# ALGORITMOS EVOLUTIVOS Curso 2024

# Tema 8: Técnicas avanzadas en AE

Centro de Cálculo, Instituto de Computación Facultad de Ingeniería, Universidad de la República, Uruguay





# UNIVERSIDAD DE LA REPÚBLICA

#### Contenido

- Codificación diploide
- Inversión y reordenamiento
- Representación de permutaciones
- Mecanismos para preservar la diversidad
  - Diferenciación sexual, Especialización y nichos, Técnicas de crowding,
     Fitness sharing, Restricciones al cruzamiento



# Codificación diploide

 El AG simple utiliza una representación haploide: un único alelo por cada gen del cromosoma. Por ejemplo:

01110

• En una representación diploide cada genotipo tiene dos cromosomas asociados. Por ejemplo:

01110

10111

- Ambos cromosomas proporcionan información sobre la solución representada.
- En la naturaleza muchos organismos tienen cromosomas con estructura diploide.

# UNIVERSIDAD DE LA REPÚBLICA URUGUAY

# Codificación diploide

- Existe redundancia en la codificación cromosómica. Es necesario un mecanismo de desambiguación.
- <u>Dominancia</u>
  - Permite determinar qué alelos serán expresados.
    - Es decir, qué características de las que se representan estarán presentes en el fenotipo.
  - En cada locus, algunos alelos dominan (dominantes) sobre otros (recesivos).
  - Los valores dominantes se manifiestan en el fenotipo, mientras que los recesivos no se manifiestan.



# Codificación diploide

 Por ejemplo, si se considera como criterio para cada uno de los locus la dominancia de mayúsculas

AbCdE

abCDE

El fenotipo tendrá las características AbCDE.

- Las características dominantes se expresan en homocigotos (AA→A)
  y heterocigotos (Aa→A).
- Las características recesivas solamente se expresan en homocigotos (aa→a).



# Codificación diploide

#### ¿Por qué introducir redundancia mediante diploides?

- Proveen un mecanismo de memoria para recordar valores que fueron útiles en el pasado.
- Son útiles para problemas con funciones de fitness variables que modelan entornos adaptativos.
  - Mantiene información que puede ser utilizada en el futuro.
- Permite mantener múltiples soluciones diferentes con una misma solución expresada, aumentando así la diversidad de la población.



# Codificación diploide: aplicación en AE

- La dominancia puede ser estática o dinámica. Para el caso dinámico existen diferentes enfoques.
- Dominancia global variable: la probabilidad de dominancia de un alelo se calcula según su proporción en la generación actual.
  - *Dominancia global variable determinista*: siempre domina el alelo con mayor proporción.
- Basado en fitness: el alelo más efectivo en términos de fitness promedio se transforme en dominante y el otro en recesivo.
- Dominancia basada en haploide: se usa un cromosoma haploide extra asociado a cada cromosoma diploide para codificar la dominancia.

# UNIVERSIDAD DE LA REPÚBLICA URLIGUAY

## Inversión y reordenamiento

- La inversión es un mecanismo utilizado para reducir el sesgo de los operadores de cruzamiento de n puntos.
- Funciona simplemente invirtiendo el orden de los elementos del genotipo entre dos posiciones.
- Ejemplo:

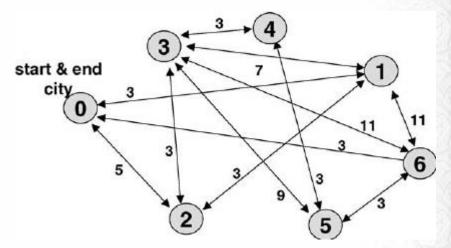
 $0.10011 \rightarrow 0.11001$ 

• Su objetivo es reordenar las posiciones de la codificación acercando posiciones potencialmente relacionadas.

# UNIVERSIDAD DE LA REPÚBLICA

# Inversión y reordenamiento

- Se propone tomar en cuenta la posición asociándola al alelo correspondiente mediante una codificación (posición, alelo).
- Ejemplo:


```
(1,0)(2,1)(3,0)(4,0)(5,1)(6,1)\rightarrow (1,0)(2,1)(5,1)(4,0)(3,0)(6,1)
```

- Se modifica el genotipo manteniendo el fenotipo incambiado.
- Desventaja: no es posible realizar el cruzamiento en forma directa.

