears to be n independent unit masses. For this reason,
in the multidimensional case, the model-based portion of the control law is called a
lineaTizing and decoupling control law. The servo law for a multidimensional system
becomes

F' = Xd + + (10.10)

where and are now n x n matrices, which are generally chosen to be diagonal
with constant gains on the diagonal. E and E are n x 1 vectors of the errors in
position and velocity, respectively.

10.4 THE CONTROL PROBLEM FOR MANIPULATORS

In the case of manipulator control, we developed a model and the corresponding
equations of motion in Chapter 6. As we saw, these equations are quite complicated.
The rigid-body dynamics have the form

= M(e)e + V(O, 0) + G(e), (10.11)

where M(O) is the ii x n inertia matrix of the manipulator, V(O, is an n x 1
vector of centrifugal and Coriolis terms, and G(O) is an ii x 1 vector of gravity
terms. Each element of M(®) and G(O) is a complicated function that depends on
0, the position of all the joints of the manipulator. Each element of V(0, 0) is a
complicated function of both 0 and 0.

Additionally, we could incorporate a model of friction (or other non-rigid-
body effects). Assuming that our model of friction is a function of joint positions
and velocities, we add the term F(0, 0) to (10.11), to yield the model

= M(0)e + v(e, 0) + G(0) + F(0, 0). (10.12)

The problem of controlling a complicated system like (10.12) can be handled
by the partitioned controller scheme we have introduced in this chapter. In this case,
we have

= at' + (10.13)

where t is the ii x 1 vector of joint torques. We choose

a = M(0),

= V(0, 0) + G(0) + F(0, 0), (10.14)
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with the servo law

= °d + + (10.15)

where
E = ed — 0. (10.16)

The resulting control system is shown in Fig. 10.5.
Using (10.12) through (10.15), it is quite easy to show that the closed-loop

system is characterized by the error equation

E + + =0. (10.17)

Note that this vector equation is decoupled: The matrices and are diagonal,
so that (10.17) could just as well be written on a joint-by-joint basis as

ë, + + = 0. (10.18)

The ideal performance represented by (10.17) is unattainable in practice, for many
reasons, the most important two being

1. The discrete nature of a digital-computer implementation, as opposed to the
ideal continuous-time control law implied by (10.14) and (10.15).

2. Inaccuracy in the manipulator model (needed to compute (10.14)).

In the next section, we will (at least partially) address these two issues.

10.5 PRACTICAL CONSIDERATIONS

In developing the decoupling and linearizing control in the last few sections, we
have implicitly made a few assumptions that rarely are true in practice.

Time required to compute the model

In all our considerations of the partitioned-control-law strategy, we have implicitly
assumed that the entire system was running in continuous time and that the computa-
tions in the control law require zero time for their computation. Given any amount of
computation, with a large enough computer we can do the computations sufficiently

FIGURE 10.5: A model-based manipulator-control system.
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fast that this is a reasonable approximation; however, the expense of the computer
could make the scheme economically unfeasible. In the manipulator-control case,
the entire dynamic equation of the manipulator, (10.14), must be computed in the
control law. These computations are quite involved; consequently, as was discussed
in Chapter 6, there has been a great deal of interest in developing fast computational
schemes to compute them in an efficient way. As computer power becomes more and
more affordable, control laws that require a great deal of computation will become
more practical. Several experimental implementations of nonlinear-model-based
control laws have been reported [5—9], and partial implementations are begirming
to appear in industrial controllers.

As was discussed in Chapter 9, almost all manipulator-control systems are
now performed in digital circuitry and are run at a certain sampling rate. This
means that the position (and possibly other) sensors are read at discrete points
in time. From the values read, an actuator command is computed and sent to
the actuator. Thus, reading sensors and sending actuator commands are not done
continuously, but rather at a finite sampling rate. To analyze the effect of delay
due to computation and finite sample rate, we must use tools from the field of
discrete-time control. In discrete time, differential equations turn into difference
equations, and a complete set of tools has been developed to answer questions
about stability and pole placement for these systems. Discrete-time control theory
is beyond the scope of this book, although, for researchers working in the area of
manipulator control, many of the concepts from discrete-time systems are essential.
(See [10].)

