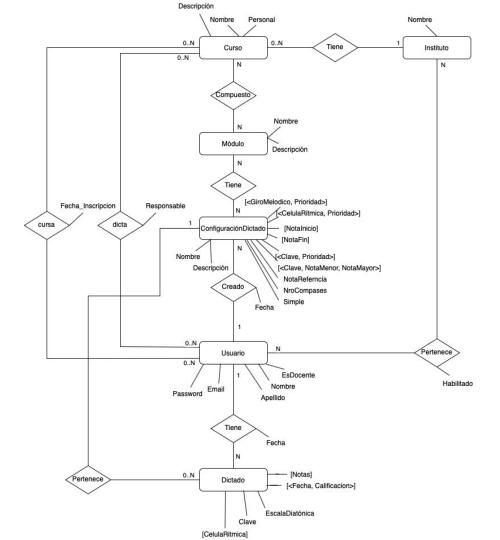

DEFENSA FINAL BDNR 2021

AGUSTÍN QUEIROLO FRANCO WANSEÉLE

Realidad planteada Entrenamiento Auditivo para Músicos


Principales funcionalidades

- Generar dictados rítmicos y dictados melódicos de forma aleatoria
- Que los estudiantes los escuchen y puedan escribirlo en un pentagrama

Análisis de la realidad

- Docentes y estudiantes que puedan crear configuraciones musicales y escucharlas
- Gestión de cursos por institutos
- Gestión de los dictados generados e intentos de resolución

Motivación para BDNR

La aplicación deberá poder soportar un gran número de docentes (tanto de institutos como particulares) y estudiantes (de un curso o autodidactas). Esto requiere que la base de datos sea escalable.

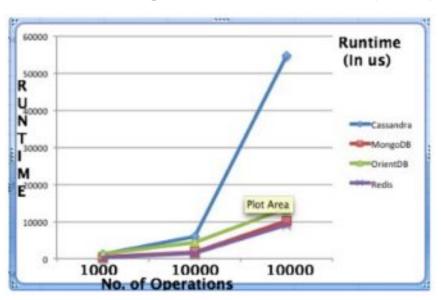
En el contexto de enseñar música se podría querer incorporar nuevas funcionalidades

Bases de Datos No Relacionales Consideradas

El trabajo está basado en el artículo: Choosing the right NoSQL database for the job: a quality attribute evaluation

Las bases de datos analizadas

Evaluación de Atributos de Calidad


	Aerospike	Cassandra	Couchbase	CouchDB	HBase	MongoDB	Voldemort
Availability	+	+	+	+	-	712	+
Consistency	+	+	+	+		+	+
Durability	-	+	+	-	+	+	+
Maintainability	+		+	+	-		-
Read-Performance	+	-	#		-	#	+
Recovery Time	+	•	+	?	?		?
Reliability	-	+	-	+	+	#	?
Robustness	+	+			•		?
Scalability	#	+	+	_	+	-	+
Stabilization Time	•	+	+	?	?	•	?
Write-Performance	+	#	+	-	+	-	+
Legend:							
Great + Good							
Average - Mediocre							
■ Bad							
? Unknown/N.A.							

[&]quot;Choosing the right NoSQLdatabase for the job: a quality attribute evaluation"

Evaluación de Eficiencia

Herramienta utilizada: Yahoo! Cloud Serving Benchmark

Se utilizaron datos del paper "Performance Evaluation of NoSQL Systems Using Yahoo CloudServing Benchmarking Tool", [Chakraborttii(2015)].

Modelado de la Realidad

Se modeló la realidad usando MongoDB, implementando los siguientes documentos:

- Curso
- Modulo
- ConfiguracionDictado
- Dictado
- Usuario
- Instituto
- GiroMelodico
- CelulaRitmica
- EscaladaDiatonica

Consultas

Se implementaron varias consultas representativas

- Operaciones de lectura utilizadas con mayor frecuencia
- Operaciones de inserción utilizadas de forma moderada
- Operaciones de actualización de las menos utilizadas

Conclusiones

- Cada base de datos tiene sus fortalezas en diferentes atributos. La realidad abordada se contrastó con los diferentes atributos de calidad y se vió un buen desempeño para MongoDB y Cassandra.
- Se aprendió a utilizar la herramienta Yahoo Cloud Serving Benchmark para realizar un análisis de eficiencia en profundidad.
 - Dicho análisis reveló mayores fortalezas para MongoDB
- El análisis realizado brinda guías para analizar pros y contras de distintas
 BDNR lo cual es de gran utilidad para ser extrapolados a otras realidades.
- Aporte beneficioso al proyecto de grado del compañero