# UNIVERSIDAD DE LA REPÚBLICA URUGUAY

## Representación de permutaciones

- Es utilizada en problemas de optimización combinatoria donde se busca una permutación que optimice una cierta función objetivo.
- Ejemplo: El problema del vendedor viajero (TSP). Cada entero se corresponde con un identificador de una ciudad en un ciclo solución.
- Ejemplo:
  - 0123456
  - 0234561



 Los operadores tradicionales no pueden ser aplicados trivialmente, es necesario utilizar operadores específicos.

# UNIVERSIDAD DE LA REPÚBLICA URUGUAY

# Representación de permutaciones

- Operadores de mutación
  - Exchange Mutation
  - Insertion Mutation
  - Displacement Mutation
  - Simple Inversion Mutation
  - Inversion Mutation
- Operadores de cruzamiento
  - Partially Mapped Crossover
  - Order Crossover
  - Cycle Crossover
  - Position Based Crossover



### Mutación para la representación de permutaciones

• <u>EM – Exchange Mutation</u>

Se sortean dos posiciones dentro del individuo y se intercambian los valores en dichas posiciones.



$$A' = 127456389$$

ISM – Insertion Mutation

Se sortea una posición y se "mueve" a una posición aleatoria.

$$\Rightarrow$$

$$\rightarrow$$
 A' = 1 2 6 3 4 5 7 8 9

<u>DM – Displacement Mutation</u>

Igual a ISM pero con un "grupo" de genes.

$$\Rightarrow$$



#### Mutación para la representación de permutaciones

• <u>SIM – Simple Inversion Mutation</u>

Se sortea una sección del individuo y se invierte el orden de los valores en los genes de la sección



IM – Inversion Mutation

Combina inversión simple y desplazamiento (SIM + DM)





# Cruzamiento para la representación de permutaciones

#### • PMX - Partially Mapped Crossover

Actúa intercambiando secciones entre dos puntos de corte (como 2PX), pero corrige en base al mapeo entre padres.

Ejemplo, cruce entre individuos A y B:

$$A = 123|456|789 \longrightarrow 123|297|789$$

$$B = 864|297|531 \longrightarrow 864|456|531$$

La sección intercambiada permanece igual. El *resto de la permutación* se corrige usando el mapeo de la parte intercambiada:



## Cruzamiento para la representación de permutaciones

- PMX Partially Mapped Crossover (continuación)
- Individuos corregidos:

• La idea que guía a este operador es mantener las *posiciones* absolutas de los elementos codificados en los individuos.



#### Cruzamiento para la representación de permutaciones

#### • OX – Order Crossover

Es similar al PMX, pero no corrige por intercambios sino que genera "huecos" que se desplazan en orden circular a partir del segundo punto de corte. Los huecos se mapean con el otro individuo.

Ejemplo, cruce entre individuos A y B:

Para el individuo A resulta:



### Cruzamiento para la representación de permutaciones

• OX – Order Crossover

Para el individuo B resulta:

En este caso el operador de cruzamiento está orientado a mantener las *posiciones relativas de los elementos* codificados en el individuo, siguiendo un orden cíclico.



#### Cruzamiento para la representación de permutaciones

#### • CX – Cycle Crossover

Se selecciona un valor en un individuo y se completa con los mapeos correspondientes en el otro individuo, hasta obtener un ciclo. Posteriormente se completa con los valores "sobrantes" del otro individuo.

Ejemplo, cruce entre individuos A y B:

$$B = 123456789$$

Para el primer individuo:

- 9 - 1 4 - 6 se completa el mapeo hasta obtener un ciclo.
- 9 2 3 1 5 4 7 8 6 se completa con los valores del otro individuo.

Este operador de cruzamiento mantiene los ciclos.



#### Cruzamiento para la representación de permutaciones

- PBX Postion Based Crossover
  - 1. Seleccionar varios valores del padre 1 que se copian directamente al hijo 1 en las mismas posiciones.
  - 2. Marcar en el padre 2 los valores ya copiados.
  - 3. Desde el comienzo del padre 2, copiar todos los valores no marcados en las posiciones libres del hijo 1 empezando por el comienzo.