Although important, ideas and methods from discrete-time control theory
are often difficult to apply to the case of nonlinear systems. Whereas we have
managed to write a complicated differential equation of motion for the manipulator
dynamic equation, a discrete-time equivalent is impossible to obtain in general
because, for a general manipulator, the only way to solve for the motion of the
manipulator for a given set of initial conditions, an input, and a finite interval is by
numerical integration (as we saw in Chapter 6). Discrete-time models are possible
if we are willing to use series solutions to the differential equations, or if we make
approximations. However, if we need to make approximations to develop a discrete
model, then it is not clear whether we have a better model than we have when just
using the continuous model and making the continuous-time approximation. Suffice
it to say that analysis of the discrete-time manipulator-control problem is difficult,
and usually simulation is resorted to in order to judge the effect that a certain sample
rate wifi have on performance.

We wifi generally assume that the computations can be performed quickly
enough and often enough that the continuous-time approximation is valid.

Feedforward nonlinear control

The use of feedforward control has been proposed as a method of using a nonlinear
dynamic model in a control law without the need for complex and time-consuming
computations to be performed at servo rates [11]. In Fig. 10.5, the model-based
control portion of the control law is "in the servo loop" in that signals "flow"
through that black box with each tick of the servo clock. If we wish to select a sample
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Od

0d

FIGURE 10.6: Control scheme with the model-based portion "outside" the servo
loop.

rate of 200 Hz, then the dynamic model of the manipulator must be computed at this
rate. Another possible control system is shown in Fig. 10.6. Here, the model-based
control is "outside" the servo loop. Hence, it is possible to have a fast inner servo
loop, consisting simply of multiplying errors by gains, with the model-based torques
added at a slower rate.

Unfortunately, the feedforward scheme of Fig. 10.6 does not provide complete
decoupling. If we write the system equations,' we wifi ftnd that the error equation
of this system is

E + + =0. (10.19)

Clearly, as the configuration of the arm changes, the effective closed-loop gain
changes, and the quasi-static poles move around in the real—imaginary plane.
However, equation (10.19) could be used as a starting point for designing a robust
controller—one that finds a good set of constant gains such that, despite the
"motion" of the poles, they are guaranteed to remain in reasonably favorable
locations. Alternatively, one might consider schemes in which variable gains are
precomputed which change with configuration of the robot, so that the system's
quasi-static poles remain in fixed positions.

Note that, in the system of Fig. 10.6, the dynamic model is computed as a
function of the desired path only, so when the desired path is known in advance,
values could be computed "off-line" before motion begins. At run time, the
precomputed torque histories would then be read out of memory. Likewise, if time-
varying gains are computed, they too could be computed beforehand and stored.
Hence, such a scheme could be quite inexpensive computationally at run time and
thus achieve a high servo rate.

Dual-rate computed-torque implementation

Figure 10.7 shows the block diagram of a possible practical implementation of the
decoupling and linearizing position-control system. The dynamic model is expressed
in its configuration space form so that the dynamic parameters of the manipulator
will appear as functions of manipulator position only. These functions might then

1We have used the simplifying assumptions M(Od) M(O), V(Od, ed) (V(O, e), G(ed) G(O),
and F(Od, ed) F(e, 0).
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be computed by a background process or by a second control computer [8] or be
looked up in a precomputed table [12]. In this architecture, the dynamic parameters
can be updated at a rate slower than the rate of the closed-loop servo. For example,
the background computation might proceed at 60 Hz while the closed-loop servo
was running at 250 Hz.

Lack of knowledge of parameters

The second potential difficulty encountered in employing the computed-torque
control algorithm is that the manipulator dynamic model is often not known
accurately. This is particularly true of certain components of the dynamics, such
as friction effects. In fact, it is usually extremely difficult to know the structure of
the friction model, let alone the parameter values [13]. Finally, if the manipulator
has some portion of its dynamics that is not repeatable—because, for example, it
changes as the robot ages—it is difficult to have good parameter values in the model
at all times.

By nature, most robots wifi be picking up various parts and tools. When a
robot is holding a tool, the inertia and the weight of the tool change the dynamics
of the manipulator. In an industrial situation, the mass properties of the tools might
be known—in this case, they can be accounted for in the modeled portion of the
control law. When a tool is grasped, the inertia matrix, total mass, and center of
mass of the last link of the manipulator can be updated to new values that represent
the combined effect of the last link plus tool. However, in many applications, the
mass properties of objects that the manipulator picks up are not generally known,
so maintenance of an accurate dynamic model is difficult.

The simplest possible nonideal situation is one in which we stifi assume a
perfect model implemented in continuous time, but with external noise acting to
disturb the system. In Fig. 10.8, we indicate a vector of disturbance torques acting
at the joints. Writing the system error equation With inclusion of these unknown
disturbances, we arrive at

E + + = M1(O)rd, (10.20)

FIGURE 10.7: An implementation of the model-based manipulator-control system.
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FIG U RE 10.8: The model-based controller with an external disturbance acting.

where rd is the vector of disturbance torques at the joints. The left-hand side of
(10.20) is uncoupled, but, from the right-hand side, we see that a disturbance on any
particular joint will introduce errors at all the other joints, because M (0) is not, in
general, diagonal.

Some simple analyses might be performed on the basis of (10.20). For example,
it is easy to compute the steady-state servo error due to a constant disturbance as

E = K1M1(0)rd. (10.21)

When our model of the manipulator dynamics is not perfect, analysis of
the resulting closed-loop system becomes more difficult. We define the following
notation: M(0) is our model of the manipulator inertia matrix, M (0). Likewise,
V(0, 0), G(0), and F(0, are our models of the velocity terms, gravity terms,
and friction terms of the actual mechanism. Perfect knowledge of the model
would mean that

M(e) =

V(0, e) = V(0, (10.22)

G(0) = G(0),

F(o,e)=F(o,e).
Therefore, although the manipulator dynamics are given by

= M(0)ë + V(0, e) + G(0) + F(0, e), (10.23)

our control law computes

= at' +
a = M(0), (10.24)

18=v(0,e)+O(o)+fr(o,è).
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Decoupling and linearizing wifi not, therefore, be perfectly accomplished when
parameters are not known exactly. Writing the closed-loop equation for the system,
we have

E+KUE+KPE

= M1[(M — M)e + (V V) + (G — G) + (F — P)], (10.25)

where the arguments of the dynamic functions are not shown for brevity. Note that,
if the model were exact, so that (10.22) were true, then the right-hand side of (10.25)
would be zero and the errors would disappear. When the parameters are not known
exactly, the mismatch between actual and modeled parameters wifi cause servo
errors to be excited (possibly even resulting in an unstable system [21]) according to
the rather complicated equation (10.25).

Discussion of stability analysis of a nonlinear closed-loop system is deferred
until Section 10.7.

10.6 CURRENT INDUSTRIAL-ROBOT CONTROL SYSTEMS

Because of the problems with having good knowledge of parameters, it is not clear
whether it makes sense to go to the trouble of computing a complicated model-based
control law for manipulator control. The expense of the computer power needed to
compute the model of the manipulator at a sufficient rate might not be worthwhile,
especially when lack of knowledge of parameters could nullify the benefits of such an
approach. Manufacturers of industrial robots have decided, probably for economic
reasons, that attempting to use a complete manipulator model in the controller is
not worthwhile. Instead, present-day manipulators are controlled with very simple
control laws that generally are completely error driven and are implemented in
architectures such as those studied in Section 9.10. An industrial robot with a
high-performance servo system is shown in Fig. 10.9.

Individual-joint PID control

Most industrial robots nowadays have a control scheme that, in our notation, would
be described by

a = I,

= 0, (10.26)

where I is the n x n identity matrix. The servo portion is

= + + + f Edt, (10.27)

where and are constant diagonal matrices. In many cases, ed is not
available, and this term is simply set to zero. That is, most simple robot controllers
do not use a model-based component at all in their control law. This type of PID
control scheme is simple because each joint is controlled as a separate control
system. Often, one microprocessor per joint is used to implement (10.27), as was
discussed in Section 9.10.
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FIGURE 10.9: The Adept One, a direct-drive robot by Adept Technology, Inc.

The performance of a manipulator controlled in this way is not simple to
describe. No decoupling is being done, so the motion of each joint affects the other
joints. These interactions cause errors, which are suppressed by the error-driven
control law. It is impossible to select fixed gains that wifi critically damp the response
to disturbances for all configurations. Therefore, "average" gains are chosen, which
approximate critical damping in the center of the robot's workspace. In various
extreme configurations of the arm, the system becomes either underdamped or
overdamped. Depending on the details of the mechanical design of the robot, these
effects could be fairly small; then control would be good. In such systems, it is
important to keep the gains as high as possible, so that the inevitable disturbances
wifi be suppressed quickly.