Ejemplo, cruce entre individuos A y B:

Para el primer individuo:

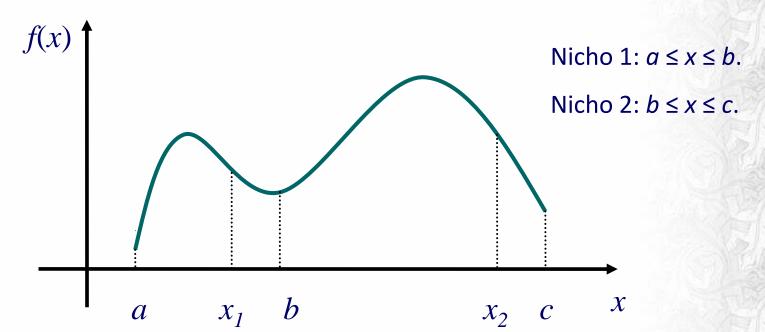
- 9 2 - 4 5 3 se copian los valores elegidos del padre 1.
- 9 1 2 6 7 4 5 3 8 se completa con los valores del padre 2.



#### Mecanismos para mantener la diversidad

- La diversidad genética es un concepto muy importante para alcanzar resultados de calidad cuando se trabaja con algoritmos evolutivos.
- Algunos mecanismos de preservación de la diversidad:
  - Especiación y nichos
  - Técnicas de crowding
  - Fitness sharing
  - Restricciones al cruzamiento
- Su objetivo es preservar la mayor cantidad de características de los individuos presentes en la población.

# UNIVERSIDAD DE LA REPÚBLICA URUGUAY

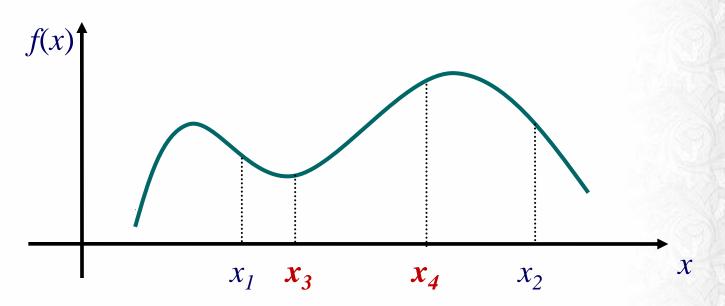

# Especiación y nichos

- Especiación: separación de individuos en clases.
- Nicho: trabajo o rol que realiza un determinado organismo.
- Son mecanismos basados en la definición de categorías (subpoblaciones, castas, etc.) y restricciones en el cruzamiento.
- Intentan preservar características de ciertos individuos para muestrear adecuadamente el espacio de búsqueda.
- Se utilizan en la optimización de funciones multimodales y para problemas con fitness variable.

# UNIVERSIDAD DE LA REPÚBLICA

# Especiación y nichos

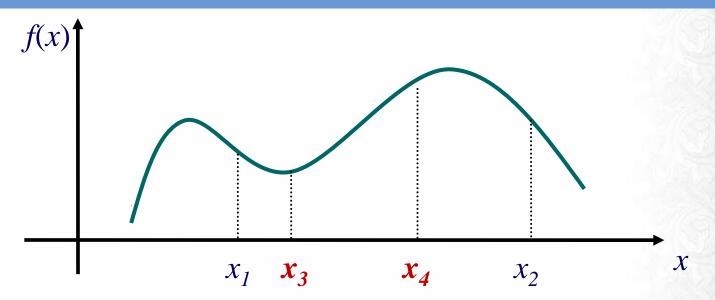
Por ejemplo: Optimización de una función multimodal.




- La idea consiste en impedir que el individuo x<sub>1</sub> del nicho 1 y se cruce con el individuo x<sub>2</sub> del nicho 2.
  - Si  $x_1$  se cruza con  $x_2$  dominarán las características de  $x_2$ , y no se muestreará adecuadamente el nicho 1.

# UNIVERSIDAD DE LA REPÚBLICA

# Crowding


- Es una variante propuesta en la que no se incorpora una restricción explícita al cruzamiento.
- En cambio, cada nuevo individuo reemplazará al individuo *más similar* a si mismo existente en la población.



 $x_1$  se cruza con  $x_2$  generando  $x_3$  y  $x_4$ .



## Crowding



- $x_4$  sustituirá a  $x_2$  y preservará a  $x_1$ .
- El parámetro llamado *crowding factor* que determina la cantidad de individuos contra los que se compara cada nuevo individuo.
- Este mecanismo ayuda a mantener la diversidad y *reserva* espacio para nuevas especies.