Addition of gravity compensation

The gravity terms will tend to cause static positioning errors, so some robot
manufacturers include a gravity model, G(8), in the control law (that is, fi =
in our notation). The complete control law takes the form

(10.28)
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Such a control law is perhaps the simplest example of a model-based controller.
Because (10.28) can no longer be implemented on a strict joint-by-joint basis, the
controller architecture must allow communication between the joint controllers or
must make use of a central processor rather than individual-joint processors.

Various approximations of decoupling control

There are various ways to simplify the dynamic equations of a particular manipulator
[3,14]. After the simplification, an approximate decoupling and linearizing law can
be derived. A usual simplification might be to disregard components of torque
due to the velocity terms—that is, to model only the inertial and gravity terms.
Often, friction models are not included in the controller, because friction is so hard
to model correctly. Sometimes, the inertia matrix is simplified so that it accounts
for the major coupling between axes but not for minor cross-coupling effects. For
example, [14] presents a simplified version of the PUMA 560's mass matrix that
requires only about 10% of the calculations needed to compute the complete mass
matrix, yet is accurate to within 1 %.

10.7 LYAPU NOV STABILITY ANALYSIS

In Chapter 9, we examined linear control systems analytically to evaluate stability
and also performance of the dynamic response in terms of damping and closed-
loop bandwidth. The same analyses are valid for a nonlinear system that has been
decoupled and linearized by means of a perfect model-based nonlinear controller,
because the overall resulting system is again linear. However, when decoupling and
linearizing are not performed by the controller, or are incomplete or inaccurate,
the overall closed-loop system remains nonlinear. For nonlinear systems, stability
and performance analysis is much more difficult. In this section, we introduce one
method of stability analysis that is applicable to both linear and nonlinear systems.

Consider the simple mass—spring friction system originally introduced in
Chapter 9, whose equation of motion is

jul + hi + kx = 0. (10.29)

The total energy of the system is given by

= + (10.30)

where the first term gives the kinetic energy of the mass and the second term gives
the potential energy stored in the spring. Note that the value, v, of the system energy
is always nonnegative (i.e., it is positive or zero). Let's find out the rate of change of
the total energy by differentiating (10.30) with respect to time, to obtain

= mil + kxi. (10.31)

Substituting (10.29) for ml in (10.31) yields

= —hi2, (10.32)

which we note is always nonpositive (because b> 0). Thus, energy is always leaving
the system, unless i = 0. This implies that, however initially perturbed, the system
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will lose energy until it comes to rest. Investigating possible resting positions by
means of a steady-state analysis of (10.29) yields

kx = 0, (10.33)

or
x = 0. (10.34)

Hence, by means of an energy analysis, we have shown that the system of (10.29)
with any initial conditions (i.e., any initial energy) wifi eventually come to rest
at the equilibrium point. This stability proof by means of an energy analysis is a
simple example of a more general technique called Lyapunov stability analysis or
Lyapunov's second (or direct) method, after a Russian mathematician of the 19th
century [15].

An interesting feature of this method of stability analysis is that we can conclude
stability without solving for the solution of the differential equation governing
the system. However, while Lyapunov's method is useful for examining stability,
it generally does not provide any information about the transient response or
performance of the system. Note that our energy analysis yielded no information on
whether the system was overdamped or underdamped or on how long it would take
the system to suppress a disturbance. It is important to distinguish between stability
and performance: A stable system might nonetheless exhibit control performance
unsatisfactory for its intended use.

Lyapunov's method is somewhat more general than our example indicated.
It is one of the few techniques that can be applied directly to nonlinear systems
to investigate their stability. As a means of quickly getting an idea of Lyapunov's
method (in sufficient detail for our needs), we wifi look at an extremely brief
introduction to the theory and then proceed directly to several examples. A more
complete treatment of Lyapunov theory can be found in [16, 17].

Lyapunov's method is concerned with determining the stability of a differential
equation

X = f(X), (10.35)

where X is in x 1 and f(.) could be nonlinear. Note that higher order differential
equations can always be written as a set of first-order equations in the form (10.35).
To prove a system stable by Lyapunov's method, one is required to propose a
generalized energy function u(X) that has the following properties:

1. v (X) has continuous first partial derivatives, and u (X) > 0 for all X except
u(0) = 0.

2. (X) <0. Here, (X) means the change in v (X) along all system trajectories.

These properties might hold only in a certain region, or they might be global,
with correspondingly weaker or stronger stability results. The intuitive idea is that
a positive definite "energy-like" function of state is shown to always decrease or
remain constant—hence, the system is stable in the sense that the size of the state
vector is bounded.

When (X) is strictly less than zero, asymptotic convergence of the state to
the zero vector can be concluded. Lyapunov's original work was extended in an
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important way by LaSalle and Lefschetz [4], who showed that, in certain situations,
even when O(X) 0 (note equality included), asymptotic stability can be shown.
For our purposes, we can deal with the case = 0 by performing a steady-state
analysis in order to learn whether the stability is asymptotic or the system under
study can "get stuck" somewhere other than v (X) = 0.

A system described by (10.35) is said to be autonomous because the func-
tion f(.) is not an explicit function of time. Lyapunov's method also extends to
nonautonomous systems, in which time is an argument of the nonlinear function.
See [4, 17] for details.

EXAMPLE 10.4

Consider the linear system
X = —AX, (10.36)

where A is in x in and positive definite. Propose the candidate Lyapunov function

u(X) = (10.37)

which is continuous and everywhere nonnegative. Differentiating yields

ii(X)=XTX

= XT(_AX) (10.38)

= _XTAX,

which is everywhere nonpositive because A is a positive definite matrix. Hence,
(10.37) is indeed a Lyapunov function for the system of (10.36). The system is
asymptotically stable because i)(X) can be zero only at X = 0; everywhere else, X
must decrease.

EXAMPLE 10.5

Consider a mechanical spring—damper system in which both the spring and damper
are nonlinear:

(10.39)

The functions b(.) and k(.) are first- and third-quadrant continuous functions
such that

> 0 for x 0,

xk(x) > 0 for x 0. (10.40)

Once having proposed the Lyapunov function

v(x, = + f k(X)dA, (10.41)



306 Chapter 10 Nonlinear control of manipulators

we are led to

= — + k(x)i, (10.42)

=

Hence, (.) is nonpositive but is only semidefinite, because it is not a function of x
but only of In order to conclude asymptotic stability, we have to ensure that it is
not possible for the system to "get stuck" with nonzero x. To study all trajectories
for which = 0, we must consider

I = —k(x), (10.43)

for which x = 0 is the only solution. Hence, the system will come to rest only if
x = =1 =0.

EXAMPLE 10.6

Consider a manipulator with dynamics given by

r=M(e)e+v(o,e)+G(o) (10.44)

and controlled with the control law

= — KdO + G(e), (10.45)

where and Kd are diagonal gain matrices. Note that this controller does not force
the manipulator to follow a trajectory, but moves the manipulator to a goal point
along a path specified by the manipulator dynamics and then regulates the position
there. The resulting closed-loop system obtained by equating (10.44) and (10.45) is

M(e)e + V(O, e) + Kde + = (10.46)

it can be proven globally asymptotically stable by Lyapunov's method [18, 19].
Consider the candidate Lyapunov function

= + (10.47)

The function (10.47) is always positive or zero, because the manipulator mass
matrix, M(O), and the position gain matrix, are positive definite matrices.
Differentiating (10.47) yields

= + éTM(9)e —

= — — éTv(e (10.48)

=
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which is nonpositive as long as Kd is positive definite. In taking the last step in
(10.48), we have made use of the interesting identity

= OTV(O, é), (10.49)

which can be shown by investigation of the structure of Lagrange's equations of
motion [18—20]. (See also Exercise 6.17.)

Next, we investigate whether the system can get "stuck" with nonzero error.
Because i) can remain zero only along trajectories that have 0 = 0 and 0 = 0, we
see from (10.46) that, in this case,

= 0, (10.50)

and because is nonsingular, we have

E = 0. (10.51)

Hence, control law (10.45) applied to the system (10.44) achieves global asymptotic
stability.

This proof is important in that it explains, to some extent, why today's industrial
robots work. Most industrial robots use a simple error-driven servo, occasionally
with gravity models, and so are quite similar to (10.45).

See Exercises 10.11 through 10.16 for more examples of nonlinear manipulator-
control laws that can be proven stable by Lyapunov's method. Recently, Lyapunov
theory has become increasingly prevalent in robotics research publications [18—25].

10.8 CARTESIAN-BASED CONTROL SYSTEMS

In this section, we introduce the notion of Cartesian-based control. Although such
approaches are not currently used in industrial robots, there is activity at several
research institutions on such schemes.