#### Crowding determinista

Cada descendiente (h<sub>1</sub> y h<sub>2</sub>) compite en torneo con sus padres (p<sub>1</sub> y p<sub>2</sub>), sustituyendo al padre más cercano de acuerdo a una función de distancia.

$$si \left[ d(p_1, h_1) + d(p_2, h_2) \right] \le \left[ d(p_1, h_2) + d(p_2, h_1) \right]$$
 $si f(h_1) > f(p_1)$  se sustituye  $p_1$  por  $h_1$ 
 $si f(h_2) > f(p_2)$  se sustituye  $p_2$  por  $h_2$ 
sino
 $si f(h_1) > f(p_2)$  se sustituye  $p_2$  por  $h_1$ 
 $si f(h_2) > f(p_1)$  se sustituye  $p_2$  por  $h_2$ 
fin

Algoritmo de reemplazo en la técnica de crowding determinista

# UNIVERSIDAD DE LA REPÚBLICA

## Fitness sharing

- La idea consiste en decrementar el fitness de las zonas muy representadas del espacio de búsqueda.
- Se determina un *grado de vecindad* entre individuos sumando para cada uno de ellos los valores de una función *S* (función de Sharing) correspondientes a cada *vecino*.
- Se trabaja con valores de fitness reducido  $f_R$ :

$$f_R(x_i) = \frac{f(x_i)}{\sum_{j} SH(d(x_i, x_j))}$$



# Fitness sharing

La función de sharing toma valores cercanos a 1 para individuos vecinos o cercanos:

$$SH(d(x_i, x_j)) = \begin{cases} 1 - \left(\frac{d(x_i, x_j)}{\sigma_{SHARING}}\right) & \text{si } d(x_i, x_j) \leq \sigma_{SHARING} \\ 0 & \\ 1.0 & \\ SH(d) & \end{cases}$$

 $\sigma_{\text{SHARING}}$ distancia  $d_{ii} = ||x_i - x_i||$ 

0.0

# UNIVERSIDAD DE LA REPÚBLICA URUGUAY

# Fitness sharing



Sharing en función de la distancia relativa para sharing potencia

# UNIVERSIDAD DE LA REPÚBLICA URUGUAY

#### Restricciones al cruzamiento

- Previene (o minimiza) la aparición de individuos de bajo desempeño.
- Para lograrlo se introduce un sesgo en la recombinación de individuos, tratando de incrementar la efectividad y la eficiencia del algoritmo.
- Se presentarán tres propuestas:
  - Castas con cruces ocasionales.
  - Patrones de cruzamiento.
  - Restricción por distancia.

# UNIVERSIDAD DE LA REPÚBLICA LIBLIGUAY

#### Restricciones al cruzamiento

#### Castas con cruces ocasionales

- Los cruces se realizan entre *familias* o *castas* que son definidas por características comunes.
- El cruzamiento se mantiene entre individuos de la misma casta mientras el fitness observado mejora.
- Solamente cuando no existe mejora se autoriza el cruzamiento entre individuos de castas diferentes.
- La medida de «mejora» a considerar puede ser el fitness promedio, el mejor fitness, la desviación estándar, o combinaciones de ellas.

# UNIVERSIDAD DE LA REPÚBLICA URUGUAY

#### Restricciones al cruzamiento

#### Patrones de cruzamiento ("mating templates")

 Los individuos codifican su valor funcional y un patrón para el apareamiento:

<temp> :<func>

#10# : 1010

#01# : 1100

#00# : 0000

- Los # representan posiciones que pueden coincidir con 0 y 1.
- El mapeo de templates para autorizar el cruzamiento puede ser bidireccional, unidireccional o mejor parcial.

# UNIVERSIDAD DE LA REPÚBLICA URUGUAY

#### Restricciones al cruzamiento

#### Restricción basada en distancia

- El cruzamiento solo está autorizado entre individuos cuyas características difieren como mínimo en un valor dado
  - Se considera una función de distancia.
- El objetivo es intentar lograr un cruzamiento "efectivo" que potencie la exploración del espacio de soluciones.
- Eshelman introdujo esta técnica para mantener la diversidad en su propuesta de algoritmo CHC.