Comparison with joint-based schemes

In all the control schemes for manipulators we have discussed so far, we assumed
that the desired trajectory was available in terms of time histories of joint position,
velocity, and acceleration. Given that these desired inputs were available, we
designedjoint-based control schemes, that is, schemes in which we develop trajectory
errors by finding the difference between desired and actual quantities expressed in
joint space. Very often, we wish the manipulator end-effector to follow straight lines
or other path shapes described in Cartesian coordinates. As we saw in Chapter 7, it
is possible to compute the time histories of the joint-space trajectory that correspond
to Cartesian straight-line paths. Figure 10.10 shows this approach to manipulator-
trajectory control. A basic feature of the approach is the trajectory-conversion
process, which is used to compute the joint trajectories. This is then followed by
some kind of joint-based servo scheme such as we have been studying.
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FIGURE 10.10: A joint-based control scheme with Cartesian-path input.

The trajectory-conversion process is quite difficult (in terms of computational
expense) if it is to be done analytically. The computations that would be required are

= INVKIN(xd),

= (10.52)

ed = + J-'(e)5?d.

To the extent that such a computation is done at all in present-day systems, usually
just the solution for 0d is performed, by using the inverse kinematics, and then
the joint velocities and accelerations are computed numerically by first and second
differences. However, such numerical differentiation tends to amplify noise and
introduces a lag unless it can be done with a noncausal fflter.2 Therefore, we are
interested in either finding a less computationally expensive way of computing
(10.52) or suggesting a control scheme in which this informatiOn is not needed.

An alternative approach is shown in Fig. 10.11. Here, the sensed position of
the manipulator is immediately transformed by means of the kinematic equations
into a Cartesian description of position. This Cartesian description is then compared
to the desired Cartesian position in order to form errors in Cartesian space. Control
schemes based on forming errors in Cartesian space are called Cartesian-based
control schemes. For simplicity, velocity feedback is not shown in Fig. 10.11, but it
would be present in any implementation.

The trajectory-conversion process is replaced by some kind of coordinate
conversion inside the servo loop. Note that Cartesian-based controllers must perform
many computations in the loop; the kinematics and other transformations are now
"inside the loop." This can be a drawback of the Cartesian-based methods; the
resulting system could run at a lower sampling frequency compared to joint-based

FIGURE 10.11: The concept of a Cartesian-based control scheme.

2Numerical differentiation introduces a lag unless it can be based on past, present, and future values.
When the entire path is preplanned, this kind of noncausal numerical differentiation can be done.
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systems (given the same size of computer). This would, in general, degrade the
stability and disturbance-rejection capabilities of the system.

Intuitive schemes of Cartesian control

One possible control scheme that comes to mind rather intuitively is shown in
Fig. 10.12. Here, Cartesian position is compared to the desired position to form
an error, 8X, in Cartesian space. This error, which may be presumed small if the
control system is doing its job, may be mapped into a small displacement in joint
space by means of the inverse Jacobian. The resulting errors in joint space, 88, are
then multiplied by gains to compute torques that will tend to reduce these errors.
Note that Fig. 10.12 shows a simplified controller in which, for clarity, the velocity
feedback has not been shown. It could be added in a straightforward manner. We
will call this scheme the inverse-Jacobian controller.

Another scheme which could come to mind is shown in Fig. 10.13. Here, the
Cartesian error vector is multiplied by a gain to compute a Cartesian force vector.
This can be thought of as a Cartesian force which, if applied to the end-effector
of the robot, would push the end-effector in a direction that would tend to reduce
the Cartesian error. This Cartesian force vector (actually a force—moment vector)
is then mapped through the Jacobian transpose in order to compute the equivalent
joint torques that would tend to reduce the observed errors. We wifi call this scheme
the transpose-Jacobian controller.

The inverse-Jacobian controller and the transpose-Jacobian controller have
both been arrived at intuitively. We cannot be sure that such arrangements would
be stable, let alone perform well. It is also curious that the schemes are extremely
similar, except that the one contains the Jacobian's inverse, the other its transpose.
Remember, the inverse is not equal to the transpose in general (only in the case of
a strictly Cartesian manipulator does jT = J1). The exact dynamic performance

FIGURE 10.12: The inverse-Jacobian Cartesian-control scheme.

Xd

FIGURE 10.13: The transpose-Jacobian Cartesian-control scheme.
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of such systems (if expressed in a second-order error-space equation, for example)
is very complicated. It turns out that both schemes will work (i.e., can be made
stable), but not well (i.e., performance is not good over the entire workspace). Both
can be made stable by appropriate gain selection, including some form of velocity
feedback (which was not shown in Figs. 10.12 and 10.13). While both wifi work,
neither is correct, in the sense that we cannot choose fixed gains that wifi result in
fixed closed-loop poles. The dynamic response of such controllers will vary with arm
configuration.

Cartesian decoupling scheme

For Cartesian-based controllers, like joint-based controllers, good performance
would be characterized by constant error dynamics over all configurations of the
manipulator. Errors are expressed in Cartesian space in Cartesian-based schemes,
so this means that we would like to design a system which, over all possible
configurations, would suppress Cartesian errors in a critically damped fashion.

Just as we achieved good control with a joint-based controller that was based
on a linearizing and decoupling model of the arm, we can do the same for the
Cartesian case. However, we must now write the dynamic equations of motion of
the manipulator in terms of Cartesian variables. This can be done, as was discussed
in Chapter 6. The resulting form of the equations of motion is quite analogous to
the joint-space version. The rigid-body dynamics can be written as

F = + e) + (10.53)

where F is a fictitious force—moment vector acting on the end-effector of the robot
and x is an appropriate Cartesian vector representing position and orientation of
the end-effector Analogous to the joint-space quantities, (0) is the mass
matrix in Cartesian space, (0, 0) is a vector of velocity terms in Cartesian space,
and is a vector of gravity terms in Cartesian space.

Just as we did in the joint-based case, we can use the dynamic equations in
a decoupling and linearizing controller. Because (10.53) computes F, a fictitious
Cartesian force vector which should be applied to the hand, we will also need to use
the transpose of the Jacobian in order to implement the control—that is, after F is
calculated by (10.53), we cannot actually cause a Cartesian force to be applied to
the end-effector; we instead compute the joint torques needed to effectively balance
the system if we were to apply this force:

= JT(O)F (10.54)

Figure 10.14 shows a Cartesian arm-control system using complete dynamic
decoupling. Note that the arm is preceded by the Jacobian transpose. Notice that
the controller of Fig. 10.14 allows Cartesian paths to be described directly, with no
need for trajectory conversion.

As in the joint-space case, a practical implementation might best be achieved
through use of a dual-rate control system. Figure 10.15 shows a block diagram
of a Cartesian-based decoupling and linearizing controller in which the dynamic
parameters are written as functions of manipulator position only. These dynamic
parameters are updated at a rate slower than the servo rate by a background
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process or a second control computer. This is appropriate, because we desire a fast
servo (perhaps running at 500 Hz or even higher) to maximize disturbance rejection
and stability. The dynamic parameters are functions of manipulator position only,
so they need be updated at a rate related only to how fast the manipulator is
changing configuration. The parameter-update rate probably need not be higher
than 100 Hz [8].

10.9 ADAPTIVE CONTROL

In the discussion of model-based control, it was noted that, often, parameters of
the manipulator are not known exactly. When the parameters in the model do not

FIGURE 10.14: The Cartesian model-based control scheme.

FIGURE 10.15: An implementation of the Cartesian model-based control scheme.
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match the parameters of the real device, servo errors wifi result, as is made explicit
in (10.25). These servo errors could be used to drive some adaptation scheme that
attempts to update the values of the model parameters until the errors disappear.
Several such adaptive schemes have been proposed.

An ideal adaptive scheme might be like the one in Fig. 10.16. Here, we are
using a model-based control law as developed in this chapter. There is an adaptation
process that, given observations of manipulator state and servo errors, readjusts the
parameters in the nonlinear model until the errors disappear. Such a system would
learn its own dynamic properties. The design and analysis of adaptive schemes are
beyond the scope of this book. A method that possesses exactly the structure shown
in Fig. 10.16 and has been proven globally stable is presented in [20, 21]. A related
technique is that of [221.
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EXERCISES

10.1 [15] Give the nonlinear control equations for an controller for
the system

-r =

Choose gains so that this system is always critically damped with kcL = 10.

10.2 [15] Give the nonlinear control equations for an controller for
the system

-r

Choose gains so that this system is always critically damped with kcL = 10.

10.3 [1911 Draw a block diagram showing a joint-space controller for the two-link arm
from Section 6.7, such that the arm is critically damped over its entire workspace.
Show the equations inside the blocks of a block diagram.

10.4 [2011 Draw a block diagram showing a Cartesian-space controller for the two-
link arm from Section 6.7, such that the arm is critically damped over its entire
workspace. (See Example 6.6.) Show the equations inside the blocks of a block
diagram.

10.5 [18] Design a trajectory-following control system for the system whose dynamics
are given by

= + in111129197,

= + + v202.

Do you think these equations could represent a real system?
10.6 [17] For the control system designed for the one-link manipulator in Example

10.3, give an expression for the steady-state position error as a function of error
in the mass parameter. Let = in — The result should be a function of
1, g, 9, and For what position of the manipulator is this at a maximum?

10.7 [26] For the two-degree-of-freedom mechanical system of Fig. 10.17, design a
controller that can cause x1 and x2 to follow trajectories and suppress disturbances
in a critically damped fashion.

10.8 [30] Consider the dynamic equations of the two-link manipulator from Section 6.7
in configuration-space form. Derive expressions for the sensitivity of the computed

A X1
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X XXX XXXXXXXXb1/////////////////////////////////
FIGURE 10.17: Mechanical system with two degrees of freedom.
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torque value versus small deviations in CE). Can you say something about how
often the dynamics should be recomputed in a controller like that of Fig. 10.7 as
a function of average joint velocities expected during normal operations?

10.9 [32] Consider the dynamic equations of the two-liuk manipulator from Example
6.6 in Cartesian configuration-space form. Derive expressions for the sensitivity of
the computed torque value versus small deviations in 0. Can you say something
about how often the dynamics should be recomputed in a controller like that
of Fig. 10.15 as a function of average joint velocities expected during normal
operations?

10.10 [15] Design a control system for the system

f
Choose gains so that this system is always critically damped with a closed-loop
stiffness of 20.

10.11 [20] Consider a position-regulation system that (without loss of generality)
attempts to maintain °d = 0. Prove that the control law

r - + G(0)

yields an asymptotically stable nonlinear system. You may take to be of the
form = where is a scalar and is the n x ii identity matrix. Hint: This
is similar to example 10.6.

10.12 [20] Consider a position-regulation system that (without loss of generality)
attempts to maintain 0d = 0. Prove that the control law

r = -K,O - + G(0)

yields an asymptotically stable nonlinear system. You may take to be of the
form = where is a scalar and is the 11 x n identity matrix. The matrix

is a positive definite estimate of the manipulator mass matrix. Hint: This is
similar to example 10.6.

10.13 [25] Consider a position-regulation system that (without loss of generality)
attempts to maintain °d = 0. Prove that the control law

r = + + G(0)

yields an asymptotically stable nonlinear system. You may take to be of the
form = k0 j/I where is a scalar and is the ii x n identity matrix. Hint: This
is similar to example 10.6.

10.14 [25] Consider a position-regulation system that (without loss of generality)
attempts to maintain 0d = 0. Prove that the control law

= + + G(0)

yields an asymptotically stable nonlinear system. You may take to be of the
form = where is a scalar and is the n x ii identity matrix. The
matrix is a positive definite estimate of the manipulator mass matrix. Hint:
This is similar to example 10.6.

10.15 [28] Consider a position-regulation system that (without loss of generality)
attempts to maintain °d = 0. Prove that the control law

= —
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yields a stable nonlinear system. Show that stability is not asymptotic and give an
expression for the steady-state error. Hint: This is similar to Example 10.6.

10.16 [30] Prove the global stability of the Jacobian-transpose Cartesian controller
introduced in Section 10.8. Use an appropriate form of velocity feedback to
stabilize the system. Hint: See [18].

10.17 [15] Design a trajectory-following controller for a system with dynamics given by

f = ax2 + + csin(x),

such that errors are suppressed in a critically damped fashion over all configura-
tions.

10.18 [15] A system with open-loop dynamics given by

r =,nG+b82+c9

is controlled with the control law

= + + + sin(O).

Give the differential equation that characterizes the closed-loop action of the
system.

PROGRAMMING EXERCISE (PART 10)

Repeat Programming Exercise Part 9, and use the same tests, but with a new controller
that uses a complete dynamic model of the 3-link to decouple and linearize the system.
For this case, use

[100.0 0.0 0.0

= I
0.0 100.0 0.0

L 0.0 0.0 100.0

Choose a diagonal that guarantees critical damping over all conñgurations of the
arm. Compare the results with those obtained with the simpler controller used in
Programming Exercise Part 9.


	9 Linear control of manipulators �
	10 Nonlinear control of manipulators �

